code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort lowerCAmelCase__ : List[Any] =logging.get_logger(__name__) lowerCAmelCase__ : List[str] ={ 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class __lowercase : """simple docstring""" def __init__( self , lowerCAmelCase__=None , **lowerCAmelCase__ ): """simple docstring""" logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) SCREAMING_SNAKE_CASE_ : Any = model SCREAMING_SNAKE_CASE_ : int = kwargs.get('model_save_dir' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = kwargs.get('latest_model_name' , lowerCAmelCase__ ) def __call__( self , **lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = {k: np.array(lowerCAmelCase__ ) for k, v in kwargs.items()} return self.model.run(lowerCAmelCase__ , lowerCAmelCase__ ) @staticmethod def UpperCamelCase__ ( lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None ): """simple docstring""" if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) SCREAMING_SNAKE_CASE_ : Any = 'CPUExecutionProvider' return ort.InferenceSession(lowerCAmelCase__ , providers=[provider] , sess_options=lowerCAmelCase__ ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name ) SCREAMING_SNAKE_CASE_ : List[str] = Path(lowerCAmelCase__ ).joinpath(lowerCAmelCase__ ) try: shutil.copyfile(lowerCAmelCase__ , lowerCAmelCase__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) SCREAMING_SNAKE_CASE_ : int = self.model_save_dir.joinpath(lowerCAmelCase__ ) if src_path.exists(): SCREAMING_SNAKE_CASE_ : Dict = Path(lowerCAmelCase__ ).joinpath(lowerCAmelCase__ ) try: shutil.copyfile(lowerCAmelCase__ , lowerCAmelCase__ ) except shutil.SameFileError: pass def UpperCamelCase__ ( self , lowerCAmelCase__ , **lowerCAmelCase__ , ): """simple docstring""" if os.path.isfile(lowerCAmelCase__ ): logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) # saving model weights/files self._save_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) @classmethod def UpperCamelCase__ ( cls , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = OnnxRuntimeModel.load_model( os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , provider=lowerCAmelCase__ , sess_options=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = Path(lowerCAmelCase__ ) # load model from hub else: # download model SCREAMING_SNAKE_CASE_ : int = hf_hub_download( repo_id=lowerCAmelCase__ , filename=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , revision=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_ : Any = Path(lowerCAmelCase__ ).parent SCREAMING_SNAKE_CASE_ : str = Path(lowerCAmelCase__ ).name SCREAMING_SNAKE_CASE_ : Union[str, Any] = OnnxRuntimeModel.load_model(lowerCAmelCase__ , provider=lowerCAmelCase__ , sess_options=lowerCAmelCase__ ) return cls(model=lowerCAmelCase__ , **lowerCAmelCase__ ) @classmethod def UpperCamelCase__ ( cls , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = None if len(str(lowerCAmelCase__ ).split('@' ) ) == 2: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = model_id.split('@' ) return cls._from_pretrained( model_id=lowerCAmelCase__ , revision=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
101
import collections import os import re from pathlib import Path UpperCAmelCase_ = """src/transformers""" # Matches is_xxx_available() UpperCAmelCase_ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} UpperCAmelCase_ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCAmelCase_ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available UpperCAmelCase_ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") UpperCAmelCase_ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCAmelCase_ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", UpperCAmelCase_ = re.compile(r"""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], UpperCAmelCase_ = re.compile(r"""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo UpperCAmelCase_ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: UpperCAmelCase_ = re.compile(r"""^\s*try:""") # Catches a line with else: UpperCAmelCase_ = re.compile(r"""^\s*else:""") def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] ) -> Any: if _re_test_backend.search(_snake_case ) is None: return None _A = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Any ) -> Any: with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _A = f.readlines() _A = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure _A = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: _A = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): _A = _re_one_line_import_struct.search(_snake_case ).groups()[0] _A = re.findall(r'''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue _A = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: _A = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 _A = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): _A = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: _A = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) _A = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: _A = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) _A = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 _A = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _A = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): _A = lines[line_index] _A = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 _A = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): _A = lines[line_index] _A = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 _A = objects else: line_index += 1 return import_dict_objects, type_hint_objects def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] , _snake_case :Dict ) -> Any: def find_duplicates(_snake_case :Any ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _A = [] for key in import_dict_objects.keys(): _A = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) _A = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _A = '''base imports''' if key == '''none''' else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def SCREAMING_SNAKE_CASE_ ( ) -> int: _A = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: _A = os.path.join(_snake_case , '''__init__.py''' ) _A = parse_init(_snake_case ) if objects is not None: _A = analyze_results(*_snake_case ) if len(_snake_case ) > 0: _A = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: _A = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue _A = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) _A = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue _A = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) _A = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules UpperCAmelCase_ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def SCREAMING_SNAKE_CASE_ ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import _A = direct_transformers_import(_snake_case ) _A = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_snake_case , '''__init__.py''' ) , '''r''' ) as f: _A = f.read() import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , _snake_case ) ) ) _A = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_snake_case ) > 0: _A = '''\n'''.join(F'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
2
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __magic_name__ : Any = logging.get_logger(__name__) __magic_name__ : Tuple = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class lowercase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase : List[str] = """resnet""" __lowerCAmelCase : List[Any] = ["""basic""", """bottleneck"""] def __init__( self , _A=3 , _A=6_4 , _A=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , _A=[3, 4, 6, 3] , _A="bottleneck" , _A="relu" , _A=False , _A=None , _A=None , **_A , ): '''simple docstring''' super().__init__(**_A ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" ) UpperCamelCase : List[Any] = num_channels UpperCamelCase : str = embedding_size UpperCamelCase : List[Any] = hidden_sizes UpperCamelCase : str = depths UpperCamelCase : Tuple = layer_type UpperCamelCase : Tuple = hidden_act UpperCamelCase : str = downsample_in_first_stage UpperCamelCase : str = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(_A ) + 1 )] UpperCamelCase , UpperCamelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=_A , out_indices=_A , stage_names=self.stage_names ) class lowercase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase : Any = version.parse("""1.11""" ) @property def _a ( self ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _a ( self ): '''simple docstring''' return 1e-3
102
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(_A) class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : Optional[int] , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : List[str] ) -> List[str]: super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def snake_case_ ( self : Any , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[Any]=None ) -> int: _A = {} _A = {} if prompt is not None: _A = prompt if generate_kwargs is not None: _A = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _A = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) _A = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[str] , __lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any]=None ) -> int: _A = load_image(__lowerCAmelCase ) if prompt is not None: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(__lowerCAmelCase )} - but expected a single string. ''' '''Note also that one single text can be provided for conditional image to text generation.''' ) _A = self.model.config.model_type if model_type == "git": _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) _A = self.tokenizer(text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids _A = [self.tokenizer.cls_token_id] + input_ids _A = torch.tensor(__lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": _A = self.image_processor(images=__lowerCAmelCase , header_text=__lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) _A = self.tokenizer(__lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(__lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _A = None return model_inputs def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict=None ) -> str: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , __lowerCAmelCase ) and all(x is None for x in model_inputs['''input_ids'''] ) ): _A = None if generate_kwargs is None: _A = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _A = model_inputs.pop(self.model.main_input_name ) _A = self.model.generate(__lowerCAmelCase , **__lowerCAmelCase , **__lowerCAmelCase ) return model_outputs def snake_case_ ( self : Dict , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = [] for output_ids in model_outputs: _A = { '''generated_text''': self.tokenizer.decode( __lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , ) } records.append(__lowerCAmelCase ) return records
2
0
"""simple docstring""" import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup snake_case = logging.get_logger(__name__) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Tuple , **__lowerCamelCase : Any ): """simple docstring""" requires_backends(self , ['''bs4'''] ) super().__init__(**__lowerCamelCase ) def __UpperCAmelCase ( self : int , __lowerCamelCase : int ): """simple docstring""" _snake_case = [] _snake_case = [] _snake_case = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag _snake_case = parent.find_all(child.name , recursive=__lowerCamelCase ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__lowerCamelCase ) else next(i for i, s in enumerate(__lowerCamelCase , 1 ) if s is child ) ) _snake_case = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : int ): """simple docstring""" _snake_case = BeautifulSoup(__lowerCamelCase , '''html.parser''' ) _snake_case = [] _snake_case = [] _snake_case = [] for element in html_code.descendants: if type(__lowerCamelCase ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue _snake_case = html.unescape(__lowerCamelCase ).strip() if not text_in_this_tag: continue all_doc_strings.append(__lowerCamelCase ) _snake_case , _snake_case = self.xpath_soup(__lowerCamelCase ) stringaxtag_seq.append(__lowerCamelCase ) stringaxsubs_seq.append(__lowerCamelCase ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def __UpperCAmelCase ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Any ): """simple docstring""" _snake_case = '''''' for tagname, subs in zip(__lowerCamelCase , __lowerCamelCase ): xpath += f"""/{tagname}""" if subs != 0: xpath += f"""[{subs}]""" return xpath def __call__( self : Optional[Any] , __lowerCamelCase : Tuple ): """simple docstring""" _snake_case = False # Check that strings has a valid type if isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = True elif isinstance(__lowerCamelCase , (list, tuple) ): if len(__lowerCamelCase ) == 0 or isinstance(html_strings[0] , __lowerCamelCase ): _snake_case = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' f"""but is of type {type(__lowerCamelCase )}.""" ) _snake_case = bool(isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(html_strings[0] , __lowerCamelCase )) ) if not is_batched: _snake_case = [html_strings] # Get nodes + xpaths _snake_case = [] _snake_case = [] for html_string in html_strings: _snake_case , _snake_case , _snake_case = self.get_three_from_single(__lowerCamelCase ) nodes.append(__lowerCamelCase ) _snake_case = [] for node, tag_list, sub_list in zip(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): _snake_case = self.construct_xpath(__lowerCamelCase , __lowerCamelCase ) xpath_strings.append(__lowerCamelCase ) xpaths.append(__lowerCamelCase ) # return as Dict _snake_case = {'''nodes''': nodes, '''xpaths''': xpaths} _snake_case = BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase ) return encoded_inputs
103
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE_ ( _snake_case :str = "AAPL" ) -> str: _A = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' _A = BeautifulSoup(requests.get(_snake_case ).text , '''html.parser''' ) _A = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
2
0
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency UpperCamelCase = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } UpperCamelCase = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" UpperCamelCase = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _lowerCamelCase ( UpperCAmelCase_ : str ) -> dict[str, int]: """simple docstring""" A__ = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def _lowerCamelCase ( UpperCAmelCase_ : tuple ) -> str: """simple docstring""" return x[0] def _lowerCamelCase ( UpperCAmelCase_ : str ) -> str: """simple docstring""" A__ = get_letter_count(UpperCAmelCase_ ) A__ = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(UpperCAmelCase_ ) A__ = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find, reverse=UpperCAmelCase_ ) A__ = "".join(freq_to_letter[freq] ) A__ = list(freq_to_letter_str.items() ) freq_pairs.sort(key=UpperCAmelCase_, reverse=UpperCAmelCase_ ) A__ = [freq_pair[1] for freq_pair in freq_pairs] return "".join(UpperCAmelCase_ ) def _lowerCamelCase ( UpperCAmelCase_ : str ) -> int: """simple docstring""" A__ = get_frequency_order(UpperCAmelCase_ ) A__ = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
104
from graphs.minimum_spanning_tree_kruskal import kruskal def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: _A = 9 _A = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _A = kruskal(_snake_case , _snake_case ) _A = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_snake_case ) == sorted(_snake_case )
2
0
from __future__ import annotations import math def __UpperCAmelCase ( lowerCamelCase_ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True UpperCamelCase__ : List[str] = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def __UpperCAmelCase ( lowerCamelCase_ : int ) -> list[int]: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) SCREAMING_SNAKE_CASE_ : Dict = [] for num in range(len(lowerCamelCase_ ) ): SCREAMING_SNAKE_CASE_ : List[Any] = 0 while 2 * i * i <= odd_composites[num]: SCREAMING_SNAKE_CASE_ : Dict = odd_composites[num] - 2 * i * i if is_prime(lowerCamelCase_ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCamelCase_ ) == n: return list_nums return [] def __UpperCAmelCase ( ) -> int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(F"""{solution() = }""")
105
def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCamelCase_ ( ) -> str: '''simple docstring''' A = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' A = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert('RGB' ) return image def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> Tuple: '''simple docstring''' A = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def lowerCamelCase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> Dict: '''simple docstring''' A = dct.pop(lowerCAmelCase__ ) A = val def lowerCamelCase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any ) -> int: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases A = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) A = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict A = torch.cat((q_bias, torch.zeros_like(lowerCAmelCase__ , requires_grad=lowerCAmelCase__ ), v_bias) ) A = qkv_bias def lowerCamelCase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] ) -> Optional[int]: '''simple docstring''' A = 364 if 'coco' in model_name else 224 A = BlipaVisionConfig(image_size=lowerCAmelCase__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: A = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=lowerCAmelCase__ ).to_dict() elif "opt-6.7b" in model_name: A = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=lowerCAmelCase__ ).to_dict() elif "t5-xl" in model_name: A = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: A = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() A = BlipaConfig(vision_config=lowerCAmelCase__ , text_config=lowerCAmelCase__ ) return config, image_size @torch.no_grad() def lowerCamelCase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=False ) -> Optional[Any]: '''simple docstring''' A = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) A = tokenizer('\n' , add_special_tokens=lowerCAmelCase__ ).input_ids[0] A , A = get_blipa_config(lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) A = BlipaForConditionalGeneration(lowerCAmelCase__ ).eval() A = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } A , A = model_name_to_original[model_name] # load original model print('Loading original model...' ) A = 'cuda' if torch.cuda.is_available() else 'cpu' A , A , A = load_model_and_preprocess( name=lowerCAmelCase__ , model_type=lowerCAmelCase__ , is_eval=lowerCAmelCase__ , device=lowerCAmelCase__ ) original_model.eval() print('Done!' ) # update state dict keys A = original_model.state_dict() A = create_rename_keys(lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): A = state_dict.pop(lowerCAmelCase__ ) if key.startswith('Qformer.bert' ): A = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: A = key.replace('self' , 'attention' ) if "opt_proj" in key: A = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: A = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): A = key.replace('opt' , 'language' ) if key.startswith('t5' ): A = key.replace('t5' , 'language' ) A = val # read in qv biases read_in_q_v_bias(lowerCAmelCase__ , lowerCAmelCase__ ) A , A = hf_model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] A = load_demo_image() A = vis_processors['eval'](lowerCAmelCase__ ).unsqueeze(0 ).to(lowerCAmelCase__ ) A = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(lowerCAmelCase__ ) # create processor A = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=lowerCAmelCase__ , image_std=lowerCAmelCase__ ) A = BlipaProcessor(image_processor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) A = processor(images=lowerCAmelCase__ , return_tensors='pt' ).pixel_values.to(lowerCAmelCase__ ) # make sure processor creates exact same pixel values assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) original_model.to(lowerCAmelCase__ ) hf_model.to(lowerCAmelCase__ ) with torch.no_grad(): if "opt" in model_name: A = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits A = hf_model(lowerCAmelCase__ , lowerCAmelCase__ ).logits else: A = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits A = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) A = hf_model(lowerCAmelCase__ , lowerCAmelCase__ , labels=lowerCAmelCase__ ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": A = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=lowerCAmelCase__ ) assert torch.allclose(logits[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": A = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=lowerCAmelCase__ ) else: # cast to same type A = logits.dtype assert torch.allclose(original_logits.to(lowerCAmelCase__ ) , lowerCAmelCase__ , atol=1E-2 ) print('Looks ok!' ) print('Generating a caption...' ) A = '' A = tokenizer(lowerCAmelCase__ , return_tensors='pt' ).input_ids.to(lowerCAmelCase__ ) A = original_model.generate({'image': original_pixel_values} ) A = hf_model.generate( lowerCAmelCase__ , lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , lowerCAmelCase__ ) A = input_ids.shape[1] A = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowerCAmelCase__ ) A = [text.strip() for text in output_text] print('HF generation:' , lowerCAmelCase__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowerCAmelCase__ ) hf_model.save_pretrained(lowerCAmelCase__ ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __snake_case :str =argparse.ArgumentParser() __snake_case :Optional[Any] =[ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __snake_case :List[Any] =parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
106
UpperCAmelCase_ = 2_5_6 # Modulus to hash a string UpperCAmelCase_ = 1_0_0_0_0_0_3 def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :str ) -> bool: _A = len(_snake_case ) _A = len(_snake_case ) if p_len > t_len: return False _A = 0 _A = 0 _A = 1 # Calculating the hash of pattern and substring of text for i in range(_snake_case ): _A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def SCREAMING_SNAKE_CASE_ ( ) -> None: _A = '''abc1abc12''' _A = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' _A = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(_snake_case , _snake_case ) and not rabin_karp(_snake_case , _snake_case ) # Test 2) _A = '''ABABX''' _A = '''ABABZABABYABABX''' assert rabin_karp(_snake_case , _snake_case ) # Test 3) _A = '''AAAB''' _A = '''ABAAAAAB''' assert rabin_karp(_snake_case , _snake_case ) # Test 4) _A = '''abcdabcy''' _A = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(_snake_case , _snake_case ) # Test 5) _A = '''Lü''' _A = '''Lüsai''' assert rabin_karp(_snake_case , _snake_case ) _A = '''Lue''' assert not rabin_karp(_snake_case , _snake_case ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
2
0
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = KandinskyVaaPriorPipeline __lowerCAmelCase = ["prompt"] __lowerCAmelCase = ["prompt", "negative_prompt"] __lowerCAmelCase = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] __lowerCAmelCase = False @property def __UpperCAmelCase ( self : Dict ) -> Tuple: return 32 @property def __UpperCAmelCase ( self : Optional[int] ) -> Any: return 32 @property def __UpperCAmelCase ( self : Optional[Any] ) -> str: return self.time_input_dim @property def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: return self.time_input_dim * 4 @property def __UpperCAmelCase ( self : str ) -> Union[str, Any]: return 1_00 @property def __UpperCAmelCase ( self : List[Any] ) -> Optional[int]: _A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: torch.manual_seed(0 ) _A = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=10_00, ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def __UpperCAmelCase ( self : Optional[Any] ) -> Any: torch.manual_seed(0 ) _A = { 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } _A = PriorTransformer(**UpperCamelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 _A = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def __UpperCAmelCase ( self : Dict ) -> Tuple: torch.manual_seed(0 ) _A = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, image_size=2_24, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=14, ) _A = CLIPVisionModelWithProjection(UpperCamelCase__ ) return model @property def __UpperCAmelCase ( self : Dict ) -> List[Any]: _A = CLIPImageProcessor( crop_size=2_24, do_center_crop=UpperCamelCase__, do_normalize=UpperCamelCase__, do_resize=UpperCamelCase__, image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073], image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711], resample=3, size=2_24, ) return image_processor def __UpperCAmelCase ( self : List[Any] ) -> Optional[int]: _A = self.dummy_prior _A = self.dummy_image_encoder _A = self.dummy_text_encoder _A = self.dummy_tokenizer _A = self.dummy_image_processor _A = UnCLIPScheduler( variance_type='fixed_small_log', prediction_type='sample', num_train_timesteps=10_00, clip_sample=UpperCamelCase__, clip_sample_range=10.0, ) _A = { 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def __UpperCAmelCase ( self : List[Any], UpperCamelCase__ : List[Any], UpperCamelCase__ : Tuple=0 ) -> Optional[Any]: if str(UpperCamelCase__ ).startswith('mps' ): _A = torch.manual_seed(UpperCamelCase__ ) else: _A = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) _A = { 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __UpperCAmelCase ( self : Dict ) -> str: _A = 'cpu' _A = self.get_dummy_components() _A = self.pipeline_class(**UpperCamelCase__ ) _A = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _A = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) _A = output.image_embeds _A = pipe( **self.get_dummy_inputs(UpperCamelCase__ ), return_dict=UpperCamelCase__, )[0] _A = image[0, -10:] _A = image_from_tuple[0, -10:] assert image.shape == (1, 32) _A = np.array( [-0.0_532, 1.7_120, 0.3_656, -1.0_852, -0.8_946, -1.1_756, 0.4_348, 0.2_482, 0.5_146, -0.1_156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict: _A = torch_device == 'cpu' _A = True _A = False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase__, relax_max_difference=UpperCamelCase__, test_mean_pixel_difference=UpperCamelCase__, ) @skip_mps def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: _A = torch_device == 'cpu' _A = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase__, test_mean_pixel_difference=UpperCamelCase__, )
107
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } UpperCAmelCase_ = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } UpperCAmelCase_ = """</w>""" UpperCAmelCase_ = """@@ """ def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] ) -> List[str]: _A = set() _A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A = char return pairs # Speech2Text2 has no max input length UpperCAmelCase_ = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class lowerCamelCase__ ( _A): """simple docstring""" a__ : Dict = VOCAB_FILES_NAMES a__ : str = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]="<s>" , __lowerCAmelCase : Tuple="<pad>" , __lowerCAmelCase : Optional[Any]="</s>" , __lowerCAmelCase : Dict="<unk>" , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=None , **__lowerCAmelCase : str , ) -> Dict: super().__init__( unk_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , **__lowerCAmelCase , ) _A = do_lower_case with open(__lowerCAmelCase , encoding='''utf-8''' ) as vocab_handle: _A = json.load(__lowerCAmelCase ) _A = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) _A = None _A = None else: with open(__lowerCAmelCase , encoding='''utf-8''' ) as merges_handle: _A = merges_handle.read().split('''\n''' )[:-1] _A = [tuple(merge.split()[:2] ) for merge in merges] _A = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _A = {} @property def snake_case_ ( self : List[str] ) -> int: return len(self.decoder ) def snake_case_ ( self : Dict ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _A = get_pairs(__lowerCAmelCase ) if not pairs: return token while True: _A = min(__lowerCAmelCase , key=lambda __lowerCAmelCase : self.bpe_ranks.get(__lowerCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A = bigram _A = [] _A = 0 while i < len(__lowerCAmelCase ): try: _A = word.index(__lowerCAmelCase , __lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A = j if word[i] == first and i < len(__lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A = tuple(__lowerCAmelCase ) _A = new_word if len(__lowerCAmelCase ) == 1: break else: _A = get_pairs(__lowerCAmelCase ) _A = ''' '''.join(__lowerCAmelCase ) if word == "\n " + BPE_TOKEN_MERGES: _A = '''\n''' + BPE_TOKEN_MERGES if word.endswith(__lowerCAmelCase ): _A = word.replace(__lowerCAmelCase , '''''' ) _A = word.replace(''' ''' , __lowerCAmelCase ) _A = word return word def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Tuple ) -> Optional[int]: if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''' ) if self.do_lower_case: _A = text.lower() _A = text.split() _A = [] for token in text: if token: split_tokens.extend(list(self.bpe(__lowerCAmelCase ).split(''' ''' ) ) ) return split_tokens def snake_case_ ( self : List[Any] , __lowerCAmelCase : str ) -> int: return self.encoder.get(__lowerCAmelCase , self.encoder.get(self.unk_token ) ) def snake_case_ ( self : str , __lowerCAmelCase : int ) -> str: _A = self.decoder.get(__lowerCAmelCase , self.unk_token ) return result def snake_case_ ( self : List[str] , __lowerCAmelCase : List[str] ) -> str: _A = ''' '''.join(__lowerCAmelCase ) # make sure @@ tokens are concatenated _A = ''''''.join(string.split(__lowerCAmelCase ) ) return string def snake_case_ ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCAmelCase , ensure_ascii=__lowerCAmelCase ) + '''\n''' ) _A = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) _A = token_index writer.write(''' '''.join(__lowerCAmelCase ) + '''\n''' ) index += 1 return (vocab_file, merges_file)
2
0
# limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : int , lowerCamelCase : Any , lowerCamelCase : Tuple ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(unet=lowerCamelCase , scheduler=lowerCamelCase ) @torch.no_grad() def __call__( self : Dict , lowerCamelCase : int = 1 , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : int = 50 , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , **lowerCamelCase : List[Any] , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" _UpperCAmelCase = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=lowerCamelCase , ) _UpperCAmelCase = image.to(self.device ) # set step values self.scheduler.set_timesteps(lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _UpperCAmelCase = self.unet(lowerCamelCase , lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample _UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=lowerCamelCase ), "This is a local test"
108
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar UpperCAmelCase_ = TypeVar("""T""") def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (position - 1) // 2 def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (2 * position) + 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (2 * position) + 2 class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__( self : Optional[int] ) -> None: _A = [] _A = {} _A = 0 def __len__( self : str ) -> int: return self.elements def __repr__( self : Optional[int] ) -> str: return str(self.heap ) def snake_case_ ( self : str ) -> bool: # Check if the priority queue is empty return self.elements == 0 def snake_case_ ( self : Optional[int] , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) _A = self.elements self.elements += 1 self._bubble_up(__lowerCAmelCase ) def snake_case_ ( self : Tuple ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _A , _A = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _A , _A = self.heap[0] self._bubble_down(__lowerCAmelCase ) return elem def snake_case_ ( self : int , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Update the weight of the given key _A = self.position_map[elem] _A = (elem, weight) if position > 0: _A = get_parent_position(__lowerCAmelCase ) _A , _A = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__lowerCAmelCase ) else: self._bubble_down(__lowerCAmelCase ) else: self._bubble_down(__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : T ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] _A = self.position_map[elem] if curr_pos == 0: return None _A = get_parent_position(__lowerCAmelCase ) _A , _A = self.heap[curr_pos] _A , _A = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_up(__lowerCAmelCase ) return None def snake_case_ ( self : Dict , __lowerCAmelCase : T ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] _A = self.position_map[elem] _A , _A = self.heap[curr_pos] _A = get_child_left_position(__lowerCAmelCase ) _A = get_child_right_position(__lowerCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: _A , _A = self.heap[child_left_position] _A , _A = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) if child_left_position < self.elements: _A , _A = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) else: return None if child_right_position < self.elements: _A , _A = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) return None def snake_case_ ( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> None: # Swap the nodes at the given positions _A = self.heap[nodea_pos][0] _A = self.heap[nodea_pos][0] _A , _A = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _A = nodea_pos _A = nodea_pos class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__( self : str ) -> None: _A = {} _A = 0 def __repr__( self : str ) -> str: return str(self.connections ) def __len__( self : Dict ) -> int: return self.nodes def snake_case_ ( self : Any , __lowerCAmelCase : T ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: _A = {} self.nodes += 1 def snake_case_ ( self : str , __lowerCAmelCase : T , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Add an edge between 2 nodes in the graph self.add_node(__lowerCAmelCase ) self.add_node(__lowerCAmelCase ) _A = weight _A = weight def SCREAMING_SNAKE_CASE_ ( _snake_case :GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: _A = {node: maxsize for node in graph.connections} _A = {node: None for node in graph.connections} _A = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_snake_case , _snake_case ) if priority_queue.is_empty(): return dist, parent # initialization _A = priority_queue.extract_min() _A = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_snake_case , dist[neighbour] ) _A = node # running prim's algorithm while not priority_queue.is_empty(): _A = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_snake_case , dist[neighbour] ) _A = node return dist, parent
2
0
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets a = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" a = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" a = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> List[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __SCREAMING_SNAKE_CASE = new_id # turn into Numpy arrays __SCREAMING_SNAKE_CASE = np.array(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = np.array(__UpperCAmelCase ) if reduce_labels: __SCREAMING_SNAKE_CASE = 255 __SCREAMING_SNAKE_CASE = label - 1 __SCREAMING_SNAKE_CASE = 255 __SCREAMING_SNAKE_CASE = label != ignore_index __SCREAMING_SNAKE_CASE = np.not_equal(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = pred_label[mask] __SCREAMING_SNAKE_CASE = np.array(__UpperCAmelCase )[mask] __SCREAMING_SNAKE_CASE = pred_label[pred_label == label] __SCREAMING_SNAKE_CASE = np.histogram(__UpperCAmelCase , bins=__UpperCAmelCase , range=(0, num_labels - 1) )[0] __SCREAMING_SNAKE_CASE = np.histogram(__UpperCAmelCase , bins=__UpperCAmelCase , range=(0, num_labels - 1) )[0] __SCREAMING_SNAKE_CASE = np.histogram(__UpperCAmelCase , bins=__UpperCAmelCase , range=(0, num_labels - 1) )[0] __SCREAMING_SNAKE_CASE = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Optional[int]: '''simple docstring''' __SCREAMING_SNAKE_CASE = np.zeros((num_labels,) , dtype=np.floataa ) __SCREAMING_SNAKE_CASE = np.zeros((num_labels,) , dtype=np.floataa ) __SCREAMING_SNAKE_CASE = np.zeros((num_labels,) , dtype=np.floataa ) __SCREAMING_SNAKE_CASE = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(__UpperCAmelCase , __UpperCAmelCase ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = intersect_and_union( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = total_intersect_and_union( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # compute metrics __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = total_area_intersect.sum() / total_area_label.sum() __SCREAMING_SNAKE_CASE = total_area_intersect / total_area_union __SCREAMING_SNAKE_CASE = total_area_intersect / total_area_label __SCREAMING_SNAKE_CASE = np.nanmean(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = np.nanmean(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = all_acc __SCREAMING_SNAKE_CASE = iou __SCREAMING_SNAKE_CASE = acc if nan_to_num is not None: __SCREAMING_SNAKE_CASE = {metric: np.nan_to_num(__UpperCAmelCase , nan=__UpperCAmelCase ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __a ( datasets.Metric ): def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { """predictions""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ), """references""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ), } ) ,reference_urls=[ """https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py""" ] ,) def UpperCAmelCase__ ( self : int ,lowerCamelCase : Optional[int] ,lowerCamelCase : Any ,lowerCamelCase : int ,lowerCamelCase : bool ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : Optional[Dict[int, int]] = None ,lowerCamelCase : bool = False ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = mean_iou( results=lowerCamelCase ,gt_seg_maps=lowerCamelCase ,num_labels=lowerCamelCase ,ignore_index=lowerCamelCase ,nan_to_num=lowerCamelCase ,label_map=lowerCamelCase ,reduce_labels=lowerCamelCase ,) return iou_result
109
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = """▁""" UpperCAmelCase_ = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} UpperCAmelCase_ = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } UpperCAmelCase_ = {"""vinai/bartpho-syllable""": 1_0_2_4} class lowerCamelCase__ ( _A): """simple docstring""" a__ : int = VOCAB_FILES_NAMES a__ : Tuple = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Tuple = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any]="<s>" , __lowerCAmelCase : Dict="</s>" , __lowerCAmelCase : List[Any]="</s>" , __lowerCAmelCase : Optional[Any]="<s>" , __lowerCAmelCase : Tuple="<unk>" , __lowerCAmelCase : int="<pad>" , __lowerCAmelCase : Optional[Any]="<mask>" , __lowerCAmelCase : Optional[Dict[str, Any]] = None , **__lowerCAmelCase : Tuple , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _A = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) _A = vocab_file _A = monolingual_vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _A = {} _A = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: _A = cnt cnt += 1 with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): _A = line.strip().split()[0] _A = len(self.fairseq_tokens_to_ids ) if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: _A = len(self.fairseq_tokens_to_ids ) _A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Any ) -> List[Any]: _A = self.__dict__.copy() _A = None _A = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any] , __lowerCAmelCase : Dict ) -> List[Any]: _A = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A = [self.cls_token_id] _A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self : List[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1, 1] + ([0] * len(__lowerCAmelCase )) + [1] def snake_case_ ( self : Any , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case_ ( self : Optional[int] ) -> Union[str, Any]: return len(self.fairseq_ids_to_tokens ) def snake_case_ ( self : Dict ) -> Optional[Any]: _A = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self : List[str] , __lowerCAmelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def snake_case_ ( self : str , __lowerCAmelCase : Optional[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def snake_case_ ( self : int , __lowerCAmelCase : Optional[int] ) -> List[str]: return self.fairseq_ids_to_tokens[index] def snake_case_ ( self : List[str] , __lowerCAmelCase : Union[str, Any] ) -> Tuple: _A = ''''''.join(__lowerCAmelCase ).replace(__lowerCAmelCase , ''' ''' ).strip() return out_string def snake_case_ ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowerCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__lowerCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
2
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) def lowerCamelCase ( _snake_case ,_snake_case=False ,_snake_case=False ): UpperCAmelCase__ : List[str] = 'backbone.' if is_semantic else '' UpperCAmelCase__ : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (F'''{prefix}cls_token''', 'beit.embeddings.cls_token'), (F'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'), (F'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'), (F'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case=False ,_snake_case=False ): for i in range(config.num_hidden_layers ): UpperCAmelCase__ : Union[str, Any] = 'backbone.' if is_semantic else '' # queries, keys and values UpperCAmelCase__ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase__ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' ) UpperCAmelCase__ : Optional[int] = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' ) UpperCAmelCase__ : Any = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase__ : Tuple = q_bias UpperCAmelCase__ : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase__ : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase__ : List[Any] = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCAmelCase__ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' ) UpperCAmelCase__ : int = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' ) UpperCAmelCase__ : Any = gamma_a UpperCAmelCase__ : str = gamma_a def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case ): UpperCAmelCase__ : int = dct.pop(_snake_case ) UpperCAmelCase__ : Any = val def lowerCamelCase ( ): UpperCAmelCase__ : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCAmelCase__ : Any = Image.open(requests.get(_snake_case ,stream=_snake_case ).raw ) return im @torch.no_grad() def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case=False ): UpperCAmelCase__ : Optional[Any] = False if 'rvlcdip' in checkpoint_url else True UpperCAmelCase__ : Dict = BeitConfig(use_absolute_position_embeddings=_snake_case ,use_mask_token=_snake_case ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCAmelCase__ : List[str] = 1024 UpperCAmelCase__ : Union[str, Any] = 4096 UpperCAmelCase__ : Union[str, Any] = 24 UpperCAmelCase__ : List[str] = 16 # labels if "rvlcdip" in checkpoint_url: UpperCAmelCase__ : Any = 16 UpperCAmelCase__ : Optional[int] = 'huggingface/label-files' UpperCAmelCase__ : Optional[int] = 'rvlcdip-id2label.json' UpperCAmelCase__ : Union[str, Any] = json.load(open(hf_hub_download(_snake_case ,_snake_case ,repo_type='dataset' ) ,'r' ) ) UpperCAmelCase__ : str = {int(_snake_case ): v for k, v in idalabel.items()} UpperCAmelCase__ : Optional[Any] = idalabel UpperCAmelCase__ : Optional[int] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCAmelCase__ : int = torch.hub.load_state_dict_from_url(_snake_case ,map_location='cpu' )['model'] UpperCAmelCase__ : Tuple = create_rename_keys(_snake_case ,has_lm_head=_snake_case ) for src, dest in rename_keys: rename_key(_snake_case ,_snake_case ,_snake_case ) read_in_q_k_v(_snake_case ,_snake_case ,has_lm_head=_snake_case ) # load HuggingFace model UpperCAmelCase__ : List[str] = BeitForMaskedImageModeling(_snake_case ) if has_lm_head else BeitForImageClassification(_snake_case ) model.eval() model.load_state_dict(_snake_case ) # Check outputs on an image UpperCAmelCase__ : Optional[int] = BeitImageProcessor( size=config.image_size ,resample=PILImageResampling.BILINEAR ,do_center_crop=_snake_case ) UpperCAmelCase__ : Optional[int] = prepare_img() UpperCAmelCase__ : Dict = image_processor(images=_snake_case ,return_tensors='pt' ) UpperCAmelCase__ : Optional[int] = encoding['pixel_values'] UpperCAmelCase__ : Optional[Any] = model(_snake_case ) UpperCAmelCase__ : int = outputs.logits # verify logits UpperCAmelCase__ : Tuple = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(_snake_case ), "Shape of logits not as expected" Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: if has_lm_head: UpperCAmelCase__ : Tuple = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: UpperCAmelCase__ : List[str] = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(_snake_case ,_snake_case ) ,organization='nielsr' ,commit_message='Add image processor' ,use_temp_dir=_snake_case ,) model.push_to_hub( repo_path_or_name=Path(_snake_case ,_snake_case ) ,organization='nielsr' ,commit_message='Add model' ,use_temp_dir=_snake_case ,) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', ) UpperCamelCase__ = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
110
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( _snake_case :dict , _snake_case :str ) -> set[str]: _A , _A = set(_snake_case ), [start] while stack: _A = stack.pop() explored.add(_snake_case ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_snake_case ) return explored UpperCAmelCase_ = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
2
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''', } class lowerCAmelCase__ ( _A, _A ): """simple docstring""" __UpperCAmelCase : List[Any] = "focalnet" def __init__( self , a_=224 , a_=4 , a_=3 , a_=96 , a_=False , a_=[192, 384, 768, 768] , a_=[2, 2, 6, 2] , a_=[2, 2, 2, 2] , a_=[3, 3, 3, 3] , a_="gelu" , a_=4.0 , a_=0.0 , a_=0.1 , a_=False , a_=1E-4 , a_=False , a_=False , a_=False , a_=0.02 , a_=1E-5 , a_=32 , a_=None , a_=None , **a_ , ): super().__init__(**__lowerCAmelCase ) lowerCamelCase_ : Tuple = image_size lowerCamelCase_ : Dict = patch_size lowerCamelCase_ : List[str] = num_channels lowerCamelCase_ : Dict = embed_dim lowerCamelCase_ : Any = use_conv_embed lowerCamelCase_ : Dict = hidden_sizes lowerCamelCase_ : Optional[Any] = depths lowerCamelCase_ : int = focal_levels lowerCamelCase_ : Any = focal_windows lowerCamelCase_ : Optional[Any] = hidden_act lowerCamelCase_ : List[Any] = mlp_ratio lowerCamelCase_ : int = hidden_dropout_prob lowerCamelCase_ : Union[str, Any] = drop_path_rate lowerCamelCase_ : List[str] = use_layerscale lowerCamelCase_ : List[Any] = layerscale_value lowerCamelCase_ : Tuple = use_post_layernorm lowerCamelCase_ : List[Any] = use_post_layernorm_in_modulation lowerCamelCase_ : Dict = normalize_modulator lowerCamelCase_ : str = initializer_range lowerCamelCase_ : Optional[Any] = layer_norm_eps lowerCamelCase_ : Any = encoder_stride lowerCamelCase_ : Tuple = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] lowerCamelCase_ ,lowerCamelCase_ : List[str] = get_aligned_output_features_output_indices( out_features=__lowerCAmelCase , out_indices=__lowerCAmelCase , stage_names=self.stage_names )
250
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
2
0
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __UpperCAmelCase : '''simple docstring''' def __init__( self , _A , _A=1_3 , _A=3_2 , _A=2 , _A=3 , _A=1_6 , _A=[1, 2, 1] , _A=[2, 2, 4] , _A=2 , _A=2.0 , _A=True , _A=0.0 , _A=0.0 , _A=0.1 , _A="gelu" , _A=False , _A=True , _A=0.02 , _A=1E-5 , _A=True , _A=None , _A=True , _A=1_0 , _A=8 , _A=["stage1", "stage2", "stage3"] , _A=[1, 2, 3] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =patch_size _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =embed_dim _SCREAMING_SNAKE_CASE =depths _SCREAMING_SNAKE_CASE =num_heads _SCREAMING_SNAKE_CASE =window_size _SCREAMING_SNAKE_CASE =mlp_ratio _SCREAMING_SNAKE_CASE =qkv_bias _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =drop_path_rate _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =use_absolute_embeddings _SCREAMING_SNAKE_CASE =patch_norm _SCREAMING_SNAKE_CASE =layer_norm_eps _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =scope _SCREAMING_SNAKE_CASE =use_labels _SCREAMING_SNAKE_CASE =type_sequence_label_size _SCREAMING_SNAKE_CASE =encoder_stride _SCREAMING_SNAKE_CASE =out_features _SCREAMING_SNAKE_CASE =out_indices def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE =self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ): '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCamelCase_ ( self , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =MaskFormerSwinModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _SCREAMING_SNAKE_CASE =model(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _SCREAMING_SNAKE_CASE =int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase_ ( self , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =MaskFormerSwinBackbone(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _SCREAMING_SNAKE_CASE =model(__lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(__lowerCAmelCase ): _SCREAMING_SNAKE_CASE =['''stem'''] _SCREAMING_SNAKE_CASE =MaskFormerSwinBackbone(config=__lowerCAmelCase ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =config_and_inputs _SCREAMING_SNAKE_CASE ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _A, _A, unittest.TestCase ): '''simple docstring''' lowercase : List[Any] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowercase : Dict = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} lowercase : Union[str, Any] = False lowercase : str = False lowercase : str = False lowercase : List[Any] = False lowercase : Optional[Any] = False def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =MaskFormerSwinModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=__lowerCAmelCase , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self ): '''simple docstring''' return def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCAmelCase ) @unittest.skip('''Swin does not use inputs_embeds''' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip('''Swin does not support feedforward chunking''' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _SCREAMING_SNAKE_CASE =model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear ) ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] _SCREAMING_SNAKE_CASE =['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self , _A , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) _SCREAMING_SNAKE_CASE =outputs.hidden_states _SCREAMING_SNAKE_CASE =getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) # Swin has a different seq_length _SCREAMING_SNAKE_CASE =( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _SCREAMING_SNAKE_CASE =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE =( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =True self.check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _SCREAMING_SNAKE_CASE =True self.check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE =3 _SCREAMING_SNAKE_CASE =( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _SCREAMING_SNAKE_CASE =( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _SCREAMING_SNAKE_CASE =image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _SCREAMING_SNAKE_CASE =image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =True self.check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _SCREAMING_SNAKE_CASE =True self.check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_A ): _SCREAMING_SNAKE_CASE =0 return t def check_equivalence(_A , _A , _A , _A={} ): with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(**__lowerCAmelCase , return_dict=__lowerCAmelCase , **__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =model(**__lowerCAmelCase , return_dict=__lowerCAmelCase , **__lowerCAmelCase ).to_tuple() def recursive_check(_A , _A ): if isinstance(__lowerCAmelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__lowerCAmelCase , __lowerCAmelCase ): recursive_check(__lowerCAmelCase , __lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(__lowerCAmelCase , __lowerCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__lowerCAmelCase ) , set_nan_tensor_to_zero(__lowerCAmelCase ) , atol=1E-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(__lowerCAmelCase ).any()} and `inf`: {torch.isinf(__lowerCAmelCase )}. Dict has""" f""" `nan`: {torch.isnan(__lowerCAmelCase ).any()} and `inf`: {torch.isinf(__lowerCAmelCase )}.""" ) , ) recursive_check(__lowerCAmelCase , __lowerCAmelCase ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _SCREAMING_SNAKE_CASE =self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) _SCREAMING_SNAKE_CASE =self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) check_equivalence(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _SCREAMING_SNAKE_CASE =self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) check_equivalence(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _SCREAMING_SNAKE_CASE =self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) _SCREAMING_SNAKE_CASE =self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) check_equivalence(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , {'''output_hidden_states''': True} ) _SCREAMING_SNAKE_CASE =self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) check_equivalence(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , {'''output_hidden_states''': True} ) @require_torch class __UpperCAmelCase ( unittest.TestCase, _A ): '''simple docstring''' lowercase : List[str] = (MaskFormerSwinBackbone,) if is_torch_available() else () lowercase : Any = MaskFormerSwinConfig def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =MaskFormerSwinModelTester(self ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE =inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =backbone_class(__lowerCAmelCase ) backbone.to(__lowerCAmelCase ) backbone.eval() _SCREAMING_SNAKE_CASE =backbone(**__lowerCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __lowerCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _SCREAMING_SNAKE_CASE =backbone(**__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _SCREAMING_SNAKE_CASE =backbone(**__lowerCAmelCase , output_attentions=__lowerCAmelCase ) self.assertIsNotNone(outputs.attentions )
255
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class lowerCamelCase__ ( _A): """simple docstring""" a__ : Any = "xlnet" a__ : Dict = ["mems"] a__ : List[str] = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int , __lowerCAmelCase : Dict=3_20_00 , __lowerCAmelCase : List[str]=10_24 , __lowerCAmelCase : Dict=24 , __lowerCAmelCase : Optional[Any]=16 , __lowerCAmelCase : Dict=40_96 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : int=True , __lowerCAmelCase : List[str]="bi" , __lowerCAmelCase : Dict=0.02 , __lowerCAmelCase : Union[str, Any]=1E-12 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Optional[Any]=5_12 , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Union[str, Any]=-1 , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Any="last" , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Tuple="tanh" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : str=5 , __lowerCAmelCase : str=5 , __lowerCAmelCase : List[str]=5 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Optional[int]=2 , **__lowerCAmelCase : List[str] , ) -> Tuple: _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(f'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'''`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , __lowerCAmelCase , ) _A = kwargs['''use_cache'''] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def snake_case_ ( self : Optional[Any] ) -> Union[str, Any]: logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def snake_case_ ( self : Tuple , __lowerCAmelCase : Optional[Any] ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
2
0
def snake_case ( lowerCamelCase ): '''simple docstring''' if not isinstance(_snake_case , _snake_case ): raise ValueError("""Input must be an integer""" ) if input_num <= 0: raise ValueError("""Input must be positive""" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
80
def SCREAMING_SNAKE_CASE_ ( _snake_case :bytes ) -> str: return "".join([hex(_snake_case )[2:].zfill(2 ).upper() for byte in list(_snake_case )] ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(_snake_case ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_snake_case ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_snake_case ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :str ) -> str: __lowerCAmelCase : Dict = RobertaPreLayerNormConfig.from_pretrained( _snake_case , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict __lowerCAmelCase : str = torch.load(hf_hub_download(repo_id=_snake_case , filename="""pytorch_model.bin""" ) ) __lowerCAmelCase : Union[str, Any] = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): __lowerCAmelCase : Union[str, Any] = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue __lowerCAmelCase : List[Any] = tensor_value __lowerCAmelCase : Tuple = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=_snake_case , config=_snake_case , state_dict=_snake_case ) model.save_pretrained(_snake_case ) # convert tokenizer __lowerCAmelCase : Any = AutoTokenizer.from_pretrained(_snake_case ) tokenizer.save_pretrained(_snake_case ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCAmelCase = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
504
def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> bool: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(_snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(_snake_case ) == 1: return True _A = series[1] - series[0] for index in range(len(_snake_case ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> float: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(_snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) _A = 0 for val in series: answer += val return answer / len(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def __UpperCAmelCase ( __UpperCamelCase ): for param in module.parameters(): __lowercase : str = False def __UpperCAmelCase ( ): __lowercase : str = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __lowercase : str = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Any = plt.imshow(_snake_case ) fig.axes.get_xaxis().set_visible(_snake_case ) fig.axes.get_yaxis().set_visible(_snake_case ) plt.show() def __UpperCAmelCase ( ): __lowercase : int = datetime.now() __lowercase : Optional[int] = current_time.strftime('''%H:%M:%S''' ) return timestamp
