code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import json
import os
import re
import sys
import urllib.request
import requests
from bsa import BeautifulSoup
lowerCAmelCase : Optional[int] = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582'
}
def A_( A : str = "dhaka" , A : int = 5):
UpperCamelCase = min(A , 50) # Prevent abuse!
UpperCamelCase = {
'q': query,
'tbm': 'isch',
'hl': 'en',
'ijn': '0',
}
UpperCamelCase = requests.get('https://www.google.com/search' , params=A , headers=A)
UpperCamelCase = BeautifulSoup(html.text , 'html.parser')
UpperCamelCase = ''.join(
re.findall(r'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script'))))
UpperCamelCase = json.dumps(A)
UpperCamelCase = json.loads(A)
UpperCamelCase = re.findall(
r'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , A , )
if not matched_google_image_data:
return 0
UpperCamelCase = re.sub(
r'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(A) , )
UpperCamelCase = re.findall(
r'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , A , )
for index, fixed_full_res_image in enumerate(A):
if index >= max_images:
return index
UpperCamelCase = bytes(A , 'ascii').decode(
'unicode-escape')
UpperCamelCase = bytes(A , 'ascii').decode(
'unicode-escape')
UpperCamelCase = urllib.request.build_opener()
UpperCamelCase = [
(
'User-Agent',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582',
)
]
urllib.request.install_opener(A)
UpperCamelCase = f'''query_{query.replace(" " , "_")}'''
if not os.path.exists(A):
os.makedirs(A)
urllib.request.urlretrieve( # noqa: S310
A , f'''{path_name}/original_size_img_{index}.jpg''')
return index
if __name__ == "__main__":
try:
lowerCAmelCase : Dict = download_images_from_google_query(sys.argv[1])
print(f"""{image_count} images were downloaded to disk.""")
except IndexError:
print('Please provide a search term.')
raise
| 3 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...feature_extraction_utils import FeatureExtractionMixin
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType, logging
lowerCAmelCase : Any = logging.get_logger(__name__)
lowerCAmelCase : Optional[int] = {
'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json',
# See all Perceiver models at https://huggingface.co/models?filter=perceiver
}
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """perceiver"""
def __init__( self , A_=256 , A_=1280 , A_=768 , A_=1 , A_=26 , A_=8 , A_=8 , A_=None , A_=None , A_="kv" , A_=1 , A_=1 , A_="gelu" , A_=0.1 , A_=0.02 , A_=1e-12 , A_=True , A_=262 , A_=2048 , A_=56 , A_=[368, 496] , A_=16 , A_=1920 , A_=16 , A_=[1, 16, 224, 224] , **A_ , )-> str:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = num_latents
UpperCamelCase = d_latents
UpperCamelCase = d_model
UpperCamelCase = num_blocks
UpperCamelCase = num_self_attends_per_block
UpperCamelCase = num_self_attention_heads
UpperCamelCase = num_cross_attention_heads
UpperCamelCase = qk_channels
UpperCamelCase = v_channels
UpperCamelCase = cross_attention_shape_for_attention
UpperCamelCase = self_attention_widening_factor
UpperCamelCase = cross_attention_widening_factor
UpperCamelCase = hidden_act
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = initializer_range
UpperCamelCase = layer_norm_eps
UpperCamelCase = use_query_residual
# masked language modeling attributes
UpperCamelCase = vocab_size
UpperCamelCase = max_position_embeddings
# image classification attributes
UpperCamelCase = image_size
# flow attributes
UpperCamelCase = train_size
# multimodal autoencoding attributes
UpperCamelCase = num_frames
UpperCamelCase = audio_samples_per_frame
UpperCamelCase = samples_per_patch
UpperCamelCase = output_shape
class SCREAMING_SNAKE_CASE__ ( snake_case_):
@property
def UpperCAmelCase_ ( self )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('inputs', dynamic_axis),
('attention_mask', dynamic_axis),
] )
@property
def UpperCAmelCase_ ( self )-> float:
'''simple docstring'''
return 1e-4
def UpperCAmelCase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = -1 , A_ = False , A_ = None , A_ = 3 , A_ = 40 , A_ = 40 , )-> Mapping[str, Any]:
'''simple docstring'''
if isinstance(A_ , A_ ):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCamelCase = compute_effective_axis_dimension(
A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCamelCase = preprocessor.num_special_tokens_to_add(A_ )
UpperCamelCase = compute_effective_axis_dimension(
A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ )
# Generate dummy inputs according to compute batch and sequence
UpperCamelCase = [' '.join(['a'] ) * seq_length] * batch_size
UpperCamelCase = dict(preprocessor(A_ , return_tensors=A_ ) )
UpperCamelCase = inputs.pop('input_ids' )
return inputs
elif isinstance(A_ , A_ ) and preprocessor.model_input_names[0] == "pixel_values":
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCamelCase = compute_effective_axis_dimension(A_ , fixed_dimension=OnnxConfig.default_fixed_batch )
UpperCamelCase = self._generate_dummy_images(A_ , A_ , A_ , A_ )
UpperCamelCase = dict(preprocessor(images=A_ , return_tensors=A_ ) )
UpperCamelCase = inputs.pop('pixel_values' )
return inputs
else:
raise ValueError(
'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
| 3 | 1 |
'''simple docstring'''
import os
import pytest
from attr import dataclass
lowerCAmelCase : Dict = 'us-east-1' # defaults region
@dataclass
class SCREAMING_SNAKE_CASE__ :
lowerCAmelCase_ = 42
lowerCAmelCase_ = """arn:aws:iam::558105141721:role/sagemaker_execution_role"""
lowerCAmelCase_ = {
"""task_name""": """mnli""",
"""per_device_train_batch_size""": 16,
"""per_device_eval_batch_size""": 16,
"""do_train""": True,
"""do_eval""": True,
"""do_predict""": True,
"""output_dir""": """/opt/ml/model""",
"""overwrite_output_dir""": True,
"""max_steps""": 5_00,
"""save_steps""": 55_00,
}
lowerCAmelCase_ = {**hyperparameters, """max_steps""": 10_00}
@property
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
if self.framework == "pytorch":
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"},
{"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"},
]
else:
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"},
{"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"},
]
@property
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
return F'''{self.framework}-transfromers-test'''
@property
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
return F'''./tests/sagemaker/scripts/{self.framework}'''
@property
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
if self.framework == "pytorch":
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04"
else:
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04"
@pytest.fixture(scope='class')
def A_( A : Optional[int]):
UpperCamelCase = SageMakerTestEnvironment(framework=request.cls.framework)
| 3 |
'''simple docstring'''
from ....configuration_utils import PretrainedConfig
from ....utils import logging
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
lowerCAmelCase : Dict = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """mctct"""
def __init__( self , A_=8065 , A_=1536 , A_=36 , A_=6144 , A_=4 , A_=384 , A_=920 , A_=1e-5 , A_=0.3 , A_="relu" , A_=0.02 , A_=0.3 , A_=0.3 , A_=1 , A_=0 , A_=2 , A_=1 , A_=0.3 , A_=1 , A_=(7,) , A_=(3,) , A_=80 , A_=1 , A_=None , A_="sum" , A_=False , **A_ , )-> str:
'''simple docstring'''
super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ )
UpperCamelCase = vocab_size
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = intermediate_size
UpperCamelCase = num_attention_heads
UpperCamelCase = attention_head_dim
UpperCamelCase = max_position_embeddings
UpperCamelCase = layer_norm_eps
UpperCamelCase = layerdrop
UpperCamelCase = hidden_act
UpperCamelCase = initializer_range
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = pad_token_id
UpperCamelCase = bos_token_id
UpperCamelCase = eos_token_id
UpperCamelCase = conv_glu_dim
UpperCamelCase = conv_dropout
UpperCamelCase = num_conv_layers
UpperCamelCase = input_feat_per_channel
UpperCamelCase = input_channels
UpperCamelCase = conv_channels
UpperCamelCase = ctc_loss_reduction
UpperCamelCase = ctc_zero_infinity
# prevents config testing fail with exporting to json
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` '
F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, '''
F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
| 3 | 1 |
'''simple docstring'''
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase : Tuple = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model')
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase):
lowerCAmelCase_ = SpeechTaTokenizer
lowerCAmelCase_ = False
lowerCAmelCase_ = True
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
UpperCamelCase = SpeechTaTokenizer(A_ )
UpperCamelCase = AddedToken('<mask>' , lstrip=A_ , rstrip=A_ )
UpperCamelCase = mask_token
tokenizer.add_special_tokens({'mask_token': mask_token} )
tokenizer.add_tokens(['<ctc_blank>'] )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase_ ( self , A_ )-> Any:
'''simple docstring'''
UpperCamelCase = 'this is a test'
UpperCamelCase = 'this is a test'
return input_text, output_text
def UpperCAmelCase_ ( self , A_ , A_=False , A_=20 , A_=5 )-> int:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.get_input_output_texts(A_ )
UpperCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ )
UpperCamelCase = tokenizer.decode(A_ , clean_up_tokenization_spaces=A_ )
return text, ids
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase = '<pad>'
UpperCamelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ )
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-4] , 'œ' )
self.assertEqual(vocab_keys[-2] , '<mask>' )
self.assertEqual(vocab_keys[-1] , '<ctc_blank>' )
self.assertEqual(len(A_ ) , 81 )
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 79 )
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = self.get_tokenizers(do_lower_case=A_ )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
UpperCamelCase = tokenizer.vocab_size
UpperCamelCase = len(A_ )
self.assertNotEqual(A_ , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
UpperCamelCase = ['aaaaa bbbbbb', 'cccccccccdddddddd']
UpperCamelCase = tokenizer.add_tokens(A_ )
UpperCamelCase = tokenizer.vocab_size
UpperCamelCase = len(A_ )
self.assertNotEqual(A_ , 0 )
self.assertEqual(A_ , A_ )
self.assertEqual(A_ , len(A_ ) )
self.assertEqual(A_ , all_size + len(A_ ) )
UpperCamelCase = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=A_ )
self.assertGreaterEqual(len(A_ ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
UpperCamelCase = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'}
UpperCamelCase = tokenizer.add_special_tokens(A_ )
UpperCamelCase = tokenizer.vocab_size
UpperCamelCase = len(A_ )
self.assertNotEqual(A_ , 0 )
self.assertEqual(A_ , A_ )
self.assertEqual(A_ , len(A_ ) )
self.assertEqual(A_ , all_size_a + len(A_ ) )
UpperCamelCase = tokenizer.encode(
'>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=A_ )
self.assertGreaterEqual(len(A_ ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
pass
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
pass
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase = self.get_tokenizer()
UpperCamelCase = tokenizer.tokenize('This is a test' )
# fmt: off
self.assertListEqual(A_ , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] )
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(A_ ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , )
UpperCamelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
A_ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ )
# fmt: off
self.assertListEqual(A_ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] )
# fmt: on
UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ )
self.assertListEqual(
A_ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
@slow
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
UpperCamelCase = [
'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides '
'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural '
'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained '
'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.',
'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly '
'conditioning on both left and right context in all layers.',
'The quick brown fox jumps over the lazy dog.',
]
# fmt: off
UpperCamelCase = {
'input_ids': [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
'attention_mask': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A_ , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=A_ , )
| 3 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
lowerCAmelCase : Tuple = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
lowerCAmelCase : Optional[int] = TaTokenizerFast
lowerCAmelCase : Any = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[int] = [
'MT5EncoderModel',
'MT5ForConditionalGeneration',
'MT5ForQuestionAnswering',
'MT5Model',
'MT5PreTrainedModel',
'MT5Stack',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Dict = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[Any] = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model']
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
lowerCAmelCase : Tuple = _LazyModule(
__name__,
globals()['__file__'],
_import_structure,
extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast},
module_spec=__spec__,
)
| 3 | 1 |
'''simple docstring'''
from typing import Optional
import pyspark
from .. import Features, NamedSplit
from ..download import DownloadMode
from ..packaged_modules.spark.spark import Spark
from .abc import AbstractDatasetReader
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ , A_ = None , A_ = None , A_ = True , A_ = None , A_ = False , A_ = None , A_ = True , A_ = "arrow" , **A_ , )-> str:
'''simple docstring'''
super().__init__(
split=A_ , features=A_ , cache_dir=A_ , keep_in_memory=A_ , streaming=A_ , **A_ , )
UpperCamelCase = load_from_cache_file
UpperCamelCase = file_format
UpperCamelCase = Spark(
df=A_ , features=A_ , cache_dir=A_ , working_dir=A_ , **A_ , )
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
if self.streaming:
return self.builder.as_streaming_dataset(split=self.split )
UpperCamelCase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD
self.builder.download_and_prepare(
download_mode=A_ , file_format=self._file_format , )
return self.builder.as_dataset(split=self.split )
| 3 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=False , A_=True , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , )-> Dict:
'''simple docstring'''
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = num_channels
UpperCamelCase = image_size
UpperCamelCase = min_resolution
UpperCamelCase = max_resolution
UpperCamelCase = do_resize
UpperCamelCase = size if size is not None else {'height': 18, 'width': 20}
UpperCamelCase = do_thumbnail
UpperCamelCase = do_align_axis
UpperCamelCase = do_pad
UpperCamelCase = do_normalize
UpperCamelCase = image_mean
UpperCamelCase = image_std
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase):
lowerCAmelCase_ = DonutImageProcessor if is_vision_available() else None
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
UpperCamelCase = DonutImageProcessingTester(self )
@property
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A_ , 'do_resize' ) )
self.assertTrue(hasattr(A_ , 'size' ) )
self.assertTrue(hasattr(A_ , 'do_thumbnail' ) )
self.assertTrue(hasattr(A_ , 'do_align_long_axis' ) )
self.assertTrue(hasattr(A_ , 'do_pad' ) )
self.assertTrue(hasattr(A_ , 'do_normalize' ) )
self.assertTrue(hasattr(A_ , 'image_mean' ) )
self.assertTrue(hasattr(A_ , 'image_std' ) )
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 20} )
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
# Previous config had dimensions in (width, height) order
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {'height': 84, 'width': 42} )
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
pass
@is_flaky()
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , Image.Image )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , np.ndarray )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , torch.Tensor )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
| 3 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_camembert import CamembertTokenizer
else:
lowerCAmelCase : Optional[int] = None
lowerCAmelCase : str = logging.get_logger(__name__)
lowerCAmelCase : Tuple = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'}
lowerCAmelCase : Any = {
'vocab_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model',
},
'tokenizer_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json',
},
}
lowerCAmelCase : Union[str, Any] = {
'camembert-base': 5_12,
}
lowerCAmelCase : Tuple = '▁'
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = VOCAB_FILES_NAMES
lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase_ = ["""input_ids""", """attention_mask"""]
lowerCAmelCase_ = CamembertTokenizer
def __init__( self , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=["<s>NOTUSED", "</s>NOTUSED"] , **A_ , )-> str:
'''simple docstring'''
UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token
super().__init__(
A_ , tokenizer_file=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , additional_special_tokens=A_ , **A_ , )
UpperCamelCase = vocab_file
UpperCamelCase = False if not self.vocab_file else True
def UpperCAmelCase_ ( self , A_ , A_ = None )-> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCamelCase = [self.cls_token_id]
UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCAmelCase_ ( self , A_ , A_ = None )-> List[int]:
'''simple docstring'''
UpperCamelCase = [self.sep_token_id]
UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def UpperCAmelCase_ ( self , A_ , A_ = None )-> Tuple[str]:
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(A_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCamelCase = os.path.join(
A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ):
copyfile(self.vocab_file , A_ )
return (out_vocab_file,)
| 3 |
'''simple docstring'''
def A_( A : list[int]):
UpperCamelCase = []
if len(A) == 1:
return [nums.copy()]
for _ in range(len(A)):
UpperCamelCase = nums.pop(0)
UpperCamelCase = permute(A)
for perm in permutations:
perm.append(A)
result.extend(A)
nums.append(A)
return result
def A_( A : str):
def backtrack(A : str):
if start == len(A) - 1:
output.append(nums[:])
else:
for i in range(A , len(A)):
UpperCamelCase , UpperCamelCase = nums[i], nums[start]
backtrack(start + 1)
UpperCamelCase , UpperCamelCase = nums[i], nums[start] # backtrack
UpperCamelCase = []
backtrack(0)
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
lowerCAmelCase : Dict = permutea([1, 2, 3])
print(res)
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
import os
from datetime import datetime as dt
from github import Github
lowerCAmelCase : List[str] = [
'good first issue',
'good second issue',
'good difficult issue',
'enhancement',
'new pipeline/model',
'new scheduler',
'wip',
]
def A_( ):
UpperCamelCase = Github(os.environ['GITHUB_TOKEN'])
UpperCamelCase = g.get_repo('huggingface/diffusers')
UpperCamelCase = repo.get_issues(state='open')
for issue in open_issues:
UpperCamelCase = sorted(issue.get_comments() , key=lambda A: i.created_at , reverse=A)
UpperCamelCase = comments[0] if len(A) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels())
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state='closed')
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state='open')
issue.remove_from_labels('stale')
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels())
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
'This issue has been automatically marked as stale because it has not had '
'recent activity. If you think this still needs to be addressed '
'please comment on this thread.\n\nPlease note that issues that do not follow the '
'[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) '
'are likely to be ignored.')
issue.add_to_labels('stale')
if __name__ == "__main__":
main()
| 3 |
'''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def A_( A : float , A : float , A : int):
UpperCamelCase = x
UpperCamelCase = y
for step in range(A): # noqa: B007
UpperCamelCase = a * a - b * b + x
UpperCamelCase = 2 * a * b + y
UpperCamelCase = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def A_( A : float):
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def A_( A : float):
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(A , 1 , 1))
def A_( A : int = 800 , A : int = 600 , A : float = -0.6 , A : float = 0 , A : float = 3.2 , A : int = 50 , A : bool = True , ):
UpperCamelCase = Image.new('RGB' , (image_width, image_height))
UpperCamelCase = img.load()
# loop through the image-coordinates
for image_x in range(A):
for image_y in range(A):
# determine the figure-coordinates based on the image-coordinates
UpperCamelCase = figure_width / image_width * image_height
UpperCamelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width
UpperCamelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height
UpperCamelCase = get_distance(A , A , A)
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
UpperCamelCase = get_color_coded_rgb(A)
else:
UpperCamelCase = get_black_and_white_rgb(A)
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
lowerCAmelCase : Any = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 3 | 1 |
'''simple docstring'''
import os
lowerCAmelCase : List[str] = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 1_00, 'D': 5_00, 'M': 10_00}
def A_( A : str):
UpperCamelCase = 0
UpperCamelCase = 0
while index < len(A) - 1:
UpperCamelCase = SYMBOLS[numerals[index]]
UpperCamelCase = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def A_( A : int):
UpperCamelCase = ''
UpperCamelCase = num // 1000
numerals += m_count * "M"
num %= 1000
UpperCamelCase = num // 100
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 100
UpperCamelCase = num // 10
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 10
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def A_( A : str = "/p089_roman.txt"):
UpperCamelCase = 0
with open(os.path.dirname(A) + roman_numerals_filename) as filea:
UpperCamelCase = filea.readlines()
for line in lines:
UpperCamelCase = line.strip()
UpperCamelCase = parse_roman_numerals(A)
UpperCamelCase = generate_roman_numerals(A)
savings += len(A) - len(A)
return savings
if __name__ == "__main__":
print(f"""{solution() = }""")
| 3 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowerCAmelCase : Optional[Any] = {
'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : str = [
'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST',
'FalconForCausalLM',
'FalconModel',
'FalconPreTrainedModel',
'FalconForSequenceClassification',
'FalconForTokenClassification',
'FalconForQuestionAnswering',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 3 | 1 |
'''simple docstring'''
def A_( A : list):
for i in range(len(A) - 1 , 0 , -1):
UpperCamelCase = False
for j in range(A , 0 , -1):
if unsorted[j] < unsorted[j - 1]:
UpperCamelCase , UpperCamelCase = unsorted[j - 1], unsorted[j]
UpperCamelCase = True
for j in range(A):
if unsorted[j] > unsorted[j + 1]:
UpperCamelCase , UpperCamelCase = unsorted[j + 1], unsorted[j]
UpperCamelCase = True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip()
lowerCAmelCase : int = [int(item) for item in user_input.split(',')]
print(f"""{cocktail_shaker_sort(unsorted) = }""")
| 3 |
'''simple docstring'''
lowerCAmelCase : Optional[Any] = {
'A': ['B', 'C', 'E'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B', 'D'],
'F': ['C'],
'G': ['C'],
}
def A_( A : dict , A : str , A : Optional[Any]):
UpperCamelCase = set()
# keep track of all the paths to be checked
UpperCamelCase = [[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
UpperCamelCase = queue.pop(0)
# get the last node from the path
UpperCamelCase = path[-1]
if node not in explored:
UpperCamelCase = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
UpperCamelCase = list(A)
new_path.append(A)
queue.append(A)
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(A)
# in case there's no path between the 2 nodes
return []
def A_( A : dict , A : str , A : Tuple):
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
UpperCamelCase = [start]
UpperCamelCase = set(A)