76
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 3 ) -> qiskit.result.counts.Counts: if isinstance(_snake_case , _snake_case ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(_snake_case ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) _A = QuantumRegister(_snake_case , '''qr''' ) _A = ClassicalRegister(_snake_case , '''cr''' ) _A = QuantumCircuit(_snake_case , _snake_case ) _A = number_of_qubits for i in range(_snake_case ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_snake_case ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _snake_case , _snake_case ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_snake_case , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_snake_case , _snake_case ) # simulate with 10000 shots _A = Aer.get_backend('''qasm_simulator''' ) _A = execute(_snake_case , _snake_case , shots=10_000 ) return job.result().get_counts(_snake_case ) if __name__ == "__main__": print( f'Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}' )
2
0
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowercase__ ( *A_: Optional[Any] , A_: Optional[Union[Dict, Any]] = None , A_: Optional[int]=True , A_: Optional[int]=2 ) -> str: """simple docstring""" from .. import __version__ __UpperCAmelCase =take_from __UpperCAmelCase =() if not isinstance(args[0] , _snake_case ): __UpperCAmelCase =(args,) for attribute, version_name, message in args: if version.parse(version.parse(_snake_case ).base_version ) >= version.parse(_snake_case ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) __UpperCAmelCase =None if isinstance(_snake_case , _snake_case ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(_snake_case ),) __UpperCAmelCase =F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(_snake_case , _snake_case ): values += (getattr(_snake_case , _snake_case ),) __UpperCAmelCase =F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: __UpperCAmelCase =F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: __UpperCAmelCase =warning + """ """ if standard_warn else """""" warnings.warn(warning + message , _snake_case , stacklevel=_snake_case ) if isinstance(_snake_case , _snake_case ) and len(_snake_case ) > 0: __UpperCAmelCase =inspect.getouterframes(inspect.currentframe() )[1] __UpperCAmelCase =call_frame.filename __UpperCAmelCase =call_frame.lineno __UpperCAmelCase =call_frame.function __UpperCAmelCase , __UpperCAmelCase =next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(_snake_case ) == 0: return elif len(_snake_case ) == 1: return values[0] return values
68
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :str , _snake_case :Any , _snake_case :int , _snake_case :List[Any] ) -> Optional[int]: for attribute in key.split('''.''' ): _A = getattr(_snake_case , _snake_case ) if weight_type is not None: _A = getattr(_snake_case , _snake_case ).shape else: _A = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _A = value elif weight_type == "weight_g": _A = value elif weight_type == "weight_v": _A = value elif weight_type == "bias": _A = value else: _A = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :Any , _snake_case :int ) -> Any: _A = [] _A = fairseq_model.state_dict() _A = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _A = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) _A = True else: for key, mapped_key in MAPPING.items(): _A = '''sew.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _A = True if "*" in mapped_key: _A = name.split(_snake_case )[0].split('''.''' )[-2] _A = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: _A = '''weight_g''' elif "weight_v" in name: _A = '''weight_v''' elif "weight" in name: _A = '''weight''' elif "bias" in name: _A = '''bias''' else: _A = None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple , _snake_case :List[str] , _snake_case :List[str] , _snake_case :Optional[int] , _snake_case :List[Any] ) -> Any: _A = full_name.split('''conv_layers.''' )[-1] _A = name.split('''.''' ) _A = int(items[0] ) _A = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _A = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :Dict ) -> Tuple: _A = SEWConfig() if is_finetuned: _A = model.wav_encoder.wav_model.cfg else: _A = model.cfg _A = fs_config.conv_bias _A = eval(fs_config.conv_feature_layers ) _A = [x[0] for x in conv_layers] _A = [x[1] for x in conv_layers] _A = [x[2] for x in conv_layers] _A = '''gelu''' _A = '''layer''' if fs_config.extractor_mode == '''layer_norm''' else '''group''' _A = 0.0 _A = fs_config.activation_fn.name _A = fs_config.encoder_embed_dim _A = 0.02 _A = fs_config.encoder_ffn_embed_dim _A = 1E-5 _A = fs_config.encoder_layerdrop _A = fs_config.encoder_attention_heads _A = fs_config.conv_pos_groups _A = fs_config.conv_pos _A = len(_snake_case ) _A = fs_config.encoder_layers _A = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _A = model.cfg _A = fs_config.final_dropout _A = fs_config.layerdrop _A = fs_config.activation_dropout _A = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _A = fs_config.attention_dropout _A = fs_config.dropout_input _A = fs_config.dropout _A = fs_config.mask_channel_length _A = fs_config.mask_channel_prob _A = fs_config.mask_length _A = fs_config.mask_prob _A = '''Wav2Vec2FeatureExtractor''' _A = '''Wav2Vec2CTCTokenizer''' return config @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] , _snake_case :Union[str, Any] , _snake_case :Optional[Any]=None , _snake_case :Optional[int]=None , _snake_case :Dict=True ) -> List[Any]: if is_finetuned: _A , _A , _A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _A , _A , _A = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _A = SEWConfig.from_pretrained(_snake_case ) else: _A = convert_config(model[0] , _snake_case ) _A = model[0].eval() _A = True if config.feat_extract_norm == '''layer''' else False _A = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) if is_finetuned: if dict_path: _A = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _A = target_dict.pad_index _A = target_dict.bos_index _A = target_dict.pad_index _A = target_dict.bos_index _A = target_dict.eos_index _A = len(target_dict.symbols ) _A = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , _snake_case ) _A = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) _A = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) _A = SEWForCTC(_snake_case ) else: _A = SEWModel(_snake_case ) feature_extractor.save_pretrained(_snake_case ) recursively_load_weights(_snake_case , _snake_case , _snake_case ) hf_model.save_pretrained(_snake_case ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCAmelCase_ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
2
0
'''simple docstring''' lowercase__ : List[str] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def _lowerCAmelCase ( __snake_case : int ) -> int: __A : Any = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_00_00] number //= 10_00_00 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowercase__ : Optional[Any] = [None] * 10_00_00_00 lowercase__ : Any = True lowercase__ : List[Any] = False def _lowerCAmelCase ( __snake_case : int ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore __A : str = chain(next_number(_snake_case ) ) __A : Dict = number_chain while number < 10_00_00_00: __A : List[Any] = number_chain number *= 10 return number_chain def _lowerCAmelCase ( __snake_case : int = 10_00_00_00 ) -> int: for i in range(1 , _snake_case ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
8
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : """simple docstring""" @staticmethod def snake_case_ ( *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Any ) -> Any: pass @is_pipeline_test @require_vision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @require_torch def snake_case_ ( self : Tuple ) -> Tuple: _A = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowerCAmelCase ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) _A = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], ] , ) @require_tf def snake_case_ ( self : int ) -> Optional[int]: _A = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) _A = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], ] , ) @slow @require_torch def snake_case_ ( self : Optional[int] ) -> int: _A = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) _A = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case_ ( self : Optional[int] ) -> Dict: _A = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) _A = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
2
0
'''simple docstring''' __lowerCAmelCase = 0 # The first color of the flag. __lowerCAmelCase = 1 # The second color of the flag. __lowerCAmelCase = 2 # The third color of the flag. __lowerCAmelCase = (red, white, blue) def UpperCAmelCase_ (__a : list ): """simple docstring""" if not sequence: return [] if len(_snake_case ) == 1: return list(_snake_case ) _a : Dict = 0 _a : str = len(_snake_case ) - 1 _a : Dict = 0 while mid <= high: if sequence[mid] == colors[0]: _a, _a : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _a, _a : str = sequence[high], sequence[mid] high -= 1 else: _a : int = f"""The elements inside the sequence must contains only {colors} values""" raise ValueError(_snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase = input("""Enter numbers separated by commas:\n""").strip() __lowerCAmelCase = [int(item.strip()) for item in user_input.split(""",""")] print(f'''{dutch_national_flag_sort(unsorted)}''')
229
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : Tuple ) -> Optional[int]: _A = tempfile.mkdtemp() _A = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _A = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } _A = os.path.join(self.tmpdirname , __lowerCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : Dict , **__lowerCAmelCase : int ) -> Optional[int]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : str , **__lowerCAmelCase : Optional[Any] ) -> Tuple: return BertTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : Tuple , **__lowerCAmelCase : str ) -> Union[str, Any]: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def snake_case_ ( self : int ) -> Optional[Any]: _A = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _A = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self : Dict ) -> List[str]: _A = self.get_tokenizer() _A = self.get_rust_tokenizer() _A = self.get_image_processor() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) _A = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCAmelCase ) _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) _A = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCAmelCase ) def snake_case_ ( self : List[Any] ) -> List[str]: _A = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _A = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _A = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) _A = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def snake_case_ ( self : str ) -> List[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = self.prepare_image_inputs() _A = image_processor(__lowerCAmelCase , return_tensors='''np''' ) _A = processor(images=__lowerCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def snake_case_ ( self : Union[str, Any] ) -> Dict: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = processor(text=__lowerCAmelCase ) _A = tokenizer(__lowerCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case_ ( self : List[str] ) -> Any: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = self.prepare_image_inputs() _A = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def snake_case_ ( self : Optional[Any] ) -> str: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A = processor.batch_decode(__lowerCAmelCase ) _A = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : str ) -> str: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = self.prepare_image_inputs() _A = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
2
0
'''simple docstring''' import os from distutils.util import strtobool def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: """simple docstring""" for e in env_keys: __snake_case : Any = int(os.environ.get(_snake_case , -1 ) ) if val >= 0: return val return default def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> int: """simple docstring""" __snake_case : int = os.environ.get(_snake_case , str(_snake_case ) ) return strtobool(_snake_case ) == 1 # As its name indicates `strtobool` actually returns an int... def _a ( _lowerCamelCase , _lowerCamelCase="no" ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = os.environ.get(_snake_case , str(_snake_case ) ) return value
26
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class lowerCamelCase__ ( _A): """simple docstring""" a__ : int = "openai-gpt" a__ : Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Union[str, Any] , __lowerCAmelCase : int=4_04_78 , __lowerCAmelCase : Tuple=5_12 , __lowerCAmelCase : str=7_68 , __lowerCAmelCase : List[Any]=12 , __lowerCAmelCase : Any=12 , __lowerCAmelCase : Dict="gelu" , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : List[str]=1E-5 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[Any]="cls_index" , __lowerCAmelCase : str=True , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[Any]=0.1 , **__lowerCAmelCase : Tuple , ) -> Optional[Any]: _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = afn _A = resid_pdrop _A = embd_pdrop _A = attn_pdrop _A = layer_norm_epsilon _A = initializer_range _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_first_dropout _A = summary_proj_to_labels super().__init__(**__lowerCAmelCase )
2
0
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) A : Any = logging.getLogger(__name__) def __lowerCamelCase ( __a :int , __a :str ) -> List[str]: """simple docstring""" A__ = np.argmax(_snake_case , axis=1 ) return np.sum(outputs == labels ) def __lowerCamelCase ( __a :Dict ) -> List[str]: """simple docstring""" with open(_snake_case , encoding="""utf_8""" ) as f: A__ = csv.reader(_snake_case ) A__ = [] next(_snake_case ) # skip the first line for line in tqdm(_snake_case ): output.append((""" """.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def __lowerCamelCase ( __a :Optional[Any] , __a :str , __a :List[str] , __a :Tuple , __a :int , __a :List[str] ) -> Tuple: """simple docstring""" A__ = [] for dataset in encoded_datasets: A__ = len(_snake_case ) A__ = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) A__ = np.zeros((n_batch, 2) , dtype=np.intaa ) A__ = np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) A__ = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(_snake_case ): A__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] A__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] A__ = with_conta A__ = with_conta A__ = len(_snake_case ) - 1 A__ = len(_snake_case ) - 1 A__ = with_conta A__ = with_conta A__ = mc_label A__ = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(_snake_case ) for t in all_inputs ) ) return tensor_datasets def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" A__ = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=_snake_case , default="""openai-gpt""" , help="""pretrained model name""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_eval""" , action="""store_true""" , help="""Whether to run eval on the dev set.""" ) parser.add_argument( """--output_dir""" , default=_snake_case , type=_snake_case , required=_snake_case , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument("""--train_dataset""" , type=_snake_case , default="""""" ) parser.add_argument("""--eval_dataset""" , type=_snake_case , default="""""" ) parser.add_argument("""--seed""" , type=_snake_case , default=4_2 ) parser.add_argument("""--num_train_epochs""" , type=_snake_case , default=3 ) parser.add_argument("""--train_batch_size""" , type=_snake_case , default=8 ) parser.add_argument("""--eval_batch_size""" , type=_snake_case , default=1_6 ) parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=_snake_case , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , type=_snake_case , default=1 ) parser.add_argument( """--max_steps""" , default=-1 , type=_snake_case , help=( """If > 0: set total number of training steps to perform. Override num_train_epochs.""" ) , ) parser.add_argument( """--gradient_accumulation_steps""" , type=_snake_case , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--learning_rate""" , type=_snake_case , default=6.25E-5 ) parser.add_argument("""--warmup_steps""" , default=0 , type=_snake_case , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--lr_schedule""" , type=_snake_case , default="""warmup_linear""" ) parser.add_argument("""--weight_decay""" , type=_snake_case , default=0.01 ) parser.add_argument("""--lm_coef""" , type=_snake_case , default=0.9 ) parser.add_argument("""--n_valid""" , type=_snake_case , default=3_7_4 ) parser.add_argument("""--server_ip""" , type=_snake_case , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=_snake_case , default="""""" , help="""Can be used for distant debugging.""" ) A__ = parser.parse_args() print(_snake_case ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_snake_case ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) A__ = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) A__ = torch.cuda.device_count() logger.info("""device: {}, n_gpu {}""".format(_snake_case , _snake_case ) ) if not args.do_train and not args.do_eval: raise ValueError("""At least one of `do_train` or `do_eval` must be True.""" ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset A__ = ["""_start_""", """_delimiter_""", """_classify_"""] A__ = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(_snake_case ) A__ = tokenizer.convert_tokens_to_ids(_snake_case ) A__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(_snake_case ) ) model.to(_snake_case ) # Load and encode the datasets def tokenize_and_encode(__a :Tuple ): if isinstance(_snake_case , _snake_case ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_snake_case ) ) elif isinstance(_snake_case , _snake_case ): return obj return [tokenize_and_encode(_snake_case ) for o in obj] logger.info("""Encoding dataset...""" ) A__ = load_rocstories_dataset(args.train_dataset ) A__ = load_rocstories_dataset(args.eval_dataset ) A__ = (train_dataset, eval_dataset) A__ = tokenize_and_encode(_snake_case ) # Compute the max input length for the Transformer A__ = model.config.n_positions // 2 - 2 A__ = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) A__ = min(_snake_case , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders A__ = pre_process_datasets(_snake_case , _snake_case , _snake_case , *_snake_case ) A__ , A__ = tensor_datasets[0], tensor_datasets[1] A__ = TensorDataset(*_snake_case ) A__ = RandomSampler(_snake_case ) A__ = DataLoader(_snake_case , sampler=_snake_case , batch_size=args.train_batch_size ) A__ = TensorDataset(*_snake_case ) A__ = SequentialSampler(_snake_case ) A__ = DataLoader(_snake_case , sampler=_snake_case , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: A__ = args.max_steps A__ = args.max_steps // (len(_snake_case ) // args.gradient_accumulation_steps) + 1 else: A__ = len(_snake_case ) // args.gradient_accumulation_steps * args.num_train_epochs A__ = list(model.named_parameters() ) A__ = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""] A__ = [ { """params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], """weight_decay""": args.weight_decay, }, {"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0}, ] A__ = AdamW(_snake_case , lr=args.learning_rate , eps=args.adam_epsilon ) A__ = get_linear_schedule_with_warmup( _snake_case , num_warmup_steps=args.warmup_steps , num_training_steps=_snake_case ) if args.do_train: A__ , A__ , A__ = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="""Epoch""" ): A__ = 0 A__ = 0 A__ = tqdm(_snake_case , desc="""Training""" ) for step, batch in enumerate(_snake_case ): A__ = tuple(t.to(_snake_case ) for t in batch ) A__ , A__ , A__ , A__ = batch A__ = model(_snake_case , mc_token_ids=_snake_case , lm_labels=_snake_case , mc_labels=_snake_case ) A__ = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() A__ = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 A__ = """Training loss: {:.2e} lr: {:.2e}""".format(_snake_case , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer A__ = model.module if hasattr(_snake_case , """module""" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` A__ = os.path.join(args.output_dir , _snake_case ) A__ = os.path.join(args.output_dir , _snake_case ) torch.save(model_to_save.state_dict() , _snake_case ) model_to_save.config.to_json_file(_snake_case ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned A__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) A__ = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(_snake_case ) if args.do_eval: model.eval() A__ , A__ = 0, 0 A__ , A__ = 0, 0 for batch in tqdm(_snake_case , desc="""Evaluating""" ): A__ = tuple(t.to(_snake_case ) for t in batch ) A__ , A__ , A__ , A__ = batch with torch.no_grad(): A__ , A__ , A__ , A__ = model( _snake_case , mc_token_ids=_snake_case , lm_labels=_snake_case , mc_labels=_snake_case ) A__ = mc_logits.detach().cpu().numpy() A__ = mc_labels.to("""cpu""" ).numpy() A__ = accuracy(_snake_case , _snake_case ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 A__ = eval_loss / nb_eval_steps A__ = eval_accuracy / nb_eval_examples A__ = tr_loss / nb_tr_steps if args.do_train else None A__ = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss} A__ = os.path.join(args.output_dir , """eval_results.txt""" ) with open(_snake_case , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , _snake_case , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) if __name__ == "__main__": main()
176
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def __init__( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict=7 , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : int=30 , __lowerCAmelCase : Dict=4_00 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , __lowerCAmelCase : Dict=[0.5, 0.5, 0.5] , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : List[str]=1 / 2_55 , __lowerCAmelCase : int=True , ) -> List[str]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _A = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _A = parent _A = batch_size _A = num_channels _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_normalize _A = image_mean _A = image_std _A = do_rescale _A = rescale_factor _A = do_pad def snake_case_ ( self : Optional[int] ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case_ ( self : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str=False ) -> Dict: if not batched: _A = image_inputs[0] if isinstance(__lowerCAmelCase , Image.Image ): _A , _A = image.size else: _A , _A = image.shape[1], image.shape[2] if w < h: _A = int(self.size['''shortest_edge'''] * h / w ) _A = self.size['''shortest_edge'''] elif w > h: _A = self.size['''shortest_edge'''] _A = int(self.size['''shortest_edge'''] * w / h ) else: _A = self.size['''shortest_edge'''] _A = self.size['''shortest_edge'''] else: _A = [] for image in image_inputs: _A , _A = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _A = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[0] )[0] _A = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase__ ( _A , unittest.TestCase): """simple docstring""" a__ : Any = DeformableDetrImageProcessor if is_vision_available() else None def snake_case_ ( self : Optional[int] ) -> Any: _A = DeformableDetrImageProcessingTester(self ) @property def snake_case_ ( self : Union[str, Any] ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self : Optional[int] ) -> List[str]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_rescale''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) def snake_case_ ( self : List[str] ) -> int: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) _A = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCAmelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) def snake_case_ ( self : Any ) -> Union[str, Any]: pass def snake_case_ ( self : List[str] ) -> Optional[int]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self : Tuple ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self : Optional[Any] ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case_ ( self : Optional[Any] ) -> Optional[int]: # prepare image and target _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _A = DeformableDetrImageProcessor() _A = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify area _A = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCAmelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCAmelCase , atol=1E-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCAmelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCAmelCase ) ) # verify class_labels _A = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCAmelCase ) ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCAmelCase ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCAmelCase ) ) @slow def snake_case_ ( self : List[str] ) -> List[str]: # prepare image, target and masks_path _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _A = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _A = DeformableDetrImageProcessor(format='''coco_panoptic''' ) _A = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , masks_path=__lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify area _A = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCAmelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCAmelCase , atol=1E-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCAmelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCAmelCase ) ) # verify class_labels _A = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCAmelCase ) ) # verify masks _A = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __lowerCAmelCase ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCAmelCase ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCAmelCase ) )
2
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowercase__ ( lowerCamelCase, lowerCamelCase=False ): _SCREAMING_SNAKE_CASE : Dict = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""module.blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""module.blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""module.blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""module.blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""module.blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""module.blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""module.blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""module.blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""module.blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""module.blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _SCREAMING_SNAKE_CASE : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowercase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: _SCREAMING_SNAKE_CASE : Dict = '' else: _SCREAMING_SNAKE_CASE : Optional[int] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(f"""module.blocks.{i}.attn.qkv.weight""" ) _SCREAMING_SNAKE_CASE : int = state_dict.pop(f"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[ : config.hidden_size, : ] _SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias[: config.hidden_size] _SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _SCREAMING_SNAKE_CASE : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _SCREAMING_SNAKE_CASE : int = in_proj_weight[ -config.hidden_size :, : ] _SCREAMING_SNAKE_CASE : Tuple = in_proj_bias[-config.hidden_size :] def lowercase__ ( lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_snake_case, _snake_case ) def lowercase__ ( lowerCamelCase ): # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. _SCREAMING_SNAKE_CASE : List[str] = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_snake_case, _snake_case ) def lowercase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): _SCREAMING_SNAKE_CASE : Dict = dct.pop(_snake_case ) _SCREAMING_SNAKE_CASE : int = val def lowercase__ ( lowerCamelCase, lowerCamelCase ): _SCREAMING_SNAKE_CASE : int = ViTMSNConfig() _SCREAMING_SNAKE_CASE : Union[str, Any] = 1_000 _SCREAMING_SNAKE_CASE : Union[str, Any] = 'datasets/huggingface/label-files' _SCREAMING_SNAKE_CASE : Union[str, Any] = 'imagenet-1k-id2label.json' _SCREAMING_SNAKE_CASE : Dict = json.load(open(hf_hub_download(_snake_case, _snake_case ), 'r' ) ) _SCREAMING_SNAKE_CASE : Optional[int] = {int(_snake_case ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE : str = idalabel _SCREAMING_SNAKE_CASE : Any = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: _SCREAMING_SNAKE_CASE : str = 384 _SCREAMING_SNAKE_CASE : List[Any] = 1_536 _SCREAMING_SNAKE_CASE : Any = 6 elif "l16" in checkpoint_url: _SCREAMING_SNAKE_CASE : List[Any] = 1_024 _SCREAMING_SNAKE_CASE : int = 4_096 _SCREAMING_SNAKE_CASE : List[Any] = 24 _SCREAMING_SNAKE_CASE : List[str] = 16 _SCREAMING_SNAKE_CASE : int = 0.1 elif "b4" in checkpoint_url: _SCREAMING_SNAKE_CASE : Tuple = 4 elif "l7" in checkpoint_url: _SCREAMING_SNAKE_CASE : Union[str, Any] = 7 _SCREAMING_SNAKE_CASE : Optional[Any] = 1_024 _SCREAMING_SNAKE_CASE : Dict = 4_096 _SCREAMING_SNAKE_CASE : Tuple = 24 _SCREAMING_SNAKE_CASE : int = 16 _SCREAMING_SNAKE_CASE : List[Any] = 0.1 _SCREAMING_SNAKE_CASE : Any = ViTMSNModel(_snake_case ) _SCREAMING_SNAKE_CASE : List[Any] = torch.hub.load_state_dict_from_url(_snake_case, map_location='cpu' )['target_encoder'] _SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor(size=config.image_size ) remove_projection_head(_snake_case ) _SCREAMING_SNAKE_CASE : int = create_rename_keys(_snake_case, base_model=_snake_case ) for src, dest in rename_keys: rename_key(_snake_case, _snake_case, _snake_case ) read_in_q_k_v(_snake_case, _snake_case, base_model=_snake_case ) model.load_state_dict(_snake_case ) model.eval() _SCREAMING_SNAKE_CASE : str = 'http://images.cocodataset.org/val2017/000000039769.jpg' _SCREAMING_SNAKE_CASE : int = Image.open(requests.get(_snake_case, stream=_snake_case ).raw ) _SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor( size=config.image_size, image_mean=_snake_case, image_std=_snake_case ) _SCREAMING_SNAKE_CASE : Dict = image_processor(images=_snake_case, return_tensors='pt' ) # forward pass torch.manual_seed(2 ) _SCREAMING_SNAKE_CASE : List[str] = model(**_snake_case ) _SCREAMING_SNAKE_CASE : Optional[int] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: _SCREAMING_SNAKE_CASE : Any = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: _SCREAMING_SNAKE_CASE : int = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: _SCREAMING_SNAKE_CASE : int = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: _SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3], _snake_case, atol=1E-4 ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_snake_case ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_snake_case ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase__ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
621
UpperCAmelCase_ = 0 # The first color of the flag. UpperCAmelCase_ = 1 # The second color of the flag. UpperCAmelCase_ = 2 # The third color of the flag. UpperCAmelCase_ = (red, white, blue) def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> list: if not sequence: return [] if len(_snake_case ) == 1: return list(_snake_case ) _A = 0 _A = len(_snake_case ) - 1 _A = 0 while mid <= high: if sequence[mid] == colors[0]: _A , _A = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _A , _A = sequence[high], sequence[mid] high -= 1 else: _A = F'''The elements inside the sequence must contains only {colors} values''' raise ValueError(_snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = input("""Enter numbers separated by commas:\n""").strip() UpperCAmelCase_ = [int(item.strip()) for item in user_input.split(""",""")] print(f'{dutch_national_flag_sort(unsorted)}')
2
0
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( _A, unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = BlenderbotSmallTokenizer __UpperCAmelCase : List[str] = False def _UpperCamelCase ( self ): super().setUp() lowerCamelCase_ : int = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] lowerCamelCase_ : int = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) lowerCamelCase_ : Optional[int] = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] lowerCamelCase_ : List[Any] = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} lowerCamelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__lowerCAmelCase ) ) def _UpperCamelCase ( self , **a_ ): kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def _UpperCamelCase ( self , a_ ): lowerCamelCase_ : Optional[int] = "adapt act apte" lowerCamelCase_ : Any = "adapt act apte" return input_text, output_text def _UpperCamelCase ( self ): lowerCamelCase_ : str = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase_ : str = "adapt act apte" lowerCamelCase_ : Dict = ["adapt", "act", "ap@@", "te"] lowerCamelCase_ : int = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase_ : Union[str, Any] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] lowerCamelCase_ : str = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def _UpperCamelCase ( self ): lowerCamelCase_ : Union[str, Any] = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1384] lowerCamelCase_ : Optional[Any] = "I am a small frog." lowerCamelCase_ : Tuple = tok([src_text] , padding=__lowerCAmelCase , truncation=__lowerCAmelCase )["input_ids"] lowerCamelCase_ : Union[str, Any] = tok.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _UpperCamelCase ( self ): lowerCamelCase_ : Any = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) lowerCamelCase_ : str = "I am a small frog ." lowerCamelCase_ : List[Any] = "." lowerCamelCase_ : List[Any] = tok(__lowerCAmelCase )["input_ids"] lowerCamelCase_ : List[str] = tok(__lowerCAmelCase )["input_ids"] assert encoded[-1] == encoded_dot[0]
250
import itertools import math def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE_ ( ) -> Dict: _A = 2 while True: if is_prime(_snake_case ): yield num num += 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 10_001 ) -> int: return next(itertools.islice(prime_generator() , nth - 1 , _snake_case ) ) if __name__ == "__main__": print(f'{solution() = }')
2
0
"""simple docstring""" import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline UpperCAmelCase_ : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class __UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' lowercase : Optional[datasets.Features] = None lowercase : str = "utf-8" lowercase : Optional[str] = None lowercase : Optional[str] = None lowercase : bool = True # deprecated lowercase : Optional[int] = None # deprecated lowercase : int = 10 << 20 # 10MB lowercase : Optional[bool] = None class __UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowercase : List[Any] = JsonConfig def UpperCamelCase_ ( self ): '''simple docstring''' if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) _SCREAMING_SNAKE_CASE =self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase_ ( self , _A ): '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _SCREAMING_SNAKE_CASE =dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowerCAmelCase , (str, list, tuple) ): _SCREAMING_SNAKE_CASE =data_files if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _SCREAMING_SNAKE_CASE =[files] _SCREAMING_SNAKE_CASE =[dl_manager.iter_files(__lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _SCREAMING_SNAKE_CASE =[] for split_name, files in data_files.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _SCREAMING_SNAKE_CASE =[files] _SCREAMING_SNAKE_CASE =[dl_manager.iter_files(__lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__lowerCAmelCase , gen_kwargs={'''files''': files} ) ) return splits def UpperCamelCase_ ( self , _A ): '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): _SCREAMING_SNAKE_CASE =self.config.features.arrow_schema.field(__lowerCAmelCase ).type _SCREAMING_SNAKE_CASE =pa_table.append_column(__lowerCAmelCase , pa.array([None] * len(__lowerCAmelCase ) , type=__lowerCAmelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example _SCREAMING_SNAKE_CASE =table_cast(__lowerCAmelCase , self.config.features.arrow_schema ) return pa_table def UpperCamelCase_ ( self , _A ): '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(__lowerCAmelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _SCREAMING_SNAKE_CASE =json.load(__lowerCAmelCase ) # We keep only the field we are interested in _SCREAMING_SNAKE_CASE =dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__lowerCAmelCase , (list, tuple) ): _SCREAMING_SNAKE_CASE =set().union(*[row.keys() for row in dataset] ) _SCREAMING_SNAKE_CASE ={col: [row.get(__lowerCAmelCase ) for row in dataset] for col in keys} else: _SCREAMING_SNAKE_CASE =dataset _SCREAMING_SNAKE_CASE =pa.Table.from_pydict(__lowerCAmelCase ) yield file_idx, self._cast_table(__lowerCAmelCase ) # If the file has one json object per line else: with open(__lowerCAmelCase , '''rb''' ) as f: _SCREAMING_SNAKE_CASE =0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small _SCREAMING_SNAKE_CASE =max(self.config.chunksize // 3_2 , 1_6 << 1_0 ) _SCREAMING_SNAKE_CASE =( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: _SCREAMING_SNAKE_CASE =f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__lowerCAmelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": _SCREAMING_SNAKE_CASE =batch.decode(self.config.encoding , errors=__lowerCAmelCase ).encode('''utf-8''' ) try: while True: try: _SCREAMING_SNAKE_CASE =paj.read_json( io.BytesIO(__lowerCAmelCase ) , read_options=paj.ReadOptions(block_size=__lowerCAmelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__lowerCAmelCase , pa.ArrowInvalid ) and "straddling" not in str(__lowerCAmelCase ) or block_size > len(__lowerCAmelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"""Batch of {len(__lowerCAmelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _SCREAMING_SNAKE_CASE =json.load(__lowerCAmelCase ) except json.JSONDecodeError: logger.error(f"""Failed to read file \'{file}\' with error {type(__lowerCAmelCase )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__lowerCAmelCase , __lowerCAmelCase ): # list is the only sequence type supported in JSON try: _SCREAMING_SNAKE_CASE =set().union(*[row.keys() for row in dataset] ) _SCREAMING_SNAKE_CASE ={col: [row.get(__lowerCAmelCase ) for row in dataset] for col in keys} _SCREAMING_SNAKE_CASE =pa.Table.from_pydict(__lowerCAmelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"""Failed to read file \'{file}\' with error {type(__lowerCAmelCase )}: {e}""" ) raise ValueError(f"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(__lowerCAmelCase ) break else: logger.error(f"""Failed to read file \'{file}\' with error {type(__lowerCAmelCase )}: {e}""" ) raise ValueError( f"""Not able to read records in the JSON file at {file}. """ f"""You should probably indicate the field of the JSON file containing your records. """ f"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ f"""Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__lowerCAmelCase ) batch_idx += 1
255
import collections import os import re from pathlib import Path UpperCAmelCase_ = """src/transformers""" # Matches is_xxx_available() UpperCAmelCase_ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} UpperCAmelCase_ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCAmelCase_ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available UpperCAmelCase_ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") UpperCAmelCase_ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCAmelCase_ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", UpperCAmelCase_ = re.compile(r"""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], UpperCAmelCase_ = re.compile(r"""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo UpperCAmelCase_ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: UpperCAmelCase_ = re.compile(r"""^\s*try:""") # Catches a line with else: UpperCAmelCase_ = re.compile(r"""^\s*else:""") def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] ) -> Any: if _re_test_backend.search(_snake_case ) is None: return None _A = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Any ) -> Any: with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _A = f.readlines() _A = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure _A = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: _A = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): _A = _re_one_line_import_struct.search(_snake_case ).groups()[0] _A = re.findall(r'''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue _A = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: _A = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 _A = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): _A = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: _A = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) _A = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: _A = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) _A = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 _A = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _A = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): _A = lines[line_index] _A = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 _A = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): _A = lines[line_index] _A = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 _A = objects else: line_index += 1 return import_dict_objects, type_hint_objects def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] , _snake_case :Dict ) -> Any: def find_duplicates(_snake_case :Any ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _A = [] for key in import_dict_objects.keys(): _A = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) _A = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _A = '''base imports''' if key == '''none''' else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def SCREAMING_SNAKE_CASE_ ( ) -> int: _A = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: _A = os.path.join(_snake_case , '''__init__.py''' ) _A = parse_init(_snake_case ) if objects is not None: _A = analyze_results(*_snake_case ) if len(_snake_case ) > 0: _A = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: _A = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue _A = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) _A = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue _A = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) _A = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules UpperCAmelCase_ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def SCREAMING_SNAKE_CASE_ ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import _A = direct_transformers_import(_snake_case ) _A = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_snake_case , '''__init__.py''' ) , '''r''' ) as f: _A = f.read() import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , _snake_case ) ) ) _A = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_snake_case ) > 0: _A = '''\n'''.join(F'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
2
0
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
80
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(_A) class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : Optional[int] , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : List[str] ) -> List[str]: super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def snake_case_ ( self : Any , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[Any]=None ) -> int: _A = {} _A = {} if prompt is not None: _A = prompt if generate_kwargs is not None: _A = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _A = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) _A = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[str] , __lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any]=None ) -> int: _A = load_image(__lowerCAmelCase ) if prompt is not None: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(__lowerCAmelCase )} - but expected a single string. ''' '''Note also that one single text can be provided for conditional image to text generation.''' ) _A = self.model.config.model_type if model_type == "git": _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) _A = self.tokenizer(text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids _A = [self.tokenizer.cls_token_id] + input_ids _A = torch.tensor(__lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": _A = self.image_processor(images=__lowerCAmelCase , header_text=__lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) _A = self.tokenizer(__lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(__lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _A = None return model_inputs def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict=None ) -> str: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , __lowerCAmelCase ) and all(x is None for x in model_inputs['''input_ids'''] ) ): _A = None if generate_kwargs is None: _A = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _A = model_inputs.pop(self.model.main_input_name ) _A = self.model.generate(__lowerCAmelCase , **__lowerCAmelCase , **__lowerCAmelCase ) return model_outputs def snake_case_ ( self : Dict , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = [] for output_ids in model_outputs: _A = { '''generated_text''': self.tokenizer.decode( __lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , ) } records.append(__lowerCAmelCase ) return records
2
0
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _UpperCAmelCase = TypeVar('T') class snake_case_ ( Generic[T] ): def __init__( self : Tuple , _snake_case : T )->Optional[Any]: '''simple docstring''' __lowerCAmelCase : str = data __lowerCAmelCase : Dict = None def __str__( self : Optional[Any] )->str: '''simple docstring''' return F'''{self.data}''' class snake_case_ ( Generic[T] ): def __init__( self : Any )->None: '''simple docstring''' __lowerCAmelCase : int = None def __iter__( self : int )->Iterator[T]: '''simple docstring''' __lowerCAmelCase : Any = self.top while node: yield node.data __lowerCAmelCase : str = node.next def __str__( self : Any )->str: '''simple docstring''' return "->".join([str(__lowerCAmelCase ) for item in self] ) def __len__( self : List[str] )->int: '''simple docstring''' return len(tuple(iter(self ) ) ) def UpperCAmelCase__ ( self : Optional[Any] )->bool: '''simple docstring''' return self.top is None def UpperCAmelCase__ ( self : int , _snake_case : T )->None: '''simple docstring''' __lowerCAmelCase : int = Node(__lowerCAmelCase ) if not self.is_empty(): __lowerCAmelCase : Any = self.top __lowerCAmelCase : Dict = node def UpperCAmelCase__ ( self : List[Any] )->T: '''simple docstring''' if self.is_empty(): raise IndexError("""pop from empty stack""" ) assert isinstance(self.top , __lowerCAmelCase ) __lowerCAmelCase : List[Any] = self.top __lowerCAmelCase : int = self.top.next return pop_node.data def UpperCAmelCase__ ( self : Optional[int] )->T: '''simple docstring''' if self.is_empty(): raise IndexError("""peek from empty stack""" ) assert self.top is not None return self.top.data def UpperCAmelCase__ ( self : Tuple )->None: '''simple docstring''' __lowerCAmelCase : str = None if __name__ == "__main__": from doctest import testmod testmod()
504
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE_ ( _snake_case :str = "AAPL" ) -> str: _A = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' _A = BeautifulSoup(requests.get(_snake_case ).text , '''html.parser''' ) _A = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
2
0
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __UpperCAmelCase ( *__UpperCamelCase ): if not isinstance(_snake_case , _snake_case ): __lowercase : List[Any] = list(_snake_case ) for i in range(len(_snake_case ) ): __lowercase : List[str] = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Union[str, Any] = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(_snake_case , _snake_case ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __UpperCAmelCase ( __UpperCamelCase = None , __UpperCamelCase = 1_28 ): if function is None: return functools.partial(_snake_case , starting_batch_size=_snake_case ) __lowercase : Tuple = starting_batch_size def decorator(*__UpperCamelCase , **__UpperCamelCase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __lowercase : List[str] = list(inspect.signature(_snake_case ).parameters.keys() ) # Guard against user error if len(_snake_case ) < (len(_snake_case ) + 1): __lowercase : int = ''', '''.join([f"""{arg}={value}""" for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f"""Batch size was passed into `{function.__name__}` as the first argument when called.""" f"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""" ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(_snake_case , *_snake_case , **_snake_case ) except Exception as e: if should_reduce_batch_size(_snake_case ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
76
from graphs.minimum_spanning_tree_kruskal import kruskal def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: _A = 9 _A = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _A = kruskal(_snake_case , _snake_case ) _A = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_snake_case ) == sorted(_snake_case )
2
0
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _A : """simple docstring""" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]=2 , __SCREAMING_SNAKE_CASE : Tuple=32 , __SCREAMING_SNAKE_CASE : Tuple=16 , __SCREAMING_SNAKE_CASE : Any=3 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : Optional[int]=32 , __SCREAMING_SNAKE_CASE : List[Any]=4 , __SCREAMING_SNAKE_CASE : Union[str, Any]=[0, 1, 2, 3] , __SCREAMING_SNAKE_CASE : List[str]=4 , __SCREAMING_SNAKE_CASE : str=37 , __SCREAMING_SNAKE_CASE : Optional[int]="gelu" , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=[1, 384, 24, 24] , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : Optional[int]=None , ) -> List[Any]: __UpperCAmelCase =parent __UpperCAmelCase =batch_size __UpperCAmelCase =image_size __UpperCAmelCase =patch_size __UpperCAmelCase =num_channels __UpperCAmelCase =is_training __UpperCAmelCase =use_labels __UpperCAmelCase =hidden_size __UpperCAmelCase =num_hidden_layers __UpperCAmelCase =backbone_out_indices __UpperCAmelCase =num_attention_heads __UpperCAmelCase =intermediate_size __UpperCAmelCase =hidden_act __UpperCAmelCase =hidden_dropout_prob __UpperCAmelCase =attention_probs_dropout_prob __UpperCAmelCase =initializer_range __UpperCAmelCase =num_labels __UpperCAmelCase =backbone_featmap_shape __UpperCAmelCase =scope __UpperCAmelCase =is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __UpperCAmelCase =(image_size // patch_size) ** 2 __UpperCAmelCase =num_patches + 1 def _a ( self : str ) -> str: __UpperCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase =None if self.use_labels: __UpperCAmelCase =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCAmelCase =self.get_config() return config, pixel_values, labels def _a ( self : Any ) -> int: __UpperCAmelCase ={ """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 192, 384, 768], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__lowerCAmelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ) -> List[str]: __UpperCAmelCase =DPTModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __UpperCAmelCase =model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict ) -> Optional[Any]: __UpperCAmelCase =self.num_labels __UpperCAmelCase =DPTForDepthEstimation(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __UpperCAmelCase =model(__lowerCAmelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Tuple: __UpperCAmelCase =self.num_labels __UpperCAmelCase =DPTForSemanticSegmentation(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __UpperCAmelCase =model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _a ( self : Dict ) -> List[str]: __UpperCAmelCase =self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =config_and_inputs __UpperCAmelCase ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( _A , _A , unittest.TestCase ): """simple docstring""" lowerCamelCase : Dict = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowerCamelCase : Dict = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase : Optional[Any] = False lowerCamelCase : Any = False lowerCamelCase : List[str] = False def _a ( self : List[Any] ) -> Any: __UpperCAmelCase =DPTModelTester(self ) __UpperCAmelCase =ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 ) def _a ( self : Optional[int] ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def _a ( self : Any ) -> str: pass def _a ( self : str ) -> Any: __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase =model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear ) ) def _a ( self : Dict ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase =model_class(__lowerCAmelCase ) __UpperCAmelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase =[*signature.parameters.keys()] __UpperCAmelCase =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def _a ( self : str ) -> List[Any]: __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _a ( self : Any ) -> str: __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__lowerCAmelCase ) def _a ( self : Dict ) -> Optional[Any]: __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCAmelCase ) def _a ( self : Optional[int] ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase =True if model_class in get_values(__lowerCAmelCase ): continue __UpperCAmelCase =model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() __UpperCAmelCase =self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) __UpperCAmelCase =model(**__lowerCAmelCase ).loss loss.backward() def _a ( self : List[str] ) -> Optional[int]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase =False __UpperCAmelCase =True if model_class in get_values(__lowerCAmelCase ) or not model_class.supports_gradient_checkpointing: continue __UpperCAmelCase =model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.gradient_checkpointing_enable() model.train() __UpperCAmelCase =self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) __UpperCAmelCase =model(**__lowerCAmelCase ).loss loss.backward() def _a ( self : Tuple ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase =_config_zero_init(__lowerCAmelCase ) for model_class in self.all_model_classes: __UpperCAmelCase =model_class(config=__lowerCAmelCase ) # Skip the check for the backbone __UpperCAmelCase =[] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __UpperCAmelCase =[f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self : Any ) -> Optional[int]: pass @slow def _a ( self : Optional[int] ) -> Union[str, Any]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __UpperCAmelCase =DPTModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def _a ( self : str ) -> Optional[int]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase ="""add""" with self.assertRaises(__lowerCAmelCase ): __UpperCAmelCase =DPTForDepthEstimation(__lowerCAmelCase ) def lowercase__ ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class _A ( unittest.TestCase ): """simple docstring""" def _a ( self : Dict ) -> str: __UpperCAmelCase =DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) __UpperCAmelCase =DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__lowerCAmelCase ) __UpperCAmelCase =prepare_img() __UpperCAmelCase =image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase =model(**__lowerCAmelCase ) __UpperCAmelCase =outputs.predicted_depth # verify the predicted depth __UpperCAmelCase =torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , __lowerCAmelCase ) __UpperCAmelCase =torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , __lowerCAmelCase , atol=1e-4 ) )
68