# Keep tab on distances from `start` node.
UpperCamelCase = {start: 0, target: -1}
while queue:
UpperCamelCase = queue.pop(0)
if node == target:
UpperCamelCase = (
dist[node] if dist[target] == -1 else min(dist[target] , dist[node])
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(A)
queue.append(A)
UpperCamelCase = dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
| 3 | 1 |
'''simple docstring'''
def A_( A : int):
UpperCamelCase , UpperCamelCase = [], []
while len(A) > 1:
UpperCamelCase , UpperCamelCase = min(A), max(A)
start.append(A)
end.append(A)
collection.remove(A)
collection.remove(A)
end.reverse()
return start + collection + end
if __name__ == "__main__":
lowerCAmelCase : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip()
lowerCAmelCase : Dict = [int(item) for item in user_input.split(',')]
print(*merge_sort(unsorted), sep=',')
| 3 |
'''simple docstring'''
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class SCREAMING_SNAKE_CASE__ :
def __init__( self )-> Dict:
'''simple docstring'''
UpperCamelCase = ''
UpperCamelCase = ''
UpperCamelCase = []
UpperCamelCase = 0
UpperCamelCase = 256
UpperCamelCase = 0
UpperCamelCase = 0
UpperCamelCase = 0
UpperCamelCase = 0
def UpperCAmelCase_ ( self , A_ )-> str:
'''simple docstring'''
UpperCamelCase = cva.imread(A_ , 0 )
UpperCamelCase = copy.deepcopy(self.img )
UpperCamelCase , UpperCamelCase , UpperCamelCase = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' )
UpperCamelCase = np.sum(A_ )
for i in range(len(A_ ) ):
UpperCamelCase = x[i] / self.k
self.sk += prk
UpperCamelCase = (self.L - 1) * self.sk
if self.rem != 0:
UpperCamelCase = int(last % last )
UpperCamelCase = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(A_ )
UpperCamelCase = int(np.ma.count(self.img ) / self.img[1].size )
UpperCamelCase = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCamelCase = self.img[j][i]
if num != self.last_list[num]:
UpperCamelCase = self.last_list[num]
cva.imwrite('output_data/output.jpg' , self.img )
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
plt.hist(self.img.ravel() , 256 , [0, 256] )
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
cva.imshow('Output-Image' , self.img )
cva.imshow('Input-Image' , self.original_image )
cva.waitKey(5000 )
cva.destroyAllWindows()
if __name__ == "__main__":
lowerCAmelCase : Union[str, Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg')
lowerCAmelCase : str = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 3 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase : List[Any] = {
'configuration_altclip': [
'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP',
'AltCLIPConfig',
'AltCLIPTextConfig',
'AltCLIPVisionConfig',
],
'processing_altclip': ['AltCLIPProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : int = [
'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'AltCLIPPreTrainedModel',
'AltCLIPModel',
'AltCLIPTextModel',
'AltCLIPVisionModel',
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 3 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : int = logging.get_logger(__name__)
lowerCAmelCase : Tuple = {
'microsoft/unispeech-sat-base-100h-libri-ft': (
'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json'
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """unispeech-sat"""
def __init__( self , A_=32 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.1 , A_=0.1 , A_=0.02 , A_=1e-5 , A_="group" , A_="gelu" , A_=(512, 512, 512, 512, 512, 512, 512) , A_=(5, 2, 2, 2, 2, 2, 2) , A_=(10, 3, 3, 3, 3, 2, 2) , A_=False , A_=128 , A_=16 , A_=False , A_=True , A_=0.05 , A_=10 , A_=2 , A_=0.0 , A_=10 , A_=0 , A_=320 , A_=2 , A_=0.1 , A_=100 , A_=256 , A_=256 , A_=0.1 , A_="mean" , A_=False , A_=False , A_=256 , A_=(512, 512, 512, 512, 1500) , A_=(5, 3, 3, 1, 1) , A_=(1, 2, 3, 1, 1) , A_=512 , A_=0 , A_=1 , A_=2 , A_=504 , **A_ , )-> Tuple:
'''simple docstring'''
super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ )
UpperCamelCase = hidden_size
UpperCamelCase = feat_extract_norm
UpperCamelCase = feat_extract_activation
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = conv_bias
UpperCamelCase = num_conv_pos_embeddings
UpperCamelCase = num_conv_pos_embedding_groups
UpperCamelCase = len(self.conv_dim )
UpperCamelCase = num_hidden_layers
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = num_attention_heads
UpperCamelCase = hidden_dropout
UpperCamelCase = attention_dropout
UpperCamelCase = activation_dropout
UpperCamelCase = feat_proj_dropout
UpperCamelCase = final_dropout
UpperCamelCase = layerdrop
UpperCamelCase = layer_norm_eps
UpperCamelCase = initializer_range
UpperCamelCase = vocab_size
UpperCamelCase = num_clusters
UpperCamelCase = do_stable_layer_norm
UpperCamelCase = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCamelCase = apply_spec_augment
UpperCamelCase = mask_time_prob
UpperCamelCase = mask_time_length
UpperCamelCase = mask_time_min_masks
UpperCamelCase = mask_feature_prob
UpperCamelCase = mask_feature_length
UpperCamelCase = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
UpperCamelCase = num_codevectors_per_group
UpperCamelCase = num_codevector_groups
UpperCamelCase = contrastive_logits_temperature
UpperCamelCase = feat_quantizer_dropout
UpperCamelCase = num_negatives
UpperCamelCase = codevector_dim
UpperCamelCase = proj_codevector_dim
UpperCamelCase = diversity_loss_weight
# ctc loss
UpperCamelCase = ctc_loss_reduction
UpperCamelCase = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
UpperCamelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = xvector_output_dim
@property
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 3 | 1 |
'''simple docstring'''
from typing import Any
def A_( A : list):
if not input_list:
return []
UpperCamelCase = [input_list.count(A) for value in input_list]
UpperCamelCase = max(A) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(A) if value == y})
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 |
'''simple docstring'''
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class SCREAMING_SNAKE_CASE__ :
def __init__( self , A_ , A_=100 , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=4 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=None , A_=[0, 1, 2, 3] , )-> Any:
'''simple docstring'''
UpperCamelCase = parent
UpperCamelCase = 100
UpperCamelCase = batch_size
UpperCamelCase = image_size
UpperCamelCase = patch_size
UpperCamelCase = num_channels
UpperCamelCase = is_training
UpperCamelCase = use_labels
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = type_sequence_label_size
UpperCamelCase = initializer_range
UpperCamelCase = scope
UpperCamelCase = out_indices
UpperCamelCase = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCamelCase = (image_size // patch_size) ** 2
UpperCamelCase = num_patches + 1
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = None
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCamelCase = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> List[str]:
'''simple docstring'''
UpperCamelCase = BeitModel(config=A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Any:
'''simple docstring'''
UpperCamelCase = BeitForMaskedImageModeling(config=A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.type_sequence_label_size
UpperCamelCase = BeitForImageClassification(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ , labels=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCamelCase = 1
UpperCamelCase = BeitForImageClassification(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase = model(A_ , labels=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = self.num_labels
UpperCamelCase = BeitForSemanticSegmentation(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
UpperCamelCase = model(A_ , labels=A_ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs
UpperCamelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase):
lowerCAmelCase_ = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
lowerCAmelCase_ = (
{
"""feature-extraction""": BeitModel,
"""image-classification""": BeitForImageClassification,
"""image-segmentation""": BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = BeitModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 )
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='BEiT does not use inputs_embeds' )
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
pass
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(A_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCamelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A_ , nn.Linear ) )
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(A_ )
UpperCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , A_ )
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*A_ )
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A_ )
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*A_ )
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
if not self.model_tester.is_training:
return
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(A_ ), BeitForMaskedImageModeling]:
continue
UpperCamelCase = model_class(A_ )
model.to(A_ )
model.train()
UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ )
UpperCamelCase = model(**A_ ).loss
loss.backward()
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
UpperCamelCase = False
UpperCamelCase = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(A_ ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
UpperCamelCase = model_class(A_ )
model.gradient_checkpointing_enable()
model.to(A_ )
model.train()
UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ )
UpperCamelCase = model(**A_ ).loss
loss.backward()
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = _config_zero_init(A_ )
for model_class in self.all_model_classes:
UpperCamelCase = model_class(config=A_ )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@slow
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase = BeitModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
def A_( ):
UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
@cached_property
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None
@slow
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(A_ )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).pixel_values.to(A_ )
# prepare bool_masked_pos
UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(pixel_values=A_ , bool_masked_pos=A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 196, 8192) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = torch.tensor(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(A_ )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , A_ , atol=1e-2 ) )
@slow
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(A_ )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 1000) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(A_ )
self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) )
UpperCamelCase = 281
self.assertEqual(logits.argmax(-1 ).item() , A_ )
@slow
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to(
A_ )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 21841) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(A_ )
self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) )
UpperCamelCase = 2396
self.assertEqual(logits.argmax(-1 ).item() , A_ )
@slow
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
UpperCamelCase = model.to(A_ )
UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ )
UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' )
UpperCamelCase = Image.open(ds[0]['file'] )
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' )
if is_pillow_less_than_a:
UpperCamelCase = torch.tensor(
[
[[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]],
[[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]],
[[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]],
] , device=A_ , )
else:
UpperCamelCase = torch.tensor(
[
[[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]],
[[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]],
[[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]],
] , device=A_ , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1e-4 ) )
@slow
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
UpperCamelCase = model.to(A_ )
UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ )
UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' )
UpperCamelCase = Image.open(ds[0]['file'] )
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits.detach().cpu()
UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ , target_sizes=[(500, 300)] )
UpperCamelCase = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape , A_ )
UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ )
UpperCamelCase = torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape , A_ )
| 3 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : Optional[int] = logging.get_logger(__name__)
lowerCAmelCase : int = {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json',
# See all REALM models at https://huggingface.co/models?filter=realm
}
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """realm"""
def __init__( self , A_=30522 , A_=768 , A_=128 , A_=12 , A_=12 , A_=8 , A_=3072 , A_="gelu_new" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=256 , A_=10 , A_=1e-3 , A_=5 , A_=320 , A_=13353718 , A_=5000 , A_=1 , A_=0 , A_=2 , **A_ , )-> List[Any]:
'''simple docstring'''
super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ )
# Common config
UpperCamelCase = vocab_size
UpperCamelCase = max_position_embeddings
UpperCamelCase = hidden_size
UpperCamelCase = retriever_proj_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = num_candidates
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = initializer_range
UpperCamelCase = type_vocab_size
UpperCamelCase = layer_norm_eps
# Reader config
UpperCamelCase = span_hidden_size
UpperCamelCase = max_span_width
UpperCamelCase = reader_layer_norm_eps
UpperCamelCase = reader_beam_size
UpperCamelCase = reader_seq_len
# Retrieval config
UpperCamelCase = num_block_records
UpperCamelCase = searcher_beam_size
| 3 |
'''simple docstring'''
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
lowerCAmelCase : Dict = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( enum.Enum):
lowerCAmelCase_ = 0
lowerCAmelCase_ = 1
@add_end_docstrings(snake_case_)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """generated"""
def __init__( self , *A_ , **A_ )-> Optional[int]:
'''simple docstring'''
super().__init__(*A_ , **A_ )
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == 'tf'
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , **A_ , )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = {}
if truncation is not None:
UpperCamelCase = truncation
UpperCamelCase = generate_kwargs
UpperCamelCase = {}
if return_tensors is not None and return_type is None:
UpperCamelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
UpperCamelCase = return_type
if clean_up_tokenization_spaces is not None:
UpperCamelCase = clean_up_tokenization_spaces
if stop_sequence is not None:
UpperCamelCase = self.tokenizer.encode(A_ , add_special_tokens=A_ )
if len(A_ ) > 1:
warnings.warn(
'Stopping on a multiple token sequence is not yet supported on transformers. The first token of'
' the stop sequence will be used as the stop sequence string in the interim.' )
UpperCamelCase = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Optional[int]:
'''simple docstring'''
return True
def UpperCAmelCase_ ( self , *A_ , A_ )-> Any:
'''simple docstring'''
UpperCamelCase = self.model.config.prefix if self.model.config.prefix is not None else ''
if isinstance(args[0] , A_ ):
if self.tokenizer.pad_token_id is None:
raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' )
UpperCamelCase = ([prefix + arg for arg in args[0]],)
UpperCamelCase = True
elif isinstance(args[0] , A_ ):
UpperCamelCase = (prefix + args[0],)
UpperCamelCase = False
else:
raise ValueError(
F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' )
UpperCamelCase = self.tokenizer(*A_ , padding=A_ , truncation=A_ , return_tensors=self.framework )
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self , *A_ , **A_ )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = super().__call__(*A_ , **A_ )
if (
isinstance(args[0] , A_ )
and all(isinstance(A_ , A_ ) for el in args[0] )
and all(len(A_ ) == 1 for res in result )
):
return [res[0] for res in result]
return result
def UpperCAmelCase_ ( self , A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , **A_ )-> Any:
'''simple docstring'''
UpperCamelCase = self._parse_and_tokenize(A_ , truncation=A_ , **A_ )
return inputs
def UpperCAmelCase_ ( self , A_ , **A_ )-> int:
'''simple docstring'''
if self.framework == "pt":
UpperCamelCase , UpperCamelCase = model_inputs['input_ids'].shape
elif self.framework == "tf":
UpperCamelCase , UpperCamelCase = tf.shape(model_inputs['input_ids'] ).numpy()
UpperCamelCase = generate_kwargs.get('min_length' , self.model.config.min_length )
UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length )
self.check_inputs(A_ , generate_kwargs['min_length'] , generate_kwargs['max_length'] )
UpperCamelCase = self.model.generate(**A_ , **A_ )
UpperCamelCase = output_ids.shape[0]
if self.framework == "pt":
UpperCamelCase = output_ids.reshape(A_ , out_b // in_b , *output_ids.shape[1:] )
elif self.framework == "tf":
UpperCamelCase = tf.reshape(A_ , (in_b, out_b // in_b, *output_ids.shape[1:]) )
return {"output_ids": output_ids}
def UpperCAmelCase_ ( self , A_ , A_=ReturnType.TEXT , A_=False )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
UpperCamelCase = {F'''{self.return_name}_token_ids''': output_ids}
elif return_type == ReturnType.TEXT:
UpperCamelCase = {
F'''{self.return_name}_text''': self.tokenizer.decode(
A_ , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , )
}
records.append(A_ )
return records
@add_end_docstrings(snake_case_)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """summary"""
def __call__( self , *A_ , **A_ )-> Optional[int]:
'''simple docstring'''
return super().__call__(*A_ , **A_ )
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> bool:
'''simple docstring'''
if max_length < min_length:
logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' )
if input_length < max_length:
logger.warning(
F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is '''
'a summarization task, where outputs shorter than the input are typically wanted, you might '
F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' )
@add_end_docstrings(snake_case_)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """translation"""
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> List[Any]:
'''simple docstring'''
if input_length > 0.9 * max_length:
logger.warning(
F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider '''
'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' )
return True
def UpperCAmelCase_ ( self , *A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , A_=None , A_=None )-> Dict:
'''simple docstring'''
if getattr(self.tokenizer , '_build_translation_inputs' , A_ ):
return self.tokenizer._build_translation_inputs(
*A_ , return_tensors=self.framework , truncation=A_ , src_lang=A_ , tgt_lang=A_ )
else:
return super()._parse_and_tokenize(*A_ , truncation=A_ )
def UpperCAmelCase_ ( self , A_=None , A_=None , **A_ )-> str:
'''simple docstring'''
UpperCamelCase , UpperCamelCase , UpperCamelCase = super()._sanitize_parameters(**A_ )
if src_lang is not None:
UpperCamelCase = src_lang
if tgt_lang is not None:
UpperCamelCase = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
UpperCamelCase = kwargs.get('task' , self.task )
UpperCamelCase = task.split('_' )
if task and len(A_ ) == 4:
# translation, XX, to YY
UpperCamelCase = items[1]
UpperCamelCase = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self , *A_ , **A_ )-> Any:
'''simple docstring'''
return super().__call__(*A_ , **A_ )
| 3 | 1 |
'''simple docstring'''
import warnings
warnings.warn(
'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: '
'`from accelerate import find_executable_batch_size` to avoid this warning.',
FutureWarning,
)
| 3 |
'''simple docstring'''
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = 0
lowerCAmelCase_ = False
lowerCAmelCase_ = 3.0
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} )
self.assertDictEqual(MockClass(a=2 , b=A_ ).to_kwargs() , {'a': 2, 'b': True} )
self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} )
@require_cuda
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
UpperCamelCase = GradScalerKwargs(init_scale=1024 , growth_factor=2 )
AcceleratorState._reset_state()
UpperCamelCase = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
UpperCamelCase = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 1_024.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 2000 )
self.assertEqual(scaler._enabled , A_ )
@require_multi_gpu
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
execute_subprocess_async(A_ , env=os.environ.copy() )
if __name__ == "__main__":
lowerCAmelCase : Tuple = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True)
lowerCAmelCase : List[str] = Accelerator(kwargs_handlers=[ddp_scaler])
lowerCAmelCase : List[Any] = torch.nn.Linear(1_00, 2_00)
lowerCAmelCase : int = accelerator.prepare(model)
# Check the values changed in kwargs
lowerCAmelCase : Dict = ''
lowerCAmelCase : Dict = model.bucket_bytes_cap // (10_24 * 10_24)
if observed_bucket_cap_map != 15:
error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 3 | 1 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class SCREAMING_SNAKE_CASE__ :
def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=False , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = seq_length
UpperCamelCase = is_training
UpperCamelCase = use_input_mask
UpperCamelCase = use_token_type_ids
UpperCamelCase = use_labels
UpperCamelCase = vocab_size
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = max_position_embeddings
UpperCamelCase = type_vocab_size
UpperCamelCase = type_sequence_label_size
UpperCamelCase = initializer_range
UpperCamelCase = num_labels
UpperCamelCase = num_choices
UpperCamelCase = scope
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase = None
if self.use_input_mask:
UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase = None
if self.use_token_type_ids:
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase = None
UpperCamelCase = None
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , use_stable_embedding=A_ , )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ )-> str:
'''simple docstring'''
UpperCamelCase = OpenLlamaModel(config=A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ , attention_mask=A_ )
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , )-> Tuple:
'''simple docstring'''
UpperCamelCase = True
UpperCamelCase = OpenLlamaModel(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(
A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , )
UpperCamelCase = model(
A_ , attention_mask=A_ , encoder_hidden_states=A_ , )
UpperCamelCase = model(A_ , attention_mask=A_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , )-> str:
'''simple docstring'''
UpperCamelCase = OpenLlamaForCausalLM(config=A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , )-> Any:
'''simple docstring'''
UpperCamelCase = True
UpperCamelCase = True
UpperCamelCase = OpenLlamaForCausalLM(config=A_ )
model.to(A_ )
model.eval()
# first forward pass
UpperCamelCase = model(
A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , use_cache=A_ , )
UpperCamelCase = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCamelCase = torch.cat([input_mask, next_mask] , dim=-1 )
UpperCamelCase = model(
A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , output_hidden_states=A_ , )['hidden_states'][0]
UpperCamelCase = model(
A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , past_key_values=A_ , output_hidden_states=A_ , )['hidden_states'][0]
# select random slice
UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCamelCase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1e-3 ) )
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) ,
) = config_and_inputs
UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase):
lowerCAmelCase_ = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
lowerCAmelCase_ = (OpenLlamaForCausalLM,) if is_torch_available() else ()
lowerCAmelCase_ = (
{
"""feature-extraction""": OpenLlamaModel,
"""text-classification""": OpenLlamaForSequenceClassification,
"""text-generation""": OpenLlamaForCausalLM,
"""zero-shot""": OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = OpenLlamaModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=A_ , hidden_size=37 )
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCamelCase = type
self.model_tester.create_and_check_model(*A_ )
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = 3
UpperCamelCase = input_dict['input_ids']
UpperCamelCase = input_ids.ne(1 ).to(A_ )
UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCamelCase = OpenLlamaForSequenceClassification(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = 3
UpperCamelCase = 'single_label_classification'
UpperCamelCase = input_dict['input_ids']
UpperCamelCase = input_ids.ne(1 ).to(A_ )
UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCamelCase = OpenLlamaForSequenceClassification(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = 3
UpperCamelCase = 'multi_label_classification'
UpperCamelCase = input_dict['input_ids']
UpperCamelCase = input_ids.ne(1 ).to(A_ )
UpperCamelCase = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCamelCase = OpenLlamaForSequenceClassification(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' )
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
pass
@parameterized.expand([('linear',), ('dynamic',)] )
def UpperCAmelCase_ ( self , A_ )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = ids_tensor([1, 10] , config.vocab_size )
UpperCamelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCamelCase = OpenLlamaModel(A_ )
original_model.to(A_ )
original_model.eval()
UpperCamelCase = original_model(A_ ).last_hidden_state
UpperCamelCase = original_model(A_ ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCamelCase = {'type': scaling_type, 'factor': 10.0}
UpperCamelCase = OpenLlamaModel(A_ )
scaled_model.to(A_ )
scaled_model.eval()
UpperCamelCase = scaled_model(A_ ).last_hidden_state
UpperCamelCase = scaled_model(A_ ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(A_ , A_ , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(A_ , A_ , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(A_ , A_ , atol=1e-5 ) )
| 3 |
'''simple docstring'''
from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_):
@register_to_config
def __init__( self , A_ , A_ = None , A_ = None )-> Tuple:
'''simple docstring'''
super().__init__()
UpperCamelCase = learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
UpperCamelCase = torch.zeros(A_ , A_ )
else:
UpperCamelCase = None
UpperCamelCase = torch.nn.Parameter(A_ )
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , )-> Union[str, Any]:
'''simple docstring'''
super().__init__()
self.register_modules(
vqvae=A_ , transformer=A_ , text_encoder=A_ , tokenizer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , )
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Tuple:
'''simple docstring'''
UpperCamelCase = len(A_ ) if isinstance(A_ , A_ ) else 1
# get prompt text embeddings
UpperCamelCase = self.tokenizer(
A_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , )
UpperCamelCase = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'The following part of your input was truncated because CLIP can only handle sequences up to'
F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' )
UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length]
UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=A_ )
# duplicate text embeddings for each generation per prompt
UpperCamelCase = prompt_embeds.repeat_interleave(A_ , dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings
UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(A_ , 1 , 1 )
else:
UpperCamelCase = [''] * batch_size
UpperCamelCase = text_input_ids.shape[-1]
UpperCamelCase = self.tokenizer(
A_ , padding='max_length' , max_length=A_ , truncation=A_ , return_tensors='pt' , )
UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=A_ )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
UpperCamelCase = negative_prompt_embeds.shape[1]
UpperCamelCase = negative_prompt_embeds.repeat(1 , A_ , 1 )
UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__( self , A_ , A_ = 100 , A_ = 5.0 , A_ = 1.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , A_ = None , A_ = 1 , )-> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
if isinstance(A_ , A_ ):
UpperCamelCase = 1
elif isinstance(A_ , A_ ):
UpperCamelCase = len(A_ )
else:
raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(A_ )}''' )
UpperCamelCase = batch_size * num_images_per_prompt
UpperCamelCase = guidance_scale > 1.0
UpperCamelCase = self._encode_prompt(A_ , A_ , A_ )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(A_ , A_ ) or callback_steps <= 0)
):
raise ValueError(
F'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
F''' {type(A_ )}.''' )
# get the initial completely masked latents unless the user supplied it
UpperCamelCase = (batch_size, self.transformer.num_latent_pixels)
if latents is None:
UpperCamelCase = self.transformer.num_vector_embeds - 1
UpperCamelCase = torch.full(A_ , A_ ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,'
F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' )
UpperCamelCase = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(A_ , device=self.device )
UpperCamelCase = self.scheduler.timesteps.to(self.device )
UpperCamelCase = latents
for i, t in enumerate(self.progress_bar(A_ ) ):
# expand the sample if we are doing classifier free guidance
UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
UpperCamelCase = self.transformer(A_ , encoder_hidden_states=A_ , timestep=A_ ).sample
if do_classifier_free_guidance:
UpperCamelCase , UpperCamelCase = model_output.chunk(2 )
UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(A_ , dim=1 , keepdim=A_ )
UpperCamelCase = self.truncate(A_ , A_ )
# remove `log(0)`'s (`-inf`s)
UpperCamelCase = model_output.clamp(-70 )
# compute the previous noisy sample x_t -> x_t-1
UpperCamelCase = self.scheduler.step(A_ , timestep=A_ , sample=A_ , generator=A_ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(A_ , A_ , A_ )
UpperCamelCase = self.vqvae.config.vq_embed_dim
UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
UpperCamelCase = self.vqvae.quantize.get_codebook_entry(A_ , shape=A_ )
UpperCamelCase = self.vqvae.decode(A_ , force_not_quantize=A_ ).sample
UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 )
UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCamelCase = self.numpy_to_pil(A_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=A_ )
def UpperCAmelCase_ ( self , A_ , A_ )-> torch.FloatTensor:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = torch.sort(A_ , 1 , descending=A_ )
UpperCamelCase = torch.exp(A_ )
UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , A_ )
UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 )
UpperCamelCase = keep_mask[:, :-1, :]
UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) )
UpperCamelCase = log_p_x_0.clone()
UpperCamelCase = -torch.inf # -inf = log(0)
return rv
| 3 | 1 |
'''simple docstring'''
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def A_( A : List[Any]):
if isinstance(A , collections.abc.Iterable):
return x
return (x, x)
@require_flax
class SCREAMING_SNAKE_CASE__ :
def UpperCAmelCase_ ( self , A_ , A_ )-> Dict:
'''simple docstring'''
pass
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
pass
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
pass
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> List[Any]:
'''simple docstring'''
UpperCamelCase = np.abs((a - b) ).max()
self.assertLessEqual(A_ , A_ , F'''Difference between torch and flax is {diff} (>= {tol}).''' )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , A_=None , **A_ )-> Dict:
'''simple docstring'''
UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(A_ , A_ )
UpperCamelCase = FlaxVisionTextDualEncoderModel(A_ )
UpperCamelCase = model(input_ids=A_ , pixel_values=A_ , attention_mask=A_ )
self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , A_=None , **A_ )-> Dict:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.get_vision_text_model(A_ , A_ )
UpperCamelCase = {'vision_model': vision_model, 'text_model': text_model}
UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**A_ )
UpperCamelCase = model(input_ids=A_ , pixel_values=A_ , attention_mask=A_ )
self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , A_=None , **A_ )-> Dict:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.get_vision_text_model(A_ , A_ )
UpperCamelCase = {'vision_model': vision_model, 'text_model': text_model}
UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**A_ )
UpperCamelCase = model(input_ids=A_ , pixel_values=A_ , attention_mask=A_ )
UpperCamelCase = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(A_ )
UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(A_ )
UpperCamelCase = model(input_ids=A_ , pixel_values=A_ , attention_mask=A_ )
UpperCamelCase = after_output[0]
UpperCamelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(A_ , 1e-3 )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , A_=None , **A_ )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.get_vision_text_model(A_ , A_ )
UpperCamelCase = {'vision_model': vision_model, 'text_model': text_model}
UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**A_ )
UpperCamelCase = model(
input_ids=A_ , pixel_values=A_ , attention_mask=A_ , output_attentions=A_ )
UpperCamelCase = output.vision_model_output.attentions
self.assertEqual(len(A_ ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCamelCase = to_atuple(vision_model.config.image_size )
UpperCamelCase = to_atuple(vision_model.config.patch_size )
UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
UpperCamelCase = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
UpperCamelCase = output.text_model_output.attentions
self.assertEqual(len(A_ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> str:
'''simple docstring'''
pt_model.to(A_ )
pt_model.eval()
# prepare inputs
UpperCamelCase = inputs_dict
UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
UpperCamelCase = pt_model(**A_ ).to_tuple()
UpperCamelCase = fx_model(**A_ ).to_tuple()
self.assertEqual(len(A_ ) , len(A_ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(A_ , pt_output.numpy() , 4e-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(A_ )
UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(A_ , from_pt=A_ )
UpperCamelCase = fx_model_loaded(**A_ ).to_tuple()
self.assertEqual(len(A_ ) , len(A_ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(A_ , pt_output.numpy() , 4e-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(A_ )
UpperCamelCase = VisionTextDualEncoderModel.from_pretrained(A_ , from_flax=A_ )
pt_model_loaded.to(A_ )
pt_model_loaded.eval()
with torch.no_grad():
UpperCamelCase = pt_model_loaded(**A_ ).to_tuple()
self.assertEqual(len(A_ ) , len(A_ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(A_ , pt_output_loaded.numpy() , 4e-2 )
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> List[Any]:
'''simple docstring'''
UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(A_ , A_ )
UpperCamelCase = VisionTextDualEncoderModel(A_ )
UpperCamelCase = FlaxVisionTextDualEncoderModel(A_ )
UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , A_ )
UpperCamelCase = fx_state
self.check_pt_flax_equivalence(A_ , A_ , A_ )
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> List[Any]:
'''simple docstring'''
UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(A_ , A_ )
UpperCamelCase = VisionTextDualEncoderModel(A_ )
UpperCamelCase = FlaxVisionTextDualEncoderModel(A_ )
UpperCamelCase = load_flax_weights_in_pytorch_model(A_ , fx_model.params )
self.check_pt_flax_equivalence(A_ , A_ , A_ )
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**A_ )
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**A_ )
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = self.prepare_config_and_inputs()
self.check_save_load(**A_ )
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**A_ )
@is_pt_flax_cross_test
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase = config_inputs_dict.pop('vision_config' )
UpperCamelCase = config_inputs_dict.pop('text_config' )
UpperCamelCase = config_inputs_dict
self.check_equivalence_pt_to_flax(A_ , A_ , A_ )
self.check_equivalence_flax_to_pt(A_ , A_ , A_ )
@slow
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.get_pretrained_model_and_inputs()
UpperCamelCase = model_a(**A_ )
UpperCamelCase = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(A_ )
UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(A_ )
UpperCamelCase = model_a(**A_ )
UpperCamelCase = after_outputs[0]
UpperCamelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(A_ , 1e-5 )
@require_flax
class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase):
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-bert' , vision_from_pt=A_ , text_from_pt=A_ , )
UpperCamelCase = 13
UpperCamelCase = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
UpperCamelCase = random_attention_mask([batch_size, 4] )
UpperCamelCase = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask}
return model, inputs
def UpperCAmelCase_ ( self , A_ , A_ )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = FlaxViTModel(A_ )
UpperCamelCase = FlaxBertModel(A_ )
return vision_model, text_model
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = FlaxViTModelTester(self )
UpperCamelCase = FlaxBertModelTester(self )
UpperCamelCase = vit_model_tester.prepare_config_and_inputs()
UpperCamelCase = bert_model_tester.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase = vision_config_and_inputs
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase):
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'hf-internal-testing/tiny-random-clip' , 'hf-internal-testing/tiny-bert' , vision_from_pt=A_ , text_from_pt=A_ , )
UpperCamelCase = 13
UpperCamelCase = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
UpperCamelCase = random_attention_mask([batch_size, 4] )
UpperCamelCase = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask}
return model, inputs
def UpperCAmelCase_ ( self , A_ , A_ )-> List[str]:
'''simple docstring'''
UpperCamelCase = FlaxCLIPVisionModel(A_ )
UpperCamelCase = FlaxBertModel(A_ )
return vision_model, text_model
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase = FlaxCLIPVisionModelTester(self )
UpperCamelCase = FlaxBertModelTester(self )
UpperCamelCase = clip_model_tester.prepare_config_and_inputs()
UpperCamelCase = bert_model_tester.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase = vision_config_and_inputs
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
@slow
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' , logit_scale_init_value=1.0 )
UpperCamelCase = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' )
UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
UpperCamelCase = processor(
text=['una foto di un gatto', 'una foto di un cane'] , images=A_ , padding=A_ , return_tensors='np' )
UpperCamelCase = model(**A_ )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
UpperCamelCase = np.array([[1.2_284_727, 0.3_104_122]] )
self.assertTrue(np.allclose(outputs.logits_per_image , A_ , atol=1e-3 ) )
| 3 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase : Union[str, Any] = {
'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'],
'processing_git': ['GitProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : List[Any] = [
'GIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GitForCausalLM',
'GitModel',
'GitPreTrainedModel',
'GitVisionModel',
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 3 | 1 |
'''simple docstring'''
def A_( A : list[int]):
UpperCamelCase = []
if len(A) == 1:
return [nums.copy()]
for _ in range(len(A)):
UpperCamelCase = nums.pop(0)
UpperCamelCase = permute(A)
for perm in permutations:
perm.append(A)
result.extend(A)
nums.append(A)
return result
def A_( A : str):
def backtrack(A : str):
if start == len(A) - 1:
output.append(nums[:])
else:
for i in range(A , len(A)):
UpperCamelCase , UpperCamelCase = nums[i], nums[start]
backtrack(start + 1)
UpperCamelCase , UpperCamelCase = nums[i], nums[start] # backtrack
UpperCamelCase = []
backtrack(0)
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
lowerCAmelCase : Dict = permutea([1, 2, 3])
print(res)
doctest.testmod()
| 3 |
'''simple docstring'''
import uuid
from typing import Any, Dict, List, Optional, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ :
def __init__( self , A_ = None , A_ = None , A_=None , A_=None )-> Optional[Any]:
'''simple docstring'''
if not conversation_id:
UpperCamelCase = uuid.uuida()
if past_user_inputs is None:
UpperCamelCase = []
if generated_responses is None:
UpperCamelCase = []
UpperCamelCase = conversation_id
UpperCamelCase = past_user_inputs
UpperCamelCase = generated_responses
UpperCamelCase = text
def __eq__( self , A_ )-> List[Any]:
'''simple docstring'''
if not isinstance(A_ , A_ ):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def UpperCAmelCase_ ( self , A_ , A_ = False )-> int:
'''simple docstring'''
if self.new_user_input:
if overwrite:
logger.warning(
F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten '''
F'''with: "{text}".''' )
UpperCamelCase = text
else:
logger.warning(
F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input '''
F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' )
else:
UpperCamelCase = text
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input )
UpperCamelCase = None
def UpperCAmelCase_ ( self , A_ )-> int:
'''simple docstring'''
self.generated_responses.append(A_ )
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__( self )-> Any:
'''simple docstring'''
UpperCamelCase = F'''Conversation id: {self.uuid} \n'''
for is_user, text in self.iter_texts():
UpperCamelCase = 'user' if is_user else 'bot'
output += F'''{name} >> {text} \n'''
return output
@add_end_docstrings(
snake_case_ , R"""
min_length_for_response (`int`, *optional*, defaults to 32):
The minimum length (in number of tokens) for a response.
minimum_tokens (`int`, *optional*, defaults to 10):
The minimum length of tokens to leave for a response.
""" , )
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , *A_ , **A_ )-> Any:
'''simple docstring'''
super().__init__(*A_ , **A_ )
if self.tokenizer.pad_token_id is None:
UpperCamelCase = self.tokenizer.eos_token
def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , **A_ )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = {}
UpperCamelCase = {}
UpperCamelCase = {}
if min_length_for_response is not None:
UpperCamelCase = min_length_for_response
if minimum_tokens is not None:
UpperCamelCase = minimum_tokens
if "max_length" in generate_kwargs:
UpperCamelCase = generate_kwargs['max_length']
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
UpperCamelCase = clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(A_ )
return preprocess_params, forward_params, postprocess_params
def __call__( self , A_ , A_=0 , **A_ )-> Any:
'''simple docstring'''
UpperCamelCase = super().__call__(A_ , num_workers=A_ , **A_ )
if isinstance(A_ , A_ ) and len(A_ ) == 1:
return outputs[0]
return outputs
def UpperCAmelCase_ ( self , A_ , A_=32 )-> Dict[str, Any]:
'''simple docstring'''
if not isinstance(A_ , A_ ):
raise ValueError('ConversationalPipeline, expects Conversation as inputs' )
if conversation.new_user_input is None:
raise ValueError(
F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. '''
'Add user inputs with the conversation\'s `add_user_input` method' )
if hasattr(self.tokenizer , '_build_conversation_input_ids' ):
UpperCamelCase = self.tokenizer._build_conversation_input_ids(A_ )
else:
# If the tokenizer cannot handle conversations, we default to only the old version
UpperCamelCase = self._legacy_parse_and_tokenize(A_ )
if self.framework == "pt":
UpperCamelCase = torch.LongTensor([input_ids] )
elif self.framework == "tf":
UpperCamelCase = tf.constant([input_ids] )
return {"input_ids": input_ids, "conversation": conversation}
def UpperCAmelCase_ ( self , A_ , A_=10 , **A_ )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length )
UpperCamelCase = model_inputs['input_ids'].shape[1]
if max_length - minimum_tokens < n:
logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' )
UpperCamelCase = max_length - minimum_tokens
UpperCamelCase = model_inputs['input_ids'][:, -trim:]
if "attention_mask" in model_inputs:
UpperCamelCase = model_inputs['attention_mask'][:, -trim:]
UpperCamelCase = model_inputs.pop('conversation' )
UpperCamelCase = max_length
UpperCamelCase = self.model.generate(**A_ , **A_ )
if self.model.config.is_encoder_decoder:
UpperCamelCase = 1
else:
UpperCamelCase = n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def UpperCAmelCase_ ( self , A_ , A_=True )-> Tuple:
'''simple docstring'''
UpperCamelCase = model_outputs['output_ids']
UpperCamelCase = self.tokenizer.decode(
output_ids[0] , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , )
UpperCamelCase = model_outputs['conversation']
conversation.mark_processed()
conversation.append_response(A_ )
return conversation
def UpperCAmelCase_ ( self , A_ )-> Dict:
'''simple docstring'''
UpperCamelCase = self.tokenizer.eos_token_id
UpperCamelCase = []
for is_user, text in conversation.iter_texts():
if eos_token_id is not None:
input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) + [eos_token_id] )
else:
input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) )
if len(A_ ) > self.tokenizer.model_max_length:
UpperCamelCase = input_ids[-self.tokenizer.model_max_length :]
return input_ids
| 3 | 1 |
'''simple docstring'''
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 3 |
'''simple docstring'''
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print('Googling.....')
lowerCAmelCase : List[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:])
lowerCAmelCase : List[Any] = requests.get(url, headers={'UserAgent': UserAgent().random})
# res.raise_for_status()
with open('project1a.html', 'wb') as out_file: # only for knowing the class
for data in res.iter_content(1_00_00):
out_file.write(data)
lowerCAmelCase : Tuple = BeautifulSoup(res.text, 'html.parser')
lowerCAmelCase : List[Any] = list(soup.select('.eZt8xd'))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get('href'))
else:
webbrowser.open(f"""https://google.com{link.get('href')}""")
| 3 | 1 |
'''simple docstring'''
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowerCAmelCase : Dict = 16
lowerCAmelCase : List[str] = 32
def A_( A : Accelerator , A : int = 16):
UpperCamelCase = AutoTokenizer.from_pretrained('bert-base-cased')
UpperCamelCase = load_dataset('glue' , 'mrpc')
def tokenize_function(A : str):
# max_length=None => use the model max length (it's actually the default)
UpperCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A , max_length=A)
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
UpperCamelCase = datasets.map(
A , batched=A , remove_columns=['idx', 'sentence1', 'sentence2'] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCamelCase = tokenized_datasets.rename_column('label' , 'labels')
def collate_fn(A : List[Any]):
# On TPU it's best to pad everything to the same length or training will be very slow.
UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
UpperCamelCase = 16
elif accelerator.mixed_precision != "no":
UpperCamelCase = 8
else:
UpperCamelCase = None
return tokenizer.pad(
A , padding='longest' , max_length=A , pad_to_multiple_of=A , return_tensors='pt' , )
# Instantiate dataloaders.
UpperCamelCase = DataLoader(
tokenized_datasets['train'] , shuffle=A , collate_fn=A , batch_size=A)
UpperCamelCase = DataLoader(
tokenized_datasets['validation'] , shuffle=A , collate_fn=A , batch_size=A)
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
lowerCAmelCase : Dict = mocked_dataloaders # noqa: F811
def A_( A : Tuple , A : Union[str, Any]):
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS' , A) == "1":
UpperCamelCase = 2
# Initialize accelerator
UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision)
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCamelCase = config['lr']
UpperCamelCase = int(config['num_epochs'])
UpperCamelCase = int(config['seed'])
UpperCamelCase = int(config['batch_size'])
UpperCamelCase = evaluate.load('glue' , 'mrpc')
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=A)
def inner_training_loop(A : Any):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(A)
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=A)
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCamelCase = model.to(accelerator.device)
# Instantiate optimizer
UpperCamelCase = AdamW(params=model.parameters() , lr=A)
UpperCamelCase , UpperCamelCase = get_dataloaders(A , A)
# Instantiate scheduler
UpperCamelCase = get_linear_schedule_with_warmup(
optimizer=A , num_warmup_steps=100 , num_training_steps=(len(A) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare(
A , A , A , A , A)
# Now we train the model
for epoch in range(A):
model.train()
for step, batch in enumerate(A):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device)
UpperCamelCase = model(**A)
UpperCamelCase = outputs.loss
accelerator.backward(A)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(A):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device)
with torch.no_grad():
UpperCamelCase = model(**A)
UpperCamelCase = outputs.logits.argmax(dim=-1)
UpperCamelCase , UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['labels']))
metric.add_batch(
predictions=A , references=A , )
UpperCamelCase = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , A)
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def A_( ):
UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script.')
parser.add_argument(
'--mixed_precision' , type=A , default=A , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.' , )
parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.')