def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=32 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=[10, 20, 30, 40] , _UpperCAmelCase=[2, 2, 3, 2] , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=["stage2", "stage3", "stage4"] , _UpperCAmelCase=[2, 3, 4] , _UpperCAmelCase=None , ): '''simple docstring''' __A : int = parent __A : Dict = batch_size __A : Optional[Any] = image_size __A : Any = num_channels __A : Optional[Any] = num_stages __A : List[str] = hidden_sizes __A : List[Any] = depths __A : Any = is_training __A : Dict = use_labels __A : Union[str, Any] = intermediate_size __A : str = hidden_act __A : List[Any] = num_labels __A : Optional[Any] = initializer_range __A : List[str] = out_features __A : Optional[int] = out_indices __A : Dict = scope def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __A : Optional[Any] = None if self.use_labels: __A : str = ids_tensor([self.batch_size] , self.num_labels) __A : List[str] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = ConvNextVaModel(config=__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() __A : Dict = model(__lowerCAmelCase) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = ConvNextVaForImageClassification(__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() __A : Any = model(__lowerCAmelCase , labels=__lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[str] = ConvNextVaBackbone(config=__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() __A : Union[str, Any] = model(__lowerCAmelCase) # verify hidden states self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None __A : List[str] = None __A : Tuple = ConvNextVaBackbone(config=__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() __A : List[str] = model(__lowerCAmelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.prepare_config_and_inputs() __A ,__A ,__A : Tuple = config_and_inputs __A : str = {'pixel_values': pixel_values} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.prepare_config_and_inputs() __A ,__A ,__A : List[str] = config_and_inputs __A : int = {'pixel_values': pixel_values, 'labels': labels} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (_A , _A , unittest.TestCase ): lowerCAmelCase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCAmelCase = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = ConvNextVaModelTester(self) __A : List[Any] = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return @unittest.skip(reason='ConvNextV2 does not use inputs_embeds') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass @unittest.skip(reason='ConvNextV2 does not support input and output embeddings') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass @unittest.skip(reason='ConvNextV2 does not use feedforward chunking') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: __A ,__A : Any = self.model_tester.prepare_config_and_inputs_with_labels() __A : List[str] = True if model_class.__name__ in [ *get_values(__lowerCAmelCase), *get_values(__lowerCAmelCase), ]: continue __A : Any = model_class(__lowerCAmelCase) model.to(__lowerCAmelCase) model.train() __A : str = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase) __A : Any = model(**__lowerCAmelCase).loss loss.backward() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: __A ,__A : List[Any] = self.model_tester.prepare_config_and_inputs_with_labels() __A : List[Any] = False __A : str = True if ( model_class.__name__ in [*get_values(__lowerCAmelCase), *get_values(__lowerCAmelCase)] or not model_class.supports_gradient_checkpointing ): continue __A : str = model_class(__lowerCAmelCase) model.to(__lowerCAmelCase) model.gradient_checkpointing_enable() model.train() __A : Optional[int] = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase) __A : Any = model(**__lowerCAmelCase).loss loss.backward() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Tuple = model_class(__lowerCAmelCase) __A : Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : str = [*signature.parameters.keys()] __A : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , __lowerCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): __A : Optional[int] = model_class(__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() with torch.no_grad(): __A : int = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase)) __A : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __A : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(__lowerCAmelCase) , expected_num_stages + 1) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __A ,__A : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Optional[int] = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Union[str, Any] = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[Any] = ConvNextVaModel.from_pretrained(__lowerCAmelCase) self.assertIsNotNone(__lowerCAmelCase) def _lowerCAmelCase ( ) -> Tuple: __A : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224').to(__lowerCAmelCase) __A : Optional[int] = self.default_image_processor __A : Union[str, Any] = prepare_img() __A : Union[str, Any] = preprocessor(images=__lowerCAmelCase , return_tensors='pt').to(__lowerCAmelCase) # forward pass with torch.no_grad(): __A : Union[str, Any] = model(**__lowerCAmelCase) # verify the logits __A : List[str] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , __lowerCAmelCase) __A : List[Any] = torch.tensor([0.9996, 0.1966, -0.4386]).to(__lowerCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1e-4))
8
UpperCAmelCase_ = 2_5_6 # Modulus to hash a string UpperCAmelCase_ = 1_0_0_0_0_0_3 def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :str ) -> bool: _A = len(_snake_case ) _A = len(_snake_case ) if p_len > t_len: return False _A = 0 _A = 0 _A = 1 # Calculating the hash of pattern and substring of text for i in range(_snake_case ): _A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def SCREAMING_SNAKE_CASE_ ( ) -> None: _A = '''abc1abc12''' _A = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' _A = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(_snake_case , _snake_case ) and not rabin_karp(_snake_case , _snake_case ) # Test 2) _A = '''ABABX''' _A = '''ABABZABABYABABX''' assert rabin_karp(_snake_case , _snake_case ) # Test 3) _A = '''AAAB''' _A = '''ABAAAAAB''' assert rabin_karp(_snake_case , _snake_case ) # Test 4) _A = '''abcdabcy''' _A = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(_snake_case , _snake_case ) # Test 5) _A = '''Lü''' _A = '''Lüsai''' assert rabin_karp(_snake_case , _snake_case ) _A = '''Lue''' assert not rabin_karp(_snake_case , _snake_case ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
2
0
'''simple docstring''' __lowerCAmelCase = [ (1_0_0_0, """M"""), (9_0_0, """CM"""), (5_0_0, """D"""), (4_0_0, """CD"""), (1_0_0, """C"""), (9_0, """XC"""), (5_0, """L"""), (4_0, """XL"""), (1_0, """X"""), (9, """IX"""), (5, """V"""), (4, """IV"""), (1, """I"""), ] def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Optional[int] = {'I': 1, 'V': 5, 'X': 1_0, 'L': 5_0, 'C': 1_0_0, 'D': 5_0_0, 'M': 1_0_0_0} _a : List[str] = 0 _a : Any = 0 while place < len(_snake_case ): if (place + 1 < len(_snake_case )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def UpperCAmelCase_ (__a : int ): """simple docstring""" _a : int = [] for arabic, roman in ROMAN: ((_a), (_a)) : Union[str, Any] = divmod(_snake_case , _snake_case ) result.append(roman * factor ) if number == 0: break return "".join(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
229
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } UpperCAmelCase_ = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } UpperCAmelCase_ = """</w>""" UpperCAmelCase_ = """@@ """ def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] ) -> List[str]: _A = set() _A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A = char return pairs # Speech2Text2 has no max input length UpperCAmelCase_ = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class lowerCamelCase__ ( _A): """simple docstring""" a__ : Dict = VOCAB_FILES_NAMES a__ : str = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]="<s>" , __lowerCAmelCase : Tuple="<pad>" , __lowerCAmelCase : Optional[Any]="</s>" , __lowerCAmelCase : Dict="<unk>" , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=None , **__lowerCAmelCase : str , ) -> Dict: super().__init__( unk_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , **__lowerCAmelCase , ) _A = do_lower_case with open(__lowerCAmelCase , encoding='''utf-8''' ) as vocab_handle: _A = json.load(__lowerCAmelCase ) _A = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) _A = None _A = None else: with open(__lowerCAmelCase , encoding='''utf-8''' ) as merges_handle: _A = merges_handle.read().split('''\n''' )[:-1] _A = [tuple(merge.split()[:2] ) for merge in merges] _A = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _A = {} @property def snake_case_ ( self : List[str] ) -> int: return len(self.decoder ) def snake_case_ ( self : Dict ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _A = get_pairs(__lowerCAmelCase ) if not pairs: return token while True: _A = min(__lowerCAmelCase , key=lambda __lowerCAmelCase : self.bpe_ranks.get(__lowerCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A = bigram _A = [] _A = 0 while i < len(__lowerCAmelCase ): try: _A = word.index(__lowerCAmelCase , __lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A = j if word[i] == first and i < len(__lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A = tuple(__lowerCAmelCase ) _A = new_word if len(__lowerCAmelCase ) == 1: break else: _A = get_pairs(__lowerCAmelCase ) _A = ''' '''.join(__lowerCAmelCase ) if word == "\n " + BPE_TOKEN_MERGES: _A = '''\n''' + BPE_TOKEN_MERGES if word.endswith(__lowerCAmelCase ): _A = word.replace(__lowerCAmelCase , '''''' ) _A = word.replace(''' ''' , __lowerCAmelCase ) _A = word return word def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Tuple ) -> Optional[int]: if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''' ) if self.do_lower_case: _A = text.lower() _A = text.split() _A = [] for token in text: if token: split_tokens.extend(list(self.bpe(__lowerCAmelCase ).split(''' ''' ) ) ) return split_tokens def snake_case_ ( self : List[Any] , __lowerCAmelCase : str ) -> int: return self.encoder.get(__lowerCAmelCase , self.encoder.get(self.unk_token ) ) def snake_case_ ( self : str , __lowerCAmelCase : int ) -> str: _A = self.decoder.get(__lowerCAmelCase , self.unk_token ) return result def snake_case_ ( self : List[str] , __lowerCAmelCase : List[str] ) -> str: _A = ''' '''.join(__lowerCAmelCase ) # make sure @@ tokens are concatenated _A = ''''''.join(string.split(__lowerCAmelCase ) ) return string def snake_case_ ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCAmelCase , ensure_ascii=__lowerCAmelCase ) + '''\n''' ) _A = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) _A = token_index writer.write(''' '''.join(__lowerCAmelCase ) + '''\n''' ) index += 1 return (vocab_file, merges_file)
2
0
'''simple docstring''' def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Union[str, Any] = 1 __snake_case : int = 2 while i * i <= n: __snake_case : int = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = 1 __snake_case : Any = 1 while True: i += 1 t_num += i if count_divisors(_snake_case ) > 500: break return t_num if __name__ == "__main__": print(solution())
26
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar UpperCAmelCase_ = TypeVar("""T""") def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (position - 1) // 2 def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (2 * position) + 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (2 * position) + 2 class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__( self : Optional[int] ) -> None: _A = [] _A = {} _A = 0 def __len__( self : str ) -> int: return self.elements def __repr__( self : Optional[int] ) -> str: return str(self.heap ) def snake_case_ ( self : str ) -> bool: # Check if the priority queue is empty return self.elements == 0 def snake_case_ ( self : Optional[int] , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) _A = self.elements self.elements += 1 self._bubble_up(__lowerCAmelCase ) def snake_case_ ( self : Tuple ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _A , _A = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _A , _A = self.heap[0] self._bubble_down(__lowerCAmelCase ) return elem def snake_case_ ( self : int , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Update the weight of the given key _A = self.position_map[elem] _A = (elem, weight) if position > 0: _A = get_parent_position(__lowerCAmelCase ) _A , _A = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__lowerCAmelCase ) else: self._bubble_down(__lowerCAmelCase ) else: self._bubble_down(__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : T ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] _A = self.position_map[elem] if curr_pos == 0: return None _A = get_parent_position(__lowerCAmelCase ) _A , _A = self.heap[curr_pos] _A , _A = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_up(__lowerCAmelCase ) return None def snake_case_ ( self : Dict , __lowerCAmelCase : T ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] _A = self.position_map[elem] _A , _A = self.heap[curr_pos] _A = get_child_left_position(__lowerCAmelCase ) _A = get_child_right_position(__lowerCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: _A , _A = self.heap[child_left_position] _A , _A = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) if child_left_position < self.elements: _A , _A = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) else: return None if child_right_position < self.elements: _A , _A = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) return None def snake_case_ ( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> None: # Swap the nodes at the given positions _A = self.heap[nodea_pos][0] _A = self.heap[nodea_pos][0] _A , _A = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _A = nodea_pos _A = nodea_pos class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__( self : str ) -> None: _A = {} _A = 0 def __repr__( self : str ) -> str: return str(self.connections ) def __len__( self : Dict ) -> int: return self.nodes def snake_case_ ( self : Any , __lowerCAmelCase : T ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: _A = {} self.nodes += 1 def snake_case_ ( self : str , __lowerCAmelCase : T , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Add an edge between 2 nodes in the graph self.add_node(__lowerCAmelCase ) self.add_node(__lowerCAmelCase ) _A = weight _A = weight def SCREAMING_SNAKE_CASE_ ( _snake_case :GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: _A = {node: maxsize for node in graph.connections} _A = {node: None for node in graph.connections} _A = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_snake_case , _snake_case ) if priority_queue.is_empty(): return dist, parent # initialization _A = priority_queue.extract_min() _A = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_snake_case , dist[neighbour] ) _A = node # running prim's algorithm while not priority_queue.is_empty(): _A = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_snake_case , dist[neighbour] ) _A = node return dist, parent
2
0
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy A : Optional[int] = logging.getLogger(__name__) def __lowerCamelCase ( __a :torch.nn.Module , __a :BnbQuantizationConfig , __a :Union[str, os.PathLike] = None , __a :Optional[Dict[str, Union[int, str, torch.device]]] = None , __a :Optional[List[str]] = None , __a :Optional[Dict[Union[int, str], Union[int, str]]] = None , __a :Optional[Union[str, os.PathLike]] = None , __a :bool = False , ) -> Dict: """simple docstring""" A__ = bnb_quantization_config.load_in_abit A__ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) A__ = [] # custom device map if isinstance(_snake_case , _snake_case ) and len(device_map.keys() ) > 1: A__ = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: A__ = get_keys_to_not_convert(_snake_case ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(_snake_case ) A__ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: A__ = [] A__ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(_snake_case ) # compatibility with peft A__ = load_in_abit A__ = load_in_abit A__ = get_parameter_device(_snake_case ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) A__ = replace_with_bnb_layers(_snake_case , _snake_case , modules_to_not_convert=_snake_case ) # convert param to the right dtype A__ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: A__ = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) A__ = getattr(_snake_case , _snake_case , _snake_case ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(_snake_case ): param.to(_snake_case ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( F'The model device type is {model_device.type}. However, cuda is needed for quantization.' """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( F'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' ) else: with init_empty_weights(): A__ = replace_with_bnb_layers( _snake_case , _snake_case , modules_to_not_convert=_snake_case ) A__ = get_quantized_model_device_map( _snake_case , _snake_case , _snake_case , max_memory=_snake_case , no_split_module_classes=_snake_case , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): A__ = True A__ = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( _snake_case , _snake_case , _snake_case , dtype=bnb_quantization_config.torch_dtype , offload_folder=_snake_case , offload_state_dict=_snake_case , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(_snake_case , device_map=_snake_case , offload_dir=_snake_case ) def __lowerCamelCase ( __a :Optional[int] , __a :Optional[Any] , __a :Tuple=None , __a :Union[str, Any]=None , __a :Tuple=None ) -> Optional[Any]: """simple docstring""" if device_map is None: if torch.cuda.is_available(): A__ = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{\'\':torch.cuda.current_device()}`.""" ) if isinstance(_snake_case , _snake_case ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or """ """\'sequential\'.""" ) A__ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) A__ = {} A__ = special_dtypes A__ = no_split_module_classes A__ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": A__ = get_balanced_memory( _snake_case , low_zero=(device_map == """balanced_low_0""") , max_memory=_snake_case , **_snake_case , ) A__ = max_memory A__ = infer_auto_device_map(_snake_case , **_snake_case ) if isinstance(_snake_case , _snake_case ): # check if don't have any quantized module on the cpu A__ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules A__ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def __lowerCamelCase ( __a :Any , __a :Tuple , __a :Dict=None , __a :Optional[Any]=None ) -> int: """simple docstring""" if modules_to_not_convert is None: A__ = [] A__ , A__ = _replace_with_bnb_layers( _snake_case , _snake_case , _snake_case , _snake_case ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def __lowerCamelCase ( __a :str , __a :Any , __a :List[str]=None , __a :Optional[int]=None , ) -> int: """simple docstring""" A__ = False for name, module in model.named_children(): if current_key_name is None: A__ = [] current_key_name.append(_snake_case ) if isinstance(_snake_case , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` A__ = """.""".join(_snake_case ) A__ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: A__ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: A__ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=_snake_case , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: A__ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can\'t be both False""" ) A__ = module.weight.data if module.bias is not None: A__ = module.bias.data bnb_module.requires_grad_(_snake_case ) setattr(_snake_case , _snake_case , _snake_case ) A__ = True if len(list(module.children() ) ) > 0: A__ , A__ = _replace_with_bnb_layers( _snake_case , _snake_case , _snake_case , _snake_case ) A__ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __lowerCamelCase ( __a :Tuple ) -> List[str]: """simple docstring""" with init_empty_weights(): A__ = deepcopy(_snake_case ) # this has 0 cost since it is done inside `init_empty_weights` context manager` A__ = find_tied_parameters(_snake_case ) # For compatibility with Accelerate < 0.18 if isinstance(_snake_case , _snake_case ): A__ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: A__ = sum(_snake_case , [] ) A__ = len(_snake_case ) > 0 # Check if it is a base model A__ = False if hasattr(_snake_case , """base_model_prefix""" ): A__ = not hasattr(_snake_case , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head A__ = list(model.named_children() ) A__ = [list_modules[-1][0]] # add last module together with tied weights A__ = set(_snake_case ) - set(_snake_case ) A__ = list(set(_snake_case ) ) + list(_snake_case ) # remove ".weight" from the keys A__ = [""".weight""", """.bias"""] A__ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: A__ = name.replace(_snake_case , """""" ) filtered_module_names.append(_snake_case ) return filtered_module_names def __lowerCamelCase ( __a :int ) -> Union[str, Any]: """simple docstring""" for m in model.modules(): if isinstance(_snake_case , bnb.nn.Linearabit ): return True return False def __lowerCamelCase ( __a :nn.Module ) -> int: """simple docstring""" return next(parameter.parameters() ).device def __lowerCamelCase ( __a :Any , __a :Optional[Any] , __a :Optional[int] , __a :Optional[int] , __a :List[str] , __a :Dict , __a :Optional[int] ) -> Dict: """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(_snake_case , _snake_case , 0 , dtype=_snake_case , value=_snake_case ) A__ = param_name A__ = model if "." in tensor_name: A__ = tensor_name.split(""".""" ) for split in splits[:-1]: A__ = getattr(_snake_case , _snake_case ) if new_module is None: raise ValueError(F'{module} has no attribute {split}.' ) A__ = new_module A__ = splits[-1] # offload weights A__ = False offload_weight(module._parameters[tensor_name] , _snake_case , _snake_case , index=_snake_case ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , _snake_case , index=_snake_case , ) else: offload_weight(_snake_case , _snake_case , _snake_case , index=_snake_case ) offload_weight(_snake_case , param_name.replace("""weight""" , """SCB""" ) , _snake_case , index=_snake_case ) set_module_tensor_to_device(_snake_case , _snake_case , """meta""" , dtype=_snake_case , value=torch.empty(*param.size() ) )
176
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = """▁""" UpperCAmelCase_ = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} UpperCAmelCase_ = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } UpperCAmelCase_ = {"""vinai/bartpho-syllable""": 1_0_2_4} class lowerCamelCase__ ( _A): """simple docstring""" a__ : int = VOCAB_FILES_NAMES a__ : Tuple = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Tuple = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any]="<s>" , __lowerCAmelCase : Dict="</s>" , __lowerCAmelCase : List[Any]="</s>" , __lowerCAmelCase : Optional[Any]="<s>" , __lowerCAmelCase : Tuple="<unk>" , __lowerCAmelCase : int="<pad>" , __lowerCAmelCase : Optional[Any]="<mask>" , __lowerCAmelCase : Optional[Dict[str, Any]] = None , **__lowerCAmelCase : Tuple , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _A = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) _A = vocab_file _A = monolingual_vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _A = {} _A = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: _A = cnt cnt += 1 with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): _A = line.strip().split()[0] _A = len(self.fairseq_tokens_to_ids ) if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: _A = len(self.fairseq_tokens_to_ids ) _A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Any ) -> List[Any]: _A = self.__dict__.copy() _A = None _A = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any] , __lowerCAmelCase : Dict ) -> List[Any]: _A = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A = [self.cls_token_id] _A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self : List[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1, 1] + ([0] * len(__lowerCAmelCase )) + [1] def snake_case_ ( self : Any , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case_ ( self : Optional[int] ) -> Union[str, Any]: return len(self.fairseq_ids_to_tokens ) def snake_case_ ( self : Dict ) -> Optional[Any]: _A = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self : List[str] , __lowerCAmelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def snake_case_ ( self : str , __lowerCAmelCase : Optional[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def snake_case_ ( self : int , __lowerCAmelCase : Optional[int] ) -> List[str]: return self.fairseq_ids_to_tokens[index] def snake_case_ ( self : List[str] , __lowerCAmelCase : Union[str, Any] ) -> Tuple: _A = ''''''.join(__lowerCAmelCase ).replace(__lowerCAmelCase , ''' ''' ).strip() return out_string def snake_case_ ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowerCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__lowerCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
2
0
"""simple docstring""" from functools import reduce lowerCAmelCase__ = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowercase__ ( lowerCamelCase = N ): return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCamelCase, lowerCamelCase : str(int(_snake_case ) * int(_snake_case ) ), n[i : i + 13] ) ) for i in range(len(_snake_case ) - 12 ) ) if __name__ == "__main__": print(F'{solution() = }')
621
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( _snake_case :dict , _snake_case :str ) -> set[str]: _A , _A = set(_snake_case ), [start] while stack: _A = stack.pop() explored.add(_snake_case ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_snake_case ) return explored UpperCAmelCase_ = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
2
0
from maths.prime_factors import prime_factors def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' if not isinstance(_snake_case , _snake_case): lowerCamelCase_ : int = F"""Input value of [number={number}] must be an integer""" raise TypeError(_snake_case) if number < 1: raise ValueError("Input must be a positive integer") return -1 if len(prime_factors(_snake_case)) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
250
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ : Tuple = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
255
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class lowerCamelCase__ ( _A): """simple docstring""" a__ : Any = "xlnet" a__ : Dict = ["mems"] a__ : List[str] = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int , __lowerCAmelCase : Dict=3_20_00 , __lowerCAmelCase : List[str]=10_24 , __lowerCAmelCase : Dict=24 , __lowerCAmelCase : Optional[Any]=16 , __lowerCAmelCase : Dict=40_96 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : int=True , __lowerCAmelCase : List[str]="bi" , __lowerCAmelCase : Dict=0.02 , __lowerCAmelCase : Union[str, Any]=1E-12 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Optional[Any]=5_12 , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Union[str, Any]=-1 , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Any="last" , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Tuple="tanh" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : str=5 , __lowerCAmelCase : str=5 , __lowerCAmelCase : List[str]=5 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Optional[int]=2 , **__lowerCAmelCase : List[str] , ) -> Tuple: _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(f'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'''`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , __lowerCAmelCase , ) _A = kwargs['''use_cache'''] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def snake_case_ ( self : Optional[Any] ) -> Union[str, Any]: logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def snake_case_ ( self : Tuple , __lowerCAmelCase : Optional[Any] ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
2
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict=7 , _lowerCAmelCase : Dict=3 , _lowerCAmelCase : List[str]=18 , _lowerCAmelCase : str=30 , _lowerCAmelCase : Tuple=400 , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : str=None , _lowerCAmelCase : Any=True , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : str=[0.5, 0.5, 0.5] , _lowerCAmelCase : Dict=[0.5, 0.5, 0.5] , ) -> Optional[Any]: """simple docstring""" __lowercase = size if size is not None else {"""shortest_edge""": 18} __lowercase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = do_center_crop __lowercase = crop_size __lowercase = do_normalize __lowercase = image_mean __lowercase = image_std def _a ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __UpperCamelCase ( _A , unittest.TestCase ): __snake_case :str = LevitImageProcessor if is_vision_available() else None def _a ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = LevitImageProcessingTester(self ) @property def _a ( self : str ) -> str: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """image_std""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """size""" ) ) def _a ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _a ( self : Optional[int] ) -> Dict: """simple docstring""" pass def _a ( self : List[Any] ) -> Any: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
80
def SCREAMING_SNAKE_CASE_ ( _snake_case :bytes ) -> str: return "".join([hex(_snake_case )[2:].zfill(2 ).upper() for byte in list(_snake_case )] ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(_snake_case ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_snake_case ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_snake_case ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/config.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/config.json', } class snake_case_ ( _A ): A_ = "xlnet" A_ = ["mems"] A_ = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int , _snake_case : Dict=32000 , _snake_case : List[str]=1024 , _snake_case : Dict=24 , _snake_case : Optional[Any]=16 , _snake_case : Dict=4096 , _snake_case : Any="gelu" , _snake_case : int=True , _snake_case : List[str]="bi" , _snake_case : Dict=0.02 , _snake_case : Union[str, Any]=1E-12 , _snake_case : Optional[Any]=0.1 , _snake_case : Optional[Any]=512 , _snake_case : List[str]=None , _snake_case : Tuple=True , _snake_case : Tuple=False , _snake_case : Optional[Any]=False , _snake_case : Union[str, Any]=-1 , _snake_case : Optional[Any]=False , _snake_case : Any="last" , _snake_case : List[Any]=True , _snake_case : Tuple="tanh" , _snake_case : int=0.1 , _snake_case : str=5 , _snake_case : str=5 , _snake_case : List[str]=5 , _snake_case : List[str]=1 , _snake_case : Optional[int]=2 , **_snake_case : List[str] , )->Tuple: '''simple docstring''' __lowerCAmelCase : List[Any] = vocab_size __lowerCAmelCase : str = d_model __lowerCAmelCase : int = n_layer __lowerCAmelCase : str = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) __lowerCAmelCase : List[str] = d_model // n_head __lowerCAmelCase : Optional[Any] = ff_activation __lowerCAmelCase : str = d_inner __lowerCAmelCase : List[Any] = untie_r __lowerCAmelCase : Dict = attn_type __lowerCAmelCase : int = initializer_range __lowerCAmelCase : List[Any] = layer_norm_eps __lowerCAmelCase : Tuple = dropout __lowerCAmelCase : str = mem_len __lowerCAmelCase : Tuple = reuse_len __lowerCAmelCase : Dict = bi_data __lowerCAmelCase : Optional[Any] = clamp_len __lowerCAmelCase : List[Any] = same_length __lowerCAmelCase : List[str] = summary_type __lowerCAmelCase : Optional[int] = summary_use_proj __lowerCAmelCase : int = summary_activation __lowerCAmelCase : Any = summary_last_dropout __lowerCAmelCase : str = start_n_top __lowerCAmelCase : List[Any] = end_n_top __lowerCAmelCase : str = bos_token_id __lowerCAmelCase : Any = pad_token_id __lowerCAmelCase : Optional[int] = eos_token_id if "use_cache" in kwargs: warnings.warn( """The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`""" """ instead.""" , __lowerCAmelCase , ) __lowerCAmelCase : List[str] = kwargs["""use_cache"""] __lowerCAmelCase : Union[str, Any] = use_mems_eval __lowerCAmelCase : int = use_mems_train super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def UpperCAmelCase__ ( self : Optional[Any] )->Union[str, Any]: '''simple docstring''' logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def UpperCAmelCase__ ( self : Tuple , _snake_case : Optional[Any] )->Dict: '''simple docstring''' raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
504
def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> bool: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(_snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(_snake_case ) == 1: return True _A = series[1] - series[0] for index in range(len(_snake_case ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> float: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(_snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) _A = 0 for val in series: answer += val return answer / len(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" def __UpperCAmelCase ( __UpperCamelCase ): return "".join([hex(_snake_case )[2:].zfill(2 ).upper() for byte in list(_snake_case )] ) def __UpperCAmelCase ( __UpperCamelCase ): # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(_snake_case ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_snake_case ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_snake_case ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
76
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 3 ) -> qiskit.result.counts.Counts: if isinstance(_snake_case , _snake_case ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(_snake_case ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) _A = QuantumRegister(_snake_case , '''qr''' ) _A = ClassicalRegister(_snake_case , '''cr''' ) _A = QuantumCircuit(_snake_case , _snake_case ) _A = number_of_qubits for i in range(_snake_case ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_snake_case ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _snake_case , _snake_case ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_snake_case , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_snake_case , _snake_case ) # simulate with 10000 shots _A = Aer.get_backend('''qasm_simulator''' ) _A = execute(_snake_case , _snake_case , shots=10_000 ) return job.result().get_counts(_snake_case ) if __name__ == "__main__": print( f'Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}' )
2
0
def lowercase__ ( A_: list , A_: list , A_: int , A_: int , A_: int ) -> int: """simple docstring""" if index == number_of_items: return 0 __UpperCAmelCase =0 __UpperCAmelCase =0 __UpperCAmelCase =knapsack(_snake_case , _snake_case , _snake_case , _snake_case , index + 1 ) if weights[index] <= max_weight: __UpperCAmelCase =values[index] + knapsack( _snake_case , _snake_case , _snake_case , max_weight - weights[index] , index + 1 ) return max(_snake_case , _snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
68
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :str , _snake_case :Any , _snake_case :int , _snake_case :List[Any] ) -> Optional[int]: for attribute in key.split('''.''' ): _A = getattr(_snake_case , _snake_case ) if weight_type is not None: _A = getattr(_snake_case , _snake_case ).shape else: _A = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _A = value elif weight_type == "weight_g": _A = value elif weight_type == "weight_v": _A = value elif weight_type == "bias": _A = value else: _A = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :Any , _snake_case :int ) -> Any: _A = [] _A = fairseq_model.state_dict() _A = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _A = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) _A = True else: for key, mapped_key in MAPPING.items(): _A = '''sew.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _A = True if "*" in mapped_key: _A = name.split(_snake_case )[0].split('''.''' )[-2] _A = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: _A = '''weight_g''' elif "weight_v" in name: _A = '''weight_v''' elif "weight" in name: _A = '''weight''' elif "bias" in name: _A = '''bias''' else: _A = None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple , _snake_case :List[str] , _snake_case :List[str] , _snake_case :Optional[int] , _snake_case :List[Any] ) -> Any: _A = full_name.split('''conv_layers.''' )[-1] _A = name.split('''.''' ) _A = int(items[0] ) _A = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _A = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :Dict ) -> Tuple: _A = SEWConfig() if is_finetuned: _A = model.wav_encoder.wav_model.cfg else: _A = model.cfg _A = fs_config.conv_bias _A = eval(fs_config.conv_feature_layers ) _A = [x[0] for x in conv_layers] _A = [x[1] for x in conv_layers] _A = [x[2] for x in conv_layers] _A = '''gelu''' _A = '''layer''' if fs_config.extractor_mode == '''layer_norm''' else '''group''' _A = 0.0 _A = fs_config.activation_fn.name _A = fs_config.encoder_embed_dim _A = 0.02 _A = fs_config.encoder_ffn_embed_dim _A = 1E-5 _A = fs_config.encoder_layerdrop _A = fs_config.encoder_attention_heads _A = fs_config.conv_pos_groups _A = fs_config.conv_pos _A = len(_snake_case ) _A = fs_config.encoder_layers _A = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _A = model.cfg _A = fs_config.final_dropout _A = fs_config.layerdrop _A = fs_config.activation_dropout _A = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _A = fs_config.attention_dropout _A = fs_config.dropout_input _A = fs_config.dropout _A = fs_config.mask_channel_length _A = fs_config.mask_channel_prob _A = fs_config.mask_length _A = fs_config.mask_prob _A = '''Wav2Vec2FeatureExtractor''' _A = '''Wav2Vec2CTCTokenizer''' return config @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] , _snake_case :Union[str, Any] , _snake_case :Optional[Any]=None , _snake_case :Optional[int]=None , _snake_case :Dict=True ) -> List[Any]: if is_finetuned: _A , _A , _A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _A , _A , _A = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _A = SEWConfig.from_pretrained(_snake_case ) else: _A = convert_config(model[0] , _snake_case ) _A = model[0].eval() _A = True if config.feat_extract_norm == '''layer''' else False _A = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) if is_finetuned: if dict_path: _A = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _A = target_dict.pad_index _A = target_dict.bos_index _A = target_dict.pad_index _A = target_dict.bos_index _A = target_dict.eos_index _A = len(target_dict.symbols ) _A = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , _snake_case ) _A = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) _A = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) _A = SEWForCTC(_snake_case ) else: _A = SEWModel(_snake_case ) feature_extractor.save_pretrained(_snake_case ) recursively_load_weights(_snake_case , _snake_case , _snake_case ) hf_model.save_pretrained(_snake_case ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCAmelCase_ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
2
0
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def _lowerCAmelCase ( __snake_case : Union[dict, list, tuple, torch.Tensor] ) -> List[Tuple[int, ...]]: __A : Optional[Any] = [] if isinstance(_snake_case , _snake_case ): for v in tree.values(): shapes.extend(_fetch_dims(_snake_case ) ) elif isinstance(_snake_case , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(_snake_case ) ) elif isinstance(_snake_case , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def _lowerCAmelCase ( __snake_case : int , __snake_case : Tuple[int, ...] ) -> Tuple[int, ...]: __A : Optional[Any] = [] for d in reversed(_snake_case ): idx.append(flat_idx % d ) __A : List[Any] = flat_idx // d return tuple(reversed(_snake_case ) ) @torch.jit.ignore def _lowerCAmelCase ( __snake_case : Sequence[int] , __snake_case : Sequence[int] , __snake_case : Sequence[int] , __snake_case : Optional[Sequence[bool]] = None , __snake_case : Optional[Sequence[bool]] = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(__snake_case : List[bool] ) -> None: __A : Any = True for i in range(len(_snake_case ) ): __A : str = -1 * (i + 1) l[reversed_idx] &= tally __A : Optional[int] = l[reversed_idx] if start_edges is None: __A : Optional[Any] = [s == 0 for s in start] reduce_edge_list(_snake_case ) if end_edges is None: __A : Optional[int] = [e == (d - 1) for e, d in zip(_snake_case , _snake_case )] reduce_edge_list(_snake_case ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(_snake_case ) == 0: return [()] elif len(_snake_case ) == 1: return [(slice(start[0] , end[0] + 1 ),)] __A : Tuple = [] __A : Optional[Any] = [] # Dimensions common to start and end can be selected directly for s, e in zip(_snake_case , _snake_case ): if s == e: path_list.append(slice(_snake_case , s + 1 ) ) else: break __A : str = tuple(_snake_case ) __A : List[str] = len(_snake_case ) # start == end, and we're done if divergence_idx == len(_snake_case ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __A : Optional[int] = start[divergence_idx] return tuple( path + (slice(_snake_case , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __A : int = end[divergence_idx] return tuple( path + (slice(_snake_case , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) __A : Optional[int] = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def _lowerCAmelCase ( __snake_case : torch.Tensor , __snake_case : int , __snake_case : int , __snake_case : int ) -> torch.Tensor: __A : Union[str, Any] = t.shape[:no_batch_dims] __A : str = list(_flat_idx_to_idx(_snake_case , _snake_case ) ) # _get_minimal_slice_set is inclusive __A : Any = list(_flat_idx_to_idx(flat_end - 1 , _snake_case ) ) # Get an ordered list of slices to perform __A : Any = _get_minimal_slice_set( _snake_case , _snake_case , _snake_case , ) __A : int = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def _lowerCAmelCase ( __snake_case : Callable , __snake_case : Dict[str, Any] , __snake_case : int , __snake_case : int , __snake_case : bool = False , __snake_case : Any = None , __snake_case : bool = False , ) -> Any: if not (len(_snake_case ) > 0): raise ValueError('Must provide at least one input' ) __A : List[Any] = [shape[:no_batch_dims] for shape in _fetch_dims(_snake_case )] __A : Dict = tuple([max(_snake_case ) for s in zip(*_snake_case )] ) def _prep_inputs(__snake_case : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: __A : Tuple = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) __A : Dict = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: __A : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t __A : Union[str, Any] = tensor_tree_map(_prep_inputs , _snake_case ) __A : Union[str, Any] = None if _out is not None: __A : Tuple = tensor_tree_map(lambda __snake_case : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) __A : Optional[Any] = 1 for d in orig_batch_dims: flat_batch_dim *= d __A : Optional[Any] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(__snake_case : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t __A : int = 0 __A : Union[str, Any] = prepped_outputs for _ in range(_snake_case ): # Chunk the input if not low_mem: __A : Any = _select_chunk else: __A : int = partial( _chunk_slice , flat_start=_snake_case , flat_end=min(_snake_case , i + chunk_size ) , no_batch_dims=len(_snake_case ) , ) __A : List[str] = tensor_tree_map(_snake_case , _snake_case ) # Run the layer on the chunk __A : int = layer(**_snake_case ) # Allocate space for the output if out is None: __A : Optional[Any] = tensor_tree_map(lambda __snake_case : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , _snake_case ) # Put the chunk in its pre-allocated space if isinstance(_snake_case , _snake_case ): def assign(__snake_case : dict , __snake_case : dict ) -> None: for k, v in da.items(): if isinstance(_snake_case , _snake_case ): assign(_snake_case , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: __A : Optional[int] = da[k] assign(_snake_case , _snake_case ) elif isinstance(_snake_case , _snake_case ): for xa, xa in zip(_snake_case , _snake_case ): if _add_into_out: xa[i : i + chunk_size] += xa else: __A : List[str] = xa elif isinstance(_snake_case , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: __A : List[str] = output_chunk else: raise ValueError('Not supported' ) i += chunk_size __A : str = tensor_tree_map(lambda __snake_case : t.view(orig_batch_dims + t.shape[1:] ) , _snake_case ) return out class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase = 512 , ): '''simple docstring''' __A : Union[str, Any] = max_chunk_size __A : int = None __A : int = None def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' logging.info('Tuning chunk size...') if min_chunk_size >= self.max_chunk_size: return min_chunk_size __A : Optional[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)] __A : Union[str, Any] = [c for c in candidates if c > min_chunk_size] __A : Optional[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(_UpperCAmelCase) -> bool: try: with torch.no_grad(): fn(*__lowerCAmelCase , chunk_size=__lowerCAmelCase) return True except RuntimeError: return False __A : List[str] = 0 __A : Union[str, Any] = len(__lowerCAmelCase) - 1 while i > min_viable_chunk_size_index: __A : Any = test_chunk_size(candidates[i]) if not viable: __A : str = (min_viable_chunk_size_index + i) // 2 else: __A : Optional[Any] = i __A : Optional[int] = (i + len(__lowerCAmelCase) - 1) // 2 return candidates[min_viable_chunk_size_index] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = True for aa, aa in zip(__lowerCAmelCase , __lowerCAmelCase): assert type(__lowerCAmelCase) == type(__lowerCAmelCase) if isinstance(__lowerCAmelCase , (list, tuple)): consistent &= self._compare_arg_caches(__lowerCAmelCase , __lowerCAmelCase) elif isinstance(__lowerCAmelCase , __lowerCAmelCase): __A : str = [v for _, v in sorted(aa.items() , key=lambda _UpperCAmelCase: x[0])] __A : Optional[int] = [v for _, v in sorted(aa.items() , key=lambda _UpperCAmelCase: x[0])] consistent &= self._compare_arg_caches(__lowerCAmelCase , __lowerCAmelCase) else: consistent &= aa == aa return consistent def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): '''simple docstring''' __A : List[Any] = True __A : List[Any] = tree_map(lambda _UpperCAmelCase: a.shape if isinstance(__lowerCAmelCase , torch.Tensor) else a , __lowerCAmelCase , __lowerCAmelCase) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(__lowerCAmelCase) __A : Optional[Any] = self._compare_arg_caches(self.cached_arg_data , __lowerCAmelCase) else: # Otherwise, we can reuse the precomputed value __A : Optional[Any] = False if not consistent: __A : List[str] = self._determine_favorable_chunk_size( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) __A : Union[str, Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
8
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : """simple docstring""" @staticmethod def snake_case_ ( *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Any ) -> Any: pass @is_pipeline_test @require_vision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @require_torch def snake_case_ ( self : Tuple ) -> Tuple: _A = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowerCAmelCase ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) _A = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], ] , ) @require_tf def snake_case_ ( self : int ) -> Optional[int]: _A = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) _A = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], ] , ) @slow @require_torch def snake_case_ ( self : Optional[int] ) -> int: _A = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) _A = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case_ ( self : Optional[int] ) -> Dict: _A = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) _A = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
2
0
'''simple docstring''' __lowerCAmelCase = """Alexander Joslin""" import operator as op from .stack import Stack def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Tuple = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _a : List[Any] = Stack() _a : Optional[Any] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_snake_case ) ) elif i in operators: # RULE 2 operator_stack.push(_snake_case ) elif i == ")": # RULE 4 _a : List[Any] = operator_stack.peek() operator_stack.pop() _a : Any = operand_stack.peek() operand_stack.pop() _a : List[Any] = operand_stack.peek() operand_stack.pop() _a : Union[str, Any] = operators[opr](_snake_case , _snake_case ) operand_stack.push(_snake_case ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __lowerCAmelCase = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(f'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
229
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : Tuple ) -> Optional[int]: _A = tempfile.mkdtemp() _A = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _A = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } _A = os.path.join(self.tmpdirname , __lowerCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : Dict , **__lowerCAmelCase : int ) -> Optional[int]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : str , **__lowerCAmelCase : Optional[Any] ) -> Tuple: return BertTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : Tuple , **__lowerCAmelCase : str ) -> Union[str, Any]: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def snake_case_ ( self : int ) -> Optional[Any]: _A = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _A = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self : Dict ) -> List[str]: _A = self.get_tokenizer() _A = self.get_rust_tokenizer() _A = self.get_image_processor() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) _A = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCAmelCase ) _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) _A = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCAmelCase ) def snake_case_ ( self : List[Any] ) -> List[str]: _A = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _A = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _A = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) _A = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def snake_case_ ( self : str ) -> List[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = self.prepare_image_inputs() _A = image_processor(__lowerCAmelCase , return_tensors='''np''' ) _A = processor(images=__lowerCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def snake_case_ ( self : Union[str, Any] ) -> Dict: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = processor(text=__lowerCAmelCase ) _A = tokenizer(__lowerCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case_ ( self : List[str] ) -> Any: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = self.prepare_image_inputs() _A = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def snake_case_ ( self : Optional[Any] ) -> str: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A = processor.batch_decode(__lowerCAmelCase ) _A = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : str ) -> str: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = self.prepare_image_inputs() _A = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
2
0
'''simple docstring''' from heapq import heappop, heappush import numpy as np def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> tuple[float | int, list[tuple[int, int]]]: """simple docstring""" __snake_case , __snake_case : Tuple = grid.shape __snake_case : Any = [-1, 1, 0, 0] __snake_case : int = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __snake_case , __snake_case : Tuple = [(0, source)], set() __snake_case : Tuple = np.full((rows, cols) , np.inf ) __snake_case : Optional[int] = 0 __snake_case : List[Any] = np.empty((rows, cols) , dtype=_snake_case ) __snake_case : List[Any] = None while queue: ((__snake_case) , (__snake_case)) : Union[str, Any] = heappop(_snake_case ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __snake_case : List[Any] = [] while (x, y) != source: path.append((x, y) ) __snake_case , __snake_case : Dict = predecessors[x, y] path.append(_snake_case ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_snake_case ) ): __snake_case , __snake_case : Optional[Any] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __snake_case : Optional[int] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_snake_case , (dist + 1, (nx, ny)) ) __snake_case : List[Any] = dist + 1 __snake_case : Dict = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
26
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class lowerCamelCase__ ( _A): """simple docstring""" a__ : int = "openai-gpt" a__ : Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Union[str, Any] , __lowerCAmelCase : int=4_04_78 , __lowerCAmelCase : Tuple=5_12 , __lowerCAmelCase : str=7_68 , __lowerCAmelCase : List[Any]=12 , __lowerCAmelCase : Any=12 , __lowerCAmelCase : Dict="gelu" , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : List[str]=1E-5 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[Any]="cls_index" , __lowerCAmelCase : str=True , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[Any]=0.1 , **__lowerCAmelCase : Tuple , ) -> Optional[Any]: _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = afn _A = resid_pdrop _A = embd_pdrop _A = attn_pdrop _A = layer_norm_epsilon _A = initializer_range _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_first_dropout _A = summary_proj_to_labels super().__init__(**__lowerCAmelCase )
2
0
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : '''simple docstring''' @staticmethod def a_ ( *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Any ) -> Any: """simple docstring""" pass @is_pipeline_test @require_vision class A (unittest.TestCase ): '''simple docstring''' @require_torch def a_ ( self : Tuple ) -> Tuple: """simple docstring""" A__ = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , ) A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) A__ = image_classifier(__lowerCAmelCase , candidate_labels=["""a""", """b""", """c"""] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowerCAmelCase ) , [ [{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """b"""}, {"""score""": 0.3_3_3, """label""": """c"""}], [{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """c"""}, {"""score""": 0.3_3_3, """label""": """b"""}], ] , ) A__ = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, ], ] , ) @require_tf def a_ ( self : int ) -> Optional[int]: """simple docstring""" A__ = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" ) A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) A__ = image_classifier(__lowerCAmelCase , candidate_labels=["""a""", """b""", """c"""] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """b"""}, {"""score""": 0.3_3_3, """label""": """c"""}] , ) A__ = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )}, ], ] , ) @slow @require_torch def a_ ( self : Optional[int] ) -> int: """simple docstring""" A__ = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , ) # This is an image of 2 cats with remotes and no planes A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) A__ = image_classifier(__lowerCAmelCase , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ] , ) A__ = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ], ] * 5 , ) @slow @require_tf def a_ ( self : Optional[int] ) -> Dict: """simple docstring""" A__ = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" ) # This is an image of 2 cats with remotes and no planes A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) A__ = image_classifier(__lowerCAmelCase , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ] , ) A__ = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ], ] * 5 , )
176
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def __init__( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict=7 , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : int=30 , __lowerCAmelCase : Dict=4_00 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , __lowerCAmelCase : Dict=[0.5, 0.5, 0.5] , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : List[str]=1 / 2_55 , __lowerCAmelCase : int=True , ) -> List[str]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _A = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _A = parent _A = batch_size _A = num_channels _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_normalize _A = image_mean _A = image_std _A = do_rescale _A = rescale_factor _A = do_pad def snake_case_ ( self : Optional[int] ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case_ ( self : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str=False ) -> Dict: if not batched: _A = image_inputs[0] if isinstance(__lowerCAmelCase , Image.Image ): _A , _A = image.size else: _A , _A = image.shape[1], image.shape[2] if w < h: _A = int(self.size['''shortest_edge'''] * h / w ) _A = self.size['''shortest_edge'''] elif w > h: _A = self.size['''shortest_edge'''] _A = int(self.size['''shortest_edge'''] * w / h ) else: _A = self.size['''shortest_edge'''] _A = self.size['''shortest_edge'''] else: _A = [] for image in image_inputs: _A , _A = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _A = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[0] )[0] _A = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase__ ( _A , unittest.TestCase): """simple docstring""" a__ : Any = DeformableDetrImageProcessor if is_vision_available() else None def snake_case_ ( self : Optional[int] ) -> Any: _A = DeformableDetrImageProcessingTester(self ) @property def snake_case_ ( self : Union[str, Any] ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self : Optional[int] ) -> List[str]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_rescale''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) def snake_case_ ( self : List[str] ) -> int: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) _A = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCAmelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) def snake_case_ ( self : Any ) -> Union[str, Any]: pass def snake_case_ ( self : List[str] ) -> Optional[int]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self : Tuple ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self : Optional[Any] ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case_ ( self : Optional[Any] ) -> Optional[int]: # prepare image and target _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _A = DeformableDetrImageProcessor() _A = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify area _A = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCAmelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCAmelCase , atol=1E-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCAmelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCAmelCase ) ) # verify class_labels _A = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCAmelCase ) ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCAmelCase ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCAmelCase ) ) @slow def snake_case_ ( self : List[str] ) -> List[str]: # prepare image, target and masks_path _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _A = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _A = DeformableDetrImageProcessor(format='''coco_panoptic''' ) _A = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , masks_path=__lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify area _A = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCAmelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCAmelCase , atol=1E-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCAmelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCAmelCase ) ) # verify class_labels _A = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCAmelCase ) ) # verify masks _A = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __lowerCAmelCase ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCAmelCase ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCAmelCase ) )
2
0