UpperCamelCase = parser.parse_args()
UpperCamelCase = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16}
training_function(A , A)
if __name__ == "__main__":
main()
| 3 |
'''simple docstring'''
import numpy as np
def A_( A : str , A : Optional[Any] , A : Tuple , A : Optional[int] , A : str):
UpperCamelCase = int(np.ceil((x_end - xa) / h))
UpperCamelCase = np.zeros((n + 1,))
UpperCamelCase = ya
UpperCamelCase = xa
for k in range(A):
UpperCamelCase = f(A , y[k])
UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka)
UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka)
UpperCamelCase = f(x + h , y[k] + h * ka)
UpperCamelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka)
x += h
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase : Dict = logging.get_logger(__name__)
lowerCAmelCase : Optional[Any] = {
'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json',
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """yolos"""
def __init__( self , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.0 , A_=0.0 , A_=0.02 , A_=1e-12 , A_=[512, 864] , A_=16 , A_=3 , A_=True , A_=100 , A_=True , A_=False , A_=1 , A_=5 , A_=2 , A_=5 , A_=2 , A_=0.1 , **A_ , )-> Tuple:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = initializer_range
UpperCamelCase = layer_norm_eps
UpperCamelCase = image_size
UpperCamelCase = patch_size
UpperCamelCase = num_channels
UpperCamelCase = qkv_bias
UpperCamelCase = num_detection_tokens
UpperCamelCase = use_mid_position_embeddings
UpperCamelCase = auxiliary_loss
# Hungarian matcher
UpperCamelCase = class_cost
UpperCamelCase = bbox_cost
UpperCamelCase = giou_cost
# Loss coefficients
UpperCamelCase = bbox_loss_coefficient
UpperCamelCase = giou_loss_coefficient
UpperCamelCase = eos_coefficient
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = version.parse("""1.11""")
@property
def UpperCAmelCase_ ( self )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def UpperCAmelCase_ ( self )-> float:
'''simple docstring'''
return 1e-4
@property
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
return 12
| 3 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=snake_case_)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True})
lowerCAmelCase_ = Features({"""text""": Value("""string""")})
lowerCAmelCase_ = Features({})
lowerCAmelCase_ = "text"
@property
def UpperCAmelCase_ ( self )-> Dict[str, str]:
'''simple docstring'''
return {self.text_column: "text"}
| 3 | 1 |
'''simple docstring'''
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize('dataset_size' , [None, 400 * 2**20, 600 * 2**20])
@pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 100 * 2**20, 900 * 2**20])
def A_( A : str , A : List[Any] , A : Tuple):
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , A)
UpperCamelCase = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
UpperCamelCase = dataset_size < in_memory_max_size
else:
UpperCamelCase = False
UpperCamelCase = is_small_dataset(A)
assert result == expected
| 3 |
'''simple docstring'''
from __future__ import annotations
lowerCAmelCase : Union[str, Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0]
lowerCAmelCase : List[str] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1]
def A_( A : list[float]):
UpperCamelCase = []
UpperCamelCase = len(A)
for i in range(A):
UpperCamelCase = -1
for j in range(i + 1 , A):
if arr[i] < arr[j]:
UpperCamelCase = arr[j]
break
result.append(A)
return result
def A_( A : list[float]):
UpperCamelCase = []
for i, outer in enumerate(A):
UpperCamelCase = -1
for inner in arr[i + 1 :]:
if outer < inner:
UpperCamelCase = inner
break
result.append(A)
return result
def A_( A : list[float]):
UpperCamelCase = len(A)
UpperCamelCase = []
UpperCamelCase = [-1] * arr_size
for index in reversed(range(A)):
if stack:
while stack[-1] <= arr[index]:
stack.pop()
if not stack:
break
if stack:
UpperCamelCase = stack[-1]
stack.append(arr[index])
return result
if __name__ == "__main__":
from doctest import testmod
from timeit import timeit
testmod()
print(next_greatest_element_slow(arr))
print(next_greatest_element_fast(arr))
print(next_greatest_element(arr))
lowerCAmelCase : Optional[Any] = (
'from __main__ import arr, next_greatest_element_slow, '
'next_greatest_element_fast, next_greatest_element'
)
print(
'next_greatest_element_slow():',
timeit('next_greatest_element_slow(arr)', setup=setup),
)
print(
'next_greatest_element_fast():',
timeit('next_greatest_element_fast(arr)', setup=setup),
)
print(
' next_greatest_element():',
timeit('next_greatest_element(arr)', setup=setup),
)
| 3 | 1 |
'''simple docstring'''
import pytest
from datasets import inspect_metric, list_metrics, load_metric
@pytest.fixture
def A_( A : Union[str, Any]):
monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set())
@pytest.fixture
def A_( A : Dict):
class SCREAMING_SNAKE_CASE__ :
def __init__( self , A_ )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = metric_id
class SCREAMING_SNAKE_CASE__ :
lowerCAmelCase_ = [MetricMock(snake_case_) for metric_id in ["""accuracy""", """mse""", """precision""", """codeparrot/apps_metric"""]]
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
return self._metrics
monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock())
@pytest.mark.parametrize(
'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))])
def A_( A : int , A : List[str] , A : Union[str, Any] , A : List[str] , A : Tuple):
if "tmp_path" in args:
UpperCamelCase = tuple(arg if arg != 'tmp_path' else tmp_path for arg in args)
with pytest.warns(A , match='https://huggingface.co/docs/evaluate'):
func(*A)
| 3 |
'''simple docstring'''
from string import ascii_lowercase, ascii_uppercase
def A_( A : str):
if not sentence:
return ""
UpperCamelCase = dict(zip(A , A))
return lower_to_upper.get(sentence[0] , sentence[0]) + sentence[1:]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 3 | 1 |
'''simple docstring'''
def A_( A : int):
UpperCamelCase = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(27))
print(perfect_cube(4))
| 3 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
lowerCAmelCase : Dict = logging.get_logger(__name__)
# General docstring
lowerCAmelCase : str = 'RegNetConfig'
# Base docstring
lowerCAmelCase : str = 'facebook/regnet-y-040'
lowerCAmelCase : Dict = [1, 10_88, 7, 7]
# Image classification docstring
lowerCAmelCase : Dict = 'facebook/regnet-y-040'
lowerCAmelCase : int = 'tabby, tabby cat'
lowerCAmelCase : int = [
'facebook/regnet-y-040',
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ = 3 , A_ = 1 , A_ = 1 , A_ = "relu" , **A_ , )-> str:
'''simple docstring'''
super().__init__(**A_ )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
UpperCamelCase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
UpperCamelCase = tf.keras.layers.ConvaD(
filters=A_ , kernel_size=A_ , strides=A_ , padding='VALID' , groups=A_ , use_bias=A_ , name='convolution' , )
UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' )
UpperCamelCase = ACTaFN[activation] if activation is not None else tf.identity
def UpperCAmelCase_ ( self , A_ )-> Any:
'''simple docstring'''
UpperCamelCase = self.convolution(self.padding(A_ ) )
UpperCamelCase = self.normalization(A_ )
UpperCamelCase = self.activation(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , **A_ )-> Optional[Any]:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = config.num_channels
UpperCamelCase = TFRegNetConvLayer(
out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , )
def UpperCAmelCase_ ( self , A_ )-> List[Any]:
'''simple docstring'''
UpperCamelCase = shape_list(A_ )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
UpperCamelCase = tf.transpose(A_ , perm=(0, 2, 3, 1) )
UpperCamelCase = self.embedder(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ = 2 , **A_ )-> List[Any]:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = tf.keras.layers.ConvaD(
filters=A_ , kernel_size=1 , strides=A_ , use_bias=A_ , name='convolution' )
UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' )
def UpperCAmelCase_ ( self , A_ , A_ = False )-> tf.Tensor:
'''simple docstring'''
return self.normalization(self.convolution(A_ ) , training=A_ )
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ , **A_ )-> Optional[Any]:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' )
UpperCamelCase = [
tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='relu' , name='attention.0' ),
tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='sigmoid' , name='attention.2' ),
]
def UpperCAmelCase_ ( self , A_ )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.pooler(A_ )
for layer_module in self.attention:
UpperCamelCase = layer_module(A_ )
UpperCamelCase = hidden_state * pooled
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Dict:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = in_channels != out_channels or stride != 1
UpperCamelCase = max(1 , out_channels // config.groups_width )
UpperCamelCase = (
TFRegNetShortCut(A_ , stride=A_ , name='shortcut' )
if should_apply_shortcut
else tf.keras.layers.Activation('linear' , name='shortcut' )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
UpperCamelCase = [
TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ),
TFRegNetConvLayer(
A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ),
TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.2' ),
]
UpperCamelCase = ACTaFN[config.hidden_act]
def UpperCAmelCase_ ( self , A_ )-> Tuple:
'''simple docstring'''
UpperCamelCase = hidden_state
for layer_module in self.layers:
UpperCamelCase = layer_module(A_ )
UpperCamelCase = self.shortcut(A_ )
hidden_state += residual
UpperCamelCase = self.activation(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Any:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = in_channels != out_channels or stride != 1
UpperCamelCase = max(1 , out_channels // config.groups_width )
UpperCamelCase = (
TFRegNetShortCut(A_ , stride=A_ , name='shortcut' )
if should_apply_shortcut
else tf.keras.layers.Activation('linear' , name='shortcut' )
)
UpperCamelCase = [
TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ),
TFRegNetConvLayer(
A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ),
TFRegNetSELayer(A_ , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ),
TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.3' ),
]
UpperCamelCase = ACTaFN[config.hidden_act]
def UpperCAmelCase_ ( self , A_ )-> List[Any]:
'''simple docstring'''
UpperCamelCase = hidden_state
for layer_module in self.layers:
UpperCamelCase = layer_module(A_ )
UpperCamelCase = self.shortcut(A_ )
hidden_state += residual
UpperCamelCase = self.activation(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ , A_ , A_ = 2 , A_ = 2 , **A_ )-> Dict:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer
UpperCamelCase = [
# downsampling is done in the first layer with stride of 2
layer(A_ , A_ , A_ , stride=A_ , name='layers.0' ),
*[layer(A_ , A_ , A_ , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )],
]
def UpperCAmelCase_ ( self , A_ )-> List[Any]:
'''simple docstring'''
for layer_module in self.layers:
UpperCamelCase = layer_module(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , **A_ )-> str:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
A_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) )
UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(A_ , config.depths[1:] ) ):
self.stages.append(TFRegNetStage(A_ , A_ , A_ , depth=A_ , name=F'''stages.{i+1}''' ) )
def UpperCAmelCase_ ( self , A_ , A_ = False , A_ = True )-> TFBaseModelOutputWithNoAttention:
'''simple docstring'''
UpperCamelCase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
UpperCamelCase = hidden_states + (hidden_state,)
UpperCamelCase = stage_module(A_ )
if output_hidden_states:
UpperCamelCase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=A_ , hidden_states=A_ )
@keras_serializable
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
lowerCAmelCase_ = RegNetConfig
def __init__( self , A_ , **A_ )-> Union[str, Any]:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = config
UpperCamelCase = TFRegNetEmbeddings(A_ , name='embedder' )
UpperCamelCase = TFRegNetEncoder(A_ , name='encoder' )
UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' )
@unpack_inputs
def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_ = False , )-> TFBaseModelOutputWithPoolingAndNoAttention:
'''simple docstring'''
UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
UpperCamelCase = self.embedder(A_ , training=A_ )
UpperCamelCase = self.encoder(
A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ )
UpperCamelCase = encoder_outputs[0]
UpperCamelCase = self.pooler(A_ )
# Change to NCHW output format have uniformity in the modules
UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) )
UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
UpperCamelCase = tuple([tf.transpose(A_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=A_ , pooler_output=A_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , )
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = RegNetConfig
lowerCAmelCase_ = """regnet"""
lowerCAmelCase_ = """pixel_values"""
@property
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )}
lowerCAmelCase : str = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowerCAmelCase : List[str] = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"""The bare RegNet model outputting raw features without any specific head on top.""" , snake_case_ , )
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ , *A_ , **A_ )-> List[Any]:
'''simple docstring'''
super().__init__(A_ , *A_ , **A_ )
UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' )
@unpack_inputs
@add_start_docstrings_to_model_forward(A_ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_=False , )-> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]:
'''simple docstring'''
UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
UpperCamelCase = self.regnet(
pixel_values=A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ , )
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , )
@add_start_docstrings(
"""
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""" , snake_case_ , )
class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_):
def __init__( self , A_ , *A_ , **A_ )-> str:
'''simple docstring'''
super().__init__(A_ , *A_ , **A_ )
UpperCamelCase = config.num_labels
UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' )
# classification head
UpperCamelCase = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(A_ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def UpperCAmelCase_ ( self , A_ = None , A_ = None , A_ = None , A_ = None , A_=False , )-> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
'''simple docstring'''
UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
UpperCamelCase = self.regnet(
A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ )
UpperCamelCase = outputs.pooler_output if return_dict else outputs[1]
UpperCamelCase = self.classifier[0](A_ )
UpperCamelCase = self.classifier[1](A_ )
UpperCamelCase = None if labels is None else self.hf_compute_loss(labels=A_ , logits=A_ )
if not return_dict:
UpperCamelCase = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=A_ , logits=A_ , hidden_states=outputs.hidden_states )
| 3 | 1 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : int = logging.get_logger(__name__)
lowerCAmelCase : Tuple = {
'microsoft/unispeech-sat-base-100h-libri-ft': (
'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json'
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """unispeech-sat"""
def __init__( self , A_=32 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.1 , A_=0.1 , A_=0.02 , A_=1e-5 , A_="group" , A_="gelu" , A_=(512, 512, 512, 512, 512, 512, 512) , A_=(5, 2, 2, 2, 2, 2, 2) , A_=(10, 3, 3, 3, 3, 2, 2) , A_=False , A_=128 , A_=16 , A_=False , A_=True , A_=0.05 , A_=10 , A_=2 , A_=0.0 , A_=10 , A_=0 , A_=320 , A_=2 , A_=0.1 , A_=100 , A_=256 , A_=256 , A_=0.1 , A_="mean" , A_=False , A_=False , A_=256 , A_=(512, 512, 512, 512, 1500) , A_=(5, 3, 3, 1, 1) , A_=(1, 2, 3, 1, 1) , A_=512 , A_=0 , A_=1 , A_=2 , A_=504 , **A_ , )-> Tuple:
'''simple docstring'''
super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ )
UpperCamelCase = hidden_size
UpperCamelCase = feat_extract_norm
UpperCamelCase = feat_extract_activation
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = conv_bias
UpperCamelCase = num_conv_pos_embeddings
UpperCamelCase = num_conv_pos_embedding_groups
UpperCamelCase = len(self.conv_dim )
UpperCamelCase = num_hidden_layers
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = num_attention_heads
UpperCamelCase = hidden_dropout
UpperCamelCase = attention_dropout
UpperCamelCase = activation_dropout
UpperCamelCase = feat_proj_dropout
UpperCamelCase = final_dropout
UpperCamelCase = layerdrop
UpperCamelCase = layer_norm_eps
UpperCamelCase = initializer_range
UpperCamelCase = vocab_size
UpperCamelCase = num_clusters
UpperCamelCase = do_stable_layer_norm
UpperCamelCase = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCamelCase = apply_spec_augment
UpperCamelCase = mask_time_prob
UpperCamelCase = mask_time_length
UpperCamelCase = mask_time_min_masks
UpperCamelCase = mask_feature_prob
UpperCamelCase = mask_feature_length
UpperCamelCase = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
UpperCamelCase = num_codevectors_per_group
UpperCamelCase = num_codevector_groups
UpperCamelCase = contrastive_logits_temperature
UpperCamelCase = feat_quantizer_dropout
UpperCamelCase = num_negatives
UpperCamelCase = codevector_dim
UpperCamelCase = proj_codevector_dim
UpperCamelCase = diversity_loss_weight
# ctc loss
UpperCamelCase = ctc_loss_reduction
UpperCamelCase = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
UpperCamelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = xvector_output_dim
@property
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 3 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...feature_extraction_utils import FeatureExtractionMixin
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType, logging
lowerCAmelCase : Any = logging.get_logger(__name__)
lowerCAmelCase : Optional[int] = {
'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json',
# See all Perceiver models at https://huggingface.co/models?filter=perceiver
}
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """perceiver"""
def __init__( self , A_=256 , A_=1280 , A_=768 , A_=1 , A_=26 , A_=8 , A_=8 , A_=None , A_=None , A_="kv" , A_=1 , A_=1 , A_="gelu" , A_=0.1 , A_=0.02 , A_=1e-12 , A_=True , A_=262 , A_=2048 , A_=56 , A_=[368, 496] , A_=16 , A_=1920 , A_=16 , A_=[1, 16, 224, 224] , **A_ , )-> str:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = num_latents
UpperCamelCase = d_latents
UpperCamelCase = d_model
UpperCamelCase = num_blocks
UpperCamelCase = num_self_attends_per_block
UpperCamelCase = num_self_attention_heads
UpperCamelCase = num_cross_attention_heads
UpperCamelCase = qk_channels
UpperCamelCase = v_channels
UpperCamelCase = cross_attention_shape_for_attention
UpperCamelCase = self_attention_widening_factor
UpperCamelCase = cross_attention_widening_factor
UpperCamelCase = hidden_act
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = initializer_range
UpperCamelCase = layer_norm_eps
UpperCamelCase = use_query_residual
# masked language modeling attributes
UpperCamelCase = vocab_size
UpperCamelCase = max_position_embeddings
# image classification attributes
UpperCamelCase = image_size
# flow attributes
UpperCamelCase = train_size
# multimodal autoencoding attributes
UpperCamelCase = num_frames
UpperCamelCase = audio_samples_per_frame
UpperCamelCase = samples_per_patch
UpperCamelCase = output_shape
class SCREAMING_SNAKE_CASE__ ( snake_case_):
@property
def UpperCAmelCase_ ( self )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('inputs', dynamic_axis),
('attention_mask', dynamic_axis),
] )
@property
def UpperCAmelCase_ ( self )-> float:
'''simple docstring'''
return 1e-4
def UpperCAmelCase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = -1 , A_ = False , A_ = None , A_ = 3 , A_ = 40 , A_ = 40 , )-> Mapping[str, Any]:
'''simple docstring'''
if isinstance(A_ , A_ ):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCamelCase = compute_effective_axis_dimension(
A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCamelCase = preprocessor.num_special_tokens_to_add(A_ )
UpperCamelCase = compute_effective_axis_dimension(
A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ )
# Generate dummy inputs according to compute batch and sequence
UpperCamelCase = [' '.join(['a'] ) * seq_length] * batch_size
UpperCamelCase = dict(preprocessor(A_ , return_tensors=A_ ) )
UpperCamelCase = inputs.pop('input_ids' )
return inputs
elif isinstance(A_ , A_ ) and preprocessor.model_input_names[0] == "pixel_values":
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCamelCase = compute_effective_axis_dimension(A_ , fixed_dimension=OnnxConfig.default_fixed_batch )
UpperCamelCase = self._generate_dummy_images(A_ , A_ , A_ , A_ )
UpperCamelCase = dict(preprocessor(images=A_ , return_tensors=A_ ) )
UpperCamelCase = inputs.pop('pixel_values' )
return inputs
else:
raise ValueError(
'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
| 3 | 1 |
'''simple docstring'''
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class SCREAMING_SNAKE_CASE__ :
def __init__( self )-> Dict:
'''simple docstring'''
UpperCamelCase = ''
UpperCamelCase = ''
UpperCamelCase = []
UpperCamelCase = 0
UpperCamelCase = 256
UpperCamelCase = 0
UpperCamelCase = 0
UpperCamelCase = 0
UpperCamelCase = 0
def UpperCAmelCase_ ( self , A_ )-> str:
'''simple docstring'''
UpperCamelCase = cva.imread(A_ , 0 )
UpperCamelCase = copy.deepcopy(self.img )
UpperCamelCase , UpperCamelCase , UpperCamelCase = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' )
UpperCamelCase = np.sum(A_ )
for i in range(len(A_ ) ):
UpperCamelCase = x[i] / self.k
self.sk += prk
UpperCamelCase = (self.L - 1) * self.sk
if self.rem != 0:
UpperCamelCase = int(last % last )
UpperCamelCase = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(A_ )
UpperCamelCase = int(np.ma.count(self.img ) / self.img[1].size )
UpperCamelCase = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCamelCase = self.img[j][i]
if num != self.last_list[num]:
UpperCamelCase = self.last_list[num]
cva.imwrite('output_data/output.jpg' , self.img )
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
plt.hist(self.img.ravel() , 256 , [0, 256] )
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
cva.imshow('Output-Image' , self.img )
cva.imshow('Input-Image' , self.original_image )
cva.waitKey(5000 )
cva.destroyAllWindows()
if __name__ == "__main__":
lowerCAmelCase : Union[str, Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg')
lowerCAmelCase : str = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 3 |
'''simple docstring'''
from ....configuration_utils import PretrainedConfig
from ....utils import logging
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
lowerCAmelCase : Dict = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """mctct"""
def __init__( self , A_=8065 , A_=1536 , A_=36 , A_=6144 , A_=4 , A_=384 , A_=920 , A_=1e-5 , A_=0.3 , A_="relu" , A_=0.02 , A_=0.3 , A_=0.3 , A_=1 , A_=0 , A_=2 , A_=1 , A_=0.3 , A_=1 , A_=(7,) , A_=(3,) , A_=80 , A_=1 , A_=None , A_="sum" , A_=False , **A_ , )-> str:
'''simple docstring'''
super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ )
UpperCamelCase = vocab_size
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = intermediate_size