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase__ ( lowerCamelCase ): return getitem, k def lowercase__ ( lowerCamelCase, lowerCamelCase ): return setitem, k, v def lowercase__ ( lowerCamelCase ): return delitem, k def lowercase__ ( lowerCamelCase, lowerCamelCase, *lowerCamelCase ): try: return fun(_snake_case, *_snake_case ), None except Exception as e: return None, e lowerCAmelCase__ = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) lowerCAmelCase__ = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] lowerCAmelCase__ = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] lowerCAmelCase__ = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] lowerCAmelCase__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( 'operations', ( pytest.param(_add_items, id='add items' ), pytest.param(_overwrite_items, id='overwrite items' ), pytest.param(_delete_items, id='delete items' ), pytest.param(_access_absent_items, id='access absent items' ), pytest.param(_add_with_resize_up, id='add with resize up' ), pytest.param(_add_with_resize_down, id='add with resize down' ), ), ) def lowercase__ ( lowerCamelCase ): _SCREAMING_SNAKE_CASE : Tuple = HashMap(initial_block_size=4 ) _SCREAMING_SNAKE_CASE : int = {} for _, (fun, *args) in enumerate(_snake_case ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = _run_operation(_snake_case, _snake_case, *_snake_case ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = _run_operation(_snake_case, _snake_case, *_snake_case ) assert my_res == py_res assert str(_snake_case ) == str(_snake_case ) assert set(_snake_case ) == set(_snake_case ) assert len(_snake_case ) == len(_snake_case ) assert set(my.items() ) == set(py.items() ) def lowercase__ ( ): def is_public(lowerCamelCase ) -> bool: return not name.startswith('_' ) _SCREAMING_SNAKE_CASE : List[Any] = {name for name in dir({} ) if is_public(_snake_case )} _SCREAMING_SNAKE_CASE : List[str] = {name for name in dir(HashMap() ) if is_public(_snake_case )} assert dict_public_names > hash_public_names
621
UpperCAmelCase_ = 0 # The first color of the flag. UpperCAmelCase_ = 1 # The second color of the flag. UpperCAmelCase_ = 2 # The third color of the flag. UpperCAmelCase_ = (red, white, blue) def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> list: if not sequence: return [] if len(_snake_case ) == 1: return list(_snake_case ) _A = 0 _A = len(_snake_case ) - 1 _A = 0 while mid <= high: if sequence[mid] == colors[0]: _A , _A = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _A , _A = sequence[high], sequence[mid] high -= 1 else: _A = F'''The elements inside the sequence must contains only {colors} values''' raise ValueError(_snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = input("""Enter numbers separated by commas:\n""").strip() UpperCAmelCase_ = [int(item.strip()) for item in user_input.split(""",""")] print(f'{dutch_national_flag_sort(unsorted)}')
2
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
250
import itertools import math def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE_ ( ) -> Dict: _A = 2 while True: if is_prime(_snake_case ): yield num num += 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 10_001 ) -> int: return next(itertools.islice(prime_generator() , nth - 1 , _snake_case ) ) if __name__ == "__main__": print(f'{solution() = }')
2
0
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class __UpperCAmelCase ( _A ): '''simple docstring''' def __init__( self , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =dataset _SCREAMING_SNAKE_CASE =process _SCREAMING_SNAKE_CASE =params def __len__( self ): '''simple docstring''' return len(self.dataset ) def __getitem__( self , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.dataset[i] _SCREAMING_SNAKE_CASE =self.process(__lowerCAmelCase , **self.params ) return processed class __UpperCAmelCase ( _A ): '''simple docstring''' def __init__( self , _A , _A , _A , _A=None ): '''simple docstring''' _SCREAMING_SNAKE_CASE =loader _SCREAMING_SNAKE_CASE =infer _SCREAMING_SNAKE_CASE =params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =loader_batch_size # Internal bookkeeping _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None def __len__( self ): '''simple docstring''' return len(self.loader ) def __iter__( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =iter(self.loader ) return self def UpperCamelCase_ ( self ): '''simple docstring''' if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _SCREAMING_SNAKE_CASE =self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _SCREAMING_SNAKE_CASE ={} for k, element in self._loader_batch_data.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): # Convert ModelOutput to tuple first _SCREAMING_SNAKE_CASE =element.to_tuple() if isinstance(element[0] , torch.Tensor ): _SCREAMING_SNAKE_CASE =tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _SCREAMING_SNAKE_CASE =tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(__lowerCAmelCase , __lowerCAmelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _SCREAMING_SNAKE_CASE =tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _SCREAMING_SNAKE_CASE =tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _SCREAMING_SNAKE_CASE =None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _SCREAMING_SNAKE_CASE =element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _SCREAMING_SNAKE_CASE =np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _SCREAMING_SNAKE_CASE =element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _SCREAMING_SNAKE_CASE =self._loader_batch_data.__class__(__lowerCAmelCase ) self._loader_batch_index += 1 return result def UpperCamelCase_ ( self ): '''simple docstring''' if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _SCREAMING_SNAKE_CASE =next(self.iterator ) _SCREAMING_SNAKE_CASE =self.infer(__lowerCAmelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(__lowerCAmelCase , torch.Tensor ): _SCREAMING_SNAKE_CASE =processed else: _SCREAMING_SNAKE_CASE =list(processed.keys() )[0] _SCREAMING_SNAKE_CASE =processed[key] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _SCREAMING_SNAKE_CASE =len(__lowerCAmelCase ) else: _SCREAMING_SNAKE_CASE =first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _SCREAMING_SNAKE_CASE =observed_batch_size # Setting internal index to unwrap the batch _SCREAMING_SNAKE_CASE =processed _SCREAMING_SNAKE_CASE =0 return self.loader_batch_item() else: # We're not unrolling batches return processed class __UpperCAmelCase ( _A ): '''simple docstring''' def __init__( self , _A , _A , _A , _A=None ): '''simple docstring''' super().__init__(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def __iter__( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =iter(self.loader ) _SCREAMING_SNAKE_CASE =None return self def UpperCamelCase_ ( self ): '''simple docstring''' if self.subiterator is None: _SCREAMING_SNAKE_CASE =self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _SCREAMING_SNAKE_CASE =next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _SCREAMING_SNAKE_CASE =self.infer(next(self.iterator ) , **self.params ) _SCREAMING_SNAKE_CASE =next(self.subiterator ) return processed class __UpperCAmelCase ( _A ): '''simple docstring''' def __iter__( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =iter(self.loader ) return self def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =[] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _SCREAMING_SNAKE_CASE =self.loader_batch_item() _SCREAMING_SNAKE_CASE =item.pop('''is_last''' ) accumulator.append(__lowerCAmelCase ) if is_last: return accumulator while not is_last: _SCREAMING_SNAKE_CASE =self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(__lowerCAmelCase , torch.Tensor ): _SCREAMING_SNAKE_CASE =processed else: _SCREAMING_SNAKE_CASE =list(processed.keys() )[0] _SCREAMING_SNAKE_CASE =processed[key] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _SCREAMING_SNAKE_CASE =len(__lowerCAmelCase ) else: _SCREAMING_SNAKE_CASE =first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _SCREAMING_SNAKE_CASE =observed_batch_size _SCREAMING_SNAKE_CASE =processed _SCREAMING_SNAKE_CASE =0 while self._loader_batch_index < self.loader_batch_size: _SCREAMING_SNAKE_CASE =self.loader_batch_item() _SCREAMING_SNAKE_CASE =item.pop('''is_last''' ) accumulator.append(__lowerCAmelCase ) if is_last: return accumulator else: _SCREAMING_SNAKE_CASE =processed _SCREAMING_SNAKE_CASE =item.pop('''is_last''' ) accumulator.append(__lowerCAmelCase ) return accumulator class __UpperCAmelCase ( _A ): '''simple docstring''' def __init__( self , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =dataset _SCREAMING_SNAKE_CASE =key def __len__( self ): '''simple docstring''' return len(self.dataset ) def __getitem__( self , _A ): '''simple docstring''' return self.dataset[i][self.key] class __UpperCAmelCase ( _A ): '''simple docstring''' def __init__( self , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =dataset _SCREAMING_SNAKE_CASE =keya _SCREAMING_SNAKE_CASE =keya def __len__( self ): '''simple docstring''' return len(self.dataset ) def __getitem__( self , _A ): '''simple docstring''' return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
255
import collections import os import re from pathlib import Path UpperCAmelCase_ = """src/transformers""" # Matches is_xxx_available() UpperCAmelCase_ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} UpperCAmelCase_ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCAmelCase_ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available UpperCAmelCase_ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") UpperCAmelCase_ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCAmelCase_ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", UpperCAmelCase_ = re.compile(r"""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], UpperCAmelCase_ = re.compile(r"""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo UpperCAmelCase_ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: UpperCAmelCase_ = re.compile(r"""^\s*try:""") # Catches a line with else: UpperCAmelCase_ = re.compile(r"""^\s*else:""") def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] ) -> Any: if _re_test_backend.search(_snake_case ) is None: return None _A = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Any ) -> Any: with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _A = f.readlines() _A = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure _A = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: _A = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): _A = _re_one_line_import_struct.search(_snake_case ).groups()[0] _A = re.findall(r'''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue _A = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: _A = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 _A = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): _A = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: _A = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) _A = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: _A = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) _A = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 _A = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _A = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): _A = lines[line_index] _A = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 _A = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): _A = lines[line_index] _A = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 _A = objects else: line_index += 1 return import_dict_objects, type_hint_objects def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] , _snake_case :Dict ) -> Any: def find_duplicates(_snake_case :Any ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _A = [] for key in import_dict_objects.keys(): _A = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) _A = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _A = '''base imports''' if key == '''none''' else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def SCREAMING_SNAKE_CASE_ ( ) -> int: _A = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: _A = os.path.join(_snake_case , '''__init__.py''' ) _A = parse_init(_snake_case ) if objects is not None: _A = analyze_results(*_snake_case ) if len(_snake_case ) > 0: _A = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: _A = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue _A = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) _A = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue _A = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) _A = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules UpperCAmelCase_ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def SCREAMING_SNAKE_CASE_ ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import _A = direct_transformers_import(_snake_case ) _A = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_snake_case , '''__init__.py''' ) , '''r''' ) as f: _A = f.read() import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , _snake_case ) ) ) _A = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_snake_case ) > 0: _A = '''\n'''.join(F'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
2
0
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( _A , _A , unittest.TestCase ): __snake_case :List[str] = IFPipeline __snake_case :Optional[Any] = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} __snake_case :Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS __snake_case :Optional[Any] = PipelineTesterMixin.required_optional_params - {"latents"} def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" return self._get_dummy_components() def _a ( self : Any , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=0 ) -> List[str]: """simple docstring""" if str(__lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(__lowerCAmelCase ) else: __lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _a ( self : str ) -> Tuple: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def _a ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" self._test_save_load_local() def _a ( self : Dict ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def _a ( self : List[Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa ) __lowercase = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""" ) __lowercase , __lowercase = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() __lowercase = None __lowercase = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img __lowercase = IFImgaImgPipeline(**pipe_a.components ) __lowercase = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting __lowercase = IFInpaintingPipeline(**pipe_a.components ) __lowercase = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _a ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] ) -> Tuple: """simple docstring""" _start_torch_memory_measurement() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = pipe_a( prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , num_inference_steps=2 , generator=__lowerCAmelCase , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (64, 64, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" ) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) # pipeline 2 _start_torch_memory_measurement() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) __lowercase = pipe_a( prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , image=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=2 , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (256, 256, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) def _a ( self : str , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" _start_torch_memory_measurement() __lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = pipe_a( prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , image=__lowerCAmelCase , num_inference_steps=2 , generator=__lowerCAmelCase , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (64, 64, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" ) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) # pipeline 2 _start_torch_memory_measurement() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) __lowercase = pipe_a( prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , image=__lowerCAmelCase , original_image=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=2 , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (256, 256, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) def _a ( self : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple ) -> Tuple: """simple docstring""" _start_torch_memory_measurement() __lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__lowerCAmelCase ) __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = pipe_a( prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , num_inference_steps=2 , generator=__lowerCAmelCase , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (64, 64, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" ) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) # pipeline 2 _start_torch_memory_measurement() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__lowerCAmelCase ) __lowercase = pipe_a( prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , original_image=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=2 , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (256, 256, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) def snake_case ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
80
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(_A) class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : Optional[int] , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : List[str] ) -> List[str]: super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def snake_case_ ( self : Any , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[Any]=None ) -> int: _A = {} _A = {} if prompt is not None: _A = prompt if generate_kwargs is not None: _A = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _A = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) _A = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[str] , __lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any]=None ) -> int: _A = load_image(__lowerCAmelCase ) if prompt is not None: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(__lowerCAmelCase )} - but expected a single string. ''' '''Note also that one single text can be provided for conditional image to text generation.''' ) _A = self.model.config.model_type if model_type == "git": _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) _A = self.tokenizer(text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids _A = [self.tokenizer.cls_token_id] + input_ids _A = torch.tensor(__lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": _A = self.image_processor(images=__lowerCAmelCase , header_text=__lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) _A = self.tokenizer(__lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(__lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _A = None return model_inputs def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict=None ) -> str: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , __lowerCAmelCase ) and all(x is None for x in model_inputs['''input_ids'''] ) ): _A = None if generate_kwargs is None: _A = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _A = model_inputs.pop(self.model.main_input_name ) _A = self.model.generate(__lowerCAmelCase , **__lowerCAmelCase , **__lowerCAmelCase ) return model_outputs def snake_case_ ( self : Dict , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = [] for output_ids in model_outputs: _A = { '''generated_text''': self.tokenizer.decode( __lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , ) } records.append(__lowerCAmelCase ) return records
2
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {'vocab_file': 'vocab.txt'} _UpperCAmelCase = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } _UpperCAmelCase = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } _UpperCAmelCase = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class snake_case_ ( _A ): A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_INIT_CONFIGURATION A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ConvBertTokenizer def __init__( self : str , _snake_case : Union[str, Any]=None , _snake_case : int=None , _snake_case : Dict=True , _snake_case : Any="[UNK]" , _snake_case : Optional[Any]="[SEP]" , _snake_case : Optional[int]="[PAD]" , _snake_case : Optional[Any]="[CLS]" , _snake_case : Optional[Any]="[MASK]" , _snake_case : Dict=True , _snake_case : Any=None , **_snake_case : List[str] , )->Tuple: '''simple docstring''' super().__init__( __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , tokenize_chinese_chars=__lowerCAmelCase , strip_accents=__lowerCAmelCase , **__lowerCAmelCase , ) __lowerCAmelCase : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __lowerCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __lowerCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __lowerCAmelCase ) != tokenize_chinese_chars ): __lowerCAmelCase : Tuple = getattr(__lowerCAmelCase , normalizer_state.pop("""type""" ) ) __lowerCAmelCase : Any = do_lower_case __lowerCAmelCase : Dict = strip_accents __lowerCAmelCase : Optional[int] = tokenize_chinese_chars __lowerCAmelCase : Dict = normalizer_class(**__lowerCAmelCase ) __lowerCAmelCase : Any = do_lower_case def UpperCAmelCase__ ( self : List[str] , _snake_case : Any , _snake_case : Any=None )->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__ ( self : Any , _snake_case : List[int] , _snake_case : Optional[List[int]] = None )->List[int]: '''simple docstring''' __lowerCAmelCase : List[Any] = [self.sep_token_id] __lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self : str , _snake_case : str , _snake_case : Optional[str] = None )->Tuple[str]: '''simple docstring''' __lowerCAmelCase : str = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase ) return tuple(__lowerCAmelCase )
504
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE_ ( _snake_case :str = "AAPL" ) -> str: _A = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' _A = BeautifulSoup(requests.get(_snake_case ).text , '''html.parser''' ) _A = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
2
0
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup a_ = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def __UpperCAmelCase ( __UpperCamelCase = "dhaka" , __UpperCamelCase = 5 ): __lowercase : int = min(_snake_case , 50 ) # Prevent abuse! __lowercase : Tuple = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } __lowercase : List[Any] = requests.get('''https://www.google.com/search''' , params=_snake_case , headers=_snake_case ) __lowercase : Union[str, Any] = BeautifulSoup(html.text , '''html.parser''' ) __lowercase : str = ''''''.join( re.findall(R'''AF_initDataCallback\(([^<]+)\);''' , str(soup.select('''script''' ) ) ) ) __lowercase : Optional[Any] = json.dumps(_snake_case ) __lowercase : Optional[int] = json.loads(_snake_case ) __lowercase : Union[str, Any] = re.findall( R'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''' , _snake_case , ) if not matched_google_image_data: return 0 __lowercase : List[Any] = re.sub( R'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''' , '''''' , str(_snake_case ) , ) __lowercase : Union[str, Any] = re.findall( R'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''' , _snake_case , ) for index, fixed_full_res_image in enumerate(_snake_case ): if index >= max_images: return index __lowercase : str = bytes(_snake_case , '''ascii''' ).decode( '''unicode-escape''' ) __lowercase : Optional[int] = bytes(_snake_case , '''ascii''' ).decode( '''unicode-escape''' ) __lowercase : List[str] = urllib.request.build_opener() __lowercase : Optional[Any] = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(_snake_case ) __lowercase : Optional[Any] = f"""query_{query.replace(" " , "_" )}""" if not os.path.exists(_snake_case ): os.makedirs(_snake_case ) urllib.request.urlretrieve( # noqa: S310 _snake_case , f"""{path_name}/original_size_img_{index}.jpg""" ) return index if __name__ == "__main__": try: a_ = download_images_from_google_query(sys.argv[1]) print(F"{image_count} images were downloaded to disk.") except IndexError: print('Please provide a search term.') raise
76
from graphs.minimum_spanning_tree_kruskal import kruskal def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: _A = 9 _A = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _A = kruskal(_snake_case , _snake_case ) _A = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_snake_case ) == sorted(_snake_case )
2
0
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __A = logging.get_logger(__name__) # pylint: disable=invalid-name __A = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def lowercase__ ( A_: Dict , A_: List[Any] , A_: str=8 ) -> str: """simple docstring""" __UpperCAmelCase =height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase =width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowercase__ ( A_: Dict , A_: Tuple=512 , A_: Any=512 ) -> Optional[Any]: """simple docstring""" __UpperCAmelCase =pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) __UpperCAmelCase =np.array(pil_image.convert("""RGB""" ) ) __UpperCAmelCase =arr.astype(np.floataa ) / 1_2_7.5 - 1 __UpperCAmelCase =np.transpose(_snake_case , [2, 0, 1] ) __UpperCAmelCase =torch.from_numpy(_snake_case ).unsqueeze(0 ) return image class _A ( _A ): """simple docstring""" def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : UNetaDConditionModel , __SCREAMING_SNAKE_CASE : DDPMScheduler , __SCREAMING_SNAKE_CASE : VQModel , ) -> Tuple: super().__init__() self.register_modules( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , movq=__lowerCAmelCase , ) __UpperCAmelCase =2 ** (len(self.movq.config.block_out_channels ) - 1) def _a ( self : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> Dict: # get the original timestep using init_timestep __UpperCAmelCase =min(int(num_inference_steps * strength ) , __lowerCAmelCase ) __UpperCAmelCase =max(num_inference_steps - init_timestep , 0 ) __UpperCAmelCase =self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _a ( self : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str]=None ) -> List[Any]: if not isinstance(__lowerCAmelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCAmelCase )}''' ) __UpperCAmelCase =image.to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ) __UpperCAmelCase =batch_size * num_images_per_prompt if image.shape[1] == 4: __UpperCAmelCase =image else: if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): __UpperCAmelCase =[ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCAmelCase ) ] __UpperCAmelCase =torch.cat(__lowerCAmelCase , dim=0 ) else: __UpperCAmelCase =self.movq.encode(__lowerCAmelCase ).latent_dist.sample(__lowerCAmelCase ) __UpperCAmelCase =self.movq.config.scaling_factor * init_latents __UpperCAmelCase =torch.cat([init_latents] , dim=0 ) __UpperCAmelCase =init_latents.shape __UpperCAmelCase =randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=__lowerCAmelCase , dtype=__lowerCAmelCase ) # get latents __UpperCAmelCase =self.scheduler.add_noise(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase =init_latents return latents def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str=0 ) -> Tuple: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) __UpperCAmelCase =torch.device(f'''cuda:{gpu_id}''' ) __UpperCAmelCase =[ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase , __lowerCAmelCase ) def _a ( self : int , __SCREAMING_SNAKE_CASE : str=0 ) -> List[str]: if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) __UpperCAmelCase =torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=__lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase =None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase , __UpperCAmelCase =cpu_offload_with_hook(__lowerCAmelCase , __lowerCAmelCase , prev_module_hook=__lowerCAmelCase ) # We'll offload the last model manually. __UpperCAmelCase =hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _a ( self : Union[str, Any] ) -> Any: if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCAmelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowerCAmelCase ) def __call__( self : Any , __SCREAMING_SNAKE_CASE : Union[torch.FloatTensor, List[torch.FloatTensor]] , __SCREAMING_SNAKE_CASE : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , __SCREAMING_SNAKE_CASE : Union[torch.FloatTensor, List[torch.FloatTensor]] , __SCREAMING_SNAKE_CASE : int = 512 , __SCREAMING_SNAKE_CASE : int = 512 , __SCREAMING_SNAKE_CASE : int = 100 , __SCREAMING_SNAKE_CASE : float = 4.0 , __SCREAMING_SNAKE_CASE : float = 0.3 , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __SCREAMING_SNAKE_CASE : Optional[str] = "pil" , __SCREAMING_SNAKE_CASE : bool = True , ) -> List[Any]: __UpperCAmelCase =self._execution_device __UpperCAmelCase =guidance_scale > 1.0 if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __UpperCAmelCase =torch.cat(__lowerCAmelCase , dim=0 ) __UpperCAmelCase =image_embeds.shape[0] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __UpperCAmelCase =torch.cat(__lowerCAmelCase , dim=0 ) if do_classifier_free_guidance: __UpperCAmelCase =image_embeds.repeat_interleave(__lowerCAmelCase , dim=0 ) __UpperCAmelCase =negative_image_embeds.repeat_interleave(__lowerCAmelCase , dim=0 ) __UpperCAmelCase =torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__lowerCAmelCase ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): __UpperCAmelCase =[image] if not all(isinstance(__lowerCAmelCase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f'''Input is in incorrect format: {[type(__lowerCAmelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor''' ) __UpperCAmelCase =torch.cat([prepare_image(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for i in image] , dim=0 ) __UpperCAmelCase =image.to(dtype=image_embeds.dtype , device=__lowerCAmelCase ) __UpperCAmelCase =self.movq.encode(__lowerCAmelCase )["""latents"""] __UpperCAmelCase =latents.repeat_interleave(__lowerCAmelCase , dim=0 ) self.scheduler.set_timesteps(__lowerCAmelCase , device=__lowerCAmelCase ) __UpperCAmelCase , __UpperCAmelCase =self.get_timesteps(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase =timesteps[:1].repeat(batch_size * num_images_per_prompt ) __UpperCAmelCase , __UpperCAmelCase =downscale_height_and_width(__lowerCAmelCase , __lowerCAmelCase , self.movq_scale_factor ) __UpperCAmelCase =self.prepare_latents( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , image_embeds.dtype , __lowerCAmelCase , __lowerCAmelCase ) for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance __UpperCAmelCase =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __UpperCAmelCase ={"""image_embeds""": image_embeds} __UpperCAmelCase =self.unet( sample=__lowerCAmelCase , timestep=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , added_cond_kwargs=__lowerCAmelCase , return_dict=__lowerCAmelCase , )[0] if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase =noise_pred.split(latents.shape[1] , dim=1 ) __UpperCAmelCase , __UpperCAmelCase =noise_pred.chunk(2 ) __UpperCAmelCase , __UpperCAmelCase =variance_pred.chunk(2 ) __UpperCAmelCase =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase =torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase , __UpperCAmelCase =noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase =self.scheduler.step( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase , )[0] # post-processing __UpperCAmelCase =self.movq.decode(__lowerCAmelCase , force_not_quantize=__lowerCAmelCase )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: __UpperCAmelCase =image * 0.5 + 0.5 __UpperCAmelCase =image.clamp(0 , 1 ) __UpperCAmelCase =image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __UpperCAmelCase =self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
68
def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase__ : List[str] = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : str ) -> YolosConfig: __A : Any = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: __A : Tuple = 1_92 __A : Dict = 7_68 __A : Dict = 12 __A : Union[str, Any] = 3 __A : int = [8_00, 13_33] __A : List[str] = False elif yolos_name == "yolos_s_dWr": __A : Optional[int] = 3_30 __A : Union[str, Any] = 14 __A : str = 6 __A : List[Any] = 13_20 elif "yolos_s" in yolos_name: __A : str = 3_84 __A : int = 15_36 __A : Any = 12 __A : Tuple = 6 elif "yolos_b" in yolos_name: __A : List[str] = [8_00, 13_44] __A : Optional[int] = 91 __A : Optional[Any] = 'huggingface/label-files' __A : List[str] = 'coco-detection-id2label.json' __A : List[Any] = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='dataset' ) , 'r' ) ) __A : Optional[Any] = {int(_snake_case ): v for k, v in idalabel.items()} __A : List[Any] = idalabel __A : Dict = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( __snake_case : dict , __snake_case : YolosConfig , __snake_case : bool = False ) -> Optional[int]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __A : Optional[int] = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) __A : Optional[int] = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __A : int = in_proj_weight[: config.hidden_size, :] __A : Optional[int] = in_proj_bias[: config.hidden_size] __A : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __A : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __A : List[Any] = in_proj_weight[-config.hidden_size :, :] __A : List[Any] = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( __snake_case : str ) -> str: if "backbone" in name: __A : List[str] = name.replace('backbone' , 'vit' ) if "cls_token" in name: __A : Dict = name.replace('cls_token' , 'embeddings.cls_token' ) if "det_token" in name: __A : Tuple = name.replace('det_token' , 'embeddings.detection_tokens' ) if "mid_pos_embed" in name: __A : Dict = name.replace('mid_pos_embed' , 'encoder.mid_position_embeddings' ) if "pos_embed" in name: __A : Optional[int] = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: __A : List[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "blocks" in name: __A : str = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: __A : str = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __A : str = name.replace('attn' , 'attention.self' ) if "norm1" in name: __A : int = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __A : int = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __A : Dict = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __A : str = name.replace('mlp.fc2' , 'output.dense' ) if "class_embed" in name: __A : Optional[int] = name.replace('class_embed' , 'class_labels_classifier' ) if "bbox_embed" in name: __A : Dict = name.replace('bbox_embed' , 'bbox_predictor' ) if "vit.norm" in name: __A : Dict = name.replace('vit.norm' , 'vit.layernorm' ) return name def _lowerCAmelCase ( __snake_case : dict , __snake_case : YolosForObjectDetection ) -> dict: for key in orig_state_dict.copy().keys(): __A : List[str] = orig_state_dict.pop(_snake_case ) if "qkv" in key: __A : Optional[int] = key.split('.' ) __A : List[str] = int(key_split[2] ) __A : List[Any] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: __A : Dict = val[:dim, :] __A : List[Any] = val[ dim : dim * 2, : ] __A : Optional[int] = val[-dim:, :] else: __A : Optional[int] = val[:dim] __A : Optional[int] = val[dim : dim * 2] __A : List[Any] = val[-dim:] else: __A : Tuple = val return orig_state_dict def _lowerCAmelCase ( ) -> torch.Tensor: __A : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' __A : Tuple = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( __snake_case : str , __snake_case : str , __snake_case : str , __snake_case : bool = False ) -> Dict: __A : Optional[Any] = get_yolos_config(_snake_case ) # load original state_dict __A : List[Any] = torch.load(_snake_case , map_location='cpu' )['model'] # load 🤗 model __A : Any = YolosForObjectDetection(_snake_case ) model.eval() __A : Any = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) # Check outputs on an image, prepared by YolosImageProcessor __A : Union[str, Any] = 8_00 if yolos_name != 'yolos_ti' else 5_12 __A : List[Any] = YolosImageProcessor(format='coco_detection' , size=_snake_case ) __A : Union[str, Any] = image_processor(images=prepare_img() , return_tensors='pt' ) __A : Dict = model(**_snake_case ) __A ,__A : Tuple = outputs.logits, outputs.pred_boxes __A ,__A : Any = None, None if yolos_name == "yolos_ti": __A : Dict = torch.tensor( [[-39.5_022, -11.9_820, -17.6_888], [-29.9_574, -9.9_769, -17.7_691], [-42.3_281, -20.7_200, -30.6_294]] ) __A : Optional[Any] = torch.tensor( [[0.4_021, 0.0_836, 0.7_979], [0.0_184, 0.2_609, 0.0_364], [0.1_781, 0.2_004, 0.2_095]] ) elif yolos_name == "yolos_s_200_pre": __A : Tuple = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] ) __A : Optional[Any] = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] ) elif yolos_name == "yolos_s_300_pre": __A : Tuple = torch.tensor( [[-36.2_220, -14.4_385, -23.5_457], [-35.6_970, -14.7_583, -21.3_935], [-31.5_939, -13.6_042, -16.8_049]] ) __A : str = torch.tensor( [[0.7_614, 0.2_316, 0.4_728], [0.7_168, 0.4_495, 0.3_855], [0.4_996, 0.1_466, 0.9_996]] ) elif yolos_name == "yolos_s_dWr": __A : Union[str, Any] = torch.tensor( [[-42.8_668, -24.1_049, -41.1_690], [-34.7_456, -14.1_274, -24.9_194], [-33.7_898, -12.1_946, -25.6_495]] ) __A : Optional[int] = torch.tensor( [[0.5_587, 0.2_773, 0.0_605], [0.5_004, 0.3_014, 0.9_994], [0.4_999, 0.1_548, 0.9_994]] ) elif yolos_name == "yolos_base": __A : Optional[int] = torch.tensor( [[-40.6_064, -24.3_084, -32.6_447], [-55.1_990, -30.7_719, -35.5_877], [-51.4_311, -33.3_507, -35.6_462]] ) __A : Any = torch.tensor( [[0.5_555, 0.2_794, 0.0_655], [0.9_049, 0.2_664, 0.1_894], [0.9_183, 0.1_984, 0.1_635]] ) else: raise ValueError(f'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , _snake_case , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , _snake_case , atol=1e-4 ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(f'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_snake_case ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: __A : Union[str, Any] = { 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print('Pushing to the hub...' ) __A : str = model_mapping[yolos_name] image_processor.push_to_hub(_snake_case , organization='hustvl' ) model.push_to_hub(_snake_case , organization='hustvl' ) if __name__ == "__main__": lowercase__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase__ : int = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
8
UpperCAmelCase_ = 2_5_6 # Modulus to hash a string UpperCAmelCase_ = 1_0_0_0_0_0_3 def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :str ) -> bool: _A = len(_snake_case ) _A = len(_snake_case ) if p_len > t_len: return False _A = 0 _A = 0 _A = 1 # Calculating the hash of pattern and substring of text for i in range(_snake_case ): _A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def SCREAMING_SNAKE_CASE_ ( ) -> None: _A = '''abc1abc12''' _A = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' _A = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(_snake_case , _snake_case ) and not rabin_karp(_snake_case , _snake_case ) # Test 2) _A = '''ABABX''' _A = '''ABABZABABYABABX''' assert rabin_karp(_snake_case , _snake_case ) # Test 3) _A = '''AAAB''' _A = '''ABAAAAAB''' assert rabin_karp(_snake_case , _snake_case ) # Test 4) _A = '''abcdabcy''' _A = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(_snake_case , _snake_case ) # Test 5) _A = '''Lü''' _A = '''Lüsai''' assert rabin_karp(_snake_case , _snake_case ) _A = '''Lue''' assert not rabin_karp(_snake_case , _snake_case ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
2
0
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase_ (__a : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCAmelCase = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def UpperCAmelCase_ (__a : int ): """simple docstring""" if not isinstance(_snake_case , _snake_case ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) _a : Dict = [] for num in range(len(_snake_case ) ): _a : Any = 0 while 2 * i * i <= odd_composites[num]: _a : List[str] = odd_composites[num] - 2 * i * i if is_prime(_snake_case ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(_snake_case ) == n: return list_nums return [] def UpperCAmelCase_ (): """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
229
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } UpperCAmelCase_ = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } UpperCAmelCase_ = """</w>""" UpperCAmelCase_ = """@@ """ def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] ) -> List[str]: _A = set() _A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A = char return pairs # Speech2Text2 has no max input length UpperCAmelCase_ = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class lowerCamelCase__ ( _A): """simple docstring""" a__ : Dict = VOCAB_FILES_NAMES a__ : str = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]="<s>" , __lowerCAmelCase : Tuple="<pad>" , __lowerCAmelCase : Optional[Any]="</s>" , __lowerCAmelCase : Dict="<unk>" , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=None , **__lowerCAmelCase : str , ) -> Dict: super().__init__( unk_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , **__lowerCAmelCase , ) _A = do_lower_case with open(__lowerCAmelCase , encoding='''utf-8''' ) as vocab_handle: _A = json.load(__lowerCAmelCase ) _A = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) _A = None _A = None else: with open(__lowerCAmelCase , encoding='''utf-8''' ) as merges_handle: _A = merges_handle.read().split('''\n''' )[:-1] _A = [tuple(merge.split()[:2] ) for merge in merges] _A = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _A = {} @property def snake_case_ ( self : List[str] ) -> int: return len(self.decoder ) def snake_case_ ( self : Dict ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _A = get_pairs(__lowerCAmelCase ) if not pairs: return token while True: _A = min(__lowerCAmelCase , key=lambda __lowerCAmelCase : self.bpe_ranks.get(__lowerCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A = bigram _A = [] _A = 0 while i < len(__lowerCAmelCase ): try: _A = word.index(__lowerCAmelCase , __lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A = j if word[i] == first and i < len(__lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A = tuple(__lowerCAmelCase ) _A = new_word if len(__lowerCAmelCase ) == 1: break else: _A = get_pairs(__lowerCAmelCase ) _A = ''' '''.join(__lowerCAmelCase ) if word == "\n " + BPE_TOKEN_MERGES: _A = '''\n''' + BPE_TOKEN_MERGES if word.endswith(__lowerCAmelCase ): _A = word.replace(__lowerCAmelCase , '''''' ) _A = word.replace(''' ''' , __lowerCAmelCase ) _A = word return word def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Tuple ) -> Optional[int]: if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''' ) if self.do_lower_case: _A = text.lower() _A = text.split() _A = [] for token in text: if token: split_tokens.extend(list(self.bpe(__lowerCAmelCase ).split(''' ''' ) ) ) return split_tokens def snake_case_ ( self : List[Any] , __lowerCAmelCase : str ) -> int: return self.encoder.get(__lowerCAmelCase , self.encoder.get(self.unk_token ) ) def snake_case_ ( self : str , __lowerCAmelCase : int ) -> str: _A = self.decoder.get(__lowerCAmelCase , self.unk_token ) return result def snake_case_ ( self : List[str] , __lowerCAmelCase : List[str] ) -> str: _A = ''' '''.join(__lowerCAmelCase ) # make sure @@ tokens are concatenated _A = ''''''.join(string.split(__lowerCAmelCase ) ) return string def snake_case_ ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCAmelCase , ensure_ascii=__lowerCAmelCase ) + '''\n''' ) _A = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) _A = token_index writer.write(''' '''.join(__lowerCAmelCase ) + '''\n''' ) index += 1 return (vocab_file, merges_file)
2
0
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __UpperCamelCase = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def _a ( _lowerCamelCase , _lowerCamelCase=None ) -> Any: """simple docstring""" require_version(deps[pkg] , _snake_case )
26
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar UpperCAmelCase_ = TypeVar("""T""") def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (position - 1) // 2 def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (2 * position) + 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (2 * position) + 2 class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__( self : Optional[int] ) -> None: _A = [] _A = {} _A = 0 def __len__( self : str ) -> int: return self.elements def __repr__( self : Optional[int] ) -> str: return str(self.heap ) def snake_case_ ( self : str ) -> bool: # Check if the priority queue is empty return self.elements == 0 def snake_case_ ( self : Optional[int] , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) _A = self.elements self.elements += 1 self._bubble_up(__lowerCAmelCase ) def snake_case_ ( self : Tuple ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _A , _A = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _A , _A = self.heap[0] self._bubble_down(__lowerCAmelCase ) return elem def snake_case_ ( self : int , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Update the weight of the given key _A = self.position_map[elem] _A = (elem, weight) if position > 0: _A = get_parent_position(__lowerCAmelCase ) _A , _A = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__lowerCAmelCase ) else: self._bubble_down(__lowerCAmelCase ) else: self._bubble_down(__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : T ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] _A = self.position_map[elem] if curr_pos == 0: return None _A = get_parent_position(__lowerCAmelCase ) _A , _A = self.heap[curr_pos] _A , _A = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_up(__lowerCAmelCase ) return None def snake_case_ ( self : Dict , __lowerCAmelCase : T ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] _A = self.position_map[elem] _A , _A = self.heap[curr_pos] _A = get_child_left_position(__lowerCAmelCase ) _A = get_child_right_position(__lowerCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: _A , _A = self.heap[child_left_position] _A , _A = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) if child_left_position < self.elements: _A , _A = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) else: return None if child_right_position < self.elements: _A , _A = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) return None def snake_case_ ( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> None: # Swap the nodes at the given positions _A = self.heap[nodea_pos][0] _A = self.heap[nodea_pos][0] _A , _A = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _A = nodea_pos _A = nodea_pos class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__( self : str ) -> None: _A = {} _A = 0 def __repr__( self : str ) -> str: return str(self.connections ) def __len__( self : Dict ) -> int: return self.nodes def snake_case_ ( self : Any , __lowerCAmelCase : T ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: _A = {} self.nodes += 1 def snake_case_ ( self : str , __lowerCAmelCase : T , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Add an edge between 2 nodes in the graph self.add_node(__lowerCAmelCase ) self.add_node(__lowerCAmelCase ) _A = weight _A = weight def SCREAMING_SNAKE_CASE_ ( _snake_case :GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: _A = {node: maxsize for node in graph.connections} _A = {node: None for node in graph.connections} _A = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_snake_case , _snake_case ) if priority_queue.is_empty(): return dist, parent # initialization _A = priority_queue.extract_min() _A = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_snake_case , dist[neighbour] ) _A = node # running prim's algorithm while not priority_queue.is_empty(): _A = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_snake_case , dist[neighbour] ) _A = node return dist, parent
2
0
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor A : Optional[Any] = logging.get_logger(__name__) class A (_A ): '''simple docstring''' def __init__( self : List[str] , *__lowerCAmelCase : Tuple , **__lowerCAmelCase : int ) -> None: """simple docstring""" warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
176
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = """▁""" UpperCAmelCase_ = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} UpperCAmelCase_ = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } UpperCAmelCase_ = {"""vinai/bartpho-syllable""": 1_0_2_4} class lowerCamelCase__ ( _A): """simple docstring""" a__ : int = VOCAB_FILES_NAMES a__ : Tuple = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Tuple = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any]="<s>" , __lowerCAmelCase : Dict="</s>" , __lowerCAmelCase : List[Any]="</s>" , __lowerCAmelCase : Optional[Any]="<s>" , __lowerCAmelCase : Tuple="<unk>" , __lowerCAmelCase : int="<pad>" , __lowerCAmelCase : Optional[Any]="<mask>" , __lowerCAmelCase : Optional[Dict[str, Any]] = None , **__lowerCAmelCase : Tuple , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _A = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) _A = vocab_file _A = monolingual_vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _A = {} _A = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: _A = cnt cnt += 1 with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): _A = line.strip().split()[0] _A = len(self.fairseq_tokens_to_ids ) if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: _A = len(self.fairseq_tokens_to_ids ) _A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Any ) -> List[Any]: _A = self.__dict__.copy() _A = None _A = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any] , __lowerCAmelCase : Dict ) -> List[Any]: _A = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A = [self.cls_token_id] _A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self : List[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1, 1] + ([0] * len(__lowerCAmelCase )) + [1] def snake_case_ ( self : Any , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case_ ( self : Optional[int] ) -> Union[str, Any]: return len(self.fairseq_ids_to_tokens ) def snake_case_ ( self : Dict ) -> Optional[Any]: _A = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self : List[str] , __lowerCAmelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def snake_case_ ( self : str , __lowerCAmelCase : Optional[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def snake_case_ ( self : int , __lowerCAmelCase : Optional[int] ) -> List[str]: return self.fairseq_ids_to_tokens[index] def snake_case_ ( self : List[str] , __lowerCAmelCase : Union[str, Any] ) -> Tuple: _A = ''''''.join(__lowerCAmelCase ).replace(__lowerCAmelCase , ''' ''' ).strip() return out_string def snake_case_ ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowerCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__lowerCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
2
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class _lowerCAmelCase ( unittest.TestCase ): def A ( self ) -> Any: _SCREAMING_SNAKE_CASE : Optional[Any] = tempfile.mkdtemp() _SCREAMING_SNAKE_CASE : Optional[int] = SamImageProcessor() _SCREAMING_SNAKE_CASE : Union[str, Any] = SamProcessor(__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def A ( self , **lowerCAmelCase_ ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ).image_processor def A ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def A ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Optional[int] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _SCREAMING_SNAKE_CASE : Optional[Any] = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A ( self ) -> int: _SCREAMING_SNAKE_CASE : List[str] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE : List[str] = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) _SCREAMING_SNAKE_CASE : Dict = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def A ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : List[Any] = self.get_image_processor() _SCREAMING_SNAKE_CASE : str = SamProcessor(image_processor=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Any = self.prepare_image_inputs() _SCREAMING_SNAKE_CASE : Tuple = image_processor(__lowerCAmelCase , return_tensors='np' ) _SCREAMING_SNAKE_CASE : Dict = processor(images=__lowerCAmelCase , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def A ( self ) -> Any: _SCREAMING_SNAKE_CASE : str = self.get_image_processor() _SCREAMING_SNAKE_CASE : List[str] = SamProcessor(image_processor=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [torch.ones((1, 3, 5, 5) )] _SCREAMING_SNAKE_CASE : int = [[1_7_6_4, 2_6_4_6]] _SCREAMING_SNAKE_CASE : Union[str, Any] = [[6_8_3, 1_0_2_4]] _SCREAMING_SNAKE_CASE : List[Any] = processor.post_process_masks(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) _SCREAMING_SNAKE_CASE : Union[str, Any] = processor.post_process_masks( __lowerCAmelCase , torch.tensor(__lowerCAmelCase ) , torch.tensor(__lowerCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) # should also work with np _SCREAMING_SNAKE_CASE : Optional[Any] = [np.ones((1, 3, 5, 5) )] _SCREAMING_SNAKE_CASE : Any = processor.post_process_masks(__lowerCAmelCase , np.array(__lowerCAmelCase ) , np.array(__lowerCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) _SCREAMING_SNAKE_CASE : Dict = [[1, 0], [0, 1]] with self.assertRaises(__lowerCAmelCase ): _SCREAMING_SNAKE_CASE : Any = processor.post_process_masks(__lowerCAmelCase , np.array(__lowerCAmelCase ) , np.array(__lowerCAmelCase ) ) @require_vision @require_tf class _lowerCAmelCase ( unittest.TestCase ): def A ( self ) -> Any: _SCREAMING_SNAKE_CASE : Dict = tempfile.mkdtemp() _SCREAMING_SNAKE_CASE : Union[str, Any] = SamImageProcessor() _SCREAMING_SNAKE_CASE : Dict = SamProcessor(__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def A ( self , **lowerCAmelCase_ ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ).image_processor def A ( self ) -> Tuple: shutil.rmtree(self.tmpdirname ) def A ( self ) -> int: _SCREAMING_SNAKE_CASE : str = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _SCREAMING_SNAKE_CASE : Union[str, Any] = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : int = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE : List[str] = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) _SCREAMING_SNAKE_CASE : Any = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def A ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Optional[int] = self.get_image_processor() _SCREAMING_SNAKE_CASE : str = SamProcessor(image_processor=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_image_inputs() _SCREAMING_SNAKE_CASE : Any = image_processor(__lowerCAmelCase , return_tensors='np' ) _SCREAMING_SNAKE_CASE : List[Any] = processor(images=__lowerCAmelCase , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def A ( self ) -> Any: _SCREAMING_SNAKE_CASE : Any = self.get_image_processor() _SCREAMING_SNAKE_CASE : List[str] = SamProcessor(image_processor=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : List[str] = [tf.ones((1, 3, 5, 5) )] _SCREAMING_SNAKE_CASE : Union[str, Any] = [[1_7_6_4, 2_6_4_6]] _SCREAMING_SNAKE_CASE : Optional[int] = [[6_8_3, 1_0_2_4]] _SCREAMING_SNAKE_CASE : List[Any] = processor.post_process_masks(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) _SCREAMING_SNAKE_CASE : Optional[Any] = processor.post_process_masks( __lowerCAmelCase , tf.convert_to_tensor(__lowerCAmelCase ) , tf.convert_to_tensor(__lowerCAmelCase ) , return_tensors='tf' , ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) # should also work with np _SCREAMING_SNAKE_CASE : Any = [np.ones((1, 3, 5, 5) )] _SCREAMING_SNAKE_CASE : Optional[Any] = processor.post_process_masks( __lowerCAmelCase , np.array(__lowerCAmelCase ) , np.array(__lowerCAmelCase ) , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) _SCREAMING_SNAKE_CASE : Optional[Any] = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): _SCREAMING_SNAKE_CASE : List[Any] = processor.post_process_masks( __lowerCAmelCase , np.array(__lowerCAmelCase ) , np.array(__lowerCAmelCase ) , return_tensors='tf' ) @require_vision @require_torchvision class _lowerCAmelCase ( unittest.TestCase ): def A ( self ) -> str: _SCREAMING_SNAKE_CASE : str = tempfile.mkdtemp() _SCREAMING_SNAKE_CASE : Optional[int] = SamImageProcessor() _SCREAMING_SNAKE_CASE : Optional[Any] = SamProcessor(__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def A ( self , **lowerCAmelCase_ ) -> Any: return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ).image_processor def A ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def A ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : List[str] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _SCREAMING_SNAKE_CASE : Optional[int] = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def A ( self ) -> str: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_image_processor() _SCREAMING_SNAKE_CASE : Any = SamProcessor(image_processor=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) _SCREAMING_SNAKE_CASE : Optional[Any] = [tf.convert_to_tensor(__lowerCAmelCase )] _SCREAMING_SNAKE_CASE : int = [torch.tensor(__lowerCAmelCase )] _SCREAMING_SNAKE_CASE : Any = [[1_7_6_4, 2_6_4_6]] _SCREAMING_SNAKE_CASE : int = [[6_8_3, 1_0_2_4]] _SCREAMING_SNAKE_CASE : List[Any] = processor.post_process_masks( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , return_tensors='tf' ) _SCREAMING_SNAKE_CASE : Tuple = processor.post_process_masks( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , return_tensors='pt' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def A ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = self.get_image_processor() _SCREAMING_SNAKE_CASE : List[str] = SamProcessor(image_processor=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Dict = self.prepare_image_inputs() _SCREAMING_SNAKE_CASE : Any = image_processor(__lowerCAmelCase , return_tensors='pt' )['pixel_values'].numpy() _SCREAMING_SNAKE_CASE : Union[str, Any] = processor(images=__lowerCAmelCase , return_tensors='pt' )['pixel_values'].numpy() _SCREAMING_SNAKE_CASE : int = image_processor(__lowerCAmelCase , return_tensors='tf' )['pixel_values'].numpy() _SCREAMING_SNAKE_CASE : Union[str, Any] = processor(images=__lowerCAmelCase , return_tensors='tf' )['pixel_values'].numpy() self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase ) )