UpperCamelCase = num_attention_heads
UpperCamelCase = attention_head_dim
UpperCamelCase = max_position_embeddings
UpperCamelCase = layer_norm_eps
UpperCamelCase = layerdrop
UpperCamelCase = hidden_act
UpperCamelCase = initializer_range
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = pad_token_id
UpperCamelCase = bos_token_id
UpperCamelCase = eos_token_id
UpperCamelCase = conv_glu_dim
UpperCamelCase = conv_dropout
UpperCamelCase = num_conv_layers
UpperCamelCase = input_feat_per_channel
UpperCamelCase = input_channels
UpperCamelCase = conv_channels
UpperCamelCase = ctc_loss_reduction
UpperCamelCase = ctc_zero_infinity
# prevents config testing fail with exporting to json
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` '
F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, '''
F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
| 3 | 1 |
'''simple docstring'''
from typing import List, Union
import numpy as np
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING
lowerCAmelCase : List[str] = logging.get_logger(__name__)
@add_end_docstrings(snake_case_)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , *A_ , **A_ )-> str:
'''simple docstring'''
super().__init__(*A_ , **A_ )
requires_backends(self , 'vision' )
self.check_model_type(A_ )
def __call__( self , A_ , **A_ )-> Any:
'''simple docstring'''
return super().__call__(A_ , **A_ )
def UpperCAmelCase_ ( self , **A_ )-> Optional[Any]:
'''simple docstring'''
return {}, {}, {}
def UpperCAmelCase_ ( self , A_ )-> List[Any]:
'''simple docstring'''
UpperCamelCase = load_image(A_ )
UpperCamelCase = image.size
UpperCamelCase = self.image_processor(images=A_ , return_tensors=self.framework )
return model_inputs
def UpperCAmelCase_ ( self , A_ )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = self.model(**A_ )
return model_outputs
def UpperCAmelCase_ ( self , A_ )-> int:
'''simple docstring'''
UpperCamelCase = model_outputs.predicted_depth
UpperCamelCase = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='bicubic' , align_corners=A_ )
UpperCamelCase = prediction.squeeze().cpu().numpy()
UpperCamelCase = (output * 255 / np.max(A_ )).astype('uint8' )
UpperCamelCase = Image.fromarray(A_ )
UpperCamelCase = {}
UpperCamelCase = predicted_depth
UpperCamelCase = depth
return output_dict
| 3 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
lowerCAmelCase : Tuple = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
lowerCAmelCase : Optional[int] = TaTokenizerFast
lowerCAmelCase : Any = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[int] = [
'MT5EncoderModel',
'MT5ForConditionalGeneration',
'MT5ForQuestionAnswering',
'MT5Model',
'MT5PreTrainedModel',
'MT5Stack',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Dict = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[Any] = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model']
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
lowerCAmelCase : Tuple = _LazyModule(
__name__,
globals()['__file__'],
_import_structure,
extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast},
module_spec=__spec__,
)
| 3 | 1 |
'''simple docstring'''
class SCREAMING_SNAKE_CASE__ :
def __init__( self , A_ , A_ , A_ )-> Any:
'''simple docstring'''
UpperCamelCase = None
UpperCamelCase = None
UpperCamelCase = graph
self._normalize_graph(A_ , A_ )
UpperCamelCase = len(A_ )
UpperCamelCase = None
def UpperCAmelCase_ ( self , A_ , A_ )-> Tuple:
'''simple docstring'''
if sources is int:
UpperCamelCase = [sources]
if sinks is int:
UpperCamelCase = [sinks]
if len(A_ ) == 0 or len(A_ ) == 0:
return
UpperCamelCase = sources[0]
UpperCamelCase = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(A_ ) > 1 or len(A_ ) > 1:
UpperCamelCase = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
UpperCamelCase = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
UpperCamelCase = max_input_flow
UpperCamelCase = 0
UpperCamelCase = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
UpperCamelCase = max_input_flow
UpperCamelCase = size - 1
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
if self.maximum_flow_algorithm is None:
raise Exception('You need to set maximum flow algorithm before.' )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def UpperCAmelCase_ ( self , A_ )-> Any:
'''simple docstring'''
UpperCamelCase = algorithm(self )
class SCREAMING_SNAKE_CASE__ :
def __init__( self , A_ )-> Dict:
'''simple docstring'''
UpperCamelCase = flow_network
UpperCamelCase = flow_network.verticesCount
UpperCamelCase = flow_network.sourceIndex
UpperCamelCase = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
UpperCamelCase = flow_network.graph
UpperCamelCase = False
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
if not self.executed:
self._algorithm()
UpperCamelCase = True
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
pass
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ )-> List[str]:
'''simple docstring'''
super().__init__(A_ )
# use this to save your result
UpperCamelCase = -1
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
if not self.executed:
raise Exception('You should execute algorithm before using its result!' )
return self.maximum_flow
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ )-> Optional[Any]:
'''simple docstring'''
super().__init__(A_ )
UpperCamelCase = [[0] * self.verticies_count for i in range(self.verticies_count )]
UpperCamelCase = [0] * self.verticies_count
UpperCamelCase = [0] * self.verticies_count
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
UpperCamelCase = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
UpperCamelCase = 0
while i < len(A_ ):
UpperCamelCase = vertices_list[i]
UpperCamelCase = self.heights[vertex_index]
self.process_vertex(A_ )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(A_ ) )
UpperCamelCase = 0
else:
i += 1
UpperCamelCase = sum(self.preflow[self.source_index] )
def UpperCAmelCase_ ( self , A_ )-> Dict:
'''simple docstring'''
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(A_ , A_ )
self.relabel(A_ )
def UpperCAmelCase_ ( self , A_ , A_ )-> str:
'''simple docstring'''
UpperCamelCase = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def UpperCAmelCase_ ( self , A_ )-> List[str]:
'''simple docstring'''
UpperCamelCase = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
UpperCamelCase = self.heights[to_index]
if min_height is not None:
UpperCamelCase = min_height + 1
if __name__ == "__main__":
lowerCAmelCase : int = [0]
lowerCAmelCase : Tuple = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
lowerCAmelCase : List[str] = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
lowerCAmelCase : List[str] = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
lowerCAmelCase : int = flow_network.find_maximum_flow()
print(f"""maximum flow is {maximum_flow}""")
| 3 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=False , A_=True , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , )-> Dict:
'''simple docstring'''
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = num_channels
UpperCamelCase = image_size
UpperCamelCase = min_resolution
UpperCamelCase = max_resolution
UpperCamelCase = do_resize
UpperCamelCase = size if size is not None else {'height': 18, 'width': 20}
UpperCamelCase = do_thumbnail
UpperCamelCase = do_align_axis
UpperCamelCase = do_pad
UpperCamelCase = do_normalize
UpperCamelCase = image_mean
UpperCamelCase = image_std
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase):
lowerCAmelCase_ = DonutImageProcessor if is_vision_available() else None
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
UpperCamelCase = DonutImageProcessingTester(self )
@property
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A_ , 'do_resize' ) )
self.assertTrue(hasattr(A_ , 'size' ) )
self.assertTrue(hasattr(A_ , 'do_thumbnail' ) )
self.assertTrue(hasattr(A_ , 'do_align_long_axis' ) )
self.assertTrue(hasattr(A_ , 'do_pad' ) )
self.assertTrue(hasattr(A_ , 'do_normalize' ) )
self.assertTrue(hasattr(A_ , 'image_mean' ) )
self.assertTrue(hasattr(A_ , 'image_std' ) )
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 20} )
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
# Previous config had dimensions in (width, height) order
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {'height': 84, 'width': 42} )
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
pass
@is_flaky()
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , Image.Image )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , np.ndarray )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , torch.Tensor )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
| 3 | 1 |
'''simple docstring'''
import os
import sys
import unittest
lowerCAmelCase : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
lowerCAmelCase : int = os.path.join(git_repo_path, 'src', 'transformers')
lowerCAmelCase : Optional[int] = '\n{0} = None\n'
lowerCAmelCase : int = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n'
lowerCAmelCase : Tuple = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n'
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' )
self.assertIsNone(A_ )
UpperCamelCase = find_backend(' if not is_tokenizers_available():' )
self.assertEqual(A_ , 'tokenizers' )
UpperCamelCase = find_backend(' if not is_tensorflow_text_available():' )
self.assertEqual(A_ , 'tensorflow_text' )
UpperCamelCase = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' )
self.assertEqual(A_ , 'sentencepiece_and_tokenizers' )
UpperCamelCase = find_backend(
' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' )
self.assertEqual(A_ , 'sentencepiece_and_tensorflow_text' )
UpperCamelCase = find_backend(
' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' )
self.assertEqual(A_ , 'sentencepiece_and_tokenizers_and_vision' )
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn('torch' , A_ )
self.assertIn('tensorflow_text' , A_ )
self.assertIn('sentencepiece_and_tokenizers' , A_ )
# Likewise, we can't assert on the exact content of a key
self.assertIn('BertModel' , objects['torch'] )
self.assertIn('TFBertModel' , objects['tf'] )
self.assertIn('FlaxBertModel' , objects['flax'] )
self.assertIn('BertModel' , objects['torch'] )
self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] )
self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] )
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase = create_dummy_object('CONSTANT' , '\'torch\'' )
self.assertEqual(A_ , '\nCONSTANT = None\n' )
UpperCamelCase = create_dummy_object('function' , '\'torch\'' )
self.assertEqual(
A_ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' )
UpperCamelCase = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n'
UpperCamelCase = create_dummy_object('FakeClass' , '\'torch\'' )
self.assertEqual(A_ , A_ )
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
UpperCamelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n'
UpperCamelCase = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} )
self.assertEqual(dummy_files['torch'] , A_ )
| 3 |
'''simple docstring'''
def A_( A : list[int]):
UpperCamelCase = []
if len(A) == 1:
return [nums.copy()]
for _ in range(len(A)):
UpperCamelCase = nums.pop(0)
UpperCamelCase = permute(A)
for perm in permutations:
perm.append(A)
result.extend(A)
nums.append(A)
return result
def A_( A : str):
def backtrack(A : str):
if start == len(A) - 1:
output.append(nums[:])
else:
for i in range(A , len(A)):
UpperCamelCase , UpperCamelCase = nums[i], nums[start]
backtrack(start + 1)
UpperCamelCase , UpperCamelCase = nums[i], nums[start] # backtrack
UpperCamelCase = []
backtrack(0)
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
lowerCAmelCase : Dict = permutea([1, 2, 3])
print(res)
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
EulerDiscreteScheduler,
StableDiffusionXLImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.utils import floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase):
lowerCAmelCase_ = StableDiffusionXLImgaImgPipeline
lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""}
lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {"""latents"""}
lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
lowerCAmelCase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS
lowerCAmelCase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
torch.manual_seed(0 )
UpperCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , attention_head_dim=(2, 4) , use_linear_projection=A_ , addition_embed_type='text_time' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , )
UpperCamelCase = EulerDiscreteScheduler(
beta_start=0.00_085 , beta_end=0.012 , steps_offset=1 , beta_schedule='scaled_linear' , timestep_spacing='leading' , )
torch.manual_seed(0 )
UpperCamelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
UpperCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=32 , )
UpperCamelCase = CLIPTextModel(A_ )
UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=A_ )
UpperCamelCase = CLIPTextModelWithProjection(A_ )
UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=A_ )
UpperCamelCase = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'text_encoder_2': text_encoder_a,
'tokenizer_2': tokenizer_a,
# "safety_checker": None,
# "feature_extractor": None,
}
return components
def UpperCAmelCase_ ( self , A_ , A_=0 )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ )
UpperCamelCase = image / 2 + 0.5
if str(A_ ).startswith('mps' ):
UpperCamelCase = torch.manual_seed(A_ )
else:
UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ )
UpperCamelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 5.0,
'output_type': 'numpy',
'strength': 0.75,
}
return inputs
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
UpperCamelCase = self.get_dummy_components()
UpperCamelCase = StableDiffusionXLImgaImgPipeline(**A_ )
UpperCamelCase = sd_pipe.to(A_ )
sd_pipe.set_progress_bar_config(disable=A_ )
UpperCamelCase = self.get_dummy_inputs(A_ )
UpperCamelCase = sd_pipe(**A_ ).images
UpperCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCamelCase = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 )
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
pass
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase = self.get_dummy_components()
UpperCamelCase = StableDiffusionXLImgaImgPipeline(**A_ )
UpperCamelCase = sd_pipe.to(A_ )
UpperCamelCase = sd_pipe.to(A_ )
sd_pipe.set_progress_bar_config(disable=A_ )
# forward without prompt embeds
UpperCamelCase = self.get_dummy_inputs(A_ )
UpperCamelCase = 3 * ['this is a negative prompt']
UpperCamelCase = negative_prompt
UpperCamelCase = 3 * [inputs['prompt']]
UpperCamelCase = sd_pipe(**A_ )
UpperCamelCase = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
UpperCamelCase = self.get_dummy_inputs(A_ )
UpperCamelCase = 3 * ['this is a negative prompt']
UpperCamelCase = 3 * [inputs.pop('prompt' )]
(
(
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) ,
) = sd_pipe.encode_prompt(A_ , negative_prompt=A_ )
UpperCamelCase = sd_pipe(
**A_ , prompt_embeds=A_ , negative_prompt_embeds=A_ , pooled_prompt_embeds=A_ , negative_pooled_prompt_embeds=A_ , )
UpperCamelCase = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase_ ( self , A_ , A_="cpu" , A_=torch.floataa , A_=0 )-> Dict:
'''simple docstring'''
UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ )
UpperCamelCase = np.random.RandomState(A_ ).standard_normal((1, 4, 64, 64) )
UpperCamelCase = torch.from_numpy(A_ ).to(device=A_ , dtype=A_ )
UpperCamelCase = {
'prompt': 'a photograph of an astronaut riding a horse',
'latents': latents,
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' )
pipe.to(A_ )
pipe.set_progress_bar_config(disable=A_ )
UpperCamelCase = self.get_inputs(A_ )
UpperCamelCase = pipe(**A_ ).images
UpperCamelCase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
UpperCamelCase = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506] )
assert np.abs(image_slice - expected_slice ).max() < 7e-3
| 3 |
'''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def A_( A : float , A : float , A : int):
UpperCamelCase = x
UpperCamelCase = y
for step in range(A): # noqa: B007
UpperCamelCase = a * a - b * b + x
UpperCamelCase = 2 * a * b + y
UpperCamelCase = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def A_( A : float):
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def A_( A : float):
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(A , 1 , 1))
def A_( A : int = 800 , A : int = 600 , A : float = -0.6 , A : float = 0 , A : float = 3.2 , A : int = 50 , A : bool = True , ):
UpperCamelCase = Image.new('RGB' , (image_width, image_height))
UpperCamelCase = img.load()
# loop through the image-coordinates
for image_x in range(A):
for image_y in range(A):
# determine the figure-coordinates based on the image-coordinates
UpperCamelCase = figure_width / image_width * image_height
UpperCamelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width
UpperCamelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height
UpperCamelCase = get_distance(A , A , A)
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
UpperCamelCase = get_color_coded_rgb(A)
else:
UpperCamelCase = get_black_and_white_rgb(A)
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
lowerCAmelCase : Any = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 3 | 1 |
'''simple docstring'''
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def A_( A : Any , A : str):
UpperCamelCase = []
for part_id in partition_order:
UpperCamelCase = df.where(f'''SPARK_PARTITION_ID() = {part_id}''').collect()
for row_idx, row in enumerate(A):
expected_row_ids_and_row_dicts.append((f'''{part_id}_{row_idx}''', row.asDict()))
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def A_( ):
UpperCamelCase = pyspark.sql.SparkSession.builder.master('local[*]').appName('pyspark').getOrCreate()
UpperCamelCase = spark.range(100).repartition(1)
UpperCamelCase = Spark(A)
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=16)
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 50
@require_not_windows
@require_dill_gt_0_3_2
def A_( ):
UpperCamelCase = pyspark.sql.SparkSession.builder.master('local[*]').appName('pyspark').getOrCreate()
UpperCamelCase = spark.range(10).repartition(2)
UpperCamelCase = [1, 0]
UpperCamelCase = _generate_iterable_examples(A , A) # Reverse the partitions.
UpperCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(A , A)
for i, (row_id, row_dict) in enumerate(generate_fn()):
UpperCamelCase , UpperCamelCase = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def A_( ):
UpperCamelCase = pyspark.sql.SparkSession.builder.master('local[*]').appName('pyspark').getOrCreate()
UpperCamelCase = spark.range(10).repartition(1)
UpperCamelCase = SparkExamplesIterable(A)
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(A):
assert row_id == f'''0_{i}'''
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def A_( ):
UpperCamelCase = pyspark.sql.SparkSession.builder.master('local[*]').appName('pyspark').getOrCreate()
UpperCamelCase = spark.range(30).repartition(3)
# Mock the generator so that shuffle reverses the partition indices.
with patch('numpy.random.Generator') as generator_mock:
UpperCamelCase = lambda A: x.reverse()
UpperCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(A , [2, 1, 0])
UpperCamelCase = SparkExamplesIterable(A).shuffle_data_sources(A)
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(A):
UpperCamelCase , UpperCamelCase = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def A_( ):
UpperCamelCase = pyspark.sql.SparkSession.builder.master('local[*]').appName('pyspark').getOrCreate()
UpperCamelCase = spark.range(20).repartition(4)
# Partitions 0 and 2
UpperCamelCase = SparkExamplesIterable(A).shard_data_sources(worker_id=0 , num_workers=2)
assert shard_it_a.n_shards == 2
UpperCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(A , [0, 2])
for i, (row_id, row_dict) in enumerate(A):
UpperCamelCase , UpperCamelCase = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
UpperCamelCase = SparkExamplesIterable(A).shard_data_sources(worker_id=1 , num_workers=2)
assert shard_it_a.n_shards == 2
UpperCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(A , [1, 3])
for i, (row_id, row_dict) in enumerate(A):
UpperCamelCase , UpperCamelCase = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def A_( ):
UpperCamelCase = pyspark.sql.SparkSession.builder.master('local[*]').appName('pyspark').getOrCreate()
UpperCamelCase = spark.range(100).repartition(1)
UpperCamelCase = Spark(A)
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1)
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 100
| 3 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowerCAmelCase : Optional[Any] = {
'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : str = [
'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST',
'FalconForCausalLM',
'FalconModel',
'FalconPreTrainedModel',
'FalconForSequenceClassification',
'FalconForTokenClassification',
'FalconForQuestionAnswering',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 3 | 1 |
'''simple docstring'''
import importlib
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Union
import torch
from ..utils import BaseOutput
lowerCAmelCase : List[Any] = 'scheduler_config.json'
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = 1
lowerCAmelCase_ = 2
lowerCAmelCase_ = 3
lowerCAmelCase_ = 4
lowerCAmelCase_ = 5
lowerCAmelCase_ = 6
lowerCAmelCase_ = 7
lowerCAmelCase_ = 8
lowerCAmelCase_ = 9
lowerCAmelCase_ = 10
lowerCAmelCase_ = 11
lowerCAmelCase_ = 12
lowerCAmelCase_ = 13
lowerCAmelCase_ = 14
@dataclass
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = 42
class SCREAMING_SNAKE_CASE__ :
lowerCAmelCase_ = SCHEDULER_CONFIG_NAME
lowerCAmelCase_ = []
lowerCAmelCase_ = True
@classmethod
def UpperCAmelCase_ ( cls , A_ = None , A_ = None , A_=False , **A_ , )-> List[Any]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase , UpperCamelCase = cls.load_config(
pretrained_model_name_or_path=A_ , subfolder=A_ , return_unused_kwargs=A_ , return_commit_hash=A_ , **A_ , )
return cls.from_config(A_ , return_unused_kwargs=A_ , **A_ )
def UpperCAmelCase_ ( self , A_ , A_ = False , **A_ )-> Any:
'''simple docstring'''
self.save_config(save_directory=A_ , push_to_hub=A_ , **A_ )
@property
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
return self._get_compatibles()
@classmethod
def UpperCAmelCase_ ( cls )-> Any:
'''simple docstring'''
UpperCamelCase = list(set([cls.__name__] + cls._compatibles ) )
UpperCamelCase = importlib.import_module(__name__.split('.' )[0] )
UpperCamelCase = [
getattr(A_ , A_ ) for c in compatible_classes_str if hasattr(A_ , A_ )
]
return compatible_classes
| 3 |
'''simple docstring'''
lowerCAmelCase : Optional[Any] = {
'A': ['B', 'C', 'E'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B', 'D'],
'F': ['C'],
'G': ['C'],
}
def A_( A : dict , A : str , A : Optional[Any]):
UpperCamelCase = set()
# keep track of all the paths to be checked
UpperCamelCase = [[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
UpperCamelCase = queue.pop(0)
# get the last node from the path
UpperCamelCase = path[-1]
if node not in explored:
UpperCamelCase = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
UpperCamelCase = list(A)
new_path.append(A)
queue.append(A)
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(A)
# in case there's no path between the 2 nodes
return []
def A_( A : dict , A : str , A : Tuple):
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
UpperCamelCase = [start]
UpperCamelCase = set(A)
# Keep tab on distances from `start` node.
UpperCamelCase = {start: 0, target: -1}
while queue:
UpperCamelCase = queue.pop(0)
if node == target:
UpperCamelCase = (
dist[node] if dist[target] == -1 else min(dist[target] , dist[node])
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(A)
queue.append(A)
UpperCamelCase = dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
| 3 | 1 |
'''simple docstring'''
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """linear"""
lowerCAmelCase_ = """cosine"""
lowerCAmelCase_ = """cosine_with_restarts"""
lowerCAmelCase_ = """polynomial"""
lowerCAmelCase_ = """constant"""
lowerCAmelCase_ = """constant_with_warmup"""
lowerCAmelCase_ = """piecewise_constant"""
def A_( A : Optimizer , A : int = -1):
return LambdaLR(A , lambda A: 1 , last_epoch=A)
def A_( A : Optimizer , A : int , A : int = -1):
def lr_lambda(A : int):
if current_step < num_warmup_steps:
return float(A) / float(max(1.0 , A))
return 1.0
return LambdaLR(A , A , last_epoch=A)
def A_( A : Optimizer , A : str , A : int = -1):
UpperCamelCase = {}
UpperCamelCase = step_rules.split(',')
for rule_str in rule_list[:-1]:
UpperCamelCase , UpperCamelCase = rule_str.split(':')
UpperCamelCase = int(A)
UpperCamelCase = float(A)
UpperCamelCase = value
UpperCamelCase = float(rule_list[-1])
def create_rules_function(A : List[Any] , A : int):
def rule_func(A : int) -> float:
UpperCamelCase = sorted(rules_dict.keys())
for i, sorted_step in enumerate(A):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
UpperCamelCase = create_rules_function(A , A)
return LambdaLR(A , A , last_epoch=A)
def A_( A : int , A : str , A : Optional[int] , A : Optional[int]=-1):
def lr_lambda(A : int):
if current_step < num_warmup_steps:
return float(A) / float(max(1 , A))
return max(
0.0 , float(num_training_steps - current_step) / float(max(1 , num_training_steps - num_warmup_steps)))
return LambdaLR(A , A , A)
def A_( A : Optimizer , A : int , A : int , A : float = 0.5 , A : int = -1):
def lr_lambda(A : Any):
if current_step < num_warmup_steps:
return float(A) / float(max(1 , A))
UpperCamelCase = float(current_step - num_warmup_steps) / float(max(1 , num_training_steps - num_warmup_steps))
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(A) * 2.0 * progress)))
return LambdaLR(A , A , A)
def A_( A : Optimizer , A : int , A : int , A : int = 1 , A : int = -1):
def lr_lambda(A : Tuple):
if current_step < num_warmup_steps:
return float(A) / float(max(1 , A))
UpperCamelCase = float(current_step - num_warmup_steps) / float(max(1 , num_training_steps - num_warmup_steps))
if progress >= 1.0:
return 0.0
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(A) * progress) % 1.0))))
return LambdaLR(A , A , A)
def A_( A : Tuple , A : Dict , A : List[Any] , A : Optional[Any]=1E-7 , A : Tuple=1.0 , A : Any=-1):
UpperCamelCase = optimizer.defaults['lr']
if not (lr_init > lr_end):
raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''')
def lr_lambda(A : int):
if current_step < num_warmup_steps:
return float(A) / float(max(1 , A))
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
UpperCamelCase = lr_init - lr_end
UpperCamelCase = num_training_steps - num_warmup_steps
UpperCamelCase = 1 - (current_step - num_warmup_steps) / decay_steps
UpperCamelCase = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(A , A , A)
lowerCAmelCase : Dict = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def A_( A : Union[str, SchedulerType] , A : Optimizer , A : Optional[str] = None , A : Optional[int] = None , A : Optional[int] = None , A : int = 1 , A : float = 1.0 , A : int = -1 , ):
UpperCamelCase = SchedulerType(A)
UpperCamelCase = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(A , last_epoch=A)
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(A , step_rules=A , last_epoch=A)
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''')
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(A , num_warmup_steps=A , last_epoch=A)
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''')
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
A , num_warmup_steps=A , num_training_steps=A , num_cycles=A , last_epoch=A , )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
A , num_warmup_steps=A , num_training_steps=A , power=A , last_epoch=A , )
return schedule_func(
A , num_warmup_steps=A , num_training_steps=A , last_epoch=A)
| 3 |
'''simple docstring'''
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class SCREAMING_SNAKE_CASE__ :
def __init__( self )-> Dict:
'''simple docstring'''
UpperCamelCase = ''
UpperCamelCase = ''
UpperCamelCase = []
UpperCamelCase = 0
UpperCamelCase = 256
UpperCamelCase = 0
UpperCamelCase = 0
UpperCamelCase = 0
UpperCamelCase = 0
def UpperCAmelCase_ ( self , A_ )-> str:
'''simple docstring'''
UpperCamelCase = cva.imread(A_ , 0 )
UpperCamelCase = copy.deepcopy(self.img )
UpperCamelCase , UpperCamelCase , UpperCamelCase = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' )
UpperCamelCase = np.sum(A_ )
for i in range(len(A_ ) ):
UpperCamelCase = x[i] / self.k
self.sk += prk
UpperCamelCase = (self.L - 1) * self.sk
if self.rem != 0:
UpperCamelCase = int(last % last )
UpperCamelCase = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(A_ )
UpperCamelCase = int(np.ma.count(self.img ) / self.img[1].size )
UpperCamelCase = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCamelCase = self.img[j][i]
if num != self.last_list[num]:
UpperCamelCase = self.last_list[num]
cva.imwrite('output_data/output.jpg' , self.img )
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
plt.hist(self.img.ravel() , 256 , [0, 256] )
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
cva.imshow('Output-Image' , self.img )
cva.imshow('Input-Image' , self.original_image )
cva.waitKey(5000 )
cva.destroyAllWindows()
if __name__ == "__main__":
lowerCAmelCase : Union[str, Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg')
lowerCAmelCase : str = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 3 | 1 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
lowerCAmelCase : Dict = [
'EAGER',
'AOT_EAGER',
'INDUCTOR',
'NVFUSER',
'AOT_NVFUSER',
'AOT_CUDAGRAPHS',
'OFI',
'FX2TRT',
'ONNXRT',
'IPEX',
]
def A_( A : str , A : Tuple=None , A : int=None , A : Union[str, Any]=None):
UpperCamelCase = True
while ask_again:
UpperCamelCase = input(A)
try:
if default is not None and len(A) == 0:
return default
return convert_value(A) if convert_value is not None else result
except Exception:
if error_message is not None:
print(A)
def A_( A : Any , A : Union[str, Any]=[] , A : Dict=None , A : List[str]=0):
UpperCamelCase = BulletMenu(A , A)
UpperCamelCase = menu.run(default_choice=A)
return convert_value(A) if convert_value is not None else result
def A_( A : Tuple):
UpperCamelCase = int(A)
return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value])
def A_( A : List[str]):
UpperCamelCase = int(A)
return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value])
def A_( A : str):
UpperCamelCase = int(A)
return DynamoBackend(DYNAMO_BACKENDS[value]).value
def A_( A : Any):
UpperCamelCase = int(A)
return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value])
def A_( A : Optional[Any]):
UpperCamelCase = int(A)
return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value])
def A_( A : int):
return {"yes": True, "no": False}[value.lower()]
class SCREAMING_SNAKE_CASE__ ( argparse.RawDescriptionHelpFormatter):
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> int:
'''simple docstring'''
UpperCamelCase = super()._format_usage(A_ , A_ , A_ , A_ )
UpperCamelCase = usage.replace('<command> [<args>] ' , '' )
return usage
| 3 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : int = logging.get_logger(__name__)
lowerCAmelCase : Tuple = {
'microsoft/unispeech-sat-base-100h-libri-ft': (
'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json'
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """unispeech-sat"""
def __init__( self , A_=32 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.1 , A_=0.1 , A_=0.02 , A_=1e-5 , A_="group" , A_="gelu" , A_=(512, 512, 512, 512, 512, 512, 512) , A_=(5, 2, 2, 2, 2, 2, 2) , A_=(10, 3, 3, 3, 3, 2, 2) , A_=False , A_=128 , A_=16 , A_=False , A_=True , A_=0.05 , A_=10 , A_=2 , A_=0.0 , A_=10 , A_=0 , A_=320 , A_=2 , A_=0.1 , A_=100 , A_=256 , A_=256 , A_=0.1 , A_="mean" , A_=False , A_=False , A_=256 , A_=(512, 512, 512, 512, 1500) , A_=(5, 3, 3, 1, 1) , A_=(1, 2, 3, 1, 1) , A_=512 , A_=0 , A_=1 , A_=2 , A_=504 , **A_ , )-> Tuple:
'''simple docstring'''
super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ )
UpperCamelCase = hidden_size
UpperCamelCase = feat_extract_norm
UpperCamelCase = feat_extract_activation
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = conv_bias
UpperCamelCase = num_conv_pos_embeddings
UpperCamelCase = num_conv_pos_embedding_groups
UpperCamelCase = len(self.conv_dim )
UpperCamelCase = num_hidden_layers
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = num_attention_heads
UpperCamelCase = hidden_dropout
UpperCamelCase = attention_dropout
UpperCamelCase = activation_dropout
UpperCamelCase = feat_proj_dropout
UpperCamelCase = final_dropout
UpperCamelCase = layerdrop
UpperCamelCase = layer_norm_eps
UpperCamelCase = initializer_range
UpperCamelCase = vocab_size
UpperCamelCase = num_clusters
UpperCamelCase = do_stable_layer_norm
UpperCamelCase = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCamelCase = apply_spec_augment
UpperCamelCase = mask_time_prob
UpperCamelCase = mask_time_length
UpperCamelCase = mask_time_min_masks
UpperCamelCase = mask_feature_prob
UpperCamelCase = mask_feature_length
UpperCamelCase = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
UpperCamelCase = num_codevectors_per_group
UpperCamelCase = num_codevector_groups
UpperCamelCase = contrastive_logits_temperature
UpperCamelCase = feat_quantizer_dropout
UpperCamelCase = num_negatives
UpperCamelCase = codevector_dim
UpperCamelCase = proj_codevector_dim
UpperCamelCase = diversity_loss_weight
# ctc loss
UpperCamelCase = ctc_loss_reduction
UpperCamelCase = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
UpperCamelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = xvector_output_dim
@property
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 3 | 1 |
'''simple docstring'''
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from ...utils import deprecate
from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401
deprecate(
'stable diffusion controlnet',
'0.22.0',
'Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.',
standard_warn=False,
stacklevel=3,
)
| 3 |
'''simple docstring'''
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class SCREAMING_SNAKE_CASE__ :
def __init__( self , A_ , A_=100 , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=4 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=None , A_=[0, 1, 2, 3] , )-> Any:
'''simple docstring'''
UpperCamelCase = parent
UpperCamelCase = 100
UpperCamelCase = batch_size
UpperCamelCase = image_size
UpperCamelCase = patch_size
UpperCamelCase = num_channels
UpperCamelCase = is_training
UpperCamelCase = use_labels
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = type_sequence_label_size
UpperCamelCase = initializer_range
UpperCamelCase = scope
UpperCamelCase = out_indices
UpperCamelCase = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCamelCase = (image_size // patch_size) ** 2
UpperCamelCase = num_patches + 1
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = None
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCamelCase = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> List[str]:
'''simple docstring'''
UpperCamelCase = BeitModel(config=A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Any:
'''simple docstring'''
UpperCamelCase = BeitForMaskedImageModeling(config=A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.type_sequence_label_size
UpperCamelCase = BeitForImageClassification(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ , labels=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCamelCase = 1
UpperCamelCase = BeitForImageClassification(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase = model(A_ , labels=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = self.num_labels
UpperCamelCase = BeitForSemanticSegmentation(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
UpperCamelCase = model(A_ , labels=A_ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs
UpperCamelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase):
lowerCAmelCase_ = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
lowerCAmelCase_ = (
{
"""feature-extraction""": BeitModel,
"""image-classification""": BeitForImageClassification,
"""image-segmentation""": BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = BeitModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 )
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='BEiT does not use inputs_embeds' )
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
pass
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(A_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCamelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A_ , nn.Linear ) )
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(A_ )
UpperCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , A_ )
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*A_ )
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A_ )
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*A_ )
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
if not self.model_tester.is_training:
return
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(A_ ), BeitForMaskedImageModeling]:
continue
UpperCamelCase = model_class(A_ )
model.to(A_ )
model.train()
UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ )
UpperCamelCase = model(**A_ ).loss
loss.backward()
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
UpperCamelCase = False
UpperCamelCase = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(A_ ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
UpperCamelCase = model_class(A_ )
model.gradient_checkpointing_enable()
model.to(A_ )
model.train()
UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ )
UpperCamelCase = model(**A_ ).loss
loss.backward()
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = _config_zero_init(A_ )
for model_class in self.all_model_classes:
UpperCamelCase = model_class(config=A_ )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@slow
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase = BeitModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
def A_( ):
UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
@cached_property
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None
@slow
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(A_ )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).pixel_values.to(A_ )
# prepare bool_masked_pos
UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(pixel_values=A_ , bool_masked_pos=A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 196, 8192) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = torch.tensor(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(A_ )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , A_ , atol=1e-2 ) )
@slow
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(A_ )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 1000) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(A_ )
self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) )
UpperCamelCase = 281
self.assertEqual(logits.argmax(-1 ).item() , A_ )
@slow
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to(
A_ )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 21841) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(A_ )
self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) )
UpperCamelCase = 2396
self.assertEqual(logits.argmax(-1 ).item() , A_ )
@slow
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
UpperCamelCase = model.to(A_ )
UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ )
UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' )
UpperCamelCase = Image.open(ds[0]['file'] )
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' )
if is_pillow_less_than_a:
UpperCamelCase = torch.tensor(
[
[[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]],
[[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]],
[[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]],
] , device=A_ , )
else:
UpperCamelCase = torch.tensor(
[
[[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]],
[[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]],
[[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]],
] , device=A_ , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1e-4 ) )
@slow
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
UpperCamelCase = model.to(A_ )
UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ )
UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' )
UpperCamelCase = Image.open(ds[0]['file'] )
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits.detach().cpu()
UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ , target_sizes=[(500, 300)] )
UpperCamelCase = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape , A_ )
UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ )
UpperCamelCase = torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape , A_ )
| 3 | 1 |
'''simple docstring'''
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionTextToImagePipeline
from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device
lowerCAmelCase : Dict = False
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
pass
@nightly
@require_torch_gpu
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion' )
# remove text_unet
pipe.remove_unused_weights()
pipe.to(A_ )
pipe.set_progress_bar_config(disable=A_ )
UpperCamelCase = 'A painting of a squirrel eating a burger '
UpperCamelCase = torch.manual_seed(0 )
UpperCamelCase = pipe(
prompt=A_ , generator=A_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(A_ )
UpperCamelCase = VersatileDiffusionTextToImagePipeline.from_pretrained(A_ )
pipe.to(A_ )
pipe.set_progress_bar_config(disable=A_ )
UpperCamelCase = generator.manual_seed(0 )
UpperCamelCase = pipe(
prompt=A_ , generator=A_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images
assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass"
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase = VersatileDiffusionTextToImagePipeline.from_pretrained(
'shi-labs/versatile-diffusion' , torch_dtype=torch.floataa )
pipe.to(A_ )
pipe.set_progress_bar_config(disable=A_ )
UpperCamelCase = 'A painting of a squirrel eating a burger '
UpperCamelCase = torch.manual_seed(0 )
UpperCamelCase = pipe(
prompt=A_ , generator=A_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images
UpperCamelCase = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
UpperCamelCase = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 3 |
'''simple docstring'''
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
lowerCAmelCase : Dict = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( enum.Enum):
lowerCAmelCase_ = 0
lowerCAmelCase_ = 1
@add_end_docstrings(snake_case_)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """generated"""
def __init__( self , *A_ , **A_ )-> Optional[int]:
'''simple docstring'''
super().__init__(*A_ , **A_ )
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == 'tf'
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , **A_ , )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = {}
if truncation is not None:
UpperCamelCase = truncation
UpperCamelCase = generate_kwargs
UpperCamelCase = {}
if return_tensors is not None and return_type is None:
UpperCamelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
UpperCamelCase = return_type
if clean_up_tokenization_spaces is not None:
UpperCamelCase = clean_up_tokenization_spaces
if stop_sequence is not None:
UpperCamelCase = self.tokenizer.encode(A_ , add_special_tokens=A_ )
if len(A_ ) > 1:
warnings.warn(
'Stopping on a multiple token sequence is not yet supported on transformers. The first token of'
' the stop sequence will be used as the stop sequence string in the interim.' )
UpperCamelCase = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Optional[int]:
'''simple docstring'''
return True
def UpperCAmelCase_ ( self , *A_ , A_ )-> Any:
'''simple docstring'''
UpperCamelCase = self.model.config.prefix if self.model.config.prefix is not None else ''
if isinstance(args[0] , A_ ):
if self.tokenizer.pad_token_id is None:
raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' )
UpperCamelCase = ([prefix + arg for arg in args[0]],)
UpperCamelCase = True
elif isinstance(args[0] , A_ ):
UpperCamelCase = (prefix + args[0],)
UpperCamelCase = False
else:
raise ValueError(
F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' )
UpperCamelCase = self.tokenizer(*A_ , padding=A_ , truncation=A_ , return_tensors=self.framework )
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self , *A_ , **A_ )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = super().__call__(*A_ , **A_ )
if (
isinstance(args[0] , A_ )
and all(isinstance(A_ , A_ ) for el in args[0] )
and all(len(A_ ) == 1 for res in result )
):
return [res[0] for res in result]
return result
def UpperCAmelCase_ ( self , A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , **A_ )-> Any:
'''simple docstring'''
UpperCamelCase = self._parse_and_tokenize(A_ , truncation=A_ , **A_ )
return inputs
def UpperCAmelCase_ ( self , A_ , **A_ )-> int:
'''simple docstring'''
if self.framework == "pt":
UpperCamelCase , UpperCamelCase = model_inputs['input_ids'].shape
elif self.framework == "tf":
UpperCamelCase , UpperCamelCase = tf.shape(model_inputs['input_ids'] ).numpy()
UpperCamelCase = generate_kwargs.get('min_length' , self.model.config.min_length )
UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length )
self.check_inputs(A_ , generate_kwargs['min_length'] , generate_kwargs['max_length'] )
UpperCamelCase = self.model.generate(**A_ , **A_ )
UpperCamelCase = output_ids.shape[0]
if self.framework == "pt":
UpperCamelCase = output_ids.reshape(A_ , out_b // in_b , *output_ids.shape[1:] )
elif self.framework == "tf":
UpperCamelCase = tf.reshape(A_ , (in_b, out_b // in_b, *output_ids.shape[1:]) )
return {"output_ids": output_ids}
def UpperCAmelCase_ ( self , A_ , A_=ReturnType.TEXT , A_=False )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
UpperCamelCase = {F'''{self.return_name}_token_ids''': output_ids}
elif return_type == ReturnType.TEXT:
UpperCamelCase = {
F'''{self.return_name}_text''': self.tokenizer.decode(
A_ , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , )
}
records.append(A_ )
return records
@add_end_docstrings(snake_case_)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """summary"""
def __call__( self , *A_ , **A_ )-> Optional[int]:
'''simple docstring'''
return super().__call__(*A_ , **A_ )
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> bool:
'''simple docstring'''
if max_length < min_length:
logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' )
if input_length < max_length:
logger.warning(
F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is '''
'a summarization task, where outputs shorter than the input are typically wanted, you might '
F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' )
@add_end_docstrings(snake_case_)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """translation"""
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> List[Any]:
'''simple docstring'''
if input_length > 0.9 * max_length:
logger.warning(
F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider '''
'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' )
return True
def UpperCAmelCase_ ( self , *A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , A_=None , A_=None )-> Dict:
'''simple docstring'''
if getattr(self.tokenizer , '_build_translation_inputs' , A_ ):
return self.tokenizer._build_translation_inputs(
*A_ , return_tensors=self.framework , truncation=A_ , src_lang=A_ , tgt_lang=A_ )
else:
return super()._parse_and_tokenize(*A_ , truncation=A_ )
def UpperCAmelCase_ ( self , A_=None , A_=None , **A_ )-> str:
'''simple docstring'''
UpperCamelCase , UpperCamelCase , UpperCamelCase = super()._sanitize_parameters(**A_ )
if src_lang is not None:
UpperCamelCase = src_lang
if tgt_lang is not None:
UpperCamelCase = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
UpperCamelCase = kwargs.get('task' , self.task )
UpperCamelCase = task.split('_' )
if task and len(A_ ) == 4:
# translation, XX, to YY
UpperCamelCase = items[1]
UpperCamelCase = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self , *A_ , **A_ )-> Any:
'''simple docstring'''
return super().__call__(*A_ , **A_ )
| 3 | 1 |
'''simple docstring'''
lowerCAmelCase : Optional[Any] = {
'A': ['B', 'C', 'E'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B', 'D'],
'F': ['C'],
'G': ['C'],
}
def A_( A : dict , A : str , A : Optional[Any]):
UpperCamelCase = set()
# keep track of all the paths to be checked
UpperCamelCase = [[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
UpperCamelCase = queue.pop(0)
# get the last node from the path
UpperCamelCase = path[-1]
if node not in explored:
UpperCamelCase = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
UpperCamelCase = list(A)
new_path.append(A)
queue.append(A)
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(A)
# in case there's no path between the 2 nodes
return []
def A_( A : dict , A : str , A : Tuple):
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
UpperCamelCase = [start]
UpperCamelCase = set(A)
# Keep tab on distances from `start` node.
UpperCamelCase = {start: 0, target: -1}
while queue:
UpperCamelCase = queue.pop(0)
if node == target:
UpperCamelCase = (
dist[node] if dist[target] == -1 else min(dist[target] , dist[node])
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(A)
queue.append(A)
UpperCamelCase = dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
| 3 |
'''simple docstring'''
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = 0
lowerCAmelCase_ = False
lowerCAmelCase_ = 3.0
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} )
self.assertDictEqual(MockClass(a=2 , b=A_ ).to_kwargs() , {'a': 2, 'b': True} )
self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} )
@require_cuda
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
UpperCamelCase = GradScalerKwargs(init_scale=1024 , growth_factor=2 )
AcceleratorState._reset_state()
UpperCamelCase = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
UpperCamelCase = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 1_024.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 2000 )
self.assertEqual(scaler._enabled , A_ )
@require_multi_gpu
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
execute_subprocess_async(A_ , env=os.environ.copy() )
if __name__ == "__main__":
lowerCAmelCase : Tuple = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True)
lowerCAmelCase : List[str] = Accelerator(kwargs_handlers=[ddp_scaler])
lowerCAmelCase : List[Any] = torch.nn.Linear(1_00, 2_00)
lowerCAmelCase : int = accelerator.prepare(model)
# Check the values changed in kwargs
lowerCAmelCase : Dict = ''
lowerCAmelCase : Dict = model.bucket_bytes_cap // (10_24 * 10_24)
if observed_bucket_cap_map != 15:
error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 3 | 1 |
'''simple docstring'''
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
lowerCAmelCase : Optional[Any] = re.compile(r'^(?P<major>\d+)' r'\.(?P<minor>\d+)' r'\.(?P<patch>\d+)$')
@total_ordering
@dataclass
class SCREAMING_SNAKE_CASE__ :
lowerCAmelCase_ = 42
lowerCAmelCase_ = None
lowerCAmelCase_ = None
lowerCAmelCase_ = None
lowerCAmelCase_ = None
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase , UpperCamelCase = _str_to_version_tuple(self.version_str )
def __repr__( self )-> Any:
'''simple docstring'''
return F'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'''
@property
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
return self.major, self.minor, self.patch
def UpperCAmelCase_ ( self , A_ )-> Union[str, Any]:
'''simple docstring'''
if isinstance(A_ , A_ ):
return Version(A_ )
elif isinstance(A_ , A_ ):
return other
raise TypeError(F'''{other} (type {type(A_ )}) cannot be compared to version.''' )
def __eq__( self , A_ )-> Tuple:
'''simple docstring'''
try:
UpperCamelCase = self._validate_operand(A_ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self , A_ )-> int:
'''simple docstring'''
UpperCamelCase = self._validate_operand(A_ )
return self.tuple < other.tuple
def __hash__( self )-> int:
'''simple docstring'''
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def UpperCAmelCase_ ( cls , A_ )-> str:
'''simple docstring'''
UpperCamelCase = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
return self.version_str
def A_( A : List[str]):
UpperCamelCase = _VERSION_REG.match(A)
if not res:
raise ValueError(f'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''')
return tuple(int(A) for v in [res.group('major'), res.group('minor'), res.group('patch')])
def A_( A : Dict):
return ".".join(str(A) for v in version_tuple)
| 3 |
'''simple docstring'''
from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_):
@register_to_config
def __init__( self , A_ , A_ = None , A_ = None )-> Tuple:
'''simple docstring'''
super().__init__()
UpperCamelCase = learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
UpperCamelCase = torch.zeros(A_ , A_ )
else:
UpperCamelCase = None
UpperCamelCase = torch.nn.Parameter(A_ )
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , )-> Union[str, Any]:
'''simple docstring'''
super().__init__()
self.register_modules(
vqvae=A_ , transformer=A_ , text_encoder=A_ , tokenizer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , )
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Tuple:
'''simple docstring'''
UpperCamelCase = len(A_ ) if isinstance(A_ , A_ ) else 1
# get prompt text embeddings
UpperCamelCase = self.tokenizer(
A_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , )
UpperCamelCase = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'The following part of your input was truncated because CLIP can only handle sequences up to'
F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' )
UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length]
UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=A_ )
# duplicate text embeddings for each generation per prompt
UpperCamelCase = prompt_embeds.repeat_interleave(A_ , dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings
UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(A_ , 1 , 1 )
else:
UpperCamelCase = [''] * batch_size
UpperCamelCase = text_input_ids.shape[-1]
UpperCamelCase = self.tokenizer(
A_ , padding='max_length' , max_length=A_ , truncation=A_ , return_tensors='pt' , )
UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=A_ )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
UpperCamelCase = negative_prompt_embeds.shape[1]
UpperCamelCase = negative_prompt_embeds.repeat(1 , A_ , 1 )
UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__( self , A_ , A_ = 100 , A_ = 5.0 , A_ = 1.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , A_ = None , A_ = 1 , )-> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
if isinstance(A_ , A_ ):
UpperCamelCase = 1
elif isinstance(A_ , A_ ):
UpperCamelCase = len(A_ )
else:
raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(A_ )}''' )
UpperCamelCase = batch_size * num_images_per_prompt
UpperCamelCase = guidance_scale > 1.0
UpperCamelCase = self._encode_prompt(A_ , A_ , A_ )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(A_ , A_ ) or callback_steps <= 0)
):
raise ValueError(
F'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
F''' {type(A_ )}.''' )
# get the initial completely masked latents unless the user supplied it
UpperCamelCase = (batch_size, self.transformer.num_latent_pixels)
if latents is None:
UpperCamelCase = self.transformer.num_vector_embeds - 1
UpperCamelCase = torch.full(A_ , A_ ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,'
F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' )
UpperCamelCase = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(A_ , device=self.device )
UpperCamelCase = self.scheduler.timesteps.to(self.device )
UpperCamelCase = latents
for i, t in enumerate(self.progress_bar(A_ ) ):
# expand the sample if we are doing classifier free guidance
UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
UpperCamelCase = self.transformer(A_ , encoder_hidden_states=A_ , timestep=A_ ).sample
if do_classifier_free_guidance:
UpperCamelCase , UpperCamelCase = model_output.chunk(2 )
UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(A_ , dim=1 , keepdim=A_ )
UpperCamelCase = self.truncate(A_ , A_ )
# remove `log(0)`'s (`-inf`s)
UpperCamelCase = model_output.clamp(-70 )
# compute the previous noisy sample x_t -> x_t-1
UpperCamelCase = self.scheduler.step(A_ , timestep=A_ , sample=A_ , generator=A_ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(A_ , A_ , A_ )
UpperCamelCase = self.vqvae.config.vq_embed_dim
UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
UpperCamelCase = self.vqvae.quantize.get_codebook_entry(A_ , shape=A_ )
UpperCamelCase = self.vqvae.decode(A_ , force_not_quantize=A_ ).sample
UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 )
UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCamelCase = self.numpy_to_pil(A_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=A_ )
def UpperCAmelCase_ ( self , A_ , A_ )-> torch.FloatTensor:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = torch.sort(A_ , 1 , descending=A_ )
UpperCamelCase = torch.exp(A_ )
UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , A_ )
UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 )
UpperCamelCase = keep_mask[:, :-1, :]
UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) )
UpperCamelCase = log_p_x_0.clone()
UpperCamelCase = -torch.inf # -inf = log(0)
return rv
| 3 | 1 |
'''simple docstring'''
def A_( A : float , A : float , A : int):
if principal <= 0:
raise Exception('Principal borrowed must be > 0')
if rate_per_annum < 0:
raise Exception('Rate of interest must be >= 0')
if years_to_repay <= 0 or not isinstance(A , A):
raise Exception('Years to repay must be an integer > 0')
# Yearly rate is divided by 12 to get monthly rate
UpperCamelCase = rate_per_annum / 12
# Years to repay is multiplied by 12 to get number of payments as payment is monthly
UpperCamelCase = years_to_repay * 12
return (
principal
* rate_per_month
* (1 + rate_per_month) ** number_of_payments
/ ((1 + rate_per_month) ** number_of_payments - 1)
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase : Union[str, Any] = {
'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'],
'processing_git': ['GitProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : List[Any] = [
'GIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GitForCausalLM',
'GitModel',
'GitPreTrainedModel',
'GitVisionModel',
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 3 | 1 |
'''simple docstring'''
import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
lowerCAmelCase : List[Any] = logging.get_logger(__name__)
def A_( A : str=None , A : Union[str, Any]=None):
return field(default_factory=lambda: default , metadata=A)
@dataclass
class SCREAMING_SNAKE_CASE__ :
lowerCAmelCase_ = list_field(
default=[] , metadata={
"""help""": (
"""Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version"""
""" of all available models"""
)
} , )
lowerCAmelCase_ = list_field(
default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""})
lowerCAmelCase_ = list_field(
default=[8, 32, 1_28, 5_12] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , )
lowerCAmelCase_ = field(
default=snake_case_ , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , )
lowerCAmelCase_ = field(
default=snake_case_ , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , )
lowerCAmelCase_ = field(
default=snake_case_ , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""})
lowerCAmelCase_ = field(default=snake_case_ , metadata={"""help""": """Use FP16 to accelerate inference."""})
lowerCAmelCase_ = field(default=snake_case_ , metadata={"""help""": """Benchmark training of model"""})
lowerCAmelCase_ = field(default=snake_case_ , metadata={"""help""": """Verbose memory tracing"""})
lowerCAmelCase_ = field(
default=snake_case_ , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , )
lowerCAmelCase_ = field(
default=snake_case_ , metadata={
"""help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory"""
} , )
lowerCAmelCase_ = field(default=snake_case_ , metadata={"""help""": """Trace memory line by line"""})
lowerCAmelCase_ = field(default=snake_case_ , metadata={"""help""": """Save result to a CSV file"""})
lowerCAmelCase_ = field(default=snake_case_ , metadata={"""help""": """Save all print statements in a log file"""})
lowerCAmelCase_ = field(default=snake_case_ , metadata={"""help""": """Whether to print environment information"""})
lowerCAmelCase_ = field(
default=snake_case_ , metadata={
"""help""": (
"""Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use"""
""" multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled"""
""" for debugging / testing and on TPU."""