621
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( _snake_case :dict , _snake_case :str ) -> set[str]: _A , _A = set(_snake_case ), [start] while stack: _A = stack.pop() explored.add(_snake_case ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_snake_case ) return explored UpperCAmelCase_ = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
2
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_A ) class lowerCAmelCase__ ( _A ): """simple docstring""" __UpperCAmelCase : str = field(default='''automatic-speech-recognition''', metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCAmelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) __UpperCAmelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) __UpperCAmelCase : str = "audio" __UpperCAmelCase : str = "transcription" def _UpperCamelCase ( self , a_ ): if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , __lowerCAmelCase ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) lowerCamelCase_ : Any = copy.deepcopy(self ) lowerCamelCase_ : Any = self.input_schema.copy() lowerCamelCase_ : Union[str, Any] = features[self.audio_column] lowerCamelCase_ : Dict = input_schema return task_template @property def _UpperCamelCase ( self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
250
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
2
0
"""simple docstring""" UpperCAmelCase_ : Any = { '''meter''': '''m''', '''kilometer''': '''km''', '''megametre''': '''Mm''', '''gigametre''': '''Gm''', '''terametre''': '''Tm''', '''petametre''': '''Pm''', '''exametre''': '''Em''', '''zettametre''': '''Zm''', '''yottametre''': '''Ym''', } # Exponent of the factor(meter) UpperCAmelCase_ : Any = { '''m''': 0, '''km''': 3, '''Mm''': 6, '''Gm''': 9, '''Tm''': 1_2, '''Pm''': 1_5, '''Em''': 1_8, '''Zm''': 2_1, '''Ym''': 2_4, } def _lowerCAmelCase(a : float , a : str , a : str ) -> float: _SCREAMING_SNAKE_CASE =from_type.lower().strip('''s''' ) _SCREAMING_SNAKE_CASE =to_type.lower().strip('''s''' ) _SCREAMING_SNAKE_CASE =UNIT_SYMBOL.get(_snake_case , _snake_case ) _SCREAMING_SNAKE_CASE =UNIT_SYMBOL.get(_snake_case , _snake_case ) if from_sanitized not in METRIC_CONVERSION: _SCREAMING_SNAKE_CASE =( f"""Invalid \'from_type\' value: {from_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(_snake_case )}""" ) raise ValueError(_snake_case ) if to_sanitized not in METRIC_CONVERSION: _SCREAMING_SNAKE_CASE =( f"""Invalid \'to_type\' value: {to_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(_snake_case )}""" ) raise ValueError(_snake_case ) _SCREAMING_SNAKE_CASE =METRIC_CONVERSION[from_sanitized] _SCREAMING_SNAKE_CASE =METRIC_CONVERSION[to_sanitized] _SCREAMING_SNAKE_CASE =1 if from_exponent > to_exponent: _SCREAMING_SNAKE_CASE =from_exponent - to_exponent else: _SCREAMING_SNAKE_CASE =-(to_exponent - from_exponent) return value * pow(10 , _snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
255
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class lowerCamelCase__ ( _A): """simple docstring""" a__ : Any = "xlnet" a__ : Dict = ["mems"] a__ : List[str] = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int , __lowerCAmelCase : Dict=3_20_00 , __lowerCAmelCase : List[str]=10_24 , __lowerCAmelCase : Dict=24 , __lowerCAmelCase : Optional[Any]=16 , __lowerCAmelCase : Dict=40_96 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : int=True , __lowerCAmelCase : List[str]="bi" , __lowerCAmelCase : Dict=0.02 , __lowerCAmelCase : Union[str, Any]=1E-12 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Optional[Any]=5_12 , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Union[str, Any]=-1 , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Any="last" , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Tuple="tanh" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : str=5 , __lowerCAmelCase : str=5 , __lowerCAmelCase : List[str]=5 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Optional[int]=2 , **__lowerCAmelCase : List[str] , ) -> Tuple: _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(f'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'''`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , __lowerCAmelCase , ) _A = kwargs['''use_cache'''] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def snake_case_ ( self : Optional[Any] ) -> Union[str, Any]: logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def snake_case_ ( self : Tuple , __lowerCAmelCase : Optional[Any] ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
2
0
from __future__ import annotations def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = 0 __lowercase = len(_snake_case ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __lowercase = i + 1 else: __lowercase = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'''{two_pointer([2, 7, 11, 15], 9) = }''')
80
def SCREAMING_SNAKE_CASE_ ( _snake_case :bytes ) -> str: return "".join([hex(_snake_case )[2:].zfill(2 ).upper() for byte in list(_snake_case )] ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(_snake_case ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_snake_case ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_snake_case ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(_A ) class snake_case_ ( _A ): def __init__( self : Dict , **_snake_case : Union[str, Any] )->Dict: '''simple docstring''' super().__init__(**__lowerCAmelCase ) if self.framework != "pt": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self : Tuple , _snake_case : Union[np.ndarray, bytes, str] , **_snake_case : Union[str, Any] )->Dict: '''simple docstring''' return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def UpperCAmelCase__ ( self : Optional[Any] , **_snake_case : Optional[int] )->Optional[int]: '''simple docstring''' __lowerCAmelCase : Optional[int] = {} if "candidate_labels" in kwargs: __lowerCAmelCase : int = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: __lowerCAmelCase : int = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCAmelCase__ ( self : str , _snake_case : Union[str, Any] , _snake_case : Dict=None , _snake_case : str="This is a sound of {}." )->Optional[Any]: '''simple docstring''' if isinstance(__lowerCAmelCase , __lowerCAmelCase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __lowerCAmelCase : str = requests.get(__lowerCAmelCase ).content else: with open(__lowerCAmelCase , """rb""" ) as f: __lowerCAmelCase : int = f.read() if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowerCAmelCase : str = ffmpeg_read(__lowerCAmelCase , self.feature_extractor.sampling_rate ) if not isinstance(__lowerCAmelCase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) __lowerCAmelCase : Optional[Any] = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) __lowerCAmelCase : Any = candidate_labels __lowerCAmelCase : List[Any] = [hypothesis_template.format(__lowerCAmelCase ) for x in candidate_labels] __lowerCAmelCase : int = self.tokenizer(__lowerCAmelCase , return_tensors=self.framework , padding=__lowerCAmelCase ) __lowerCAmelCase : Tuple = [text_inputs] return inputs def UpperCAmelCase__ ( self : List[str] , _snake_case : Union[str, Any] )->Dict: '''simple docstring''' __lowerCAmelCase : Optional[int] = model_inputs.pop("""candidate_labels""" ) __lowerCAmelCase : List[Any] = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , __lowerCAmelCase ): __lowerCAmelCase : Any = text_inputs[0] else: # Batching case. __lowerCAmelCase : Any = text_inputs[0][0] __lowerCAmelCase : Dict = self.model(**__lowerCAmelCase , **__lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def UpperCAmelCase__ ( self : Tuple , _snake_case : List[str] )->Tuple: '''simple docstring''' __lowerCAmelCase : int = model_outputs.pop("""candidate_labels""" ) __lowerCAmelCase : List[str] = model_outputs["""logits"""][0] if self.framework == "pt": __lowerCAmelCase : Tuple = logits.softmax(dim=0 ) __lowerCAmelCase : Tuple = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) __lowerCAmelCase : str = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(__lowerCAmelCase , __lowerCAmelCase ) , key=lambda _snake_case : -x[0] ) ] return result
504
def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> bool: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(_snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(_snake_case ) == 1: return True _A = series[1] - series[0] for index in range(len(_snake_case ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> float: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(_snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) _A = 0 for val in series: answer += val return answer / len(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCAmelCase_ : @staticmethod def _lowerCamelCase ( *UpperCamelCase_ , **UpperCamelCase_ ) -> List[Any]: pass @is_pipeline_test @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): UpperCamelCase =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: __lowercase : Optional[int] = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''' ) __lowercase : Dict = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: __lowercase : Dict = vqa_pipeline(__lowerCAmelCase , top_k=1 ) self.assertEqual( __lowerCAmelCase , [ [{'''score''': ANY(__lowerCAmelCase ), '''answer''': ANY(__lowerCAmelCase )}], [{'''score''': ANY(__lowerCAmelCase ), '''answer''': ANY(__lowerCAmelCase )}], ] , ) @require_torch def _lowerCamelCase ( self ) -> Any: __lowercase : List[Any] = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''' ) __lowercase : Optional[Any] = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __lowercase : Tuple = '''How many cats are there?''' __lowercase : Optional[Any] = vqa_pipeline(image=__lowerCAmelCase , question='''How many cats are there?''' , top_k=2 ) self.assertEqual( __lowerCAmelCase , [{'''score''': ANY(__lowerCAmelCase ), '''answer''': ANY(__lowerCAmelCase )}, {'''score''': ANY(__lowerCAmelCase ), '''answer''': ANY(__lowerCAmelCase )}] ) __lowercase : List[Any] = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( __lowerCAmelCase , [{'''score''': ANY(__lowerCAmelCase ), '''answer''': ANY(__lowerCAmelCase )}, {'''score''': ANY(__lowerCAmelCase ), '''answer''': ANY(__lowerCAmelCase )}] ) @slow @require_torch def _lowerCamelCase ( self ) -> List[str]: __lowercase : str = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''' ) __lowercase : List[str] = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __lowercase : Union[str, Any] = '''How many cats are there?''' __lowercase : Dict = vqa_pipeline(image=__lowerCAmelCase , question=__lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=4 ) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}] ) __lowercase : Tuple = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=4 ) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}] ) __lowercase : Any = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=4 ) , [[{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]] * 2 , ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''' ) def _lowerCamelCase ( self ) -> List[Any]: pass
76
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 3 ) -> qiskit.result.counts.Counts: if isinstance(_snake_case , _snake_case ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(_snake_case ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) _A = QuantumRegister(_snake_case , '''qr''' ) _A = ClassicalRegister(_snake_case , '''cr''' ) _A = QuantumCircuit(_snake_case , _snake_case ) _A = number_of_qubits for i in range(_snake_case ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_snake_case ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _snake_case , _snake_case ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_snake_case , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_snake_case , _snake_case ) # simulate with 10000 shots _A = Aer.get_backend('''qasm_simulator''' ) _A = execute(_snake_case , _snake_case , shots=10_000 ) return job.result().get_counts(_snake_case ) if __name__ == "__main__": print( f'Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}' )
2
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class _A ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict=7 , __SCREAMING_SNAKE_CASE : Tuple=3 , __SCREAMING_SNAKE_CASE : int=30 , __SCREAMING_SNAKE_CASE : Dict=400 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Optional[Any]=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : Dict=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : List[str]=1 / 255 , __SCREAMING_SNAKE_CASE : int=True , ) -> List[str]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __UpperCAmelCase =size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __UpperCAmelCase =parent __UpperCAmelCase =batch_size __UpperCAmelCase =num_channels __UpperCAmelCase =min_resolution __UpperCAmelCase =max_resolution __UpperCAmelCase =do_resize __UpperCAmelCase =size __UpperCAmelCase =do_normalize __UpperCAmelCase =image_mean __UpperCAmelCase =image_std __UpperCAmelCase =do_rescale __UpperCAmelCase =rescale_factor __UpperCAmelCase =do_pad def _a ( self : Optional[int] ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str=False ) -> Dict: if not batched: __UpperCAmelCase =image_inputs[0] if isinstance(__lowerCAmelCase , Image.Image ): __UpperCAmelCase , __UpperCAmelCase =image.size else: __UpperCAmelCase , __UpperCAmelCase =image.shape[1], image.shape[2] if w < h: __UpperCAmelCase =int(self.size["""shortest_edge"""] * h / w ) __UpperCAmelCase =self.size["""shortest_edge"""] elif w > h: __UpperCAmelCase =self.size["""shortest_edge"""] __UpperCAmelCase =int(self.size["""shortest_edge"""] * w / h ) else: __UpperCAmelCase =self.size["""shortest_edge"""] __UpperCAmelCase =self.size["""shortest_edge"""] else: __UpperCAmelCase =[] for image in image_inputs: __UpperCAmelCase , __UpperCAmelCase =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __UpperCAmelCase =max(__lowerCAmelCase , key=lambda __SCREAMING_SNAKE_CASE : item[0] )[0] __UpperCAmelCase =max(__lowerCAmelCase , key=lambda __SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _A ( _A , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = DeformableDetrImageProcessor if is_vision_available() else None def _a ( self : Optional[int] ) -> Any: __UpperCAmelCase =DeformableDetrImageProcessingTester(self ) @property def _a ( self : Union[str, Any] ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def _a ( self : Optional[int] ) -> List[str]: __UpperCAmelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """image_std""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """do_rescale""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """do_pad""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """size""" ) ) def _a ( self : List[str] ) -> int: __UpperCAmelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) __UpperCAmelCase =self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCAmelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) def _a ( self : Any ) -> Union[str, Any]: pass def _a ( self : List[str] ) -> Optional[int]: # Initialize image_processing __UpperCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input __UpperCAmelCase =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __UpperCAmelCase , __UpperCAmelCase =self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase , __UpperCAmelCase =self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) __UpperCAmelCase =image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a ( self : Tuple ) -> int: # Initialize image_processing __UpperCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input __UpperCAmelCase =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __UpperCAmelCase , __UpperCAmelCase =self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase =image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values __UpperCAmelCase , __UpperCAmelCase =self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a ( self : Optional[Any] ) -> int: # Initialize image_processing __UpperCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input __UpperCAmelCase =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __UpperCAmelCase , __UpperCAmelCase =self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase =image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values __UpperCAmelCase , __UpperCAmelCase =self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _a ( self : Optional[Any] ) -> Optional[int]: # prepare image and target __UpperCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __UpperCAmelCase =json.loads(f.read() ) __UpperCAmelCase ={"""image_id""": 39769, """annotations""": target} # encode them __UpperCAmelCase =DeformableDetrImageProcessor() __UpperCAmelCase =image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , return_tensors="""pt""" ) # verify pixel values __UpperCAmelCase =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __lowerCAmelCase ) __UpperCAmelCase =torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __lowerCAmelCase , atol=1e-4 ) ) # verify area __UpperCAmelCase =torch.tensor([5_887.9_600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __lowerCAmelCase ) ) # verify boxes __UpperCAmelCase =torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __lowerCAmelCase ) __UpperCAmelCase =torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __lowerCAmelCase , atol=1e-3 ) ) # verify image_id __UpperCAmelCase =torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __lowerCAmelCase ) ) # verify is_crowd __UpperCAmelCase =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __lowerCAmelCase ) ) # verify class_labels __UpperCAmelCase =torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __lowerCAmelCase ) ) # verify orig_size __UpperCAmelCase =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __lowerCAmelCase ) ) # verify size __UpperCAmelCase =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __lowerCAmelCase ) ) @slow def _a ( self : List[str] ) -> List[str]: # prepare image, target and masks_path __UpperCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __UpperCAmelCase =json.loads(f.read() ) __UpperCAmelCase ={"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} __UpperCAmelCase =pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __UpperCAmelCase =DeformableDetrImageProcessor(format="""coco_panoptic""" ) __UpperCAmelCase =image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , masks_path=__lowerCAmelCase , return_tensors="""pt""" ) # verify pixel values __UpperCAmelCase =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __lowerCAmelCase ) __UpperCAmelCase =torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __lowerCAmelCase , atol=1e-4 ) ) # verify area __UpperCAmelCase =torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __lowerCAmelCase ) ) # verify boxes __UpperCAmelCase =torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __lowerCAmelCase ) __UpperCAmelCase =torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __lowerCAmelCase , atol=1e-3 ) ) # verify image_id __UpperCAmelCase =torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __lowerCAmelCase ) ) # verify is_crowd __UpperCAmelCase =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __lowerCAmelCase ) ) # verify class_labels __UpperCAmelCase =torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __lowerCAmelCase ) ) # verify masks __UpperCAmelCase =822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __lowerCAmelCase ) # verify orig_size __UpperCAmelCase =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __lowerCAmelCase ) ) # verify size __UpperCAmelCase =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __lowerCAmelCase ) )
68
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :str , _snake_case :Any , _snake_case :int , _snake_case :List[Any] ) -> Optional[int]: for attribute in key.split('''.''' ): _A = getattr(_snake_case , _snake_case ) if weight_type is not None: _A = getattr(_snake_case , _snake_case ).shape else: _A = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _A = value elif weight_type == "weight_g": _A = value elif weight_type == "weight_v": _A = value elif weight_type == "bias": _A = value else: _A = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :Any , _snake_case :int ) -> Any: _A = [] _A = fairseq_model.state_dict() _A = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _A = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) _A = True else: for key, mapped_key in MAPPING.items(): _A = '''sew.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _A = True if "*" in mapped_key: _A = name.split(_snake_case )[0].split('''.''' )[-2] _A = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: _A = '''weight_g''' elif "weight_v" in name: _A = '''weight_v''' elif "weight" in name: _A = '''weight''' elif "bias" in name: _A = '''bias''' else: _A = None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple , _snake_case :List[str] , _snake_case :List[str] , _snake_case :Optional[int] , _snake_case :List[Any] ) -> Any: _A = full_name.split('''conv_layers.''' )[-1] _A = name.split('''.''' ) _A = int(items[0] ) _A = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _A = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :Dict ) -> Tuple: _A = SEWConfig() if is_finetuned: _A = model.wav_encoder.wav_model.cfg else: _A = model.cfg _A = fs_config.conv_bias _A = eval(fs_config.conv_feature_layers ) _A = [x[0] for x in conv_layers] _A = [x[1] for x in conv_layers] _A = [x[2] for x in conv_layers] _A = '''gelu''' _A = '''layer''' if fs_config.extractor_mode == '''layer_norm''' else '''group''' _A = 0.0 _A = fs_config.activation_fn.name _A = fs_config.encoder_embed_dim _A = 0.02 _A = fs_config.encoder_ffn_embed_dim _A = 1E-5 _A = fs_config.encoder_layerdrop _A = fs_config.encoder_attention_heads _A = fs_config.conv_pos_groups _A = fs_config.conv_pos _A = len(_snake_case ) _A = fs_config.encoder_layers _A = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _A = model.cfg _A = fs_config.final_dropout _A = fs_config.layerdrop _A = fs_config.activation_dropout _A = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _A = fs_config.attention_dropout _A = fs_config.dropout_input _A = fs_config.dropout _A = fs_config.mask_channel_length _A = fs_config.mask_channel_prob _A = fs_config.mask_length _A = fs_config.mask_prob _A = '''Wav2Vec2FeatureExtractor''' _A = '''Wav2Vec2CTCTokenizer''' return config @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] , _snake_case :Union[str, Any] , _snake_case :Optional[Any]=None , _snake_case :Optional[int]=None , _snake_case :Dict=True ) -> List[Any]: if is_finetuned: _A , _A , _A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _A , _A , _A = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _A = SEWConfig.from_pretrained(_snake_case ) else: _A = convert_config(model[0] , _snake_case ) _A = model[0].eval() _A = True if config.feat_extract_norm == '''layer''' else False _A = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) if is_finetuned: if dict_path: _A = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _A = target_dict.pad_index _A = target_dict.bos_index _A = target_dict.pad_index _A = target_dict.bos_index _A = target_dict.eos_index _A = len(target_dict.symbols ) _A = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , _snake_case ) _A = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) _A = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) _A = SEWForCTC(_snake_case ) else: _A = SEWModel(_snake_case ) feature_extractor.save_pretrained(_snake_case ) recursively_load_weights(_snake_case , _snake_case , _snake_case ) hf_model.save_pretrained(_snake_case ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCAmelCase_ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
2
0
'''simple docstring''' lowercase__ : int = '''Input must be a string of 8 numbers plus letter''' lowercase__ : Union[str, Any] = '''TRWAGMYFPDXBNJZSQVHLCKE''' def _lowerCAmelCase ( __snake_case : str ) -> bool: if not isinstance(_snake_case , _snake_case ): __A : Optional[Any] = f'Expected string as input, found {type(_snake_case ).__name__}' raise TypeError(_snake_case ) __A : List[Any] = spanish_id.replace('-' , '' ).upper() if len(_snake_case ) != 9: raise ValueError(_snake_case ) try: __A : int = int(spanish_id_clean[0:8] ) __A : List[str] = spanish_id_clean[8] except ValueError as ex: raise ValueError(_snake_case ) from ex if letter.isdigit(): raise ValueError(_snake_case ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
8
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : """simple docstring""" @staticmethod def snake_case_ ( *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Any ) -> Any: pass @is_pipeline_test @require_vision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @require_torch def snake_case_ ( self : Tuple ) -> Tuple: _A = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowerCAmelCase ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) _A = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], ] , ) @require_tf def snake_case_ ( self : int ) -> Optional[int]: _A = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) _A = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], ] , ) @slow @require_torch def snake_case_ ( self : Optional[int] ) -> int: _A = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) _A = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case_ ( self : Optional[int] ) -> Dict: _A = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) _A = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
2
0
'''simple docstring''' import numpy as np def UpperCAmelCase_ (__a : np.array ): """simple docstring""" return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
229
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : Tuple ) -> Optional[int]: _A = tempfile.mkdtemp() _A = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _A = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } _A = os.path.join(self.tmpdirname , __lowerCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : Dict , **__lowerCAmelCase : int ) -> Optional[int]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : str , **__lowerCAmelCase : Optional[Any] ) -> Tuple: return BertTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : Tuple , **__lowerCAmelCase : str ) -> Union[str, Any]: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def snake_case_ ( self : int ) -> Optional[Any]: _A = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _A = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self : Dict ) -> List[str]: _A = self.get_tokenizer() _A = self.get_rust_tokenizer() _A = self.get_image_processor() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) _A = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCAmelCase ) _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) _A = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCAmelCase ) def snake_case_ ( self : List[Any] ) -> List[str]: _A = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _A = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _A = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) _A = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def snake_case_ ( self : str ) -> List[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = self.prepare_image_inputs() _A = image_processor(__lowerCAmelCase , return_tensors='''np''' ) _A = processor(images=__lowerCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def snake_case_ ( self : Union[str, Any] ) -> Dict: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = processor(text=__lowerCAmelCase ) _A = tokenizer(__lowerCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case_ ( self : List[str] ) -> Any: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = self.prepare_image_inputs() _A = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def snake_case_ ( self : Optional[Any] ) -> str: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A = processor.batch_decode(__lowerCAmelCase ) _A = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : str ) -> str: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = self.prepare_image_inputs() _A = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
2
0
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase ) -> bool: """simple docstring""" if len(_snake_case ) == 0: return False __snake_case : int = len(_snake_case ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , _snake_case ) else: return binary_search(a_list[midpoint + 1 :] , _snake_case ) if __name__ == "__main__": __UpperCamelCase = input("Enter numbers separated by comma:\n").strip() __UpperCamelCase = [int(item.strip()) for item in user_input.split(",")] __UpperCamelCase = int(input("Enter the number to be found in the list:\n").strip()) __UpperCamelCase = "" if binary_search(sequence, target) else "not " print(f"""{target} was {not_str}found in {sequence}""")
26
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class lowerCamelCase__ ( _A): """simple docstring""" a__ : int = "openai-gpt" a__ : Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Union[str, Any] , __lowerCAmelCase : int=4_04_78 , __lowerCAmelCase : Tuple=5_12 , __lowerCAmelCase : str=7_68 , __lowerCAmelCase : List[Any]=12 , __lowerCAmelCase : Any=12 , __lowerCAmelCase : Dict="gelu" , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : List[str]=1E-5 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[Any]="cls_index" , __lowerCAmelCase : str=True , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[Any]=0.1 , **__lowerCAmelCase : Tuple , ) -> Optional[Any]: _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = afn _A = resid_pdrop _A = embd_pdrop _A = attn_pdrop _A = layer_norm_epsilon _A = initializer_range _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_first_dropout _A = summary_proj_to_labels super().__init__(**__lowerCAmelCase )
2
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig A : Optional[Any] = logging.get_logger(__name__) # General docstring A : Optional[int] = '''ResNetConfig''' # Base docstring A : str = '''microsoft/resnet-50''' A : Any = [1, 2_0_4_8, 7, 7] # Image classification docstring A : Any = '''microsoft/resnet-50''' A : List[Any] = '''tiger cat''' A : Tuple = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class A (nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 1 , __lowerCAmelCase : str = "relu" ) -> Tuple: """simple docstring""" super().__init__() A__ = nn.Convad( __lowerCAmelCase , __lowerCAmelCase , kernel_size=__lowerCAmelCase , stride=__lowerCAmelCase , padding=kernel_size // 2 , bias=__lowerCAmelCase ) A__ = nn.BatchNormad(__lowerCAmelCase ) A__ = ACTaFN[activation] if activation is not None else nn.Identity() def a_ ( self : Tuple , __lowerCAmelCase : Tensor ) -> Tensor: """simple docstring""" A__ = self.convolution(__lowerCAmelCase ) A__ = self.normalization(__lowerCAmelCase ) A__ = self.activation(__lowerCAmelCase ) return hidden_state class A (nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , __lowerCAmelCase : ResNetConfig ) -> List[Any]: """simple docstring""" super().__init__() A__ = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) A__ = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) A__ = config.num_channels def a_ ( self : List[str] , __lowerCAmelCase : Tensor ) -> Tensor: """simple docstring""" A__ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) A__ = self.embedder(__lowerCAmelCase ) A__ = self.pooler(__lowerCAmelCase ) return embedding class A (nn.Module ): '''simple docstring''' def __init__( self : str , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int = 2 ) -> List[str]: """simple docstring""" super().__init__() A__ = nn.Convad(__lowerCAmelCase , __lowerCAmelCase , kernel_size=1 , stride=__lowerCAmelCase , bias=__lowerCAmelCase ) A__ = nn.BatchNormad(__lowerCAmelCase ) def a_ ( self : List[Any] , __lowerCAmelCase : Tensor ) -> Tensor: """simple docstring""" A__ = self.convolution(__lowerCAmelCase ) A__ = self.normalization(__lowerCAmelCase ) return hidden_state class A (nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int = 1 , __lowerCAmelCase : str = "relu" ) -> Dict: """simple docstring""" super().__init__() A__ = in_channels != out_channels or stride != 1 A__ = ( ResNetShortCut(__lowerCAmelCase , __lowerCAmelCase , stride=__lowerCAmelCase ) if should_apply_shortcut else nn.Identity() ) A__ = nn.Sequential( ResNetConvLayer(__lowerCAmelCase , __lowerCAmelCase , stride=__lowerCAmelCase ) , ResNetConvLayer(__lowerCAmelCase , __lowerCAmelCase , activation=__lowerCAmelCase ) , ) A__ = ACTaFN[activation] def a_ ( self : Any , __lowerCAmelCase : Any ) -> List[str]: """simple docstring""" A__ = hidden_state A__ = self.layer(__lowerCAmelCase ) A__ = self.shortcut(__lowerCAmelCase ) hidden_state += residual A__ = self.activation(__lowerCAmelCase ) return hidden_state class A (nn.Module ): '''simple docstring''' def __init__( self : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int = 1 , __lowerCAmelCase : str = "relu" , __lowerCAmelCase : int = 4 ) -> Optional[Any]: """simple docstring""" super().__init__() A__ = in_channels != out_channels or stride != 1 A__ = out_channels // reduction A__ = ( ResNetShortCut(__lowerCAmelCase , __lowerCAmelCase , stride=__lowerCAmelCase ) if should_apply_shortcut else nn.Identity() ) A__ = nn.Sequential( ResNetConvLayer(__lowerCAmelCase , __lowerCAmelCase , kernel_size=1 ) , ResNetConvLayer(__lowerCAmelCase , __lowerCAmelCase , stride=__lowerCAmelCase ) , ResNetConvLayer(__lowerCAmelCase , __lowerCAmelCase , kernel_size=1 , activation=__lowerCAmelCase ) , ) A__ = ACTaFN[activation] def a_ ( self : Any , __lowerCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" A__ = hidden_state A__ = self.layer(__lowerCAmelCase ) A__ = self.shortcut(__lowerCAmelCase ) hidden_state += residual A__ = self.activation(__lowerCAmelCase ) return hidden_state class A (nn.Module ): '''simple docstring''' def __init__( self : str , __lowerCAmelCase : ResNetConfig , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int = 2 , __lowerCAmelCase : int = 2 , ) -> Tuple: """simple docstring""" super().__init__() A__ = ResNetBottleNeckLayer if config.layer_type == """bottleneck""" else ResNetBasicLayer A__ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(__lowerCAmelCase , __lowerCAmelCase , stride=__lowerCAmelCase , activation=config.hidden_act ) , *[layer(__lowerCAmelCase , __lowerCAmelCase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def a_ ( self : Any , __lowerCAmelCase : Tensor ) -> Tensor: """simple docstring""" A__ = input for layer in self.layers: A__ = layer(__lowerCAmelCase ) return hidden_state class A (nn.Module ): '''simple docstring''' def __init__( self : Dict , __lowerCAmelCase : ResNetConfig ) -> Optional[Any]: """simple docstring""" super().__init__() A__ = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( __lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) A__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__lowerCAmelCase , config.depths[1:] ): self.stages.append(ResNetStage(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , depth=__lowerCAmelCase ) ) def a_ ( self : List[Any] , __lowerCAmelCase : Tensor , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" A__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: A__ = hidden_states + (hidden_state,) A__ = stage_module(__lowerCAmelCase ) if output_hidden_states: A__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=__lowerCAmelCase , hidden_states=__lowerCAmelCase , ) class A (_A ): '''simple docstring''' __lowerCamelCase : Dict = ResNetConfig __lowerCamelCase : Union[str, Any] = "resnet" __lowerCamelCase : Dict = "pixel_values" __lowerCamelCase : Dict = True def a_ ( self : List[Any] , __lowerCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" if isinstance(__lowerCAmelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" ) elif isinstance(__lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def a_ ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Tuple=False ) -> Any: """simple docstring""" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): A__ = value A : Optional[Any] = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' A : Optional[Any] = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , _A , ) class A (_A ): '''simple docstring''' def __init__( self : str , __lowerCAmelCase : int ) -> Tuple: """simple docstring""" super().__init__(__lowerCAmelCase ) A__ = config A__ = ResNetEmbeddings(__lowerCAmelCase ) A__ = ResNetEncoder(__lowerCAmelCase ) A__ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a_ ( self : List[str] , __lowerCAmelCase : Tensor , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" A__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A__ = return_dict if return_dict is not None else self.config.use_return_dict A__ = self.embedder(__lowerCAmelCase ) A__ = self.encoder( __lowerCAmelCase , output_hidden_states=__lowerCAmelCase , return_dict=__lowerCAmelCase ) A__ = encoder_outputs[0] A__ = self.pooler(__lowerCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowerCAmelCase , pooler_output=__lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '''\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ''' , _A , ) class A (_A ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" super().__init__(__lowerCAmelCase ) A__ = config.num_labels A__ = ResNetModel(__lowerCAmelCase ) # classification head A__ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a_ ( self : Union[str, Any] , __lowerCAmelCase : Optional[torch.FloatTensor] = None , __lowerCAmelCase : Optional[torch.LongTensor] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" A__ = return_dict if return_dict is not None else self.config.use_return_dict A__ = self.resnet(__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , return_dict=__lowerCAmelCase ) A__ = outputs.pooler_output if return_dict else outputs[1] A__ = self.classifier(__lowerCAmelCase ) A__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: A__ = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): A__ = """single_label_classification""" else: A__ = """multi_label_classification""" if self.config.problem_type == "regression": A__ = MSELoss() if self.num_labels == 1: A__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: A__ = loss_fct(__lowerCAmelCase , __lowerCAmelCase ) elif self.config.problem_type == "single_label_classification": A__ = CrossEntropyLoss() A__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": A__ = BCEWithLogitsLoss() A__ = loss_fct(__lowerCAmelCase , __lowerCAmelCase ) if not return_dict: A__ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__lowerCAmelCase , logits=__lowerCAmelCase , hidden_states=outputs.hidden_states ) @add_start_docstrings( '''\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ''' , _A , ) class A (_A , _A ): '''simple docstring''' def __init__( self : int , __lowerCAmelCase : str ) -> Union[str, Any]: """simple docstring""" super().__init__(__lowerCAmelCase ) super()._init_backbone(__lowerCAmelCase ) A__ = [config.embedding_size] + config.hidden_sizes A__ = ResNetEmbeddings(__lowerCAmelCase ) A__ = ResNetEncoder(__lowerCAmelCase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowerCAmelCase ) @replace_return_docstrings(output_type=__lowerCAmelCase , config_class=_CONFIG_FOR_DOC ) def a_ ( self : Dict , __lowerCAmelCase : Tensor , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[bool] = None ) -> BackboneOutput: """simple docstring""" A__ = return_dict if return_dict is not None else self.config.use_return_dict A__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A__ = self.embedder(__lowerCAmelCase ) A__ = self.encoder(__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , return_dict=__lowerCAmelCase ) A__ = outputs.hidden_states A__ = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: A__ = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=__lowerCAmelCase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=__lowerCAmelCase , )
176
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def __init__( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict=7 , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : int=30 , __lowerCAmelCase : Dict=4_00 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , __lowerCAmelCase : Dict=[0.5, 0.5, 0.5] , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : List[str]=1 / 2_55 , __lowerCAmelCase : int=True , ) -> List[str]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _A = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _A = parent _A = batch_size _A = num_channels _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_normalize _A = image_mean _A = image_std _A = do_rescale _A = rescale_factor _A = do_pad def snake_case_ ( self : Optional[int] ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case_ ( self : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str=False ) -> Dict: if not batched: _A = image_inputs[0] if isinstance(__lowerCAmelCase , Image.Image ): _A , _A = image.size else: _A , _A = image.shape[1], image.shape[2] if w < h: _A = int(self.size['''shortest_edge'''] * h / w ) _A = self.size['''shortest_edge'''] elif w > h: _A = self.size['''shortest_edge'''] _A = int(self.size['''shortest_edge'''] * w / h ) else: _A = self.size['''shortest_edge'''] _A = self.size['''shortest_edge'''] else: _A = [] for image in image_inputs: _A , _A = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _A = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[0] )[0] _A = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase__ ( _A , unittest.TestCase): """simple docstring""" a__ : Any = DeformableDetrImageProcessor if is_vision_available() else None def snake_case_ ( self : Optional[int] ) -> Any: _A = DeformableDetrImageProcessingTester(self ) @property def snake_case_ ( self : Union[str, Any] ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self : Optional[int] ) -> List[str]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_rescale''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) def snake_case_ ( self : List[str] ) -> int: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) _A = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCAmelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) def snake_case_ ( self : Any ) -> Union[str, Any]: pass def snake_case_ ( self : List[str] ) -> Optional[int]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self : Tuple ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self : Optional[Any] ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case_ ( self : Optional[Any] ) -> Optional[int]: # prepare image and target _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _A = DeformableDetrImageProcessor() _A = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify area _A = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCAmelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCAmelCase , atol=1E-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCAmelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCAmelCase ) ) # verify class_labels _A = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCAmelCase ) ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCAmelCase ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCAmelCase ) ) @slow def snake_case_ ( self : List[str] ) -> List[str]: # prepare image, target and masks_path _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _A = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _A = DeformableDetrImageProcessor(format='''coco_panoptic''' ) _A = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , masks_path=__lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify area _A = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCAmelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCAmelCase , atol=1E-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCAmelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCAmelCase ) ) # verify class_labels _A = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCAmelCase ) ) # verify masks _A = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __lowerCAmelCase ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCAmelCase ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCAmelCase ) )
2
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class _lowerCAmelCase ( _A ): SCREAMING_SNAKE_CASE_: torch.FloatTensor class _lowerCAmelCase ( _A , _A ): @register_to_config def __init__( self , lowerCAmelCase_ = 6_5_5_3_6 , lowerCAmelCase_ = None , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 0 , lowerCAmelCase_ = "fourier" , lowerCAmelCase_ = True , lowerCAmelCase_ = False , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCAmelCase_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCAmelCase_ = "UNetMidBlock1D" , lowerCAmelCase_ = None , lowerCAmelCase_ = (3_2, 3_2, 6_4) , lowerCAmelCase_ = None , lowerCAmelCase_ = 8 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = False , ) -> Optional[int]: super().__init__() _SCREAMING_SNAKE_CASE : Dict = sample_size # time if time_embedding_type == "fourier": _SCREAMING_SNAKE_CASE : Tuple = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=__lowerCAmelCase , log=__lowerCAmelCase , flip_sin_to_cos=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Dict = 2 * block_out_channels[0] elif time_embedding_type == "positional": _SCREAMING_SNAKE_CASE : Union[str, Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=__lowerCAmelCase , downscale_freq_shift=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = block_out_channels[0] if use_timestep_embedding: _SCREAMING_SNAKE_CASE : int = block_out_channels[0] * 4 _SCREAMING_SNAKE_CASE : Tuple = TimestepEmbedding( in_channels=__lowerCAmelCase , time_embed_dim=__lowerCAmelCase , act_fn=__lowerCAmelCase , out_dim=block_out_channels[0] , ) _SCREAMING_SNAKE_CASE : Any = nn.ModuleList([] ) _SCREAMING_SNAKE_CASE : Any = None _SCREAMING_SNAKE_CASE : List[Any] = nn.ModuleList([] ) _SCREAMING_SNAKE_CASE : Optional[int] = None # down _SCREAMING_SNAKE_CASE : List[str] = in_channels for i, down_block_type in enumerate(__lowerCAmelCase ): _SCREAMING_SNAKE_CASE : str = output_channel _SCREAMING_SNAKE_CASE : Optional[int] = block_out_channels[i] if i == 0: input_channel += extra_in_channels _SCREAMING_SNAKE_CASE : Optional[int] = i == len(__lowerCAmelCase ) - 1 _SCREAMING_SNAKE_CASE : Dict = get_down_block( __lowerCAmelCase , num_layers=__lowerCAmelCase , in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(__lowerCAmelCase ) # mid _SCREAMING_SNAKE_CASE : Optional[int] = get_mid_block( __lowerCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=__lowerCAmelCase , add_downsample=__lowerCAmelCase , ) # up _SCREAMING_SNAKE_CASE : Optional[int] = list(reversed(__lowerCAmelCase ) ) _SCREAMING_SNAKE_CASE : Any = reversed_block_out_channels[0] if out_block_type is None: _SCREAMING_SNAKE_CASE : Optional[Any] = out_channels else: _SCREAMING_SNAKE_CASE : Any = block_out_channels[0] for i, up_block_type in enumerate(__lowerCAmelCase ): _SCREAMING_SNAKE_CASE : int = output_channel _SCREAMING_SNAKE_CASE : str = ( reversed_block_out_channels[i + 1] if i < len(__lowerCAmelCase ) - 1 else final_upsample_channels ) _SCREAMING_SNAKE_CASE : Optional[Any] = i == len(__lowerCAmelCase ) - 1 _SCREAMING_SNAKE_CASE : Optional[Any] = get_up_block( __lowerCAmelCase , num_layers=__lowerCAmelCase , in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : str = output_channel # out _SCREAMING_SNAKE_CASE : Optional[Any] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 3_2 ) _SCREAMING_SNAKE_CASE : Optional[int] = get_out_block( out_block_type=__lowerCAmelCase , num_groups_out=__lowerCAmelCase , embed_dim=block_out_channels[0] , out_channels=__lowerCAmelCase , act_fn=__lowerCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def A ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = True , ) -> Union[UNetaDOutput, Tuple]: _SCREAMING_SNAKE_CASE : Optional[Any] = timestep if not torch.is_tensor(__lowerCAmelCase ): _SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(__lowerCAmelCase ) and len(timesteps.shape ) == 0: _SCREAMING_SNAKE_CASE : Optional[Any] = timesteps[None].to(sample.device ) _SCREAMING_SNAKE_CASE : List[str] = self.time_proj(__lowerCAmelCase ) if self.config.use_timestep_embedding: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.time_mlp(__lowerCAmelCase ) else: _SCREAMING_SNAKE_CASE : Optional[int] = timestep_embed[..., None] _SCREAMING_SNAKE_CASE : List[str] = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _SCREAMING_SNAKE_CASE : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _SCREAMING_SNAKE_CASE : List[str] = () for downsample_block in self.down_blocks: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = downsample_block(hidden_states=__lowerCAmelCase , temb=__lowerCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _SCREAMING_SNAKE_CASE : Any = self.mid_block(__lowerCAmelCase , __lowerCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _SCREAMING_SNAKE_CASE : Dict = down_block_res_samples[-1:] _SCREAMING_SNAKE_CASE : int = down_block_res_samples[:-1] _SCREAMING_SNAKE_CASE : List[str] = upsample_block(__lowerCAmelCase , res_hidden_states_tuple=__lowerCAmelCase , temb=__lowerCAmelCase ) # 5. post-process if self.out_block: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.out_block(__lowerCAmelCase , __lowerCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=__lowerCAmelCase )
621
UpperCAmelCase_ = 0 # The first color of the flag. UpperCAmelCase_ = 1 # The second color of the flag. UpperCAmelCase_ = 2 # The third color of the flag. UpperCAmelCase_ = (red, white, blue) def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> list: if not sequence: return [] if len(_snake_case ) == 1: return list(_snake_case ) _A = 0 _A = len(_snake_case ) - 1 _A = 0 while mid <= high: if sequence[mid] == colors[0]: _A , _A = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _A , _A = sequence[high], sequence[mid] high -= 1 else: _A = F'''The elements inside the sequence must contains only {colors} values''' raise ValueError(_snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = input("""Enter numbers separated by commas:\n""").strip() UpperCAmelCase_ = [int(item.strip()) for item in user_input.split(""",""")] print(f'{dutch_national_flag_sort(unsorted)}')
2
0
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class lowerCAmelCase__ ( _A ): """simple docstring""" __UpperCAmelCase : torch.FloatTensor __UpperCAmelCase : Optional[torch.FloatTensor] = None def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_=0.9_99 , lowerCAmelCase_="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase_): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase_): return math.exp(t * -12.0) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""") lowerCamelCase_ : Optional[Any] = [] for i in range(_snake_case): lowerCamelCase_ : Optional[Any] = i / num_diffusion_timesteps lowerCamelCase_ : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_snake_case) / alpha_bar_fn(_snake_case) , _snake_case)) return torch.tensor(_snake_case , dtype=torch.floataa) class lowerCAmelCase__ ( _A, _A ): """simple docstring""" @register_to_config def __init__( self , a_ = 1000 , a_ = "fixed_small_log" , a_ = True , a_ = 1.0 , a_ = "epsilon" , a_ = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'" ) lowerCamelCase_ : Optional[int] = betas_for_alpha_bar(__lowerCAmelCase ) lowerCamelCase_ : Tuple = 1.0 - self.betas lowerCamelCase_ : int = torch.cumprod(self.alphas , dim=0 ) lowerCamelCase_ : Tuple = torch.tensor(1.0 ) # standard deviation of the initial noise distribution lowerCamelCase_ : Optional[Any] = 1.0 # setable values lowerCamelCase_ : List[str] = None lowerCamelCase_ : Optional[Any] = torch.from_numpy(np.arange(0 , __lowerCAmelCase )[::-1].copy() ) lowerCamelCase_ : int = variance_type def _UpperCamelCase ( self , a_ , a_ = None ): return sample def _UpperCamelCase ( self , a_ , a_ = None ): lowerCamelCase_ : List[str] = num_inference_steps lowerCamelCase_ : int = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) lowerCamelCase_ : Optional[int] = (np.arange(0 , __lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) lowerCamelCase_ : Union[str, Any] = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase ) def _UpperCamelCase ( self , a_ , a_=None , a_=None , a_=None ): if prev_timestep is None: lowerCamelCase_ : Any = t - 1 lowerCamelCase_ : int = self.alphas_cumprod[t] lowerCamelCase_ : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCamelCase_ : Union[str, Any] = 1 - alpha_prod_t lowerCamelCase_ : Dict = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCamelCase_ : str = self.betas[t] else: lowerCamelCase_ : Tuple = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCamelCase_ : Union[str, Any] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: lowerCamelCase_ : Any = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": lowerCamelCase_ : int = torch.log(torch.clamp(__lowerCAmelCase , min=1E-20 ) ) lowerCamelCase_ : int = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler lowerCamelCase_ : int = variance.log() lowerCamelCase_ : List[Any] = beta.log() lowerCamelCase_ : Union[str, Any] = (predicted_variance + 1) / 2 lowerCamelCase_ : Tuple = frac * max_log + (1 - frac) * min_log return variance def _UpperCamelCase ( self , a_ , a_ , a_ , a_ = None , a_=None , a_ = True , ): lowerCamelCase_ : Any = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": lowerCamelCase_ ,lowerCamelCase_ : Any = torch.split(__lowerCAmelCase , sample.shape[1] , dim=1 ) else: lowerCamelCase_ : str = None # 1. compute alphas, betas if prev_timestep is None: lowerCamelCase_ : Optional[Any] = t - 1 lowerCamelCase_ : Tuple = self.alphas_cumprod[t] lowerCamelCase_ : Union[str, Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCamelCase_ : Dict = 1 - alpha_prod_t lowerCamelCase_ : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCamelCase_ : str = self.betas[t] lowerCamelCase_ : Any = self.alphas[t] else: lowerCamelCase_ : str = 1 - alpha_prod_t / alpha_prod_t_prev lowerCamelCase_ : Dict = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCamelCase_ : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCamelCase_ : Tuple = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCamelCase_ : str = torch.clamp( __lowerCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase_ : Any = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t lowerCamelCase_ : Tuple = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase_ : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCamelCase_ : Dict = 0 if t > 0: lowerCamelCase_ : str = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=__lowerCAmelCase , device=model_output.device ) lowerCamelCase_ : Dict = self._get_variance( __lowerCAmelCase , predicted_variance=__lowerCAmelCase , prev_timestep=__lowerCAmelCase , ) if self.variance_type == "fixed_small_log": lowerCamelCase_ : Tuple = variance elif self.variance_type == "learned_range": lowerCamelCase_ : Union[str, Any] = (0.5 * variance).exp() else: raise ValueError( F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" " for the UnCLIPScheduler." ) lowerCamelCase_ : Tuple = variance * variance_noise lowerCamelCase_ : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__lowerCAmelCase , pred_original_sample=__lowerCAmelCase ) def _UpperCamelCase ( self , a_ , a_ , a_ , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples lowerCamelCase_ : Any = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) lowerCamelCase_ : List[str] = timesteps.to(original_samples.device ) lowerCamelCase_ : Optional[int] = alphas_cumprod[timesteps] ** 0.5 lowerCamelCase_ : Any = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): lowerCamelCase_ : Union[str, Any] = sqrt_alpha_prod.unsqueeze(-1 ) lowerCamelCase_ : Optional[int] = (1 - alphas_cumprod[timesteps]) ** 0.5 lowerCamelCase_ : List[str] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): lowerCamelCase_ : Any = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) lowerCamelCase_ : List[Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
250
import itertools import math def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE_ ( ) -> Dict: _A = 2 while True: if is_prime(_snake_case ): yield num num += 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 10_001 ) -> int: return next(itertools.islice(prime_generator() , nth - 1 , _snake_case ) ) if __name__ == "__main__": print(f'{solution() = }')
2
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCAmelCase ( _A, unittest.TestCase ): '''simple docstring''' lowercase : Optional[int] = KandinskyVaaControlnetPipeline lowercase : Any = ["image_embeds", "negative_image_embeds", "hint"] lowercase : str = ["image_embeds", "negative_image_embeds", "hint"] lowercase : List[Any] = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] lowercase : Union[str, Any] = False @property def UpperCamelCase_ ( self ): '''simple docstring''' return 3_2 @property def UpperCamelCase_ ( self ): '''simple docstring''' return 3_2 @property def UpperCamelCase_ ( self ): '''simple docstring''' return self.time_input_dim @property def UpperCamelCase_ ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase_ ( self ): '''simple docstring''' return 1_0_0 @property def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE ={ '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _SCREAMING_SNAKE_CASE =UNetaDConditionModel(**__lowerCAmelCase ) return model @property def UpperCamelCase_ ( self ): '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.dummy_unet _SCREAMING_SNAKE_CASE =self.dummy_movq _SCREAMING_SNAKE_CASE =DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.00085 , beta_end=0.012 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__lowerCAmelCase , ) _SCREAMING_SNAKE_CASE ={ '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def UpperCamelCase_ ( self , _A , _A=0 ): '''simple docstring''' _SCREAMING_SNAKE_CASE =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowerCAmelCase ) # create hint _SCREAMING_SNAKE_CASE =floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) if str(__lowerCAmelCase ).startswith('''mps''' ): _SCREAMING_SNAKE_CASE =torch.manual_seed(__lowerCAmelCase ) else: _SCREAMING_SNAKE_CASE =torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE ={ '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE ='''cpu''' _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =self.pipeline_class(**__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =pipe(**self.get_dummy_inputs(__lowerCAmelCase ) ) _SCREAMING_SNAKE_CASE =output.images _SCREAMING_SNAKE_CASE =pipe( **self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0] _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _SCREAMING_SNAKE_CASE =np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' ) _SCREAMING_SNAKE_CASE =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) _SCREAMING_SNAKE_CASE =torch.from_numpy(np.array(__lowerCAmelCase ) ).float() / 255.0 _SCREAMING_SNAKE_CASE =hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _SCREAMING_SNAKE_CASE =KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =KandinskyVaaControlnetPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE =pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE ='''A robot, 4k photo''' _SCREAMING_SNAKE_CASE =torch.Generator(device='''cuda''' ).manual_seed(0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =pipe_prior( __lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _SCREAMING_SNAKE_CASE =torch.Generator(device='''cuda''' ).manual_seed(0 ) _SCREAMING_SNAKE_CASE =pipeline( image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , hint=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=1_0_0 , output_type='''np''' , ) _SCREAMING_SNAKE_CASE =output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