)
} , )
lowerCAmelCase_ = field(
default=f"inference_time_{round(time())}.csv" , metadata={"""help""": """CSV filename used if saving time results to csv."""} , )
lowerCAmelCase_ = field(
default=f"inference_memory_{round(time())}.csv" , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , )
lowerCAmelCase_ = field(
default=f"train_time_{round(time())}.csv" , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , )
lowerCAmelCase_ = field(
default=f"train_memory_{round(time())}.csv" , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , )
lowerCAmelCase_ = field(
default=f"env_info_{round(time())}.csv" , metadata={"""help""": """CSV filename used if saving environment information."""} , )
lowerCAmelCase_ = field(
default=f"log_{round(time())}.csv" , metadata={"""help""": """Log filename used if print statements are saved in log."""} , )
lowerCAmelCase_ = field(default=3 , metadata={"""help""": """Times an experiment will be run."""})
lowerCAmelCase_ = field(
default=snake_case_ , metadata={
"""help""": (
"""Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain"""
""" model weights."""
)
} , )
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
warnings.warn(
F'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils'''
' are deprecated in general and it is advised to use external Benchmarking libraries '
' to benchmark Transformer models.' , A_ , )
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
return json.dumps(dataclasses.asdict(self ) , indent=2 )
@property
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
if len(self.models ) <= 0:
raise ValueError(
'Please make sure you provide at least one model name / model identifier, *e.g.* `--models'
' bert-base-cased` or `args.models = [\'bert-base-cased\'].' )
return self.models
@property
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
if not self.multi_process:
return False
elif self.is_tpu:
logger.info('Multiprocessing is currently not possible on TPU.' )
return False
else:
return True
| 3 |
'''simple docstring'''
import uuid
from typing import Any, Dict, List, Optional, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ :
def __init__( self , A_ = None , A_ = None , A_=None , A_=None )-> Optional[Any]:
'''simple docstring'''
if not conversation_id:
UpperCamelCase = uuid.uuida()
if past_user_inputs is None:
UpperCamelCase = []
if generated_responses is None:
UpperCamelCase = []
UpperCamelCase = conversation_id
UpperCamelCase = past_user_inputs
UpperCamelCase = generated_responses
UpperCamelCase = text
def __eq__( self , A_ )-> List[Any]:
'''simple docstring'''
if not isinstance(A_ , A_ ):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def UpperCAmelCase_ ( self , A_ , A_ = False )-> int:
'''simple docstring'''
if self.new_user_input:
if overwrite:
logger.warning(
F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten '''
F'''with: "{text}".''' )
UpperCamelCase = text
else:
logger.warning(
F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input '''
F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' )
else:
UpperCamelCase = text
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input )
UpperCamelCase = None
def UpperCAmelCase_ ( self , A_ )-> int:
'''simple docstring'''
self.generated_responses.append(A_ )
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__( self )-> Any:
'''simple docstring'''
UpperCamelCase = F'''Conversation id: {self.uuid} \n'''
for is_user, text in self.iter_texts():
UpperCamelCase = 'user' if is_user else 'bot'
output += F'''{name} >> {text} \n'''
return output
@add_end_docstrings(
snake_case_ , R"""
min_length_for_response (`int`, *optional*, defaults to 32):
The minimum length (in number of tokens) for a response.
minimum_tokens (`int`, *optional*, defaults to 10):
The minimum length of tokens to leave for a response.
""" , )
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , *A_ , **A_ )-> Any:
'''simple docstring'''
super().__init__(*A_ , **A_ )
if self.tokenizer.pad_token_id is None:
UpperCamelCase = self.tokenizer.eos_token
def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , **A_ )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = {}
UpperCamelCase = {}
UpperCamelCase = {}
if min_length_for_response is not None:
UpperCamelCase = min_length_for_response
if minimum_tokens is not None:
UpperCamelCase = minimum_tokens
if "max_length" in generate_kwargs:
UpperCamelCase = generate_kwargs['max_length']
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
UpperCamelCase = clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(A_ )
return preprocess_params, forward_params, postprocess_params
def __call__( self , A_ , A_=0 , **A_ )-> Any:
'''simple docstring'''
UpperCamelCase = super().__call__(A_ , num_workers=A_ , **A_ )
if isinstance(A_ , A_ ) and len(A_ ) == 1:
return outputs[0]
return outputs
def UpperCAmelCase_ ( self , A_ , A_=32 )-> Dict[str, Any]:
'''simple docstring'''
if not isinstance(A_ , A_ ):
raise ValueError('ConversationalPipeline, expects Conversation as inputs' )
if conversation.new_user_input is None:
raise ValueError(
F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. '''
'Add user inputs with the conversation\'s `add_user_input` method' )
if hasattr(self.tokenizer , '_build_conversation_input_ids' ):
UpperCamelCase = self.tokenizer._build_conversation_input_ids(A_ )
else:
# If the tokenizer cannot handle conversations, we default to only the old version
UpperCamelCase = self._legacy_parse_and_tokenize(A_ )
if self.framework == "pt":
UpperCamelCase = torch.LongTensor([input_ids] )
elif self.framework == "tf":
UpperCamelCase = tf.constant([input_ids] )
return {"input_ids": input_ids, "conversation": conversation}
def UpperCAmelCase_ ( self , A_ , A_=10 , **A_ )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length )
UpperCamelCase = model_inputs['input_ids'].shape[1]
if max_length - minimum_tokens < n:
logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' )
UpperCamelCase = max_length - minimum_tokens
UpperCamelCase = model_inputs['input_ids'][:, -trim:]
if "attention_mask" in model_inputs:
UpperCamelCase = model_inputs['attention_mask'][:, -trim:]
UpperCamelCase = model_inputs.pop('conversation' )
UpperCamelCase = max_length
UpperCamelCase = self.model.generate(**A_ , **A_ )
if self.model.config.is_encoder_decoder:
UpperCamelCase = 1
else:
UpperCamelCase = n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def UpperCAmelCase_ ( self , A_ , A_=True )-> Tuple:
'''simple docstring'''
UpperCamelCase = model_outputs['output_ids']
UpperCamelCase = self.tokenizer.decode(
output_ids[0] , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , )
UpperCamelCase = model_outputs['conversation']
conversation.mark_processed()
conversation.append_response(A_ )
return conversation
def UpperCAmelCase_ ( self , A_ )-> Dict:
'''simple docstring'''
UpperCamelCase = self.tokenizer.eos_token_id
UpperCamelCase = []
for is_user, text in conversation.iter_texts():
if eos_token_id is not None:
input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) + [eos_token_id] )
else:
input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) )
if len(A_ ) > self.tokenizer.model_max_length:
UpperCamelCase = input_ids[-self.tokenizer.model_max_length :]
return input_ids
| 3 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase : Any = {
'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'],
'tokenization_lxmert': ['LxmertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : str = ['LxmertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : List[str] = [
'LxmertEncoder',
'LxmertForPreTraining',
'LxmertForQuestionAnswering',
'LxmertModel',
'LxmertPreTrainedModel',
'LxmertVisualFeatureEncoder',
'LxmertXLayer',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : str = [
'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLxmertForPreTraining',
'TFLxmertMainLayer',
'TFLxmertModel',
'TFLxmertPreTrainedModel',
'TFLxmertVisualFeatureEncoder',
]
if TYPE_CHECKING:
from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig
from .tokenization_lxmert import LxmertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_lxmert_fast import LxmertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lxmert import (
LxmertEncoder,
LxmertForPreTraining,
LxmertForQuestionAnswering,
LxmertModel,
LxmertPreTrainedModel,
LxmertVisualFeatureEncoder,
LxmertXLayer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_lxmert import (
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLxmertForPreTraining,
TFLxmertMainLayer,
TFLxmertModel,
TFLxmertPreTrainedModel,
TFLxmertVisualFeatureEncoder,
)
else:
import sys
lowerCAmelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 3 |
'''simple docstring'''
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print('Googling.....')
lowerCAmelCase : List[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:])
lowerCAmelCase : List[Any] = requests.get(url, headers={'UserAgent': UserAgent().random})
# res.raise_for_status()
with open('project1a.html', 'wb') as out_file: # only for knowing the class
for data in res.iter_content(1_00_00):
out_file.write(data)
lowerCAmelCase : Tuple = BeautifulSoup(res.text, 'html.parser')
lowerCAmelCase : List[Any] = list(soup.select('.eZt8xd'))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get('href'))
else:
webbrowser.open(f"""https://google.com{link.get('href')}""")
| 3 | 1 |
'''simple docstring'''
import argparse
import collections
import numpy as np
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def A_( A : str , A : Optional[int] , A : List[str]):
return params[f'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :]
def A_( A : List[str] , A : List[Any] , A : List[str] , A : Union[str, Any]="attention"):
UpperCamelCase = UpperCamelCase = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :])
UpperCamelCase = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2])
UpperCamelCase = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :])
UpperCamelCase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2])
UpperCamelCase = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :])
UpperCamelCase = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2])
UpperCamelCase = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :])
UpperCamelCase = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2])
return k, o, q, v
def A_( A : List[Any] , A : Dict , A : str , A : Optional[Any]=False):
if split_mlp_wi:
UpperCamelCase = params[f'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :]
UpperCamelCase = params[f'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :]
UpperCamelCase = (wi_a, wi_a)
else:
UpperCamelCase = params[f'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :]
UpperCamelCase = params[f'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :]
return wi, wo
def A_( A : List[Any] , A : Union[str, Any] , A : Optional[Any] , A : Optional[int]):
return params[f'''{prefix}/{prefix}/{layer_name}/scale'''][:, i]
def A_( A : dict , *, A : int , A : bool , A : bool = False):
UpperCamelCase = traverse_util.flatten_dict(variables['target'])
UpperCamelCase = {'/'.join(A): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
UpperCamelCase = 'encoder/encoder/mlp/wi_0/kernel' in old
print('Split MLP:' , A)
UpperCamelCase = collections.OrderedDict()
# Shared embeddings.
UpperCamelCase = old['token_embedder/embedding']
# Encoder.
for i in range(A):
# Block i, layer 0 (Self Attention).
UpperCamelCase = tax_layer_norm_lookup(A , A , 'encoder' , 'pre_attention_layer_norm')
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = tax_attention_lookup(A , A , 'encoder' , 'attention')
UpperCamelCase = layer_norm
UpperCamelCase = k.T
UpperCamelCase = o.T
UpperCamelCase = q.T
UpperCamelCase = v.T
# Block i, layer 1 (MLP).
UpperCamelCase = tax_layer_norm_lookup(A , A , 'encoder' , 'pre_mlp_layer_norm')
UpperCamelCase , UpperCamelCase = tax_mlp_lookup(A , A , 'encoder' , A)
UpperCamelCase = layer_norm
if split_mlp_wi:
UpperCamelCase = wi[0].T
UpperCamelCase = wi[1].T
else:
UpperCamelCase = wi.T
UpperCamelCase = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
UpperCamelCase = tax_relpos_bias_lookup(
A , A , 'encoder').T
UpperCamelCase = old['encoder/encoder_norm/scale']
if not scalable_attention:
UpperCamelCase = tax_relpos_bias_lookup(
A , 0 , 'encoder').T
UpperCamelCase = tax_relpos_bias_lookup(
A , 0 , 'decoder').T
if not is_encoder_only:
# Decoder.
for i in range(A):
# Block i, layer 0 (Self Attention).
UpperCamelCase = tax_layer_norm_lookup(A , A , 'decoder' , 'pre_self_attention_layer_norm')
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = tax_attention_lookup(A , A , 'decoder' , 'self_attention')
UpperCamelCase = layer_norm
UpperCamelCase = k.T
UpperCamelCase = o.T
UpperCamelCase = q.T
UpperCamelCase = v.T
# Block i, layer 1 (Cross Attention).
UpperCamelCase = tax_layer_norm_lookup(A , A , 'decoder' , 'pre_cross_attention_layer_norm')
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = tax_attention_lookup(A , A , 'decoder' , 'encoder_decoder_attention')
UpperCamelCase = layer_norm
UpperCamelCase = k.T
UpperCamelCase = o.T
UpperCamelCase = q.T
UpperCamelCase = v.T
# Block i, layer 2 (MLP).
UpperCamelCase = tax_layer_norm_lookup(A , A , 'decoder' , 'pre_mlp_layer_norm')
UpperCamelCase , UpperCamelCase = tax_mlp_lookup(A , A , 'decoder' , A)
UpperCamelCase = layer_norm
if split_mlp_wi:
UpperCamelCase = wi[0].T
UpperCamelCase = wi[1].T
else:
UpperCamelCase = wi.T
UpperCamelCase = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
UpperCamelCase = tax_relpos_bias_lookup(A , A , 'decoder').T
UpperCamelCase = old['decoder/decoder_norm/scale']
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
UpperCamelCase = old['decoder/logits_dense/kernel'].T
return new
def A_( A : Any , A : bool):
UpperCamelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy())) for (k, v) in converted_params.items()])
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
UpperCamelCase = state_dict['shared.weight']
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
UpperCamelCase = state_dict['shared.weight']
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print('Using shared word embeddings as lm_head.')
UpperCamelCase = state_dict['shared.weight']
return state_dict
def A_( A : List[str] , A : Optional[Any] , A : str , A : int , A : List[Any]):
UpperCamelCase = checkpoints.load_tax_checkpoint(A)
UpperCamelCase = convert_tax_to_pytorch(
A , num_layers=config.num_layers , is_encoder_only=A , scalable_attention=A)
UpperCamelCase = make_state_dict(A , A)
model.load_state_dict(A , strict=A)
def A_( A : Optional[Any] , A : List[str] , A : List[Any] , A : bool = False , A : bool = False , ):
UpperCamelCase = MTaConfig.from_json_file(A)
print(f'''Building PyTorch model from configuration: {config}''')
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
UpperCamelCase = UMTaEncoderModel(A)
else:
UpperCamelCase = UMTaForConditionalGeneration(A)
# Load weights from tf checkpoint
load_tax_weights_in_ta(A , A , A , A , A)
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''')
model.save_pretrained(A)
# Verify that we can load the checkpoint.
model.from_pretrained(A)
print('Done')
if __name__ == "__main__":
lowerCAmelCase : Optional[Any] = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.')