255
import collections import os import re from pathlib import Path UpperCAmelCase_ = """src/transformers""" # Matches is_xxx_available() UpperCAmelCase_ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} UpperCAmelCase_ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCAmelCase_ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available UpperCAmelCase_ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") UpperCAmelCase_ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCAmelCase_ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", UpperCAmelCase_ = re.compile(r"""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], UpperCAmelCase_ = re.compile(r"""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo UpperCAmelCase_ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: UpperCAmelCase_ = re.compile(r"""^\s*try:""") # Catches a line with else: UpperCAmelCase_ = re.compile(r"""^\s*else:""") def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] ) -> Any: if _re_test_backend.search(_snake_case ) is None: return None _A = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Any ) -> Any: with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _A = f.readlines() _A = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure _A = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: _A = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): _A = _re_one_line_import_struct.search(_snake_case ).groups()[0] _A = re.findall(r'''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue _A = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: _A = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 _A = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): _A = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: _A = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) _A = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: _A = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) _A = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 _A = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _A = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): _A = lines[line_index] _A = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 _A = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): _A = lines[line_index] _A = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 _A = objects else: line_index += 1 return import_dict_objects, type_hint_objects def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] , _snake_case :Dict ) -> Any: def find_duplicates(_snake_case :Any ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _A = [] for key in import_dict_objects.keys(): _A = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) _A = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _A = '''base imports''' if key == '''none''' else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def SCREAMING_SNAKE_CASE_ ( ) -> int: _A = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: _A = os.path.join(_snake_case , '''__init__.py''' ) _A = parse_init(_snake_case ) if objects is not None: _A = analyze_results(*_snake_case ) if len(_snake_case ) > 0: _A = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: _A = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue _A = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) _A = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue _A = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) _A = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules UpperCAmelCase_ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def SCREAMING_SNAKE_CASE_ ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import _A = direct_transformers_import(_snake_case ) _A = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_snake_case , '''__init__.py''' ) , '''r''' ) as f: _A = f.read() import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , _snake_case ) ) ) _A = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_snake_case ) > 0: _A = '''\n'''.join(F'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
2
0
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __UpperCamelCase : int = """src/diffusers""" __UpperCamelCase : Dict = """.""" # This is to make sure the diffusers module imported is the one in the repo. __UpperCamelCase : Tuple = importlib.util.spec_from_file_location( """diffusers""", os.path.join(DIFFUSERS_PATH, """__init__.py"""), submodule_search_locations=[DIFFUSERS_PATH], ) __UpperCamelCase : Dict = spec.loader.load_module() def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return line.startswith(_snake_case ) or len(_snake_case ) <= 1 or re.search(r"""^\s*\)(\s*->.*:|:)\s*$""" , _snake_case ) is not None def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = object_name.split(""".""" ) __lowercase = 0 # First let's find the module where our object lives. __lowercase = parts[i] while i < len(_snake_case ) and not os.path.isfile(os.path.join(_snake_case , F'{module}.py' ) ): i += 1 if i < len(_snake_case ): __lowercase = os.path.join(_snake_case , parts[i] ) if i >= len(_snake_case ): raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(_snake_case , F'{module}.py' ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __lowercase = f.readlines() # Now let's find the class / func in the code! __lowercase = """""" __lowercase = 0 for name in parts[i + 1 :]: while ( line_index < len(_snake_case ) and re.search(rF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_snake_case ): raise ValueError(F' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). __lowercase = line_index while line_index < len(_snake_case ) and _should_continue(lines[line_index] , _snake_case ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __lowercase = lines[start_index:line_index] return "".join(_snake_case ) __UpperCamelCase : Dict = re.compile(r"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""") __UpperCamelCase : Optional[Any] = re.compile(r"""^\s*(\S+)->(\S+)(\s+.*|$)""") __UpperCamelCase : List[str] = re.compile(r"""<FILL\s+[^>]*>""") def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = code.split("""\n""" ) __lowercase = 0 while idx < len(_snake_case ) and len(lines[idx] ) == 0: idx += 1 if idx < len(_snake_case ): return re.search(r"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = len(get_indent(_snake_case ) ) > 0 if has_indent: __lowercase = F'class Bla:\n{code}' __lowercase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=_snake_case ) __lowercase = black.format_str(_snake_case , mode=_snake_case ) __lowercase , __lowercase = style_docstrings_in_code(_snake_case ) return result[len("""class Bla:\n""" ) :] if has_indent else result def snake_case ( lowerCamelCase , lowerCamelCase=False ): '''simple docstring''' with open(_snake_case , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __lowercase = f.readlines() __lowercase = [] __lowercase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_snake_case ): __lowercase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. __lowercase , __lowercase , __lowercase = search.groups() __lowercase = find_code_in_diffusers(_snake_case ) __lowercase = get_indent(_snake_case ) __lowercase = line_index + 1 if indent == theoretical_indent else line_index + 2 __lowercase = theoretical_indent __lowercase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. __lowercase = True while line_index < len(_snake_case ) and should_continue: line_index += 1 if line_index >= len(_snake_case ): break __lowercase = lines[line_index] __lowercase = _should_continue(_snake_case , _snake_case ) and re.search(F'^{indent}# End copy' , _snake_case ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __lowercase = lines[start_index:line_index] __lowercase = """""".join(_snake_case ) # Remove any nested `Copied from` comments to avoid circular copies __lowercase = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(_snake_case ) is None] __lowercase = """\n""".join(_snake_case ) # Before comparing, use the `replace_pattern` on the original code. if len(_snake_case ) > 0: __lowercase = replace_pattern.replace("""with""" , """""" ).split(""",""" ) __lowercase = [_re_replace_pattern.search(_snake_case ) for p in patterns] for pattern in patterns: if pattern is None: continue __lowercase , __lowercase , __lowercase = pattern.groups() __lowercase = re.sub(_snake_case , _snake_case , _snake_case ) if option.strip() == "all-casing": __lowercase = re.sub(obja.lower() , obja.lower() , _snake_case ) __lowercase = re.sub(obja.upper() , obja.upper() , _snake_case ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line __lowercase = blackify(lines[start_index - 1] + theoretical_code ) __lowercase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: __lowercase = lines[:start_index] + [theoretical_code] + lines[line_index:] __lowercase = start_index + 1 if overwrite and len(_snake_case ) > 0: # Warn the user a file has been modified. print(F'Detected changes, rewriting {filename}.' ) with open(_snake_case , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_snake_case ) return diffs def snake_case ( lowerCamelCase = False ): '''simple docstring''' __lowercase = glob.glob(os.path.join(_snake_case , """**/*.py""" ) , recursive=_snake_case ) __lowercase = [] for filename in all_files: __lowercase = is_copy_consistent(_snake_case , _snake_case ) diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(_snake_case ) > 0: __lowercase = """\n""".join(_snake_case ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": __UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __UpperCamelCase : Dict = parser.parse_args() check_copies(args.fix_and_overwrite)
80
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(_A) class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : Optional[int] , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : List[str] ) -> List[str]: super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def snake_case_ ( self : Any , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[Any]=None ) -> int: _A = {} _A = {} if prompt is not None: _A = prompt if generate_kwargs is not None: _A = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _A = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) _A = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[str] , __lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any]=None ) -> int: _A = load_image(__lowerCAmelCase ) if prompt is not None: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(__lowerCAmelCase )} - but expected a single string. ''' '''Note also that one single text can be provided for conditional image to text generation.''' ) _A = self.model.config.model_type if model_type == "git": _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) _A = self.tokenizer(text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids _A = [self.tokenizer.cls_token_id] + input_ids _A = torch.tensor(__lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": _A = self.image_processor(images=__lowerCAmelCase , header_text=__lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) _A = self.tokenizer(__lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(__lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _A = None return model_inputs def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict=None ) -> str: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , __lowerCAmelCase ) and all(x is None for x in model_inputs['''input_ids'''] ) ): _A = None if generate_kwargs is None: _A = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _A = model_inputs.pop(self.model.main_input_name ) _A = self.model.generate(__lowerCAmelCase , **__lowerCAmelCase , **__lowerCAmelCase ) return model_outputs def snake_case_ ( self : Dict , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = [] for output_ids in model_outputs: _A = { '''generated_text''': self.tokenizer.decode( __lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , ) } records.append(__lowerCAmelCase ) return records
2
0
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : def __init__( self : Union[str, Any] , _snake_case : Optional[int] , _snake_case : Optional[Any]=13 , _snake_case : int=7 , _snake_case : Any=True , _snake_case : Tuple=True , _snake_case : Dict=True , _snake_case : Optional[Any]=True , _snake_case : Tuple=99 , _snake_case : Any=24 , _snake_case : Tuple=2 , _snake_case : str=6 , _snake_case : Optional[Any]=37 , _snake_case : Optional[Any]="gelu" , _snake_case : int=0.1 , _snake_case : Tuple=0.1 , _snake_case : int=512 , _snake_case : List[Any]=16 , _snake_case : Any=2 , _snake_case : List[Any]=0.02 , _snake_case : Optional[Any]=3 , _snake_case : Dict=None , _snake_case : Any=1000 , )->Tuple: '''simple docstring''' __lowerCAmelCase : str = parent __lowerCAmelCase : str = batch_size __lowerCAmelCase : Union[str, Any] = seq_length __lowerCAmelCase : List[str] = is_training __lowerCAmelCase : Union[str, Any] = use_input_mask __lowerCAmelCase : List[str] = use_token_type_ids __lowerCAmelCase : Tuple = use_labels __lowerCAmelCase : Any = vocab_size __lowerCAmelCase : List[str] = hidden_size __lowerCAmelCase : str = num_hidden_layers __lowerCAmelCase : List[str] = num_attention_heads __lowerCAmelCase : Any = intermediate_size __lowerCAmelCase : str = hidden_act __lowerCAmelCase : Dict = hidden_dropout_prob __lowerCAmelCase : List[str] = attention_probs_dropout_prob __lowerCAmelCase : Optional[Any] = max_position_embeddings __lowerCAmelCase : int = type_vocab_size __lowerCAmelCase : Any = type_sequence_label_size __lowerCAmelCase : Union[str, Any] = initializer_range __lowerCAmelCase : List[Any] = num_labels __lowerCAmelCase : Optional[Any] = scope __lowerCAmelCase : int = range_bbox def UpperCAmelCase__ ( self : int )->str: '''simple docstring''' __lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowerCAmelCase : Optional[int] = bbox[i, j, 3] __lowerCAmelCase : Optional[int] = bbox[i, j, 1] __lowerCAmelCase : List[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: __lowerCAmelCase : Tuple = bbox[i, j, 2] __lowerCAmelCase : int = bbox[i, j, 0] __lowerCAmelCase : Optional[Any] = t __lowerCAmelCase : Tuple = None if self.use_input_mask: __lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __lowerCAmelCase : Optional[Any] = None if self.use_token_type_ids: __lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase : List[str] = None __lowerCAmelCase : Tuple = None if self.use_labels: __lowerCAmelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self : str )->Union[str, Any]: '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Tuple , _snake_case : Dict , _snake_case : str , _snake_case : str , _snake_case : Any , _snake_case : int , _snake_case : Optional[Any] , _snake_case : List[str] , )->Dict: '''simple docstring''' __lowerCAmelCase : str = LiltModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __lowerCAmelCase : Union[str, Any] = model(__lowerCAmelCase , bbox=__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) __lowerCAmelCase : List[str] = model(__lowerCAmelCase , bbox=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) __lowerCAmelCase : int = model(__lowerCAmelCase , bbox=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : str , _snake_case : List[Any] , _snake_case : Dict , _snake_case : Tuple , _snake_case : List[str] , _snake_case : str , _snake_case : str , )->Tuple: '''simple docstring''' __lowerCAmelCase : str = self.num_labels __lowerCAmelCase : Dict = LiltForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __lowerCAmelCase : Tuple = model( __lowerCAmelCase , bbox=__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Any , _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : Tuple , _snake_case : List[Any] , _snake_case : List[str] , _snake_case : List[str] , _snake_case : Optional[Any] , )->int: '''simple docstring''' __lowerCAmelCase : List[Any] = LiltForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __lowerCAmelCase : Dict = model( __lowerCAmelCase , bbox=__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : Dict )->Dict: '''simple docstring''' __lowerCAmelCase : str = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) : Tuple = config_and_inputs __lowerCAmelCase : Union[str, Any] = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class snake_case_ ( _A ,_A ,_A ,unittest.TestCase ): A_ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) A_ = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) A_ = False A_ = False def UpperCAmelCase__ ( self : Any , _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : List[str] , _snake_case : str , _snake_case : str )->Optional[int]: '''simple docstring''' return True def UpperCAmelCase__ ( self : Tuple )->Optional[int]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = LiltModelTester(self ) __lowerCAmelCase : Tuple = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def UpperCAmelCase__ ( self : Union[str, Any] )->str: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Optional[Any] )->Dict: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def UpperCAmelCase__ ( self : Any )->Tuple: '''simple docstring''' __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase : Union[str, Any] = type self.model_tester.create_and_check_model(*__lowerCAmelCase ) def UpperCAmelCase__ ( self : Optional[int] )->Optional[Any]: '''simple docstring''' __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) def UpperCAmelCase__ ( self : int )->Any: '''simple docstring''' __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase ) @slow def UpperCAmelCase__ ( self : Optional[int] )->List[Any]: '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Any = LiltModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_torch @slow class snake_case_ ( unittest.TestCase ): def UpperCAmelCase__ ( self : str )->Tuple: '''simple docstring''' __lowerCAmelCase : str = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(__lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = torch.tensor([[1, 2]] , device=__lowerCAmelCase ) __lowerCAmelCase : Optional[int] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__lowerCAmelCase ) # forward pass with torch.no_grad(): __lowerCAmelCase : str = model(input_ids=__lowerCAmelCase , bbox=__lowerCAmelCase ) __lowerCAmelCase : List[Any] = torch.Size([1, 2, 768] ) __lowerCAmelCase : Tuple = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=__lowerCAmelCase , ) self.assertTrue(outputs.last_hidden_state.shape , __lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __lowerCAmelCase , atol=1E-3 ) )
504
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE_ ( _snake_case :str = "AAPL" ) -> str: _A = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' _A = BeautifulSoup(requests.get(_snake_case ).text , '''html.parser''' ) _A = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
2
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : List[Any] = filter(lambda __UpperCamelCase : p.requires_grad , model.parameters() ) __lowercase : int = sum([np.prod(p.size() ) for p in model_parameters] ) return params a_ = logging.getLogger(__name__) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if metric == "rouge2": __lowercase : str = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": __lowercase : int = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": __lowercase : List[Any] = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) __lowercase : Tuple = ModelCheckpoint( dirpath=_snake_case , filename=_snake_case , monitor=f"""val_{metric}""" , mode='''max''' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): return EarlyStopping( monitor=f"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=_snake_case , verbose=_snake_case , ) class UpperCAmelCase_ ( pl.Callback ): def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ) -> Dict: __lowercase : Any = {F"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__lowerCAmelCase ) @rank_zero_only def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=True ) -> None: logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) __lowercase : Optional[Any] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results __lowercase : str = Path(pl_module.hparams.output_dir ) if type_path == "test": __lowercase : int = od / '''test_results.txt''' __lowercase : List[Any] = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __lowercase : Tuple = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" __lowercase : str = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=__lowerCAmelCase ) generations_file.parent.mkdir(exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , '''a+''' ) as writer: for key in sorted(__lowerCAmelCase ): if key in ["log", "progress_bar", "preds"]: continue __lowercase : str = metrics[key] if isinstance(__lowerCAmelCase , torch.Tensor ): __lowercase : Dict = val.item() __lowercase : Dict = F"""{key}: {val:.6f}\n""" writer.write(__lowerCAmelCase ) if not save_generations: return if "preds" in metrics: __lowercase : Union[str, Any] = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(__lowerCAmelCase ) @rank_zero_only def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: try: __lowercase : Any = pl_module.model.model.num_parameters() except AttributeError: __lowercase : Any = pl_module.model.num_parameters() __lowercase : Dict = count_trainable_parameters(__lowerCAmelCase ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1E6, '''grad_mp''': n_trainable_pars / 1E6} ) @rank_zero_only def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__lowerCAmelCase , __lowerCAmelCase , '''test''' ) @rank_zero_only def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ) -> Dict: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
76
from graphs.minimum_spanning_tree_kruskal import kruskal def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: _A = 9 _A = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _A = kruskal(_snake_case , _snake_case ) _A = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_snake_case ) == sorted(_snake_case )
2
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class _A ( datasets.BeamBasedBuilder ): """simple docstring""" def _a ( self : List[Any] ) -> List[str]: return datasets.DatasetInfo( features=datasets.Features({"""content""": datasets.Value("""string""" )} ) , supervised_keys=__lowerCAmelCase , ) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict ) -> List[Any]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_dummy_examples()} )] def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__lowerCAmelCase ) class _A ( datasets.BeamBasedBuilder ): """simple docstring""" def _a ( self : Tuple ) -> int: return datasets.DatasetInfo( features=datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) , supervised_keys=__lowerCAmelCase , ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_nested_examples()} ) ] def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any ) -> str: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__lowerCAmelCase ) def lowercase__ ( ) -> Any: """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] def lowercase__ ( ) -> Tuple: """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] class _A ( _A ): """simple docstring""" @require_beam def _a ( self : Union[str, Any] ) -> List[str]: __UpperCAmelCase =len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCAmelCase =DummyBeamDataset(cache_dir=__lowerCAmelCase , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__lowerCAmelCase , builder.name , """default""" , """0.0.0""" , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) __UpperCAmelCase =builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , __lowerCAmelCase ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , __lowerCAmelCase ) self.assertDictEqual(dset["""train"""][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__lowerCAmelCase , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def _a ( self : int ) -> str: import apache_beam as beam __UpperCAmelCase =beam.io.parquetio.WriteToParquet __UpperCAmelCase =len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCAmelCase =DummyBeamDataset(cache_dir=__lowerCAmelCase , beam_runner="""DirectRunner""" ) with patch("""apache_beam.io.parquetio.WriteToParquet""" ) as write_parquet_mock: __UpperCAmelCase =partial(__lowerCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __lowerCAmelCase , builder.name , """default""" , """0.0.0""" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertTrue( os.path.exists( os.path.join( __lowerCAmelCase , builder.name , """default""" , """0.0.0""" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) __UpperCAmelCase =builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , __lowerCAmelCase ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , __lowerCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["""train"""]["""content"""] ) , sorted(["""foo""", """bar""", """foobar"""] ) ) self.assertTrue( os.path.exists(os.path.join(__lowerCAmelCase , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def _a ( self : Optional[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCAmelCase =DummyBeamDataset(cache_dir=__lowerCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _a ( self : Any ) -> int: __UpperCAmelCase =len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCAmelCase =NestedBeamDataset(cache_dir=__lowerCAmelCase , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__lowerCAmelCase , builder.name , """default""" , """0.0.0""" , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) ) __UpperCAmelCase =builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , __lowerCAmelCase ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , __lowerCAmelCase ) self.assertDictEqual(dset["""train"""][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__lowerCAmelCase , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset
68
def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration lowercase__ : Any = pytest.mark.integration lowercase__ : List[str] = {'''comet'''} lowercase__ : Optional[int] = importlib.util.find_spec('''fairseq''') is not None lowercase__ : int = {'''code_eval'''} lowercase__ : int = os.name == '''nt''' lowercase__ : Any = {'''bertscore''', '''frugalscore''', '''perplexity'''} lowercase__ : Union[str, Any] = importlib.util.find_spec('''transformers''') is not None def _lowerCAmelCase ( __snake_case : Any ) -> List[str]: @wraps(_snake_case ) def wrapper(self : Optional[Any] , __snake_case : Dict ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('"test requires Fairseq"' ) else: test_case(self , _snake_case ) return wrapper def _lowerCAmelCase ( __snake_case : Tuple ) -> str: @wraps(_snake_case ) def wrapper(self : Optional[int] , __snake_case : List[str] ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('"test requires transformers"' ) else: test_case(self , _snake_case ) return wrapper def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: @wraps(_snake_case ) def wrapper(self : List[Any] , __snake_case : str ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('"test not supported on Windows"' ) else: test_case(self , _snake_case ) return wrapper def _lowerCAmelCase ( ) -> str: __A : Optional[Any] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( _A , _A , _A ) @local class SCREAMING_SNAKE_CASE (parameterized.TestCase ): lowerCAmelCase = {} lowerCAmelCase = None @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning') @pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning') def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = '[...]' __A : int = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , __lowerCAmelCase)).module_path) __A : int = datasets.load.import_main_class(metric_module.__name__ , dataset=__lowerCAmelCase) # check parameters __A : Optional[int] = inspect.signature(metric._compute).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values())) # no **kwargs # run doctest with self.patch_intensive_calls(__lowerCAmelCase , metric_module.__name__): with self.use_local_metrics(): try: __A : Optional[int] = doctest.testmod(__lowerCAmelCase , verbose=__lowerCAmelCase , raise_on_error=__lowerCAmelCase) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0) self.assertGreater(results.attempted , 1) @slow def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Any = '[...]' __A : str = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , __lowerCAmelCase)).module_path) # run doctest with self.use_local_metrics(): __A : int = doctest.testmod(__lowerCAmelCase , verbose=__lowerCAmelCase , raise_on_error=__lowerCAmelCase) self.assertEqual(results.failed , 0) self.assertGreater(results.attempted , 1) @contextmanager def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](__lowerCAmelCase): yield else: yield @contextmanager def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' def load_local_metric(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase): return load_metric(os.path.join('metrics' , __lowerCAmelCase) , *__lowerCAmelCase , **__lowerCAmelCase) with patch('datasets.load_metric') as mock_load_metric: __A : Union[str, Any] = load_local_metric yield @classmethod def SCREAMING_SNAKE_CASE ( cls , _UpperCAmelCase): '''simple docstring''' def wrapper(_UpperCAmelCase): __A : Optional[Any] = contextmanager(__lowerCAmelCase) __A : Optional[Any] = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('bleurt' ) def _lowerCAmelCase ( __snake_case : List[str] ) -> Any: import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('sv' , '' , '' ) # handle pytest cli flags class SCREAMING_SNAKE_CASE (_A ): def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' assert len(input_dict['input_ids']) == 2 return np.array([1.03, 1.04]) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('bleurt.score._create_predictor' ) as mock_create_predictor: __A : List[Any] = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('bertscore' ) def _lowerCAmelCase ( __snake_case : int ) -> Any: import torch def bert_cos_score_idf(__snake_case : List[Any] , __snake_case : Optional[int] , *__snake_case : Union[str, Any] , **__snake_case : Optional[int] ): return torch.tensor([[1.0, 1.0, 1.0]] * len(_snake_case ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('bert_score.scorer.get_model' ), patch( 'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf: __A : Optional[Any] = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('comet' ) def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: def load_from_checkpoint(__snake_case : Dict ): class SCREAMING_SNAKE_CASE : def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' assert len(__lowerCAmelCase) == 2 __A : Optional[int] = [0.19, 0.92] return scores, sum(__lowerCAmelCase) / len(__lowerCAmelCase) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('comet.download_model' ) as mock_download_model: __A : Tuple = None with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint: __A : Optional[int] = load_from_checkpoint yield def _lowerCAmelCase ( ) -> List[Any]: __A : Optional[int] = load_metric(os.path.join('metrics' , 'seqeval' ) ) __A : Optional[int] = 'ERROR' __A : str = f'Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}' with pytest.raises(_snake_case , match=re.escape(_snake_case ) ): metric.compute(predictions=[] , references=[] , scheme=_snake_case )
8
UpperCAmelCase_ = 2_5_6 # Modulus to hash a string UpperCAmelCase_ = 1_0_0_0_0_0_3 def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :str ) -> bool: _A = len(_snake_case ) _A = len(_snake_case ) if p_len > t_len: return False _A = 0 _A = 0 _A = 1 # Calculating the hash of pattern and substring of text for i in range(_snake_case ): _A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def SCREAMING_SNAKE_CASE_ ( ) -> None: _A = '''abc1abc12''' _A = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' _A = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(_snake_case , _snake_case ) and not rabin_karp(_snake_case , _snake_case ) # Test 2) _A = '''ABABX''' _A = '''ABABZABABYABABX''' assert rabin_karp(_snake_case , _snake_case ) # Test 3) _A = '''AAAB''' _A = '''ABAAAAAB''' assert rabin_karp(_snake_case , _snake_case ) # Test 4) _A = '''abcdabcy''' _A = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(_snake_case , _snake_case ) # Test 5) _A = '''Lü''' _A = '''Lüsai''' assert rabin_karp(_snake_case , _snake_case ) _A = '''Lue''' assert not rabin_karp(_snake_case , _snake_case ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
2
0
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase_ (__a : int , __a : int , __a : bool , __a : list[int] , __a : float ): """simple docstring""" if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(_snake_case ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , _snake_case , _snake_case , _snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , _snake_case , _snake_case , _snake_case ) , ) return min( minimax(depth + 1 , node_index * 2 , _snake_case , _snake_case , _snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , _snake_case , _snake_case , _snake_case ) , ) def UpperCAmelCase_ (): """simple docstring""" _a : str = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] _a : str = math.log(len(_snake_case ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , _snake_case , _snake_case , _snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
229
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } UpperCAmelCase_ = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } UpperCAmelCase_ = """</w>""" UpperCAmelCase_ = """@@ """ def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] ) -> List[str]: _A = set() _A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A = char return pairs # Speech2Text2 has no max input length UpperCAmelCase_ = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class lowerCamelCase__ ( _A): """simple docstring""" a__ : Dict = VOCAB_FILES_NAMES a__ : str = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]="<s>" , __lowerCAmelCase : Tuple="<pad>" , __lowerCAmelCase : Optional[Any]="</s>" , __lowerCAmelCase : Dict="<unk>" , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=None , **__lowerCAmelCase : str , ) -> Dict: super().__init__( unk_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , **__lowerCAmelCase , ) _A = do_lower_case with open(__lowerCAmelCase , encoding='''utf-8''' ) as vocab_handle: _A = json.load(__lowerCAmelCase ) _A = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) _A = None _A = None else: with open(__lowerCAmelCase , encoding='''utf-8''' ) as merges_handle: _A = merges_handle.read().split('''\n''' )[:-1] _A = [tuple(merge.split()[:2] ) for merge in merges] _A = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _A = {} @property def snake_case_ ( self : List[str] ) -> int: return len(self.decoder ) def snake_case_ ( self : Dict ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _A = get_pairs(__lowerCAmelCase ) if not pairs: return token while True: _A = min(__lowerCAmelCase , key=lambda __lowerCAmelCase : self.bpe_ranks.get(__lowerCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A = bigram _A = [] _A = 0 while i < len(__lowerCAmelCase ): try: _A = word.index(__lowerCAmelCase , __lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A = j if word[i] == first and i < len(__lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A = tuple(__lowerCAmelCase ) _A = new_word if len(__lowerCAmelCase ) == 1: break else: _A = get_pairs(__lowerCAmelCase ) _A = ''' '''.join(__lowerCAmelCase ) if word == "\n " + BPE_TOKEN_MERGES: _A = '''\n''' + BPE_TOKEN_MERGES if word.endswith(__lowerCAmelCase ): _A = word.replace(__lowerCAmelCase , '''''' ) _A = word.replace(''' ''' , __lowerCAmelCase ) _A = word return word def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Tuple ) -> Optional[int]: if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''' ) if self.do_lower_case: _A = text.lower() _A = text.split() _A = [] for token in text: if token: split_tokens.extend(list(self.bpe(__lowerCAmelCase ).split(''' ''' ) ) ) return split_tokens def snake_case_ ( self : List[Any] , __lowerCAmelCase : str ) -> int: return self.encoder.get(__lowerCAmelCase , self.encoder.get(self.unk_token ) ) def snake_case_ ( self : str , __lowerCAmelCase : int ) -> str: _A = self.decoder.get(__lowerCAmelCase , self.unk_token ) return result def snake_case_ ( self : List[str] , __lowerCAmelCase : List[str] ) -> str: _A = ''' '''.join(__lowerCAmelCase ) # make sure @@ tokens are concatenated _A = ''''''.join(string.split(__lowerCAmelCase ) ) return string def snake_case_ ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCAmelCase , ensure_ascii=__lowerCAmelCase ) + '''\n''' ) _A = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) _A = token_index writer.write(''' '''.join(__lowerCAmelCase ) + '''\n''' ) index += 1 return (vocab_file, merges_file)
2
0
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : Union[str, Any] = str(_snake_case ) return n == n[::-1] def _a ( _lowerCamelCase = 100_0000 ) -> Any: """simple docstring""" __snake_case : List[str] = 0 for i in range(1 , _snake_case ): if is_palindrome(_snake_case ) and is_palindrome(bin(_snake_case ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
26
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar UpperCAmelCase_ = TypeVar("""T""") def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (position - 1) // 2 def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (2 * position) + 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (2 * position) + 2 class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__( self : Optional[int] ) -> None: _A = [] _A = {} _A = 0 def __len__( self : str ) -> int: return self.elements def __repr__( self : Optional[int] ) -> str: return str(self.heap ) def snake_case_ ( self : str ) -> bool: # Check if the priority queue is empty return self.elements == 0 def snake_case_ ( self : Optional[int] , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) _A = self.elements self.elements += 1 self._bubble_up(__lowerCAmelCase ) def snake_case_ ( self : Tuple ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _A , _A = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _A , _A = self.heap[0] self._bubble_down(__lowerCAmelCase ) return elem def snake_case_ ( self : int , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Update the weight of the given key _A = self.position_map[elem] _A = (elem, weight) if position > 0: _A = get_parent_position(__lowerCAmelCase ) _A , _A = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__lowerCAmelCase ) else: self._bubble_down(__lowerCAmelCase ) else: self._bubble_down(__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : T ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] _A = self.position_map[elem] if curr_pos == 0: return None _A = get_parent_position(__lowerCAmelCase ) _A , _A = self.heap[curr_pos] _A , _A = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_up(__lowerCAmelCase ) return None def snake_case_ ( self : Dict , __lowerCAmelCase : T ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] _A = self.position_map[elem] _A , _A = self.heap[curr_pos] _A = get_child_left_position(__lowerCAmelCase ) _A = get_child_right_position(__lowerCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: _A , _A = self.heap[child_left_position] _A , _A = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) if child_left_position < self.elements: _A , _A = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) else: return None if child_right_position < self.elements: _A , _A = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) return None def snake_case_ ( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> None: # Swap the nodes at the given positions _A = self.heap[nodea_pos][0] _A = self.heap[nodea_pos][0] _A , _A = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _A = nodea_pos _A = nodea_pos class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__( self : str ) -> None: _A = {} _A = 0 def __repr__( self : str ) -> str: return str(self.connections ) def __len__( self : Dict ) -> int: return self.nodes def snake_case_ ( self : Any , __lowerCAmelCase : T ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: _A = {} self.nodes += 1 def snake_case_ ( self : str , __lowerCAmelCase : T , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Add an edge between 2 nodes in the graph self.add_node(__lowerCAmelCase ) self.add_node(__lowerCAmelCase ) _A = weight _A = weight def SCREAMING_SNAKE_CASE_ ( _snake_case :GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: _A = {node: maxsize for node in graph.connections} _A = {node: None for node in graph.connections} _A = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_snake_case , _snake_case ) if priority_queue.is_empty(): return dist, parent # initialization _A = priority_queue.extract_min() _A = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_snake_case , dist[neighbour] ) _A = node # running prim's algorithm while not priority_queue.is_empty(): _A = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_snake_case , dist[neighbour] ) _A = node return dist, parent
2
0
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() A : List[str] = logging.get_logger(__name__) A : List[Any] = ['''model.decoder.embed_positions.weights'''] def __lowerCamelCase ( __a :List[str] ) -> List[Any]: """simple docstring""" if "emb" in name: A__ = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: A__ = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: A__ = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: A__ = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: A__ = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: A__ = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: A__ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: A__ = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: A__ = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: A__ = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: A__ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def __lowerCamelCase ( __a :OrderedDict , __a :int ) -> Tuple[Dict, Dict]: """simple docstring""" A__ = list(state_dict.keys() ) A__ = {} for key in keys: A__ = state_dict.pop(_snake_case ) A__ = rename_keys(_snake_case ) if "in_proj_weight" in key: # split fused qkv proj A__ = val[:hidden_size, :] A__ = val[hidden_size : 2 * hidden_size, :] A__ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: A__ = val else: A__ = val return state_dict, enc_dec_proj_state_dict def __lowerCamelCase ( __a :str ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values A__ = 1_0_2_4 A__ = 2_4 A__ = 1_6 elif checkpoint == "medium": A__ = 1_5_3_6 A__ = 4_8 A__ = 2_4 elif checkpoint == "large": A__ = 2_0_4_8 A__ = 4_8 A__ = 3_2 else: raise ValueError(F'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) A__ = MusicgenDecoderConfig( hidden_size=_snake_case , ffn_dim=hidden_size * 4 , num_hidden_layers=_snake_case , num_attention_heads=_snake_case , ) return config @torch.no_grad() def __lowerCamelCase ( __a :Optional[int] , __a :int=None , __a :int=None , __a :Optional[int]="cpu" ) -> List[str]: """simple docstring""" A__ = MusicGen.get_pretrained(_snake_case , device=_snake_case ) A__ = decoder_config_from_checkpoint(_snake_case ) A__ = fairseq_model.lm.state_dict() A__ , A__ = rename_state_dict( _snake_case , hidden_size=decoder_config.hidden_size ) A__ = TaEncoderModel.from_pretrained("""t5-base""" ) A__ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) A__ = MusicgenForCausalLM(_snake_case ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection A__ , A__ = decoder.load_state_dict(_snake_case , strict=_snake_case ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_snake_case ) if len(_snake_case ) > 0: raise ValueError(F'Missing key(s) in state_dict: {missing_keys}' ) if len(_snake_case ) > 0: raise ValueError(F'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model A__ = MusicgenForConditionalGeneration(text_encoder=_snake_case , audio_encoder=_snake_case , decoder=_snake_case ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_snake_case ) # check we can do a forward pass A__ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) A__ = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): A__ = model(input_ids=_snake_case , decoder_input_ids=_snake_case ).logits if logits.shape != (8, 1, 2_0_4_8): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor A__ = AutoTokenizer.from_pretrained("""t5-base""" ) A__ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) A__ = MusicgenProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) # set the appropriate bos/pad token ids A__ = 2_0_4_8 A__ = 2_0_4_8 # set other default generation config params A__ = int(3_0 * audio_encoder.config.frame_rate ) A__ = True A__ = 3.0 if pytorch_dump_folder is not None: Path(_snake_case ).mkdir(exist_ok=_snake_case ) logger.info(F'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if repo_id: logger.info(F'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(_snake_case ) processor.push_to_hub(_snake_case ) if __name__ == "__main__": A : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) A : Dict = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
176
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = """▁""" UpperCAmelCase_ = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} UpperCAmelCase_ = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } UpperCAmelCase_ = {"""vinai/bartpho-syllable""": 1_0_2_4} class lowerCamelCase__ ( _A): """simple docstring""" a__ : int = VOCAB_FILES_NAMES a__ : Tuple = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Tuple = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any]="<s>" , __lowerCAmelCase : Dict="</s>" , __lowerCAmelCase : List[Any]="</s>" , __lowerCAmelCase : Optional[Any]="<s>" , __lowerCAmelCase : Tuple="<unk>" , __lowerCAmelCase : int="<pad>" , __lowerCAmelCase : Optional[Any]="<mask>" , __lowerCAmelCase : Optional[Dict[str, Any]] = None , **__lowerCAmelCase : Tuple , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _A = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) _A = vocab_file _A = monolingual_vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _A = {} _A = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: _A = cnt cnt += 1 with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): _A = line.strip().split()[0] _A = len(self.fairseq_tokens_to_ids ) if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: _A = len(self.fairseq_tokens_to_ids ) _A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Any ) -> List[Any]: _A = self.__dict__.copy() _A = None _A = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any] , __lowerCAmelCase : Dict ) -> List[Any]: _A = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A = [self.cls_token_id] _A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self : List[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1, 1] + ([0] * len(__lowerCAmelCase )) + [1] def snake_case_ ( self : Any , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case_ ( self : Optional[int] ) -> Union[str, Any]: return len(self.fairseq_ids_to_tokens ) def snake_case_ ( self : Dict ) -> Optional[Any]: _A = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self : List[str] , __lowerCAmelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def snake_case_ ( self : str , __lowerCAmelCase : Optional[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def snake_case_ ( self : int , __lowerCAmelCase : Optional[int] ) -> List[str]: return self.fairseq_ids_to_tokens[index] def snake_case_ ( self : List[str] , __lowerCAmelCase : Union[str, Any] ) -> Tuple: _A = ''''''.join(__lowerCAmelCase ).replace(__lowerCAmelCase , ''' ''' ).strip() return out_string def snake_case_ ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowerCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__lowerCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
2
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch lowerCAmelCase__ = logging.get_logger(__name__) class _lowerCAmelCase ( _A ): SCREAMING_SNAKE_CASE_: Union[str, Any] = ["pixel_values"] def __init__( self , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = PILImageResampling.BILINEAR , lowerCAmelCase_ = True , lowerCAmelCase_ = 1 / 2_5_5 , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = True , **lowerCAmelCase_ , ) -> None: super().__init__(**__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : str = size if size is not None else {'shortest_edge': 2_2_4} _SCREAMING_SNAKE_CASE : int = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : List[Any] = crop_size if crop_size is not None else {'height': 2_5_6, 'width': 2_5_6} _SCREAMING_SNAKE_CASE : Tuple = get_size_dict(__lowerCAmelCase , param_name='crop_size' ) _SCREAMING_SNAKE_CASE : Tuple = do_resize _SCREAMING_SNAKE_CASE : Union[str, Any] = size _SCREAMING_SNAKE_CASE : Optional[Any] = resample _SCREAMING_SNAKE_CASE : int = do_rescale _SCREAMING_SNAKE_CASE : Dict = rescale_factor _SCREAMING_SNAKE_CASE : Union[str, Any] = do_center_crop _SCREAMING_SNAKE_CASE : Tuple = crop_size _SCREAMING_SNAKE_CASE : Tuple = do_flip_channel_order def A ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = PIL.Image.BILINEAR , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> np.ndarray: _SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) _SCREAMING_SNAKE_CASE : str = get_resize_output_image_size(__lowerCAmelCase , size=size['shortest_edge'] , default_to_square=__lowerCAmelCase ) return resize(__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def A ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> np.ndarray: _SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(__lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__lowerCAmelCase , size=(size['height'], size['width']) , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def A ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> Optional[int]: return rescale(__lowerCAmelCase , scale=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def A ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> np.ndarray: return flip_channel_order(__lowerCAmelCase , data_format=__lowerCAmelCase ) def A ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = ChannelDimension.FIRST , **lowerCAmelCase_ , ) -> PIL.Image.Image: _SCREAMING_SNAKE_CASE : Dict = do_resize if do_resize is not None else self.do_resize _SCREAMING_SNAKE_CASE : int = resample if resample is not None else self.resample _SCREAMING_SNAKE_CASE : Tuple = do_rescale if do_rescale is not None else self.do_rescale _SCREAMING_SNAKE_CASE : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _SCREAMING_SNAKE_CASE : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop _SCREAMING_SNAKE_CASE : Dict = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) _SCREAMING_SNAKE_CASE : str = size if size is not None else self.size _SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Tuple = crop_size if crop_size is not None else self.crop_size _SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(__lowerCAmelCase , param_name='crop_size' ) _SCREAMING_SNAKE_CASE : Any = make_list_of_images(__lowerCAmelCase ) if not valid_images(__lowerCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) # All transformations expect numpy arrays. _SCREAMING_SNAKE_CASE : Optional[int] = [to_numpy_array(__lowerCAmelCase ) for image in images] if do_resize: _SCREAMING_SNAKE_CASE : Optional[Any] = [self.resize(image=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase ) for image in images] if do_center_crop: _SCREAMING_SNAKE_CASE : str = [self.center_crop(image=__lowerCAmelCase , size=__lowerCAmelCase ) for image in images] if do_rescale: _SCREAMING_SNAKE_CASE : str = [self.rescale(image=__lowerCAmelCase , scale=__lowerCAmelCase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: _SCREAMING_SNAKE_CASE : Optional[int] = [self.flip_channel_order(image=__lowerCAmelCase ) for image in images] _SCREAMING_SNAKE_CASE : int = [to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase ) for image in images] _SCREAMING_SNAKE_CASE : List[str] = {'pixel_values': images} return BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase ) def A ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> str: _SCREAMING_SNAKE_CASE : Any = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(__lowerCAmelCase ): _SCREAMING_SNAKE_CASE : Tuple = target_sizes.numpy() _SCREAMING_SNAKE_CASE : Dict = [] for idx in range(len(__lowerCAmelCase ) ): _SCREAMING_SNAKE_CASE : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__lowerCAmelCase ) else: _SCREAMING_SNAKE_CASE : Optional[Any] = logits.argmax(dim=1 ) _SCREAMING_SNAKE_CASE : str = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
621
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( _snake_case :dict , _snake_case :str ) -> set[str]: _A , _A = set(_snake_case ), [start] while stack: _A = stack.pop() explored.add(_snake_case ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_snake_case ) return explored UpperCAmelCase_ = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
2
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
250
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
2
0
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def _lowerCAmelCase(a : Union[str, Any] , a : str=10 ) -> Optional[Any]: _SCREAMING_SNAKE_CASE =[] for _ in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def _lowerCAmelCase(a : List[str] , a : Dict=10 ) -> Optional[int]: _SCREAMING_SNAKE_CASE =[] for step in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE =os.path.join(_snake_case , '''schedule.bin''' ) torch.save(scheduler.state_dict() , _snake_case ) _SCREAMING_SNAKE_CASE =torch.load(_snake_case ) scheduler.load_state_dict(_snake_case ) return lrs @require_torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self , _A , _A , _A ): '''simple docstring''' self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for a, b in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertAlmostEqual(__lowerCAmelCase , __lowerCAmelCase , delta=__lowerCAmelCase ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =torch.tensor([0.1, -0.2, -0.1] , requires_grad=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =torch.tensor([0.4, 0.2, -0.5] ) _SCREAMING_SNAKE_CASE =nn.MSELoss() # No warmup, constant schedule, no gradient clipping _SCREAMING_SNAKE_CASE =AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(1_0_0 ): _SCREAMING_SNAKE_CASE =criterion(__lowerCAmelCase , __lowerCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =torch.tensor([0.1, -0.2, -0.1] , requires_grad=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =torch.tensor([0.4, 0.2, -0.5] ) _SCREAMING_SNAKE_CASE =nn.MSELoss() # No warmup, constant schedule, no gradient clipping _SCREAMING_SNAKE_CASE =Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=__lowerCAmelCase , weight_decay=0.0 , relative_step=__lowerCAmelCase , scale_parameter=__lowerCAmelCase , warmup_init=__lowerCAmelCase , ) for _ in range(1_0_0_0 ): _SCREAMING_SNAKE_CASE =criterion(__lowerCAmelCase , __lowerCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' lowercase : Optional[Any] = nn.Linear(50, 50 ) if is_torch_available() else None lowercase : Dict = AdamW(m.parameters(), lr=1_0.0 ) if is_torch_available() else None lowercase : List[Any] = 10 def UpperCamelCase_ ( self , _A , _A , _A , _A=None ): '''simple docstring''' self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for a, b in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertAlmostEqual(__lowerCAmelCase , __lowerCAmelCase , delta=__lowerCAmelCase , msg=__lowerCAmelCase ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE ={'''num_warmup_steps''': 2, '''num_training_steps''': 1_0} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _SCREAMING_SNAKE_CASE ={ get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =data _SCREAMING_SNAKE_CASE =scheduler_func(self.optimizer , **__lowerCAmelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _SCREAMING_SNAKE_CASE =unwrap_schedule(__lowerCAmelCase , self.num_steps ) self.assertListAlmostEqual( __lowerCAmelCase , __lowerCAmelCase , tol=1E-2 , msg=f"""failed for {scheduler_func} in normal scheduler""" , ) _SCREAMING_SNAKE_CASE =scheduler_func(self.optimizer , **__lowerCAmelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__lowerCAmelCase ) # wrap to test picklability of the schedule _SCREAMING_SNAKE_CASE =unwrap_and_save_reload_schedule(__lowerCAmelCase , self.num_steps ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase , msg=f"""failed for {scheduler_func} in save and reload""" ) class __UpperCAmelCase : '''simple docstring''' def __init__( self , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =fn def __call__( self , *_A , **_A ): '''simple docstring''' return self.fn(*__lowerCAmelCase , **__lowerCAmelCase ) @classmethod def UpperCamelCase_ ( self , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =list(map(self , scheduler.lr_lambdas ) )
255
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class lowerCamelCase__ ( _A): """simple docstring""" a__ : Any = "xlnet" a__ : Dict = ["mems"] a__ : List[str] = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int , __lowerCAmelCase : Dict=3_20_00 , __lowerCAmelCase : List[str]=10_24 , __lowerCAmelCase : Dict=24 , __lowerCAmelCase : Optional[Any]=16 , __lowerCAmelCase : Dict=40_96 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : int=True , __lowerCAmelCase : List[str]="bi" , __lowerCAmelCase : Dict=0.02 , __lowerCAmelCase : Union[str, Any]=1E-12 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Optional[Any]=5_12 , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Union[str, Any]=-1 , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Any="last" , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Tuple="tanh" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : str=5 , __lowerCAmelCase : str=5 , __lowerCAmelCase : List[str]=5 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Optional[int]=2 , **__lowerCAmelCase : List[str] , ) -> Tuple: _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(f'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'''`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , __lowerCAmelCase , ) _A = kwargs['''use_cache'''] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def snake_case_ ( self : Optional[Any] ) -> Union[str, Any]: logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def snake_case_ ( self : Tuple , __lowerCAmelCase : Optional[Any] ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
2
0
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase ( _A ): __snake_case :Dict = "new-model" if is_tf_available(): class __UpperCamelCase ( _A ): __snake_case :Optional[Any] = NewModelConfig @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = """bert-base-cased""" __lowercase = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) __lowercase = TFAutoModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = """bert-base-cased""" __lowercase = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) __lowercase = TFAutoModelForPreTraining.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def _a ( self : List[Any] ) -> Tuple: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) __lowercase = TFAutoModelForCausalLM.from_pretrained(__lowerCAmelCase ) __lowercase , __lowercase = TFAutoModelForCausalLM.from_pretrained(__lowerCAmelCase , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def _a ( self : str ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) __lowercase = TFAutoModelWithLMHead.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def _a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) __lowercase = TFAutoModelForMaskedLM.from_pretrained(__lowerCAmelCase ) __lowercase , __lowercase = TFAutoModelForMaskedLM.from_pretrained(__lowerCAmelCase , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def _a ( self : str ) -> Dict: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) __lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(__lowerCAmelCase ) __lowercase , __lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(__lowerCAmelCase , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def _a ( self : int ) -> Dict: """simple docstring""" for model_name in ["bert-base-uncased"]: __lowercase = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) __lowercase = TFAutoModelForSequenceClassification.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def _a ( self : Any ) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: __lowercase = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) __lowercase = TFAutoModelForQuestionAnswering.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow @require_tensorflow_probability def _a ( self : List[Any] ) -> str: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __lowercase = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) __lowercase = TFAutoModelForTableQuestionAnswering.from_pretrained(__lowerCAmelCase ) __lowercase , __lowercase = TFAutoModelForTableQuestionAnswering.from_pretrained( __lowerCAmelCase , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = TFAutoModelWithLMHead.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__lowerCAmelCase ) , 1_4410 ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = TFAutoModelWithLMHead.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__lowerCAmelCase ) , 1_4410 ) def _a ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = TFAutoModel.from_pretrained("""sgugger/funnel-random-tiny""" ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) __lowercase = copy.deepcopy(model.config ) __lowercase = ["""FunnelBaseModel"""] __lowercase = TFAutoModel.from_config(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__lowerCAmelCase ) __lowercase = TFAutoModel.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" try: AutoConfig.register("""new-model""" , __lowerCAmelCase ) __lowercase = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(__lowerCAmelCase ): auto_class.register(__lowerCAmelCase , __lowerCAmelCase ) auto_class.register(__lowerCAmelCase , __lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCAmelCase ): auto_class.register(__lowerCAmelCase , __lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API __lowercase = BertModelTester(self ).get_config() __lowercase = NewModelConfig(**tiny_config.to_dict() ) __lowercase = auto_class.from_config(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__lowerCAmelCase ) __lowercase = auto_class.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" with self.assertRaisesRegex( __lowerCAmelCase , """bert-base is not a local folder and is not a valid model identifier""" ): __lowercase = TFAutoModel.from_pretrained("""bert-base""" ) def _a ( self : int ) -> str: """simple docstring""" with self.assertRaisesRegex( __lowerCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __lowercase = TFAutoModel.from_pretrained(__lowerCAmelCase , revision="""aaaaaa""" ) def _a ( self : Any ) -> List[str]: """simple docstring""" with self.assertRaisesRegex( __lowerCAmelCase , """hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin""" , ): __lowercase = TFAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def _a ( self : List[str] ) -> Any: """simple docstring""" with self.assertRaisesRegex(__lowerCAmelCase , """Use `from_pt=True` to load this model""" ): __lowercase = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" ) def _a ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: __lowercase = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __lowercase = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) with RequestCounter() as counter: __lowercase = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
80
def SCREAMING_SNAKE_CASE_ ( _snake_case :bytes ) -> str: return "".join([hex(_snake_case )[2:].zfill(2 ).upper() for byte in list(_snake_case )] ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(_snake_case ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_snake_case ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_snake_case ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
import string def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :str ) -> None: for key in range(len(string.ascii_uppercase ) ): __lowerCAmelCase : str = """""" for symbol in message: if symbol in string.ascii_uppercase: __lowerCAmelCase : str = string.ascii_uppercase.find(_snake_case ) __lowerCAmelCase : Tuple = num - key if num < 0: __lowerCAmelCase : List[Any] = num + len(string.ascii_uppercase ) __lowerCAmelCase : List[Any] = translated + string.ascii_uppercase[num] else: __lowerCAmelCase : Dict = translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def _SCREAMING_SNAKE_CASE ( ) -> None: __lowerCAmelCase : int = input("""Encrypted message: """ ) __lowerCAmelCase : Dict = message.upper() decrypt(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod() main()
504
def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> bool: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(_snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(_snake_case ) == 1: return True _A = series[1] - series[0] for index in range(len(_snake_case ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> float: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(_snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) _A = 0 for val in series: answer += val return answer / len(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , ): __lowercase : List[str] = {} if train_file is not None: __lowercase : str = [train_file] if eval_file is not None: __lowercase : List[str] = [eval_file] if test_file is not None: __lowercase : Union[str, Any] = [test_file] __lowercase : str = datasets.load_dataset('''csv''' , data_files=_snake_case ) __lowercase : Any = list(ds[list(files.keys() )[0]].features.keys() ) __lowercase : Dict = features_name.pop(_snake_case ) __lowercase : List[str] = list(set(ds[list(files.keys() )[0]][label_name] ) ) __lowercase : Any = {label: i for i, label in enumerate(_snake_case )} __lowercase : Optional[int] = tokenizer.model_input_names __lowercase : Union[str, Any] = {} if len(_snake_case ) == 1: for k in files.keys(): __lowercase : List[str] = ds[k].map( lambda __UpperCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_snake_case , max_length=_snake_case , padding='''max_length''' ) , batched=_snake_case , ) elif len(_snake_case ) == 2: for k in files.keys(): __lowercase : List[str] = ds[k].map( lambda __UpperCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_snake_case , max_length=_snake_case , padding='''max_length''' , ) , batched=_snake_case , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __lowercase : Any = {k: v for k, v in ex.items() if k in input_names} __lowercase : List[str] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __lowercase : Any = {k: v for k, v in ex.items() if k in input_names} __lowercase : Union[str, Any] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __lowercase : int = {k: v for k, v in ex.items() if k in input_names} __lowercase : List[str] = labelaid[ex[label_name]] yield (d, label) __lowercase : Tuple = ( tf.data.Dataset.from_generator( _snake_case , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __lowercase : Union[str, Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __lowercase : Dict = ( tf.data.Dataset.from_generator( _snake_case , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __lowercase : Union[str, Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __lowercase : str = ( tf.data.Dataset.from_generator( _snake_case , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __lowercase : Union[str, Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid a_ = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : UpperCamelCase =field(metadata={"help": "Which column contains the label"} ) UpperCamelCase =field(default=_A , metadata={"help": "The path of the training file"} ) UpperCamelCase =field(default=_A , metadata={"help": "The path of the development file"} ) UpperCamelCase =field(default=_A , metadata={"help": "The path of the test file"} ) UpperCamelCase =field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCamelCase =field( default=_A , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class UpperCAmelCase_ : UpperCamelCase =field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCamelCase =field( default=_A , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCamelCase =field( default=_A , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCamelCase =field(default=_A , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCamelCase =field( default=_A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def __UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __lowercase ,__lowercase ,__lowercase : int = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowercase ,__lowercase ,__lowercase ,__lowercase : Optional[Any] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_snake_case , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __lowercase : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_snake_case ) , labelaid=_snake_case , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __lowercase : Any = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , ) def compute_metrics(__UpperCamelCase ) -> Dict: __lowercase : Union[str, Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __lowercase : str = TFTrainer( model=_snake_case , args=_snake_case , train_dataset=_snake_case , eval_dataset=_snake_case , compute_metrics=_snake_case , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase : Any = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase : Any = trainer.evaluate() __lowercase : Any = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(_snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(_snake_case ) return results if __name__ == "__main__": main()
76
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 3 ) -> qiskit.result.counts.Counts: if isinstance(_snake_case , _snake_case ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(_snake_case ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) _A = QuantumRegister(_snake_case , '''qr''' ) _A = ClassicalRegister(_snake_case , '''cr''' ) _A = QuantumCircuit(_snake_case , _snake_case ) _A = number_of_qubits for i in range(_snake_case ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_snake_case ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _snake_case , _snake_case ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_snake_case , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_snake_case , _snake_case ) # simulate with 10000 shots _A = Aer.get_backend('''qasm_simulator''' ) _A = execute(_snake_case , _snake_case , shots=10_000 ) return job.result().get_counts(_snake_case ) if __name__ == "__main__": print( f'Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}' )
2
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) __A = logging.getLogger(__name__) @dataclass class _A : """simple docstring""" lowerCamelCase : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCamelCase : Optional[str] = field( default=_A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCamelCase : Optional[str] = field( default=_A , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCamelCase : Optional[str] = field( default=_A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase : bool = field(default=_A , metadata={'help': 'Whether tp freeze the encoder.'} ) lowerCamelCase : bool = field(default=_A , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class _A : """simple docstring""" lowerCamelCase : str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowerCamelCase : Optional[str] = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) lowerCamelCase : Optional[int] = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCamelCase : Optional[int] = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCamelCase : Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) lowerCamelCase : Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCamelCase : Optional[int] = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) lowerCamelCase : Optional[int] = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) lowerCamelCase : Optional[int] = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) lowerCamelCase : Optional[str] = field(default=_A , metadata={'help': 'Source language id for translation.'} ) lowerCamelCase : Optional[str] = field(default=_A , metadata={'help': 'Target language id for translation.'} ) lowerCamelCase : Optional[int] = field(default=_A , metadata={'help': '# num_beams to use for evaluation.'} ) lowerCamelCase : bool = field( default=_A , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def lowercase__ ( A_: List[Any] , A_: Dict , A_: Optional[Any] ) -> Optional[int]: """simple docstring""" logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(_snake_case , os.path.join(_snake_case , F'''{split}_results.json''' ) ) def lowercase__ ( ) -> Tuple: """simple docstring""" __UpperCAmelCase =HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =parser.parse_args_into_dataclasses() check_output_dir(_snake_case ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , _snake_case ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase =("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(_snake_case , _snake_case , _snake_case ): assert hasattr(_snake_case , _snake_case ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(_snake_case , _snake_case , getattr(_snake_case , _snake_case ) ) __UpperCAmelCase =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase =AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=_snake_case , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_snake_case , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __UpperCAmelCase =model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_snake_case , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_snake_case , _snake_case ): __UpperCAmelCase =tokenizer.lang_code_to_id[data_args.tgt_lang] else: __UpperCAmelCase =tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_snake_case ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __UpperCAmelCase =SeqaSeqDataset # Get datasets __UpperCAmelCase =( dataset_class( _snake_case , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) __UpperCAmelCase =( dataset_class( _snake_case , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __UpperCAmelCase =( dataset_class( _snake_case , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer __UpperCAmelCase =( build_compute_metrics_fn(data_args.task , _snake_case ) if training_args.predict_with_generate else None ) __UpperCAmelCase =SeqaSeqTrainer( model=_snake_case , args=_snake_case , data_args=_snake_case , train_dataset=_snake_case , eval_dataset=_snake_case , data_collator=SeqaSeqDataCollator( _snake_case , _snake_case , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_snake_case , tokenizer=_snake_case , ) __UpperCAmelCase ={} # Training if training_args.do_train: logger.info("""*** Train ***""" ) __UpperCAmelCase =trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __UpperCAmelCase =train_result.metrics __UpperCAmelCase =data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , _snake_case , training_args.output_dir ) all_metrics.update(_snake_case ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __UpperCAmelCase =trainer.evaluate(metric_key_prefix="""val""" ) __UpperCAmelCase =data_args.n_val __UpperCAmelCase =round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , _snake_case , training_args.output_dir ) all_metrics.update(_snake_case ) if training_args.do_predict: logger.info("""*** Predict ***""" ) __UpperCAmelCase =trainer.predict(test_dataset=_snake_case , metric_key_prefix="""test""" ) __UpperCAmelCase =test_output.metrics __UpperCAmelCase =data_args.n_test if trainer.is_world_process_zero(): __UpperCAmelCase =round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , _snake_case , training_args.output_dir ) all_metrics.update(_snake_case ) if training_args.predict_with_generate: __UpperCAmelCase =tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case ) __UpperCAmelCase =lmap(str.strip , _snake_case ) write_txt_file(_snake_case , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(_snake_case , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def lowercase__ ( A_: Any ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
68
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :str , _snake_case :Any , _snake_case :int , _snake_case :List[Any] ) -> Optional[int]: for attribute in key.split('''.''' ): _A = getattr(_snake_case , _snake_case ) if weight_type is not None: _A = getattr(_snake_case , _snake_case ).shape else: _A = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _A = value elif weight_type == "weight_g": _A = value elif weight_type == "weight_v": _A = value elif weight_type == "bias": _A = value else: _A = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :Any , _snake_case :int ) -> Any: _A = [] _A = fairseq_model.state_dict() _A = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _A = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) _A = True else: for key, mapped_key in MAPPING.items(): _A = '''sew.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _A = True if "*" in mapped_key: _A = name.split(_snake_case )[0].split('''.''' )[-2] _A = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: _A = '''weight_g''' elif "weight_v" in name: _A = '''weight_v''' elif "weight" in name: _A = '''weight''' elif "bias" in name: _A = '''bias''' else: _A = None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple , _snake_case :List[str] , _snake_case :List[str] , _snake_case :Optional[int] , _snake_case :List[Any] ) -> Any: _A = full_name.split('''conv_layers.''' )[-1] _A = name.split('''.''' ) _A = int(items[0] ) _A = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _A = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :Dict ) -> Tuple: _A = SEWConfig() if is_finetuned: _A = model.wav_encoder.wav_model.cfg else: _A = model.cfg _A = fs_config.conv_bias _A = eval(fs_config.conv_feature_layers ) _A = [x[0] for x in conv_layers] _A = [x[1] for x in conv_layers] _A = [x[2] for x in conv_layers] _A = '''gelu''' _A = '''layer''' if fs_config.extractor_mode == '''layer_norm''' else '''group''' _A = 0.0 _A = fs_config.activation_fn.name _A = fs_config.encoder_embed_dim _A = 0.02 _A = fs_config.encoder_ffn_embed_dim _A = 1E-5 _A = fs_config.encoder_layerdrop _A = fs_config.encoder_attention_heads _A = fs_config.conv_pos_groups _A = fs_config.conv_pos _A = len(_snake_case ) _A = fs_config.encoder_layers _A = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _A = model.cfg _A = fs_config.final_dropout _A = fs_config.layerdrop _A = fs_config.activation_dropout _A = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _A = fs_config.attention_dropout _A = fs_config.dropout_input _A = fs_config.dropout _A = fs_config.mask_channel_length _A = fs_config.mask_channel_prob _A = fs_config.mask_length _A = fs_config.mask_prob _A = '''Wav2Vec2FeatureExtractor''' _A = '''Wav2Vec2CTCTokenizer''' return config @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] , _snake_case :Union[str, Any] , _snake_case :Optional[Any]=None , _snake_case :Optional[int]=None , _snake_case :Dict=True ) -> List[Any]: if is_finetuned: _A , _A , _A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _A , _A , _A = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _A = SEWConfig.from_pretrained(_snake_case ) else: _A = convert_config(model[0] , _snake_case ) _A = model[0].eval() _A = True if config.feat_extract_norm == '''layer''' else False _A = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) if is_finetuned: if dict_path: _A = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _A = target_dict.pad_index _A = target_dict.bos_index _A = target_dict.pad_index _A = target_dict.bos_index _A = target_dict.eos_index _A = len(target_dict.symbols ) _A = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , _snake_case ) _A = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) _A = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) _A = SEWForCTC(_snake_case ) else: _A = SEWModel(_snake_case ) feature_extractor.save_pretrained(_snake_case ) recursively_load_weights(_snake_case , _snake_case , _snake_case ) hf_model.save_pretrained(_snake_case ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCAmelCase_ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
2
0
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=0.0 , _UpperCAmelCase = None , _UpperCAmelCase = "geglu" , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = True , _UpperCAmelCase = "layer_norm" , _UpperCAmelCase = False , ): '''simple docstring''' super().__init__() __A : Optional[int] = only_cross_attention __A : int = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' __A : Dict = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' F' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.') # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __A : Dict = AdaLayerNorm(__lowerCAmelCase , __lowerCAmelCase) elif self.use_ada_layer_norm_zero: __A : int = AdaLayerNormZero(__lowerCAmelCase , __lowerCAmelCase) else: __A : str = nn.LayerNorm(__lowerCAmelCase , elementwise_affine=__lowerCAmelCase) __A : List[str] = Attention( query_dim=__lowerCAmelCase , heads=__lowerCAmelCase , dim_head=__lowerCAmelCase , dropout=__lowerCAmelCase , bias=__lowerCAmelCase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__lowerCAmelCase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __A : Union[str, Any] = ( AdaLayerNorm(__lowerCAmelCase , __lowerCAmelCase) if self.use_ada_layer_norm else nn.LayerNorm(__lowerCAmelCase , elementwise_affine=__lowerCAmelCase) ) __A : Optional[Any] = Attention( query_dim=__lowerCAmelCase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__lowerCAmelCase , dim_head=__lowerCAmelCase , dropout=__lowerCAmelCase , bias=__lowerCAmelCase , upcast_attention=__lowerCAmelCase , ) # is self-attn if encoder_hidden_states is none else: __A : int = None __A : Optional[int] = None # 3. Feed-forward __A : Any = nn.LayerNorm(__lowerCAmelCase , elementwise_affine=__lowerCAmelCase) __A : List[str] = FeedForward(__lowerCAmelCase , dropout=__lowerCAmelCase , activation_fn=__lowerCAmelCase , final_dropout=__lowerCAmelCase) # let chunk size default to None __A : Union[str, Any] = None __A : List[str] = 0 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = chunk_size __A : List[str] = dim def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ): '''simple docstring''' if self.use_ada_layer_norm: __A : Dict = self.norma(__lowerCAmelCase , __lowerCAmelCase) elif self.use_ada_layer_norm_zero: __A ,__A ,__A ,__A ,__A : List[str] = self.norma( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hidden_dtype=hidden_states.dtype) else: __A : Optional[int] = self.norma(__lowerCAmelCase) __A : int = cross_attention_kwargs if cross_attention_kwargs is not None else {} __A : int = self.attna( __lowerCAmelCase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__lowerCAmelCase , **__lowerCAmelCase , ) if self.use_ada_layer_norm_zero: __A : Dict = gate_msa.unsqueeze(1) * attn_output __A : Any = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __A : Optional[int] = ( self.norma(__lowerCAmelCase , __lowerCAmelCase) if self.use_ada_layer_norm else self.norma(__lowerCAmelCase) ) __A : Tuple = self.attna( __lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , attention_mask=__lowerCAmelCase , **__lowerCAmelCase , ) __A : Optional[Any] = attn_output + hidden_states # 3. Feed-forward __A : Tuple = self.norma(__lowerCAmelCase) if self.use_ada_layer_norm_zero: __A : Tuple = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.') __A : Optional[Any] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __A : Optional[int] = torch.cat( [self.ff(__lowerCAmelCase) for hid_slice in norm_hidden_states.chunk(__lowerCAmelCase , dim=self._chunk_dim)] , dim=self._chunk_dim , ) else: __A : Optional[Any] = self.ff(__lowerCAmelCase) if self.use_ada_layer_norm_zero: __A : str = gate_mlp.unsqueeze(1) * ff_output __A : Any = ff_output + hidden_states return hidden_states class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = 4 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = "geglu" , _UpperCAmelCase = False , ): '''simple docstring''' super().__init__() __A : Tuple = int(dim * mult) __A : Dict = dim_out if dim_out is not None else dim if activation_fn == "gelu": __A : str = GELU(__lowerCAmelCase , __lowerCAmelCase) if activation_fn == "gelu-approximate": __A : List[Any] = GELU(__lowerCAmelCase , __lowerCAmelCase , approximate='tanh') elif activation_fn == "geglu": __A : Any = GEGLU(__lowerCAmelCase , __lowerCAmelCase) elif activation_fn == "geglu-approximate": __A : Dict = ApproximateGELU(__lowerCAmelCase , __lowerCAmelCase) __A : Any = nn.ModuleList([]) # project in self.net.append(__lowerCAmelCase) # project dropout self.net.append(nn.Dropout(__lowerCAmelCase)) # project out self.net.append(nn.Linear(__lowerCAmelCase , __lowerCAmelCase)) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__lowerCAmelCase)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' for module in self.net: __A : Optional[int] = module(__lowerCAmelCase) return hidden_states class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = "none"): '''simple docstring''' super().__init__() __A : Optional[Any] = nn.Linear(__lowerCAmelCase , __lowerCAmelCase) __A : List[str] = approximate def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if gate.device.type != "mps": return F.gelu(__lowerCAmelCase , approximate=self.approximate) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa) , approximate=self.approximate).to(dtype=gate.dtype) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : str = self.proj(__lowerCAmelCase) __A : str = self.gelu(__lowerCAmelCase) return hidden_states class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' super().__init__() __A : Optional[Any] = nn.Linear(__lowerCAmelCase , dim_out * 2) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if gate.device.type != "mps": return F.gelu(__lowerCAmelCase) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa)).to(dtype=gate.dtype) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A ,__A : List[str] = self.proj(__lowerCAmelCase).chunk(2 , dim=-1) return hidden_states * self.gelu(__lowerCAmelCase) class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' super().__init__() __A : List[Any] = nn.Linear(__lowerCAmelCase , __lowerCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = self.proj(__lowerCAmelCase) return x * torch.sigmoid(1.702 * x) class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' super().__init__() __A : Union[str, Any] = nn.Embedding(__lowerCAmelCase , __lowerCAmelCase) __A : Dict = nn.SiLU() __A : List[Any] = nn.Linear(__lowerCAmelCase , embedding_dim * 2) __A : Optional[int] = nn.LayerNorm(__lowerCAmelCase , elementwise_affine=__lowerCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = self.linear(self.silu(self.emb(__lowerCAmelCase))) __A ,__A : str = torch.chunk(__lowerCAmelCase , 2) __A : str = self.norm(__lowerCAmelCase) * (1 + scale) + shift return x class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' super().__init__() __A : Dict = CombinedTimestepLabelEmbeddings(__lowerCAmelCase , __lowerCAmelCase) __A : Dict = nn.SiLU() __A : Any = nn.Linear(__lowerCAmelCase , 6 * embedding_dim , bias=__lowerCAmelCase) __A : Dict = nn.LayerNorm(__lowerCAmelCase , elementwise_affine=__lowerCAmelCase , eps=1e-6) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None): '''simple docstring''' __A : List[str] = self.linear(self.silu(self.emb(__lowerCAmelCase , __lowerCAmelCase , hidden_dtype=__lowerCAmelCase))) __A ,__A ,__A ,__A ,__A ,__A : int = emb.chunk(6 , dim=1) __A : Any = self.norm(__lowerCAmelCase) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = 1e-5): '''simple docstring''' super().__init__() __A : Tuple = num_groups __A : Optional[int] = eps if act_fn is None: __A : Any = None else: __A : List[Any] = get_activation(__lowerCAmelCase) __A : Any = nn.Linear(__lowerCAmelCase , out_dim * 2) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.act: __A : Tuple = self.act(__lowerCAmelCase) __A : int = self.linear(__lowerCAmelCase) __A : Union[str, Any] = emb[:, :, None, None] __A ,__A : str = emb.chunk(2 , dim=1) __A : Union[str, Any] = F.group_norm(__lowerCAmelCase , self.num_groups , eps=self.eps) __A : int = x * (1 + scale) + shift return x
8
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : """simple docstring""" @staticmethod def snake_case_ ( *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Any ) -> Any: pass @is_pipeline_test @require_vision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @require_torch def snake_case_ ( self : Tuple ) -> Tuple: _A = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowerCAmelCase ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) _A = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], ] , ) @require_tf def snake_case_ ( self : int ) -> Optional[int]: _A = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) _A = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], ] , ) @slow @require_torch def snake_case_ ( self : Optional[int] ) -> int: _A = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) _A = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case_ ( self : Optional[int] ) -> Dict: _A = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) _A = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
2
0
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = """https://openaipublic.azureedge.net/jukebox/models/""" __lowerCAmelCase = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def UpperCAmelCase_ (__a : List[Any] ): """simple docstring""" if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 1_0: _a : Union[str, Any] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 1_0: _a : Optional[Any] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 1_0: _a : str = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 1_0: _a : Optional[Any] = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _a : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _a : Union[str, Any] = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _a : List[str] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _a : str = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def UpperCAmelCase_ (__a : Optional[Any] , __a : str , __a : Any , __a : Optional[int] ): """simple docstring""" _a : Optional[int] = {} import re _a : Optional[int] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _a : Any = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _a : Union[str, Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _a : Optional[Any] = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _a : Optional[int] = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _a : str = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _a : int = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _a : str = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _a : List[Any] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_snake_case ): _a : List[str] = re_encoder_block_conv_in.match(_snake_case ) _a : List[str] = regex_match.groups() _a : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) _a : Any = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" _a : List[Any] = re_encoder_block_conv_in.sub(_snake_case , _snake_case ) elif re_encoder_block_resnet.fullmatch(_snake_case ): _a : Optional[Any] = re_encoder_block_resnet.match(_snake_case ) _a : Optional[Any] = regex_match.groups() _a : Dict = int(groups[2] ) * 2 + int(groups[3] ) _a : Optional[int] = {'1': 1, '3': 2}[groups[-2]] _a : Any = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" _a : Dict = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _a : int = prefix + resnet_block _a : Union[str, Any] = re_encoder_block_resnet.sub(_snake_case , _snake_case ) elif re_encoder_block_proj_out.fullmatch(_snake_case ): _a : str = re_encoder_block_proj_out.match(_snake_case ) _a : str = regex_match.groups() _a : str = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" _a : int = re_encoder_block_proj_out.sub(_snake_case , _snake_case ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_snake_case ): _a : List[str] = re_decoder_block_conv_out.match(_snake_case ) _a : Any = regex_match.groups() _a : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _a : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" _a : Optional[int] = re_decoder_block_conv_out.sub(_snake_case , _snake_case ) elif re_decoder_block_resnet.fullmatch(_snake_case ): _a : Optional[int] = re_decoder_block_resnet.match(_snake_case ) _a : Optional[Any] = regex_match.groups() _a : List[str] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _a : Dict = {'1': 1, '3': 2}[groups[-2]] _a : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" _a : Tuple = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _a : List[Any] = prefix + resnet_block _a : Tuple = re_decoder_block_resnet.sub(_snake_case , _snake_case ) elif re_decoder_block_proj_in.fullmatch(_snake_case ): _a : Dict = re_decoder_block_proj_in.match(_snake_case ) _a : List[str] = regex_match.groups() _a : Tuple = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" _a : Dict = re_decoder_block_proj_in.sub(_snake_case , _snake_case ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_snake_case ): _a : Union[str, Any] = re_prior_cond_conv_out.match(_snake_case ) _a : Tuple = regex_match.groups() _a : Tuple = int(groups[1] ) * 2 + int(groups[2] ) - 2 _a : List[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" _a : Tuple = re_prior_cond_conv_out.sub(_snake_case , _snake_case ) elif re_prior_cond_resnet.fullmatch(_snake_case ): _a : Dict = re_prior_cond_resnet.match(_snake_case ) _a : List[Any] = regex_match.groups() _a : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _a : int = {'1': 1, '3': 2}[groups[-2]] _a : Dict = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" _a : List[Any] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _a : Optional[int] = prefix + resnet_block _a : Any = re_prior_cond_resnet.sub(_snake_case , _snake_case ) elif re_prior_cond_proj_in.fullmatch(_snake_case ): _a : Dict = re_prior_cond_proj_in.match(_snake_case ) _a : List[Any] = regex_match.groups() _a : Any = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" _a : str = re_prior_cond_proj_in.sub(_snake_case , _snake_case ) # keep original key else: _a : Tuple = original_key _a : List[Any] = replace_key(_snake_case ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: _a : int = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) _a : Optional[Any] = original_key _a : str = original_key _a : List[str] = value return new_dict @torch.no_grad() def UpperCAmelCase_ (__a : Optional[Any]=None , __a : Union[str, Any]=None ): """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): _a : List[str] = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_snake_case ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_snake_case ) open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content ) _a : int = MODEL_MAPPING[model_name.split('/' )[-1]] _a : Tuple = JukeboxConfig.from_pretrained(_snake_case ) _a : Union[str, Any] = JukeboxModel(_snake_case ) _a : Optional[int] = [] _a : str = {} for i, dict_name in enumerate(_snake_case ): _a : Optional[Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model'] _a : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): _a : List[str] = old_dic[k] elif k.endswith('.w' ): _a : Optional[Any] = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _a : Tuple = old_dic[k] else: _a : Dict = old_dic[k] _a : List[Any] = 'vqvae' if i == 0 else f"""priors.{3 - i}""" _a : Any = fix_jukebox_keys(_snake_case , model.state_dict() , _snake_case , _snake_case ) weight_dict.append(_snake_case ) _a : str = weight_dict.pop(0 ) model.vqvae.load_state_dict(_snake_case ) for i in range(len(_snake_case ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile: json.dump(_snake_case , _snake_case ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_snake_case ) return weight_dict if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) __lowerCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
229
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : Tuple ) -> Optional[int]: _A = tempfile.mkdtemp() _A = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _A = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } _A = os.path.join(self.tmpdirname , __lowerCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : Dict , **__lowerCAmelCase : int ) -> Optional[int]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : str , **__lowerCAmelCase : Optional[Any] ) -> Tuple: return BertTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : Tuple , **__lowerCAmelCase : str ) -> Union[str, Any]: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def snake_case_ ( self : int ) -> Optional[Any]: _A = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _A = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self : Dict ) -> List[str]: _A = self.get_tokenizer() _A = self.get_rust_tokenizer() _A = self.get_image_processor() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) _A = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCAmelCase ) _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) _A = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCAmelCase ) def snake_case_ ( self : List[Any] ) -> List[str]: _A = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _A = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _A = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) _A = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def snake_case_ ( self : str ) -> List[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = self.prepare_image_inputs() _A = image_processor(__lowerCAmelCase , return_tensors='''np''' ) _A = processor(images=__lowerCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def snake_case_ ( self : Union[str, Any] ) -> Dict: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = processor(text=__lowerCAmelCase ) _A = tokenizer(__lowerCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case_ ( self : List[str] ) -> Any: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = self.prepare_image_inputs() _A = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def snake_case_ ( self : Optional[Any] ) -> str: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A = processor.batch_decode(__lowerCAmelCase ) _A = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : str ) -> str: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = self.prepare_image_inputs() _A = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
2
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class _A ( _A ): lowercase__: Union[str, Any] = "unispeech-sat" def __init__( self : Tuple , __magic_name__ : Tuple=32 , __magic_name__ : List[Any]=7_68 , __magic_name__ : Optional[Any]=12 , __magic_name__ : Optional[Any]=12 , __magic_name__ : Dict=30_72 , __magic_name__ : str="gelu" , __magic_name__ : int=0.1 , __magic_name__ : int=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Tuple=0.0 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : Dict=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : Any=1E-5 , __magic_name__ : List[Any]="group" , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : List[Any]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __magic_name__ : Any=(5, 2, 2, 2, 2, 2, 2) , __magic_name__ : int=(10, 3, 3, 3, 3, 2, 2) , __magic_name__ : List[str]=False , __magic_name__ : int=1_28 , __magic_name__ : Tuple=16 , __magic_name__ : int=False , __magic_name__ : int=True , __magic_name__ : Union[str, Any]=0.05 , __magic_name__ : str=10 , __magic_name__ : List[str]=2 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : Any=10 , __magic_name__ : str=0 , __magic_name__ : List[str]=3_20 , __magic_name__ : List[Any]=2 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Dict=1_00 , __magic_name__ : Optional[int]=2_56 , __magic_name__ : List[Any]=2_56 , __magic_name__ : Any=0.1 , __magic_name__ : List[Any]="mean" , __magic_name__ : Dict=False , __magic_name__ : List[Any]=False , __magic_name__ : Union[str, Any]=2_56 , __magic_name__ : int=(5_12, 5_12, 5_12, 5_12, 15_00) , __magic_name__ : Optional[Any]=(5, 3, 3, 1, 1) , __magic_name__ : str=(1, 2, 3, 1, 1) , __magic_name__ : Union[str, Any]=5_12 , __magic_name__ : List[str]=0 , __magic_name__ : Dict=1 , __magic_name__ : List[str]=2 , __magic_name__ : Dict=5_04 , **__magic_name__ : Optional[Any] , ) -> int: """simple docstring""" super().__init__(**__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase ) __snake_case : Any = hidden_size __snake_case : List[Any] = feat_extract_norm __snake_case : Union[str, Any] = feat_extract_activation __snake_case : Optional[Any] = list(__lowerCAmelCase ) __snake_case : Optional[Any] = list(__lowerCAmelCase ) __snake_case : Optional[int] = list(__lowerCAmelCase ) __snake_case : int = conv_bias __snake_case : Optional[Any] = num_conv_pos_embeddings __snake_case : Optional[Any] = num_conv_pos_embedding_groups __snake_case : Optional[int] = len(self.conv_dim ) __snake_case : List[str] = num_hidden_layers __snake_case : Optional[Any] = intermediate_size __snake_case : Optional[Any] = hidden_act __snake_case : int = num_attention_heads __snake_case : List[Any] = hidden_dropout __snake_case : Optional[int] = attention_dropout __snake_case : Dict = activation_dropout __snake_case : List[str] = feat_proj_dropout __snake_case : List[str] = final_dropout __snake_case : Optional[Any] = layerdrop __snake_case : Dict = layer_norm_eps __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[int] = vocab_size __snake_case : List[Any] = num_clusters __snake_case : Any = do_stable_layer_norm __snake_case : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __snake_case : str = apply_spec_augment __snake_case : Dict = mask_time_prob __snake_case : List[str] = mask_time_length __snake_case : List[str] = mask_time_min_masks __snake_case : Tuple = mask_feature_prob __snake_case : Optional[Any] = mask_feature_length __snake_case : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __snake_case : Any = num_codevectors_per_group __snake_case : Optional[int] = num_codevector_groups __snake_case : Tuple = contrastive_logits_temperature __snake_case : Optional[int] = feat_quantizer_dropout __snake_case : Optional[Any] = num_negatives __snake_case : Optional[Any] = codevector_dim __snake_case : int = proj_codevector_dim __snake_case : List[str] = diversity_loss_weight # ctc loss __snake_case : Tuple = ctc_loss_reduction __snake_case : Dict = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __snake_case : Union[str, Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __snake_case : Optional[int] = list(__lowerCAmelCase ) __snake_case : int = list(__lowerCAmelCase ) __snake_case : Optional[Any] = list(__lowerCAmelCase ) __snake_case : Any = xvector_output_dim @property def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
26
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class lowerCamelCase__ ( _A): """simple docstring""" a__ : int = "openai-gpt" a__ : Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Union[str, Any] , __lowerCAmelCase : int=4_04_78 , __lowerCAmelCase : Tuple=5_12 , __lowerCAmelCase : str=7_68 , __lowerCAmelCase : List[Any]=12 , __lowerCAmelCase : Any=12 , __lowerCAmelCase : Dict="gelu" , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : List[str]=1E-5 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[Any]="cls_index" , __lowerCAmelCase : str=True , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[Any]=0.1 , **__lowerCAmelCase : Tuple , ) -> Optional[Any]: _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = afn _A = resid_pdrop _A = embd_pdrop _A = attn_pdrop _A = layer_norm_epsilon _A = initializer_range _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_first_dropout _A = summary_proj_to_labels super().__init__(**__lowerCAmelCase )
2
0
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : Any = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class A (_A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Any = PegasusTokenizer __lowerCamelCase : Any = PegasusTokenizerFast __lowerCamelCase : int = True __lowerCamelCase : Union[str, Any] = True def a_ ( self : Tuple ) -> List[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing A__ = PegasusTokenizer(__lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a_ ( self : Union[str, Any] ) -> int: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def a_ ( self : Union[str, Any] , **__lowerCAmelCase : Any ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a_ ( self : str , __lowerCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" return ("This is a test", "This is a test") def a_ ( self : Dict ) -> Dict: """simple docstring""" A__ = """</s>""" A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) , __lowerCAmelCase ) def a_ ( self : Optional[Any] ) -> List[str]: """simple docstring""" A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(__lowerCAmelCase ) , 11_03 ) def a_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 11_03 ) def a_ ( self : Any ) -> int: """simple docstring""" A__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) A__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) A__ = ( """Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) A__ = rust_tokenizer([raw_input_str] , return_tensors=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids[0] A__ = py_tokenizer([raw_input_str] , return_tensors=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids[0] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" A__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word A__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" A__ = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] A__ = tokenizer([raw_input_str] , return_tensors=__lowerCAmelCase ).input_ids[0] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : Any ) -> Union[str, Any]: """simple docstring""" A__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_61_03 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_03 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 10_24 A__ = """To ensure a smooth flow of bank resolutions.""" A__ = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] A__ = tokenizer([raw_input_str] , return_tensors=__lowerCAmelCase ).input_ids[0] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def a_ ( self : Dict ) -> Any: """simple docstring""" A__ = ["""This is going to be way too long.""" * 1_50, """short example"""] A__ = ["""not super long but more than 5 tokens""", """tiny"""] A__ = self._large_tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors="""pt""" ) A__ = self._large_tokenizer( text_target=__lowerCAmelCase , max_length=5 , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 10_24) assert batch.attention_mask.shape == (2, 10_24) assert targets["input_ids"].shape == (2, 5) assert len(__lowerCAmelCase ) == 2 # input_ids, attention_mask. @slow def a_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" A__ = {"""input_ids""": [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class A (_A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[str] = PegasusTokenizer __lowerCamelCase : Dict = PegasusTokenizerFast __lowerCamelCase : Optional[int] = True __lowerCamelCase : Any = True def a_ ( self : int ) -> Any: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing A__ = PegasusTokenizer(__lowerCAmelCase , offset=0 , mask_token_sent=__lowerCAmelCase , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a_ ( self : Dict ) -> str: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def a_ ( self : Any , **__lowerCAmelCase : Tuple ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a_ ( self : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" return ("This is a test", "This is a test") def a_ ( self : Any ) -> Optional[Any]: """simple docstring""" A__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) A__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) A__ = ( """Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) A__ = rust_tokenizer([raw_input_str] , return_tensors=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids[0] A__ = py_tokenizer([raw_input_str] , return_tensors=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids[0] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) @require_torch def a_ ( self : List[Any] ) -> str: """simple docstring""" A__ = ["""This is going to be way too long.""" * 10_00, """short example"""] A__ = ["""not super long but more than 5 tokens""", """tiny"""] A__ = self._large_tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors="""pt""" ) A__ = self._large_tokenizer( text_target=__lowerCAmelCase , max_length=5 , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 40_96) assert batch.attention_mask.shape == (2, 40_96) assert targets["input_ids"].shape == (2, 5) assert len(__lowerCAmelCase ) == 2 # input_ids, attention_mask. def a_ ( self : Optional[int] ) -> Dict: """simple docstring""" A__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) A__ = self._large_tokenizer(__lowerCAmelCase ).input_ids self.assertListEqual( __lowerCAmelCase , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
176
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def __init__( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict=7 , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : int=30 , __lowerCAmelCase : Dict=4_00 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , __lowerCAmelCase : Dict=[0.5, 0.5, 0.5] , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : List[str]=1 / 2_55 , __lowerCAmelCase : int=True , ) -> List[str]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _A = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _A = parent _A = batch_size _A = num_channels _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_normalize _A = image_mean _A = image_std _A = do_rescale _A = rescale_factor _A = do_pad def snake_case_ ( self : Optional[int] ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case_ ( self : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str=False ) -> Dict: if not batched: _A = image_inputs[0] if isinstance(__lowerCAmelCase , Image.Image ): _A , _A = image.size else: _A , _A = image.shape[1], image.shape[2] if w < h: _A = int(self.size['''shortest_edge'''] * h / w ) _A = self.size['''shortest_edge'''] elif w > h: _A = self.size['''shortest_edge'''] _A = int(self.size['''shortest_edge'''] * w / h ) else: _A = self.size['''shortest_edge'''] _A = self.size['''shortest_edge'''] else: _A = [] for image in image_inputs: _A , _A = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _A = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[0] )[0] _A = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase__ ( _A , unittest.TestCase): """simple docstring""" a__ : Any = DeformableDetrImageProcessor if is_vision_available() else None def snake_case_ ( self : Optional[int] ) -> Any: _A = DeformableDetrImageProcessingTester(self ) @property def snake_case_ ( self : Union[str, Any] ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self : Optional[int] ) -> List[str]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_rescale''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) def snake_case_ ( self : List[str] ) -> int: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) _A = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCAmelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) def snake_case_ ( self : Any ) -> Union[str, Any]: pass def snake_case_ ( self : List[str] ) -> Optional[int]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self : Tuple ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self : Optional[Any] ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case_ ( self : Optional[Any] ) -> Optional[int]: # prepare image and target _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _A = DeformableDetrImageProcessor() _A = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify area _A = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCAmelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCAmelCase , atol=1E-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCAmelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCAmelCase ) ) # verify class_labels _A = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCAmelCase ) ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCAmelCase ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCAmelCase ) ) @slow def snake_case_ ( self : List[str] ) -> List[str]: # prepare image, target and masks_path _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _A = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _A = DeformableDetrImageProcessor(format='''coco_panoptic''' ) _A = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , masks_path=__lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify area _A = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCAmelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCAmelCase , atol=1E-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCAmelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCAmelCase ) ) # verify class_labels _A = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCAmelCase ) ) # verify masks _A = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __lowerCAmelCase ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCAmelCase ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCAmelCase ) )
2
0
"""simple docstring""" lowerCAmelCase__ = 256 # Modulus to hash a string lowerCAmelCase__ = 1_000_003 def lowercase__ ( lowerCamelCase, lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = len(_snake_case ) _SCREAMING_SNAKE_CASE : List[Any] = len(_snake_case ) if p_len > t_len: return False _SCREAMING_SNAKE_CASE : Tuple = 0 _SCREAMING_SNAKE_CASE : Optional[int] = 0 _SCREAMING_SNAKE_CASE : Tuple = 1 # Calculating the hash of pattern and substring of text for i in range(_snake_case ): _SCREAMING_SNAKE_CASE : Optional[Any] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _SCREAMING_SNAKE_CASE : int = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _SCREAMING_SNAKE_CASE : Dict = (modulus_power * alphabet_size) % modulus for i in range(0, t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _SCREAMING_SNAKE_CASE : Optional[Any] = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def lowercase__ ( ): _SCREAMING_SNAKE_CASE : str = 'abc1abc12' _SCREAMING_SNAKE_CASE : Any = 'alskfjaldsabc1abc1abc12k23adsfabcabc' _SCREAMING_SNAKE_CASE : Union[str, Any] = 'alskfjaldsk23adsfabcabc' assert rabin_karp(_snake_case, _snake_case ) and not rabin_karp(_snake_case, _snake_case ) # Test 2) _SCREAMING_SNAKE_CASE : str = 'ABABX' _SCREAMING_SNAKE_CASE : List[str] = 'ABABZABABYABABX' assert rabin_karp(_snake_case, _snake_case ) # Test 3) _SCREAMING_SNAKE_CASE : Optional[Any] = 'AAAB' _SCREAMING_SNAKE_CASE : Union[str, Any] = 'ABAAAAAB' assert rabin_karp(_snake_case, _snake_case ) # Test 4) _SCREAMING_SNAKE_CASE : Dict = 'abcdabcy' _SCREAMING_SNAKE_CASE : Tuple = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(_snake_case, _snake_case ) # Test 5) _SCREAMING_SNAKE_CASE : str = 'Lü' _SCREAMING_SNAKE_CASE : Dict = 'Lüsai' assert rabin_karp(_snake_case, _snake_case ) _SCREAMING_SNAKE_CASE : Any = 'Lue' assert not rabin_karp(_snake_case, _snake_case ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
621
UpperCAmelCase_ = 0 # The first color of the flag. UpperCAmelCase_ = 1 # The second color of the flag. UpperCAmelCase_ = 2 # The third color of the flag. UpperCAmelCase_ = (red, white, blue) def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> list: if not sequence: return [] if len(_snake_case ) == 1: return list(_snake_case ) _A = 0 _A = len(_snake_case ) - 1 _A = 0 while mid <= high: if sequence[mid] == colors[0]: _A , _A = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _A , _A = sequence[high], sequence[mid] high -= 1 else: _A = F'''The elements inside the sequence must contains only {colors} values''' raise ValueError(_snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = input("""Enter numbers separated by commas:\n""").strip() UpperCAmelCase_ = [int(item.strip()) for item in user_input.split(""",""")] print(f'{dutch_national_flag_sort(unsorted)}')
2
0
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class lowerCAmelCase__ ( _A ): """simple docstring""" def __init__( self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=512 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ): lowerCamelCase_ : List[str] = parent lowerCamelCase_ : int = batch_size lowerCamelCase_ : Dict = seq_length lowerCamelCase_ : Optional[Any] = is_training lowerCamelCase_ : Dict = use_input_mask lowerCamelCase_ : Optional[int] = use_token_type_ids lowerCamelCase_ : Dict = use_labels lowerCamelCase_ : Tuple = vocab_size lowerCamelCase_ : Any = hidden_size lowerCamelCase_ : Dict = num_hidden_layers lowerCamelCase_ : Optional[int] = num_attention_heads lowerCamelCase_ : str = intermediate_size lowerCamelCase_ : Tuple = hidden_act lowerCamelCase_ : str = hidden_dropout_prob lowerCamelCase_ : Tuple = attention_probs_dropout_prob lowerCamelCase_ : Any = max_position_embeddings lowerCamelCase_ : Any = type_vocab_size lowerCamelCase_ : Tuple = type_sequence_label_size lowerCamelCase_ : List[str] = initializer_range lowerCamelCase_ : Any = num_labels lowerCamelCase_ : str = num_choices lowerCamelCase_ : Optional[int] = scope def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : int = None if self.use_input_mask: lowerCamelCase_ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ : str = None lowerCamelCase_ : Optional[Any] = None lowerCamelCase_ : Any = None if self.use_labels: lowerCamelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ : Any = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self ): return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ ): lowerCamelCase_ : str = DistilBertModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase_ : Dict = model(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase_ : str = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ ): lowerCamelCase_ : List[Any] = DistilBertForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase_ : Dict = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ ): lowerCamelCase_ : Tuple = DistilBertForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase_ : Optional[Any] = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ ): lowerCamelCase_ : Optional[Any] = self.num_labels lowerCamelCase_ : List[str] = DistilBertForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase_ : int = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ ): lowerCamelCase_ : Union[str, Any] = self.num_labels lowerCamelCase_ : Tuple = DistilBertForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase_ : List[Any] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ ): lowerCamelCase_ : Dict = self.num_choices lowerCamelCase_ : Union[str, Any] = DistilBertForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase_ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ : Union[str, Any] = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[int] = self.prepare_config_and_inputs() ((lowerCamelCase_) ,(lowerCamelCase_) ,(lowerCamelCase_) ,(lowerCamelCase_) ,(lowerCamelCase_) ,(lowerCamelCase_)) : Union[str, Any] = config_and_inputs lowerCamelCase_ : Any = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( _A, _A, unittest.TestCase ): """simple docstring""" __UpperCAmelCase : int = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) __UpperCAmelCase : Dict = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : int = True __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Dict = True def _UpperCamelCase ( self ): lowerCamelCase_ : Any = DistilBertModelTester(self ) lowerCamelCase_ : List[str] = ConfigTester(self , config_class=__lowerCAmelCase , dim=37 ) def _UpperCamelCase ( self ): self.config_tester.run_common_tests() def _UpperCamelCase ( self ): lowerCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__lowerCAmelCase ) def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__lowerCAmelCase ) def _UpperCamelCase ( self ): lowerCamelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__lowerCAmelCase ) def _UpperCamelCase ( self ): lowerCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__lowerCAmelCase ) def _UpperCamelCase ( self ): lowerCamelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__lowerCAmelCase ) def _UpperCamelCase ( self ): lowerCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__lowerCAmelCase ) @slow def _UpperCamelCase ( self ): for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ : Dict = DistilBertModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @slow @require_torch_gpu def _UpperCamelCase ( self ): lowerCamelCase_ ,lowerCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowerCamelCase_ : str = True lowerCamelCase_ : Optional[int] = model_class(config=__lowerCAmelCase ) lowerCamelCase_ : List[str] = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase_ : List[Any] = torch.jit.trace( __lowerCAmelCase , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , "traced_model.pt" ) ) lowerCamelCase_ : int = torch.jit.load(os.path.join(__lowerCAmelCase , "traced_model.pt" ) , map_location=__lowerCAmelCase ) loaded(inputs_dict["input_ids"].to(__lowerCAmelCase ) , inputs_dict["attention_mask"].to(__lowerCAmelCase ) ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _UpperCamelCase ( self ): lowerCamelCase_ : Union[str, Any] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) lowerCamelCase_ : List[Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCamelCase_ : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase_ : int = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase )[0] lowerCamelCase_ : Dict = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __lowerCAmelCase ) lowerCamelCase_ : Optional[int] = torch.tensor( [[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCAmelCase , atol=1E-4 ) )
250
import itertools import math def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE_ ( ) -> Dict: _A = 2 while True: if is_prime(_snake_case ): yield num num += 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 10_001 ) -> int: return next(itertools.islice(prime_generator() , nth - 1 , _snake_case ) ) if __name__ == "__main__": print(f'{solution() = }')
2
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def _lowerCAmelCase(a : Any , a : Dict ) -> Any: _SCREAMING_SNAKE_CASE =b.T _SCREAMING_SNAKE_CASE =np.sum(np.square(_snake_case ) , axis=1 ) _SCREAMING_SNAKE_CASE =np.sum(np.square(_snake_case ) , axis=0 ) _SCREAMING_SNAKE_CASE =np.matmul(_snake_case , _snake_case ) _SCREAMING_SNAKE_CASE =aa[:, None] - 2 * ab + ba[None, :] return d def _lowerCAmelCase(a : Optional[Any] , a : Optional[Any] ) -> Optional[Any]: _SCREAMING_SNAKE_CASE =x.reshape(-1 , 3 ) _SCREAMING_SNAKE_CASE =squared_euclidean_distance(_snake_case , _snake_case ) return np.argmin(_snake_case , axis=1 ) class __UpperCAmelCase ( _A ): '''simple docstring''' lowercase : Union[str, Any] = ["pixel_values"] def __init__( self , _A = None , _A = True , _A = None , _A = PILImageResampling.BILINEAR , _A = True , _A = True , **_A , ): '''simple docstring''' super().__init__(**__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =size if size is not None else {'''height''': 2_5_6, '''width''': 2_5_6} _SCREAMING_SNAKE_CASE =get_size_dict(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =np.array(__lowerCAmelCase ) if clusters is not None else None _SCREAMING_SNAKE_CASE =do_resize _SCREAMING_SNAKE_CASE =size _SCREAMING_SNAKE_CASE =resample _SCREAMING_SNAKE_CASE =do_normalize _SCREAMING_SNAKE_CASE =do_color_quantize def UpperCamelCase_ ( self , _A , _A , _A = PILImageResampling.BILINEAR , _A = None , **_A , ): '''simple docstring''' _SCREAMING_SNAKE_CASE =get_size_dict(__lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dictionary must contain both height and width keys. Got {size.keys()}""" ) return resize( __lowerCAmelCase , size=(size['''height'''], size['''width''']) , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def UpperCamelCase_ ( self , _A , _A = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE =rescale(image=__lowerCAmelCase , scale=1 / 127.5 , data_format=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =image - 1 return image def UpperCamelCase_ ( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = ChannelDimension.FIRST , **_A , ): '''simple docstring''' _SCREAMING_SNAKE_CASE =do_resize if do_resize is not None else self.do_resize _SCREAMING_SNAKE_CASE =size if size is not None else self.size _SCREAMING_SNAKE_CASE =get_size_dict(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =resample if resample is not None else self.resample _SCREAMING_SNAKE_CASE =do_normalize if do_normalize is not None else self.do_normalize _SCREAMING_SNAKE_CASE =do_color_quantize if do_color_quantize is not None else self.do_color_quantize _SCREAMING_SNAKE_CASE =clusters if clusters is not None else self.clusters _SCREAMING_SNAKE_CASE =np.array(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =make_list_of_images(__lowerCAmelCase ) if not valid_images(__lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. _SCREAMING_SNAKE_CASE =[to_numpy_array(__lowerCAmelCase ) for image in images] if do_resize: _SCREAMING_SNAKE_CASE =[self.resize(image=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase ) for image in images] if do_normalize: _SCREAMING_SNAKE_CASE =[self.normalize(image=__lowerCAmelCase ) for image in images] if do_color_quantize: _SCREAMING_SNAKE_CASE =[to_channel_dimension_format(__lowerCAmelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) _SCREAMING_SNAKE_CASE =np.array(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =color_quantize(__lowerCAmelCase , __lowerCAmelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) _SCREAMING_SNAKE_CASE =images.shape[0] _SCREAMING_SNAKE_CASE =images.reshape(__lowerCAmelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. _SCREAMING_SNAKE_CASE =list(__lowerCAmelCase ) else: _SCREAMING_SNAKE_CASE =[to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase ) for image in images] _SCREAMING_SNAKE_CASE ={'''input_ids''': images} return BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase )
255
import collections import os import re from pathlib import Path UpperCAmelCase_ = """src/transformers""" # Matches is_xxx_available() UpperCAmelCase_ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} UpperCAmelCase_ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCAmelCase_ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available UpperCAmelCase_ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") UpperCAmelCase_ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCAmelCase_ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", UpperCAmelCase_ = re.compile(r"""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], UpperCAmelCase_ = re.compile(r"""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo UpperCAmelCase_ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: UpperCAmelCase_ = re.compile(r"""^\s*try:""") # Catches a line with else: UpperCAmelCase_ = re.compile(r"""^\s*else:""") def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] ) -> Any: if _re_test_backend.search(_snake_case ) is None: return None _A = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Any ) -> Any: with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _A = f.readlines() _A = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure _A = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: _A = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): _A = _re_one_line_import_struct.search(_snake_case ).groups()[0] _A = re.findall(r'''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue _A = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: _A = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 _A = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): _A = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: _A = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) _A = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: _A = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) _A = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 _A = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _A = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): _A = lines[line_index] _A = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 _A = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): _A = lines[line_index] _A = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 _A = objects else: line_index += 1 return import_dict_objects, type_hint_objects def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] , _snake_case :Dict ) -> Any: def find_duplicates(_snake_case :Any ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _A = [] for key in import_dict_objects.keys(): _A = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) _A = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _A = '''base imports''' if key == '''none''' else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def SCREAMING_SNAKE_CASE_ ( ) -> int: _A = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: _A = os.path.join(_snake_case , '''__init__.py''' ) _A = parse_init(_snake_case ) if objects is not None: _A = analyze_results(*_snake_case ) if len(_snake_case ) > 0: _A = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: _A = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue _A = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) _A = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue _A = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) _A = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules UpperCAmelCase_ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def SCREAMING_SNAKE_CASE_ ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import _A = direct_transformers_import(_snake_case ) _A = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_snake_case , '''__init__.py''' ) , '''r''' ) as f: _A = f.read() import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , _snake_case ) ) ) _A = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_snake_case ) > 0: _A = '''\n'''.join(F'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
2
0
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_A ) , 'Tatoeba directory does not exist.' ) class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = tempfile.mkdtemp() return TatoebaConverter(save_dir=__lowerCAmelCase ) @slow def _a ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.resolver.convert_models(["""heb-eng"""] ) @slow def _a ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=__lowerCAmelCase ) assert mmeta["long_pair"] == "heb-eng"
80
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(_A) class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : Optional[int] , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : List[str] ) -> List[str]: super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def snake_case_ ( self : Any , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[Any]=None ) -> int: _A = {} _A = {} if prompt is not None: _A = prompt if generate_kwargs is not None: _A = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _A = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) _A = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[str] , __lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any]=None ) -> int: _A = load_image(__lowerCAmelCase ) if prompt is not None: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(__lowerCAmelCase )} - but expected a single string. ''' '''Note also that one single text can be provided for conditional image to text generation.''' ) _A = self.model.config.model_type if model_type == "git": _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) _A = self.tokenizer(text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids _A = [self.tokenizer.cls_token_id] + input_ids _A = torch.tensor(__lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": _A = self.image_processor(images=__lowerCAmelCase , header_text=__lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) _A = self.tokenizer(__lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(__lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _A = None return model_inputs def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict=None ) -> str: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , __lowerCAmelCase ) and all(x is None for x in model_inputs['''input_ids'''] ) ): _A = None if generate_kwargs is None: _A = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _A = model_inputs.pop(self.model.main_input_name ) _A = self.model.generate(__lowerCAmelCase , **__lowerCAmelCase , **__lowerCAmelCase ) return model_outputs def snake_case_ ( self : Dict , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = [] for output_ids in model_outputs: _A = { '''generated_text''': self.tokenizer.decode( __lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , ) } records.append(__lowerCAmelCase ) return records
2
0
import os import pytest from attr import dataclass _UpperCAmelCase = 'us-east-1' # defaults region @dataclass class snake_case_ : A_ = 42 A_ = "arn:aws:iam::558105141721:role/sagemaker_execution_role" A_ = { "task_name": "mnli", "per_device_train_batch_size": 16, "per_device_eval_batch_size": 16, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 500, "save_steps": 5500, } A_ = {**hyperparameters, "max_steps": 1000} @property def UpperCAmelCase__ ( self : Optional[Any] )->str: '''simple docstring''' if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def UpperCAmelCase__ ( self : List[str] )->str: '''simple docstring''' return F'''{self.framework}-transfromers-test''' @property def UpperCAmelCase__ ( self : Dict )->str: '''simple docstring''' return F'''./tests/sagemaker/scripts/{self.framework}''' @property def UpperCAmelCase__ ( self : str )->str: '''simple docstring''' if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Union[str, Any] ) -> List[str]: __lowerCAmelCase : List[str] = SageMakerTestEnvironment(framework=request.cls.framework )
504
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE_ ( _snake_case :str = "AAPL" ) -> str: _A = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' _A = BeautifulSoup(requests.get(_snake_case ).text , '''html.parser''' ) _A = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
2
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch a_ = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ : def __init__( self , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=6.0 , UpperCamelCase_=None , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=None , UpperCamelCase_="fp4" , UpperCamelCase_=False , **UpperCamelCase_ , ) -> List[Any]: __lowercase : str = load_in_abit __lowercase : str = load_in_abit __lowercase : Any = llm_inta_threshold __lowercase : Tuple = llm_inta_skip_modules __lowercase : Tuple = llm_inta_enable_fpaa_cpu_offload __lowercase : Any = llm_inta_has_fpaa_weight __lowercase : List[Any] = bnb_abit_quant_type __lowercase : Tuple = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: __lowercase : Tuple = torch.floataa elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowercase : Tuple = getattr(__lowerCAmelCase , __lowerCAmelCase ) elif isinstance(__lowerCAmelCase , torch.dtype ): __lowercase : Any = bnb_abit_compute_dtype else: raise ValueError('''bnb_4bit_compute_dtype must be a string or a torch.dtype''' ) self.post_init() def _lowerCamelCase ( self ) -> str: if not isinstance(self.llm_inta_threshold , __lowerCAmelCase ): raise ValueError('''llm_int8_threshold must be a float''' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , __lowerCAmelCase ): raise ValueError('''llm_int8_skip_modules must be a list of strings''' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , __lowerCAmelCase ): raise ValueError('''llm_int8_enable_fp32_cpu_offload must be a boolean''' ) if not isinstance(self.llm_inta_has_fpaa_weight , __lowerCAmelCase ): raise ValueError('''llm_int8_has_fp16_weight must be a boolean''' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('''bnb_4bit_compute_dtype must be torch.dtype''' ) if not isinstance(self.bnb_abit_quant_type , __lowerCAmelCase ): raise ValueError('''bnb_4bit_quant_type must be a string''' ) if not isinstance(self.bnb_abit_use_double_quant , __lowerCAmelCase ): raise ValueError('''bnb_4bit_use_double_quant must be a boolean''' ) if self.load_in_abit and not version.parse(importlib.metadata.version('''bitsandbytes''' ) ) >= version.parse( '''0.39.0''' ): raise ValueError( '''4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version''' ) def _lowerCamelCase ( self ) -> str: return self.load_in_abit or self.load_in_abit def _lowerCamelCase ( self ) -> Tuple: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _lowerCamelCase ( cls , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) -> Optional[Any]: __lowercase : Optional[Any] = cls(**__lowerCAmelCase ) __lowercase : List[str] = [] for key, value in kwargs.items(): if hasattr(__lowerCAmelCase , __lowerCAmelCase ): setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) to_remove.append(__lowerCAmelCase ) for key in to_remove: kwargs.pop(__lowerCAmelCase , __lowerCAmelCase ) if return_unused_kwargs: return config, kwargs else: return config def _lowerCamelCase ( self , UpperCamelCase_ ) -> Optional[int]: with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: __lowercase : int = self.to_dict() __lowercase : int = json.dumps(__lowerCAmelCase , indent=2 , sort_keys=__lowerCAmelCase ) + '''\n''' writer.write(__lowerCAmelCase ) def _lowerCamelCase ( self ) -> Dict[str, Any]: __lowercase : List[Any] = copy.deepcopy(self.__dict__ ) __lowercase : Optional[int] = str(output['''bnb_4bit_compute_dtype'''] ).split('''.''' )[1] return output def __repr__( self ) -> List[str]: return F"""{self.__class__.__name__} {self.to_json_string()}""" def _lowerCamelCase ( self , UpperCamelCase_ = True ) -> str: if use_diff is True: __lowercase : str = self.to_diff_dict() else: __lowercase : str = self.to_dict() return json.dumps(__lowerCAmelCase , indent=2 , sort_keys=__lowerCAmelCase ) + "\n" def _lowerCamelCase ( self ) -> Dict[str, Any]: __lowercase : Dict = self.to_dict() # get the default config dict __lowercase : int = BitsAndBytesConfig().to_dict() __lowercase : List[Any] = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: __lowercase : Optional[int] = value return serializable_config_dict
76
from graphs.minimum_spanning_tree_kruskal import kruskal def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: _A = 9 _A = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _A = kruskal(_snake_case , _snake_case ) _A = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_snake_case ) == sorted(_snake_case )
2
0
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def lowercase__ ( A_: str , A_: Union[str, Any]=None ) -> Any: """simple docstring""" require_version(deps[pkg] , _snake_case )
68
def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : Optional[int] = 16 lowercase__ : Optional[int] = 32 def _lowerCAmelCase ( __snake_case : Accelerator , __snake_case : int = 16 ) -> Optional[Any]: __A : Dict = AutoTokenizer.from_pretrained('bert-base-cased' ) __A : List[Any] = load_dataset('glue' , 'mrpc' ) def tokenize_function(__snake_case : Optional[int] ): # max_length=None => use the model max length (it's actually the default) __A : Optional[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_snake_case , max_length=_snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __A : List[str] = datasets.map( _snake_case , batched=_snake_case , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __A : Tuple = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(__snake_case : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. __A : Union[str, Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __A : Tuple = 16 elif accelerator.mixed_precision != "no": __A : Optional[int] = 8 else: __A : List[Any] = None return tokenizer.pad( _snake_case , padding='longest' , max_length=_snake_case , pad_to_multiple_of=_snake_case , return_tensors='pt' , ) # Instantiate dataloaders. __A : Any = DataLoader( tokenized_datasets['train'] , shuffle=_snake_case , collate_fn=_snake_case , batch_size=_snake_case ) __A : Optional[int] = DataLoader( tokenized_datasets['validation'] , shuffle=_snake_case , collate_fn=_snake_case , batch_size=_snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : Optional[Any] = mocked_dataloaders # noqa: F811 def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : str ) -> Optional[int]: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , _snake_case ) == "1": __A : Dict = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __A : List[str] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: __A : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __A : Any = config['lr'] __A : Dict = int(config['num_epochs'] ) __A : Optional[int] = int(config['seed'] ) __A : List[Any] = int(config['batch_size'] ) set_seed(_snake_case ) __A ,__A : List[str] = get_dataloaders(_snake_case , _snake_case ) __A : Optional[Any] = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation __A : str = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __A : Dict = batch_size // MAX_GPU_BATCH_SIZE __A : Optional[Any] = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __A : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=_snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __A : Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer __A : List[str] = AdamW(params=model.parameters() , lr=_snake_case ) # Instantiate scheduler __A : str = get_linear_schedule_with_warmup( optimizer=_snake_case , num_warmup_steps=1_00 , num_training_steps=(len(_snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __A ,__A ,__A ,__A ,__A : Dict = accelerator.prepare( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __A : str = os.path.split(_snake_case )[-1].split('.' )[0] accelerator.init_trackers(_snake_case , _snake_case ) # Now we train the model for epoch in range(_snake_case ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __A : int = 0 for step, batch in enumerate(_snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __A : Tuple = model(**_snake_case ) __A : Tuple = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __A : str = loss / gradient_accumulation_steps accelerator.backward(_snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __A : List[Any] = model(**_snake_case ) __A : str = outputs.logits.argmax(dim=-1 ) __A ,__A : str = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=_snake_case , references=_snake_case , ) __A : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , _snake_case ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { 'accuracy': eval_metric['accuracy'], 'f1': eval_metric['f1'], 'train_loss': total_loss.item() / len(_snake_case ), 'epoch': epoch, } , step=_snake_case , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def _lowerCAmelCase ( ) -> List[Any]: __A : int = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=_snake_case , default=_snake_case , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=_snake_case , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) __A : Union[str, Any] = parser.parse_args() __A : Union[str, Any] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(_snake_case , _snake_case ) if __name__ == "__main__": main()
8
UpperCAmelCase_ = 2_5_6 # Modulus to hash a string UpperCAmelCase_ = 1_0_0_0_0_0_3 def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :str ) -> bool: _A = len(_snake_case ) _A = len(_snake_case ) if p_len > t_len: return False _A = 0 _A = 0 _A = 1 # Calculating the hash of pattern and substring of text for i in range(_snake_case ): _A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def SCREAMING_SNAKE_CASE_ ( ) -> None: _A = '''abc1abc12''' _A = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' _A = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(_snake_case , _snake_case ) and not rabin_karp(_snake_case , _snake_case ) # Test 2) _A = '''ABABX''' _A = '''ABABZABABYABABX''' assert rabin_karp(_snake_case , _snake_case ) # Test 3) _A = '''AAAB''' _A = '''ABAAAAAB''' assert rabin_karp(_snake_case , _snake_case ) # Test 4) _A = '''abcdabcy''' _A = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(_snake_case , _snake_case ) # Test 5) _A = '''Lü''' _A = '''Lüsai''' assert rabin_karp(_snake_case , _snake_case ) _A = '''Lue''' assert not rabin_karp(_snake_case , _snake_case ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
2
0
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class UpperCAmelCase__ ( ctypes.Structure ): """simple docstring""" __UpperCAmelCase : Any = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def UpperCAmelCase_ (): """simple docstring""" if os.name == "nt": _a : Optional[Any] = CursorInfo() _a : Union[str, Any] = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_snake_case , ctypes.byref(_snake_case ) ) _a : Any = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_snake_case , ctypes.byref(_snake_case ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def UpperCAmelCase_ (): """simple docstring""" if os.name == "nt": _a : Tuple = CursorInfo() _a : List[str] = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_snake_case , ctypes.byref(_snake_case ) ) _a : str = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_snake_case , ctypes.byref(_snake_case ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def UpperCAmelCase_ (): """simple docstring""" try: hide_cursor() yield finally: show_cursor()
229
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } UpperCAmelCase_ = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } UpperCAmelCase_ = """</w>""" UpperCAmelCase_ = """@@ """ def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] ) -> List[str]: _A = set() _A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A = char return pairs # Speech2Text2 has no max input length UpperCAmelCase_ = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class lowerCamelCase__ ( _A): """simple docstring""" a__ : Dict = VOCAB_FILES_NAMES a__ : str = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]="<s>" , __lowerCAmelCase : Tuple="<pad>" , __lowerCAmelCase : Optional[Any]="</s>" , __lowerCAmelCase : Dict="<unk>" , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=None , **__lowerCAmelCase : str , ) -> Dict: super().__init__( unk_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , **__lowerCAmelCase , ) _A = do_lower_case with open(__lowerCAmelCase , encoding='''utf-8''' ) as vocab_handle: _A = json.load(__lowerCAmelCase ) _A = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) _A = None _A = None else: with open(__lowerCAmelCase , encoding='''utf-8''' ) as merges_handle: _A = merges_handle.read().split('''\n''' )[:-1] _A = [tuple(merge.split()[:2] ) for merge in merges] _A = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _A = {} @property def snake_case_ ( self : List[str] ) -> int: return len(self.decoder ) def snake_case_ ( self : Dict ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _A = get_pairs(__lowerCAmelCase ) if not pairs: return token while True: _A = min(__lowerCAmelCase , key=lambda __lowerCAmelCase : self.bpe_ranks.get(__lowerCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A = bigram _A = [] _A = 0 while i < len(__lowerCAmelCase ): try: _A = word.index(__lowerCAmelCase , __lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A = j if word[i] == first and i < len(__lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A = tuple(__lowerCAmelCase ) _A = new_word if len(__lowerCAmelCase ) == 1: break else: _A = get_pairs(__lowerCAmelCase ) _A = ''' '''.join(__lowerCAmelCase ) if word == "\n " + BPE_TOKEN_MERGES: _A = '''\n''' + BPE_TOKEN_MERGES if word.endswith(__lowerCAmelCase ): _A = word.replace(__lowerCAmelCase , '''''' ) _A = word.replace(''' ''' , __lowerCAmelCase ) _A = word return word def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Tuple ) -> Optional[int]: if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''' ) if self.do_lower_case: _A = text.lower() _A = text.split() _A = [] for token in text: if token: split_tokens.extend(list(self.bpe(__lowerCAmelCase ).split(''' ''' ) ) ) return split_tokens def snake_case_ ( self : List[Any] , __lowerCAmelCase : str ) -> int: return self.encoder.get(__lowerCAmelCase , self.encoder.get(self.unk_token ) ) def snake_case_ ( self : str , __lowerCAmelCase : int ) -> str: _A = self.decoder.get(__lowerCAmelCase , self.unk_token ) return result def snake_case_ ( self : List[str] , __lowerCAmelCase : List[str] ) -> str: _A = ''' '''.join(__lowerCAmelCase ) # make sure @@ tokens are concatenated _A = ''''''.join(string.split(__lowerCAmelCase ) ) return string def snake_case_ ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCAmelCase , ensure_ascii=__lowerCAmelCase ) + '''\n''' ) _A = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) _A = token_index writer.write(''' '''.join(__lowerCAmelCase ) + '''\n''' ) index += 1 return (vocab_file, merges_file)
2
0
'''simple docstring''' import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "artists_file": "artists.json", "lyrics_file": "lyrics.json", "genres_file": "genres.json", } __UpperCamelCase = { "artists_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json", }, "genres_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json", }, "lyrics_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json", }, } __UpperCamelCase = { "jukebox": 512, } class _A ( _A ): lowercase__: Any = VOCAB_FILES_NAMES lowercase__: str = PRETRAINED_VOCAB_FILES_MAP lowercase__: Any = PRETRAINED_LYRIC_TOKENS_SIZES lowercase__: str = ["input_ids", "attention_mask"] def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : int=["v3", "v2", "v2"] , __magic_name__ : str=5_12 , __magic_name__ : Tuple=5 , __magic_name__ : str="<|endoftext|>" , **__magic_name__ : Tuple , ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[int] = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else unk_token super().__init__( unk_token=__lowerCAmelCase , n_genres=__lowerCAmelCase , version=__lowerCAmelCase , max_n_lyric_tokens=__lowerCAmelCase , **__lowerCAmelCase , ) __snake_case : str = version __snake_case : Union[str, Any] = max_n_lyric_tokens __snake_case : Union[str, Any] = n_genres with open(__lowerCAmelCase , encoding="""utf-8""" ) as vocab_handle: __snake_case : Dict = json.load(__lowerCAmelCase ) with open(__lowerCAmelCase , encoding="""utf-8""" ) as vocab_handle: __snake_case : int = json.load(__lowerCAmelCase ) with open(__lowerCAmelCase , encoding="""utf-8""" ) as vocab_handle: __snake_case : Any = json.load(__lowerCAmelCase ) __snake_case : Any = r"""[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __snake_case : List[Any] = oov.replace(r"""\-\'""" , r"""\-+\'""" ) __snake_case : Any = regex.compile(__lowerCAmelCase ) __snake_case : Union[str, Any] = {v: k for k, v in self.artists_encoder.items()} __snake_case : Tuple = {v: k for k, v in self.genres_encoder.items()} __snake_case : Dict = {v: k for k, v in self.lyrics_encoder.items()} @property def lowercase__ ( self : str ) -> Tuple: """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def lowercase__ ( self : Dict ) -> str: """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : str ) -> str: """simple docstring""" __snake_case : Tuple = [self.artists_encoder.get(__lowerCAmelCase , 0 ) for artist in list_artists] for genres in range(len(__lowerCAmelCase ) ): __snake_case : Union[str, Any] = [self.genres_encoder.get(__lowerCAmelCase , 0 ) for genre in list_genres[genres]] __snake_case : Optional[Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __snake_case : Tuple = [[self.lyrics_encoder.get(__lowerCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def lowercase__ ( self : int , __magic_name__ : Tuple ) -> Optional[int]: """simple docstring""" return list(__lowerCAmelCase ) def lowercase__ ( self : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , **__magic_name__ : int ) -> Union[str, Any]: """simple docstring""" __snake_case , __snake_case , __snake_case : Tuple = self.prepare_for_tokenization(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __snake_case : List[Any] = self._tokenize(__lowerCAmelCase ) return artist, genre, lyrics def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : str , __magic_name__ : str , __magic_name__ : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": __snake_case : int = artists[idx].lower() __snake_case : Dict = [genres[idx].lower()] else: __snake_case : Any = self._normalize(artists[idx] ) + """.v2""" __snake_case : Dict = [ self._normalize(__lowerCAmelCase ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __snake_case : Any = regex.compile(r"""[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+""" ) __snake_case : Optional[Any] = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n""" __snake_case : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(__lowerCAmelCase ) )} __snake_case : str = 0 __snake_case : int = len(__lowerCAmelCase ) + 1 __snake_case : Tuple = self.vocab __snake_case : List[str] = {v: k for k, v in self.vocab.items()} __snake_case : List[str] = """""" else: __snake_case : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+""" ) __snake_case : Union[str, Any] = self._run_strip_accents(__lowerCAmelCase ) __snake_case : Optional[Any] = lyrics.replace("""\\""" , """\n""" ) __snake_case : List[Any] = self.out_of_vocab.sub("""""" , __lowerCAmelCase ), [], [] return artists, genres, lyrics def lowercase__ ( self : str , __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = unicodedata.normalize("""NFD""" , __lowerCAmelCase ) __snake_case : int = [] for char in text: __snake_case : str = unicodedata.category(__lowerCAmelCase ) if cat == "Mn": continue output.append(__lowerCAmelCase ) return "".join(__lowerCAmelCase ) def lowercase__ ( self : Dict , __magic_name__ : str ) -> str: """simple docstring""" __snake_case : List[Any] = ( [chr(__lowerCAmelCase ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(__lowerCAmelCase ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(__lowerCAmelCase ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) __snake_case : Optional[int] = frozenset(__lowerCAmelCase ) __snake_case : Optional[Any] = re.compile(r"""_+""" ) __snake_case : Optional[int] = """""".join([c if c in accepted else """_""" for c in text.lower()] ) __snake_case : Dict = pattern.sub("""_""" , __lowerCAmelCase ).strip("""_""" ) return text def lowercase__ ( self : Any , __magic_name__ : List[str] ) -> str: """simple docstring""" return " ".join(__lowerCAmelCase ) def lowercase__ ( self : List[Any] , __magic_name__ : Any , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : bool = False ) -> Any: """simple docstring""" if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): __snake_case : Optional[int] = TensorType(__lowerCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf __snake_case : Dict = tf.constant __snake_case : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch __snake_case : Any = torch.tensor __snake_case : int = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 __snake_case : int = jnp.array __snake_case : Dict = _is_jax else: __snake_case : int = np.asarray __snake_case : Optional[Any] = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __snake_case : Tuple = [inputs] if not is_tensor(__lowerCAmelCase ): __snake_case : List[Any] = as_tensor(__lowerCAmelCase ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.""" ) return inputs def __call__( self : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Dict , __magic_name__ : List[str]="" , __magic_name__ : Any="pt" ) -> BatchEncoding: """simple docstring""" __snake_case : int = [0, 0, 0] __snake_case : Optional[Any] = [artist] * len(self.version ) __snake_case : Optional[int] = [genres] * len(self.version ) __snake_case , __snake_case , __snake_case : str = self.tokenize(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __snake_case , __snake_case , __snake_case : Any = self._convert_token_to_id(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __snake_case : Optional[Any] = [-INFINITY] * len(full_tokens[-1] ) __snake_case : Any = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=__lowerCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def lowercase__ ( self : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __snake_case : str = os.path.join( __lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=__lowerCAmelCase ) ) __snake_case : Tuple = os.path.join( __lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=__lowerCAmelCase ) ) __snake_case : Optional[int] = os.path.join( __lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=__lowerCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def lowercase__ ( self : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" __snake_case : Union[str, Any] = self.artists_decoder.get(__lowerCAmelCase ) __snake_case : Optional[Any] = [self.genres_decoder.get(__lowerCAmelCase ) for genre in genres_index] __snake_case : Any = [self.lyrics_decoder.get(__lowerCAmelCase ) for character in lyric_index] return artist, genres, lyrics
26
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar UpperCAmelCase_ = TypeVar("""T""") def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (position - 1) // 2 def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (2 * position) + 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (2 * position) + 2 class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__( self : Optional[int] ) -> None: _A = [] _A = {} _A = 0 def __len__( self : str ) -> int: return self.elements def __repr__( self : Optional[int] ) -> str: return str(self.heap ) def snake_case_ ( self : str ) -> bool: # Check if the priority queue is empty return self.elements == 0 def snake_case_ ( self : Optional[int] , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) _A = self.elements self.elements += 1 self._bubble_up(__lowerCAmelCase ) def snake_case_ ( self : Tuple ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _A , _A = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _A , _A = self.heap[0] self._bubble_down(__lowerCAmelCase ) return elem def snake_case_ ( self : int , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Update the weight of the given key _A = self.position_map[elem] _A = (elem, weight) if position > 0: _A = get_parent_position(__lowerCAmelCase ) _A , _A = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__lowerCAmelCase ) else: self._bubble_down(__lowerCAmelCase ) else: self._bubble_down(__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : T ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] _A = self.position_map[elem] if curr_pos == 0: return None _A = get_parent_position(__lowerCAmelCase ) _A , _A = self.heap[curr_pos] _A , _A = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_up(__lowerCAmelCase ) return None def snake_case_ ( self : Dict , __lowerCAmelCase : T ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] _A = self.position_map[elem] _A , _A = self.heap[curr_pos] _A = get_child_left_position(__lowerCAmelCase ) _A = get_child_right_position(__lowerCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: _A , _A = self.heap[child_left_position] _A , _A = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) if child_left_position < self.elements: _A , _A = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) else: return None if child_right_position < self.elements: _A , _A = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) return None def snake_case_ ( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> None: # Swap the nodes at the given positions _A = self.heap[nodea_pos][0] _A = self.heap[nodea_pos][0] _A , _A = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _A = nodea_pos _A = nodea_pos class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__( self : str ) -> None: _A = {} _A = 0 def __repr__( self : str ) -> str: return str(self.connections ) def __len__( self : Dict ) -> int: return self.nodes def snake_case_ ( self : Any , __lowerCAmelCase : T ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: _A = {} self.nodes += 1 def snake_case_ ( self : str , __lowerCAmelCase : T , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Add an edge between 2 nodes in the graph self.add_node(__lowerCAmelCase ) self.add_node(__lowerCAmelCase ) _A = weight _A = weight def SCREAMING_SNAKE_CASE_ ( _snake_case :GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: _A = {node: maxsize for node in graph.connections} _A = {node: None for node in graph.connections} _A = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_snake_case , _snake_case ) if priority_queue.is_empty(): return dist, parent # initialization _A = priority_queue.extract_min() _A = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_snake_case , dist[neighbour] ) _A = node # running prim's algorithm while not priority_queue.is_empty(): _A = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_snake_case , dist[neighbour] ) _A = node return dist, parent
2
0
def __lowerCamelCase ( __a :int = 1_0_0 ) -> int: """simple docstring""" A__ = set() A__ = 0 A__ = n + 1 # maximum limit for a in range(2 , _snake_case ): for b in range(2 , _snake_case ): A__ = a**b # calculates the current power collect_powers.add(_snake_case ) # adds the result to the set return len(_snake_case ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
176
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = """▁""" UpperCAmelCase_ = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} UpperCAmelCase_ = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } UpperCAmelCase_ = {"""vinai/bartpho-syllable""": 1_0_2_4} class lowerCamelCase__ ( _A): """simple docstring""" a__ : int = VOCAB_FILES_NAMES a__ : Tuple = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Tuple = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any]="<s>" , __lowerCAmelCase : Dict="</s>" , __lowerCAmelCase : List[Any]="</s>" , __lowerCAmelCase : Optional[Any]="<s>" , __lowerCAmelCase : Tuple="<unk>" , __lowerCAmelCase : int="<pad>" , __lowerCAmelCase : Optional[Any]="<mask>" , __lowerCAmelCase : Optional[Dict[str, Any]] = None , **__lowerCAmelCase : Tuple , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _A = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) _A = vocab_file _A = monolingual_vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _A = {} _A = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: _A = cnt cnt += 1 with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): _A = line.strip().split()[0] _A = len(self.fairseq_tokens_to_ids ) if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: _A = len(self.fairseq_tokens_to_ids ) _A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Any ) -> List[Any]: _A = self.__dict__.copy() _A = None _A = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any] , __lowerCAmelCase : Dict ) -> List[Any]: _A = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A = [self.cls_token_id] _A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self : List[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1, 1] + ([0] * len(__lowerCAmelCase )) + [1] def snake_case_ ( self : Any , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case_ ( self : Optional[int] ) -> Union[str, Any]: return len(self.fairseq_ids_to_tokens ) def snake_case_ ( self : Dict ) -> Optional[Any]: _A = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self : List[str] , __lowerCAmelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def snake_case_ ( self : str , __lowerCAmelCase : Optional[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def snake_case_ ( self : int , __lowerCAmelCase : Optional[int] ) -> List[str]: return self.fairseq_ids_to_tokens[index] def snake_case_ ( self : List[str] , __lowerCAmelCase : Union[str, Any] ) -> Tuple: _A = ''''''.join(__lowerCAmelCase ).replace(__lowerCAmelCase , ''' ''' ).strip() return out_string def snake_case_ ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowerCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__lowerCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
2
0
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False, False, False @dataclass class _lowerCAmelCase : SCREAMING_SNAKE_CASE_: Optional[int] = None SCREAMING_SNAKE_CASE_: bool = True SCREAMING_SNAKE_CASE_: bool = True SCREAMING_SNAKE_CASE_: Optional[str] = None # Automatically constructed SCREAMING_SNAKE_CASE_: ClassVar[str] = "dict" SCREAMING_SNAKE_CASE_: ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) SCREAMING_SNAKE_CASE_: str = field(default='Audio' , init=_A , repr=_A ) def __call__( self ) -> List[str]: return self.pa_type def A ( self , lowerCAmelCase_ ) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('To support encoding audio data, please install \'soundfile\'.' ) from err if isinstance(__lowerCAmelCase , __lowerCAmelCase ): return {"bytes": None, "path": value} elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _SCREAMING_SNAKE_CASE : str = BytesIO() sf.write(__lowerCAmelCase , value['array'] , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('pcm' ): # "PCM" only has raw audio bytes if value.get('sampling_rate' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('To use PCM files, please specify a \'sampling_rate\' in Audio object' ) if value.get('bytes' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _SCREAMING_SNAKE_CASE : Any = np.frombuffer(value['bytes'] , dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: _SCREAMING_SNAKE_CASE : Dict = np.memmap(value['path'] , dtype='h' , mode='r' ).astype(np.floataa ) / 3_2_7_6_7 _SCREAMING_SNAKE_CASE : List[str] = BytesIO(bytes() ) sf.write(__lowerCAmelCase , __lowerCAmelCase , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F"""An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.""" ) def A ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> dict: if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Audio(decode=True) instead.' ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = (value['path'], BytesIO(value['bytes'] )) if value['bytes'] is not None else (value['path'], None) if path is None and file is None: raise ValueError(F"""An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('To support decoding audio files, please install \'librosa\' and \'soundfile\'.' ) from err _SCREAMING_SNAKE_CASE : Union[str, Any] = xsplitext(__lowerCAmelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( 'Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( 'Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) if file is None: _SCREAMING_SNAKE_CASE : Any = token_per_repo_id or {} _SCREAMING_SNAKE_CASE : Dict = path.split('::' )[-1] try: _SCREAMING_SNAKE_CASE : List[str] = string_to_dict(__lowerCAmelCase , config.HUB_DATASETS_URL )['repo_id'] _SCREAMING_SNAKE_CASE : Tuple = token_per_repo_id[repo_id] except (ValueError, KeyError): _SCREAMING_SNAKE_CASE : List[str] = None with xopen(__lowerCAmelCase , 'rb' , use_auth_token=__lowerCAmelCase ) as f: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = sf.read(__lowerCAmelCase ) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = sf.read(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Dict = array.T if self.mono: _SCREAMING_SNAKE_CASE : int = librosa.to_mono(__lowerCAmelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: _SCREAMING_SNAKE_CASE : Tuple = librosa.resample(__lowerCAmelCase , orig_sr=__lowerCAmelCase , target_sr=self.sampling_rate ) _SCREAMING_SNAKE_CASE : Tuple = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError('Cannot flatten a decoded Audio feature.' ) return { "bytes": Value('binary' ), "path": Value('string' ), } def A ( self , lowerCAmelCase_ ) -> pa.StructArray: if pa.types.is_string(storage.type ): _SCREAMING_SNAKE_CASE : Any = pa.array([None] * len(__lowerCAmelCase ) , type=pa.binary() ) _SCREAMING_SNAKE_CASE : str = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _SCREAMING_SNAKE_CASE : int = pa.array([None] * len(__lowerCAmelCase ) , type=pa.string() ) _SCREAMING_SNAKE_CASE : Tuple = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('array' ): _SCREAMING_SNAKE_CASE : Any = pa.array([Audio().encode_example(__lowerCAmelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: _SCREAMING_SNAKE_CASE : Optional[Any] = storage.field('bytes' ) else: _SCREAMING_SNAKE_CASE : str = pa.array([None] * len(__lowerCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: _SCREAMING_SNAKE_CASE : str = storage.field('path' ) else: _SCREAMING_SNAKE_CASE : int = pa.array([None] * len(__lowerCAmelCase ) , type=pa.string() ) _SCREAMING_SNAKE_CASE : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) return array_cast(__lowerCAmelCase , self.pa_type ) def A ( self , lowerCAmelCase_ ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(lowerCAmelCase_ ): with xopen(__lowerCAmelCase , 'rb' ) as f: _SCREAMING_SNAKE_CASE : Any = f.read() return bytes_ _SCREAMING_SNAKE_CASE : Optional[Any] = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _SCREAMING_SNAKE_CASE : List[str] = pa.array( [os.path.basename(__lowerCAmelCase ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) _SCREAMING_SNAKE_CASE : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(__lowerCAmelCase , self.pa_type )
621
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( _snake_case :dict , _snake_case :str ) -> set[str]: _A , _A = set(_snake_case ), [start] while stack: _A = stack.pop() explored.add(_snake_case ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_snake_case ) return explored UpperCAmelCase_ = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
2
0
import math __magic_name__ = 1_0 __magic_name__ = 7 __magic_name__ = BALLS_PER_COLOUR * NUM_COLOURS def __magic_name__ ( lowerCAmelCase_ = 20): '''simple docstring''' lowerCamelCase_ : Any = math.comb(_snake_case , _snake_case) lowerCamelCase_ : Optional[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , _snake_case) lowerCamelCase_ : List[str] = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(2_0))
250
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
2
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() _SCREAMING_SNAKE_CASE =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _SCREAMING_SNAKE_CASE ={ '''do_resize''': True, '''size''': 2_0, '''do_center_crop''': True, '''crop_size''': 1_8, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , __lowerCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def UpperCamelCase_ ( self , **_A ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def UpperCamelCase_ ( self , **_A ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def UpperCamelCase_ ( self , **_A ): '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def UpperCamelCase_ ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =[np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _SCREAMING_SNAKE_CASE =[Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCAmelCase ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _SCREAMING_SNAKE_CASE =self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) _SCREAMING_SNAKE_CASE =AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =image_processor(__lowerCAmelCase , return_tensors='''np''' ) _SCREAMING_SNAKE_CASE =processor(images=__lowerCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE ='''lower newer''' _SCREAMING_SNAKE_CASE =processor(text=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =tokenizer(__lowerCAmelCase , padding='''max_length''' , max_length=6_4 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE ='''lower newer''' _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _SCREAMING_SNAKE_CASE =processor.batch_decode(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE ='''lower newer''' _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
255
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class lowerCamelCase__ ( _A): """simple docstring""" a__ : Any = "xlnet" a__ : Dict = ["mems"] a__ : List[str] = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int , __lowerCAmelCase : Dict=3_20_00 , __lowerCAmelCase : List[str]=10_24 , __lowerCAmelCase : Dict=24 , __lowerCAmelCase : Optional[Any]=16 , __lowerCAmelCase : Dict=40_96 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : int=True , __lowerCAmelCase : List[str]="bi" , __lowerCAmelCase : Dict=0.02 , __lowerCAmelCase : Union[str, Any]=1E-12 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Optional[Any]=5_12 , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Union[str, Any]=-1 , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Any="last" , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Tuple="tanh" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : str=5 , __lowerCAmelCase : str=5 , __lowerCAmelCase : List[str]=5 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Optional[int]=2 , **__lowerCAmelCase : List[str] , ) -> Tuple: _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(f'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'''`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , __lowerCAmelCase , ) _A = kwargs['''use_cache'''] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def snake_case_ ( self : Optional[Any] ) -> Union[str, Any]: logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def snake_case_ ( self : Tuple , __lowerCAmelCase : Optional[Any] ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
2
0