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False
)
parser.add_argument(
'--scalable_attention',
action='store_true',
help='Whether the model uses scaled attention (umt5 model)',
default=False,
)
lowerCAmelCase : Dict = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path,
args.config_file,
args.pytorch_dump_path,
args.is_encoder_only,
args.scalable_attention,
)
| 3 |
'''simple docstring'''
import numpy as np
def A_( A : str , A : Optional[Any] , A : Tuple , A : Optional[int] , A : str):
UpperCamelCase = int(np.ceil((x_end - xa) / h))
UpperCamelCase = np.zeros((n + 1,))
UpperCamelCase = ya
UpperCamelCase = xa
for k in range(A):
UpperCamelCase = f(A , y[k])
UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka)
UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka)
UpperCamelCase = f(x + h , y[k] + h * ka)
UpperCamelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka)
x += h
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
import os
import time
import pytest
from datasets.utils.filelock import FileLock, Timeout
def A_( A : Tuple):
UpperCamelCase = FileLock(str(tmpdir / 'foo.lock'))
UpperCamelCase = FileLock(str(tmpdir / 'foo.lock'))
UpperCamelCase = 0.01
with locka.acquire():
with pytest.raises(A):
UpperCamelCase = time.time()
locka.acquire(A)
assert time.time() - _start > timeout
def A_( A : List[Any]):
UpperCamelCase = 'a' * 1000 + '.lock'
UpperCamelCase = FileLock(str(tmpdir / filename))
assert locka._lock_file.endswith('.lock')
assert not locka._lock_file.endswith(A)
assert len(os.path.basename(locka._lock_file)) <= 255
UpperCamelCase = FileLock(tmpdir / filename)
with locka.acquire():
with pytest.raises(A):
locka.acquire(0)
| 3 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=snake_case_)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True})
lowerCAmelCase_ = Features({"""text""": Value("""string""")})
lowerCAmelCase_ = Features({})
lowerCAmelCase_ = "text"
@property
def UpperCAmelCase_ ( self )-> Dict[str, str]:
'''simple docstring'''
return {self.text_column: "text"}
| 3 | 1 |
'''simple docstring'''
from string import ascii_lowercase, ascii_uppercase
def A_( A : str):
if not sentence:
return ""
UpperCamelCase = dict(zip(A , A))
return lower_to_upper.get(sentence[0] , sentence[0]) + sentence[1:]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 3 |
'''simple docstring'''
from __future__ import annotations
lowerCAmelCase : Union[str, Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0]
lowerCAmelCase : List[str] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1]
def A_( A : list[float]):
UpperCamelCase = []
UpperCamelCase = len(A)
for i in range(A):
UpperCamelCase = -1
for j in range(i + 1 , A):
if arr[i] < arr[j]:
UpperCamelCase = arr[j]
break
result.append(A)
return result
def A_( A : list[float]):
UpperCamelCase = []
for i, outer in enumerate(A):
UpperCamelCase = -1
for inner in arr[i + 1 :]:
if outer < inner:
UpperCamelCase = inner
break
result.append(A)
return result
def A_( A : list[float]):
UpperCamelCase = len(A)
UpperCamelCase = []
UpperCamelCase = [-1] * arr_size
for index in reversed(range(A)):
if stack:
while stack[-1] <= arr[index]:
stack.pop()
if not stack:
break
if stack:
UpperCamelCase = stack[-1]
stack.append(arr[index])
return result
if __name__ == "__main__":
from doctest import testmod
from timeit import timeit
testmod()
print(next_greatest_element_slow(arr))
print(next_greatest_element_fast(arr))
print(next_greatest_element(arr))
lowerCAmelCase : Optional[Any] = (
'from __main__ import arr, next_greatest_element_slow, '
'next_greatest_element_fast, next_greatest_element'
)
print(
'next_greatest_element_slow():',
timeit('next_greatest_element_slow(arr)', setup=setup),
)
print(
'next_greatest_element_fast():',
timeit('next_greatest_element_fast(arr)', setup=setup),
)
print(
' next_greatest_element():',
timeit('next_greatest_element(arr)', setup=setup),
)
| 3 | 1 |
'''simple docstring'''
from .glue import GlueDataset, GlueDataTrainingArguments
from .language_modeling import (
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .squad import SquadDataset, SquadDataTrainingArguments
| 3 |
'''simple docstring'''
from string import ascii_lowercase, ascii_uppercase
def A_( A : str):
if not sentence:
return ""
UpperCamelCase = dict(zip(A , A))
return lower_to_upper.get(sentence[0] , sentence[0]) + sentence[1:]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 3 | 1 |
'''simple docstring'''
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
lowerCAmelCase : Tuple = pd.read_csv('sample_data.csv', header=None)
lowerCAmelCase : Dict = df.shape[:1][0]
# If you're using some other dataset input the target column
lowerCAmelCase : int = df.iloc[:, 1:2]
lowerCAmelCase : List[str] = actual_data.values.reshape(len_data, 1)
lowerCAmelCase : int = MinMaxScaler().fit_transform(actual_data)
lowerCAmelCase : Tuple = 10
lowerCAmelCase : str = 5
lowerCAmelCase : str = 20
lowerCAmelCase : Optional[Any] = len_data - periods * look_back
lowerCAmelCase : Optional[int] = actual_data[:division]
lowerCAmelCase : Dict = actual_data[division - look_back :]
lowerCAmelCase , lowerCAmelCase : Optional[Any] = [], []
lowerCAmelCase , lowerCAmelCase : Tuple = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
lowerCAmelCase : List[str] = np.array(train_x)
lowerCAmelCase : Optional[int] = np.array(test_x)
lowerCAmelCase : Any = np.array([list(i.ravel()) for i in train_y])
lowerCAmelCase : int = np.array([list(i.ravel()) for i in test_y])
lowerCAmelCase : Tuple = Sequential()
model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(1_28, 1)))
model.add(Dense(forward_days))
model.compile(loss='mean_squared_error', optimizer='adam')
lowerCAmelCase : Optional[int] = model.fit(
x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4
)
lowerCAmelCase : List[str] = model.predict(x_test)
| 3 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
lowerCAmelCase : Dict = logging.get_logger(__name__)
# General docstring
lowerCAmelCase : str = 'RegNetConfig'
# Base docstring
lowerCAmelCase : str = 'facebook/regnet-y-040'
lowerCAmelCase : Dict = [1, 10_88, 7, 7]
# Image classification docstring
lowerCAmelCase : Dict = 'facebook/regnet-y-040'
lowerCAmelCase : int = 'tabby, tabby cat'
lowerCAmelCase : int = [
'facebook/regnet-y-040',
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ = 3 , A_ = 1 , A_ = 1 , A_ = "relu" , **A_ , )-> str:
'''simple docstring'''
super().__init__(**A_ )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
UpperCamelCase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
UpperCamelCase = tf.keras.layers.ConvaD(
filters=A_ , kernel_size=A_ , strides=A_ , padding='VALID' , groups=A_ , use_bias=A_ , name='convolution' , )
UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' )
UpperCamelCase = ACTaFN[activation] if activation is not None else tf.identity
def UpperCAmelCase_ ( self , A_ )-> Any:
'''simple docstring'''
UpperCamelCase = self.convolution(self.padding(A_ ) )
UpperCamelCase = self.normalization(A_ )
UpperCamelCase = self.activation(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , **A_ )-> Optional[Any]:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = config.num_channels
UpperCamelCase = TFRegNetConvLayer(
out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , )
def UpperCAmelCase_ ( self , A_ )-> List[Any]:
'''simple docstring'''
UpperCamelCase = shape_list(A_ )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
UpperCamelCase = tf.transpose(A_ , perm=(0, 2, 3, 1) )
UpperCamelCase = self.embedder(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ = 2 , **A_ )-> List[Any]:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = tf.keras.layers.ConvaD(
filters=A_ , kernel_size=1 , strides=A_ , use_bias=A_ , name='convolution' )
UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' )
def UpperCAmelCase_ ( self , A_ , A_ = False )-> tf.Tensor:
'''simple docstring'''
return self.normalization(self.convolution(A_ ) , training=A_ )
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ , **A_ )-> Optional[Any]:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' )
UpperCamelCase = [
tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='relu' , name='attention.0' ),
tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='sigmoid' , name='attention.2' ),
]
def UpperCAmelCase_ ( self , A_ )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.pooler(A_ )
for layer_module in self.attention:
UpperCamelCase = layer_module(A_ )
UpperCamelCase = hidden_state * pooled
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Dict:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = in_channels != out_channels or stride != 1
UpperCamelCase = max(1 , out_channels // config.groups_width )
UpperCamelCase = (
TFRegNetShortCut(A_ , stride=A_ , name='shortcut' )
if should_apply_shortcut
else tf.keras.layers.Activation('linear' , name='shortcut' )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
UpperCamelCase = [
TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ),
TFRegNetConvLayer(
A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ),
TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.2' ),
]
UpperCamelCase = ACTaFN[config.hidden_act]
def UpperCAmelCase_ ( self , A_ )-> Tuple:
'''simple docstring'''
UpperCamelCase = hidden_state
for layer_module in self.layers:
UpperCamelCase = layer_module(A_ )
UpperCamelCase = self.shortcut(A_ )
hidden_state += residual
UpperCamelCase = self.activation(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Any:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = in_channels != out_channels or stride != 1
UpperCamelCase = max(1 , out_channels // config.groups_width )
UpperCamelCase = (
TFRegNetShortCut(A_ , stride=A_ , name='shortcut' )
if should_apply_shortcut
else tf.keras.layers.Activation('linear' , name='shortcut' )
)
UpperCamelCase = [
TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ),
TFRegNetConvLayer(
A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ),
TFRegNetSELayer(A_ , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ),
TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.3' ),
]
UpperCamelCase = ACTaFN[config.hidden_act]
def UpperCAmelCase_ ( self , A_ )-> List[Any]:
'''simple docstring'''
UpperCamelCase = hidden_state
for layer_module in self.layers:
UpperCamelCase = layer_module(A_ )
UpperCamelCase = self.shortcut(A_ )
hidden_state += residual
UpperCamelCase = self.activation(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ , A_ , A_ = 2 , A_ = 2 , **A_ )-> Dict:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer
UpperCamelCase = [
# downsampling is done in the first layer with stride of 2
layer(A_ , A_ , A_ , stride=A_ , name='layers.0' ),
*[layer(A_ , A_ , A_ , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )],
]
def UpperCAmelCase_ ( self , A_ )-> List[Any]:
'''simple docstring'''
for layer_module in self.layers:
UpperCamelCase = layer_module(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , **A_ )-> str:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
A_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) )
UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(A_ , config.depths[1:] ) ):
self.stages.append(TFRegNetStage(A_ , A_ , A_ , depth=A_ , name=F'''stages.{i+1}''' ) )
def UpperCAmelCase_ ( self , A_ , A_ = False , A_ = True )-> TFBaseModelOutputWithNoAttention:
'''simple docstring'''
UpperCamelCase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
UpperCamelCase = hidden_states + (hidden_state,)
UpperCamelCase = stage_module(A_ )
if output_hidden_states:
UpperCamelCase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=A_ , hidden_states=A_ )
@keras_serializable
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
lowerCAmelCase_ = RegNetConfig
def __init__( self , A_ , **A_ )-> Union[str, Any]:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = config
UpperCamelCase = TFRegNetEmbeddings(A_ , name='embedder' )
UpperCamelCase = TFRegNetEncoder(A_ , name='encoder' )
UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' )
@unpack_inputs
def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_ = False , )-> TFBaseModelOutputWithPoolingAndNoAttention:
'''simple docstring'''
UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
UpperCamelCase = self.embedder(A_ , training=A_ )
UpperCamelCase = self.encoder(
A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ )
UpperCamelCase = encoder_outputs[0]
UpperCamelCase = self.pooler(A_ )
# Change to NCHW output format have uniformity in the modules
UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) )
UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
UpperCamelCase = tuple([tf.transpose(A_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=A_ , pooler_output=A_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , )
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = RegNetConfig
lowerCAmelCase_ = """regnet"""
lowerCAmelCase_ = """pixel_values"""
@property
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )}
lowerCAmelCase : str = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowerCAmelCase : List[str] = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"""The bare RegNet model outputting raw features without any specific head on top.""" , snake_case_ , )
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ , *A_ , **A_ )-> List[Any]:
'''simple docstring'''
super().__init__(A_ , *A_ , **A_ )
UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' )
@unpack_inputs
@add_start_docstrings_to_model_forward(A_ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_=False , )-> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]:
'''simple docstring'''
UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
UpperCamelCase = self.regnet(
pixel_values=A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ , )
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , )
@add_start_docstrings(
"""
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""" , snake_case_ , )
class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_):
def __init__( self , A_ , *A_ , **A_ )-> str:
'''simple docstring'''
super().__init__(A_ , *A_ , **A_ )
UpperCamelCase = config.num_labels
UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' )
# classification head
UpperCamelCase = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(A_ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def UpperCAmelCase_ ( self , A_ = None , A_ = None , A_ = None , A_ = None , A_=False , )-> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
'''simple docstring'''
UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
UpperCamelCase = self.regnet(
A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ )
UpperCamelCase = outputs.pooler_output if return_dict else outputs[1]
UpperCamelCase = self.classifier[0](A_ )
UpperCamelCase = self.classifier[1](A_ )
UpperCamelCase = None if labels is None else self.hf_compute_loss(labels=A_ , logits=A_ )
if not return_dict:
UpperCamelCase = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=A_ , logits=A_ , hidden_states=outputs.hidden_states )
| 3 | 1 |
'''simple docstring'''
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
UNetaDConditionModel,
VideoToVideoSDPipeline,
)
from diffusers.utils import floats_tensor, is_xformers_available, skip_mps
from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase):
lowerCAmelCase_ = VideoToVideoSDPipeline
lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""}) - {"""image""", """width""", """height"""}
lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""}) - {"""image"""}
lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {"""latents"""}
lowerCAmelCase_ = False
# No `output_type`.
lowerCAmelCase_ = frozenset(
[
"""num_inference_steps""",
"""generator""",
"""latents""",
"""return_dict""",
"""callback""",
"""callback_steps""",
])
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
torch.manual_seed(0 )
UpperCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , )
UpperCamelCase = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=A_ , set_alpha_to_one=A_ , )
torch.manual_seed(0 )
UpperCamelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
UpperCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , )
UpperCamelCase = CLIPTextModel(A_ )
UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
UpperCamelCase = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
}
return components
def UpperCAmelCase_ ( self , A_ , A_=0 )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ )
if str(A_ ).startswith('mps' ):
UpperCamelCase = torch.manual_seed(A_ )
else:
UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ )
UpperCamelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'video': video,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'pt',
}
return inputs
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
UpperCamelCase = self.get_dummy_components()
UpperCamelCase = VideoToVideoSDPipeline(**A_ )
UpperCamelCase = sd_pipe.to(A_ )
sd_pipe.set_progress_bar_config(disable=A_ )
UpperCamelCase = self.get_dummy_inputs(A_ )
UpperCamelCase = 'np'
UpperCamelCase = sd_pipe(**A_ ).frames
UpperCamelCase = frames[0][-3:, -3:, -1]
assert frames[0].shape == (32, 32, 3)
UpperCamelCase = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_ , expected_max_diff=5e-3 )
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
pass
@unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' )
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
pass
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
return super().test_progress_bar()
@slow
@skip_mps
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
UpperCamelCase = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL' , torch_dtype=torch.floataa )
pipe.enable_model_cpu_offload()
# 10 frames
UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase = torch.randn((1, 10, 3, 1024, 576) , generator=A_ )
UpperCamelCase = video.to('cuda' )
UpperCamelCase = 'Spiderman is surfing'
UpperCamelCase = pipe(A_ , video=A_ , generator=A_ , num_inference_steps=3 , output_type='pt' ).frames
UpperCamelCase = np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656] )
assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
| 3 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...feature_extraction_utils import FeatureExtractionMixin
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType, logging
lowerCAmelCase : Any = logging.get_logger(__name__)
lowerCAmelCase : Optional[int] = {
'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json',
# See all Perceiver models at https://huggingface.co/models?filter=perceiver
}
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """perceiver"""
def __init__( self , A_=256 , A_=1280 , A_=768 , A_=1 , A_=26 , A_=8 , A_=8 , A_=None , A_=None , A_="kv" , A_=1 , A_=1 , A_="gelu" , A_=0.1 , A_=0.02 , A_=1e-12 , A_=True , A_=262 , A_=2048 , A_=56 , A_=[368, 496] , A_=16 , A_=1920 , A_=16 , A_=[1, 16, 224, 224] , **A_ , )-> str:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = num_latents
UpperCamelCase = d_latents
UpperCamelCase = d_model
UpperCamelCase = num_blocks
UpperCamelCase = num_self_attends_per_block
UpperCamelCase = num_self_attention_heads
UpperCamelCase = num_cross_attention_heads
UpperCamelCase = qk_channels
UpperCamelCase = v_channels
UpperCamelCase = cross_attention_shape_for_attention
UpperCamelCase = self_attention_widening_factor
UpperCamelCase = cross_attention_widening_factor
UpperCamelCase = hidden_act
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = initializer_range
UpperCamelCase = layer_norm_eps
UpperCamelCase = use_query_residual
# masked language modeling attributes
UpperCamelCase = vocab_size
UpperCamelCase = max_position_embeddings
# image classification attributes
UpperCamelCase = image_size
# flow attributes
UpperCamelCase = train_size
# multimodal autoencoding attributes
UpperCamelCase = num_frames
UpperCamelCase = audio_samples_per_frame
UpperCamelCase = samples_per_patch
UpperCamelCase = output_shape
class SCREAMING_SNAKE_CASE__ ( snake_case_):
@property
def UpperCAmelCase_ ( self )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('inputs', dynamic_axis),
('attention_mask', dynamic_axis),
] )
@property
def UpperCAmelCase_ ( self )-> float:
'''simple docstring'''
return 1e-4
def UpperCAmelCase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = -1 , A_ = False , A_ = None , A_ = 3 , A_ = 40 , A_ = 40 , )-> Mapping[str, Any]:
'''simple docstring'''
if isinstance(A_ , A_ ):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCamelCase = compute_effective_axis_dimension(
A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCamelCase = preprocessor.num_special_tokens_to_add(A_ )
UpperCamelCase = compute_effective_axis_dimension(
A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ )
# Generate dummy inputs according to compute batch and sequence
UpperCamelCase = [' '.join(['a'] ) * seq_length] * batch_size
UpperCamelCase = dict(preprocessor(A_ , return_tensors=A_ ) )
UpperCamelCase = inputs.pop('input_ids' )
return inputs
elif isinstance(A_ , A_ ) and preprocessor.model_input_names[0] == "pixel_values":
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCamelCase = compute_effective_axis_dimension(A_ , fixed_dimension=OnnxConfig.default_fixed_batch )
UpperCamelCase = self._generate_dummy_images(A_ , A_ , A_ , A_ )
UpperCamelCase = dict(preprocessor(images=A_ , return_tensors=A_ ) )
UpperCamelCase = inputs.pop('pixel_values' )
return inputs
else:
raise ValueError(
'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
| 3 | 1 |
'''simple docstring'''
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
lowerCAmelCase : Dict = _symbol_database.Default()
lowerCAmelCase : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile(
B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'
)
lowerCAmelCase : Optional[Any] = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
lowerCAmelCase : Optional[int] = None
lowerCAmelCase : str = B'H\003'
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
lowerCAmelCase : Optional[int] = 45
lowerCAmelCase : Tuple = 15_81
lowerCAmelCase : Tuple = 15_17
lowerCAmelCase : Tuple = 15_70
lowerCAmelCase : Union[str, Any] = 15_84
lowerCAmelCase : Optional[int] = 17_93
lowerCAmelCase : int = 17_95
lowerCAmelCase : Dict = 19_16
lowerCAmelCase : List[Any] = 18_64
lowerCAmelCase : Any = 19_05
lowerCAmelCase : Any = 19_19
lowerCAmelCase : str = 24_29
lowerCAmelCase : str = 22_08
lowerCAmelCase : Any = 24_18
lowerCAmelCase : Dict = 23_23
lowerCAmelCase : Optional[int] = 24_07
# @@protoc_insertion_point(module_scope)
| 3 |
'''simple docstring'''
from ....configuration_utils import PretrainedConfig
from ....utils import logging
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
lowerCAmelCase : Dict = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """mctct"""
def __init__( self , A_=8065 , A_=1536 , A_=36 , A_=6144 , A_=4 , A_=384 , A_=920 , A_=1e-5 , A_=0.3 , A_="relu" , A_=0.02 , A_=0.3 , A_=0.3 , A_=1 , A_=0 , A_=2 , A_=1 , A_=0.3 , A_=1 , A_=(7,) , A_=(3,) , A_=80 , A_=1 , A_=None , A_="sum" , A_=False , **A_ , )-> str:
'''simple docstring'''
super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ )
UpperCamelCase = vocab_size
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = intermediate_size
UpperCamelCase = num_attention_heads
UpperCamelCase = attention_head_dim
UpperCamelCase = max_position_embeddings
UpperCamelCase = layer_norm_eps
UpperCamelCase = layerdrop
UpperCamelCase = hidden_act
UpperCamelCase = initializer_range
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = pad_token_id
UpperCamelCase = bos_token_id
UpperCamelCase = eos_token_id
UpperCamelCase = conv_glu_dim
UpperCamelCase = conv_dropout
UpperCamelCase = num_conv_layers
UpperCamelCase = input_feat_per_channel
UpperCamelCase = input_channels
UpperCamelCase = conv_channels
UpperCamelCase = ctc_loss_reduction
UpperCamelCase = ctc_zero_infinity
# prevents config testing fail with exporting to json
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` '
F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, '''
F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
| 3 | 1 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
lowerCAmelCase : Dict = logging.get_logger(__name__)
# General docstring
lowerCAmelCase : str = 'RegNetConfig'
# Base docstring
lowerCAmelCase : str = 'facebook/regnet-y-040'
lowerCAmelCase : Dict = [1, 10_88, 7, 7]
# Image classification docstring
lowerCAmelCase : Dict = 'facebook/regnet-y-040'
lowerCAmelCase : int = 'tabby, tabby cat'
lowerCAmelCase : int = [
'facebook/regnet-y-040',
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ = 3 , A_ = 1 , A_ = 1 , A_ = "relu" , **A_ , )-> str:
'''simple docstring'''
super().__init__(**A_ )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
UpperCamelCase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
UpperCamelCase = tf.keras.layers.ConvaD(
filters=A_ , kernel_size=A_ , strides=A_ , padding='VALID' , groups=A_ , use_bias=A_ , name='convolution' , )
UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' )
UpperCamelCase = ACTaFN[activation] if activation is not None else tf.identity
def UpperCAmelCase_ ( self , A_ )-> Any:
'''simple docstring'''
UpperCamelCase = self.convolution(self.padding(A_ ) )
UpperCamelCase = self.normalization(A_ )
UpperCamelCase = self.activation(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , **A_ )-> Optional[Any]:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = config.num_channels
UpperCamelCase = TFRegNetConvLayer(
out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , )
def UpperCAmelCase_ ( self , A_ )-> List[Any]:
'''simple docstring'''
UpperCamelCase = shape_list(A_ )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
UpperCamelCase = tf.transpose(A_ , perm=(0, 2, 3, 1) )
UpperCamelCase = self.embedder(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ = 2 , **A_ )-> List[Any]:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = tf.keras.layers.ConvaD(
filters=A_ , kernel_size=1 , strides=A_ , use_bias=A_ , name='convolution' )
UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' )
def UpperCAmelCase_ ( self , A_ , A_ = False )-> tf.Tensor:
'''simple docstring'''
return self.normalization(self.convolution(A_ ) , training=A_ )
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ , **A_ )-> Optional[Any]:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' )
UpperCamelCase = [
tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='relu' , name='attention.0' ),
tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='sigmoid' , name='attention.2' ),
]
def UpperCAmelCase_ ( self , A_ )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.pooler(A_ )
for layer_module in self.attention:
UpperCamelCase = layer_module(A_ )
UpperCamelCase = hidden_state * pooled
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Dict:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = in_channels != out_channels or stride != 1
UpperCamelCase = max(1 , out_channels // config.groups_width )
UpperCamelCase = (
TFRegNetShortCut(A_ , stride=A_ , name='shortcut' )
if should_apply_shortcut
else tf.keras.layers.Activation('linear' , name='shortcut' )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
UpperCamelCase = [
TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ),
TFRegNetConvLayer(
A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ),
TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.2' ),
]
UpperCamelCase = ACTaFN[config.hidden_act]
def UpperCAmelCase_ ( self , A_ )-> Tuple:
'''simple docstring'''
UpperCamelCase = hidden_state
for layer_module in self.layers:
UpperCamelCase = layer_module(A_ )
UpperCamelCase = self.shortcut(A_ )
hidden_state += residual
UpperCamelCase = self.activation(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Any:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = in_channels != out_channels or stride != 1
UpperCamelCase = max(1 , out_channels // config.groups_width )
UpperCamelCase = (
TFRegNetShortCut(A_ , stride=A_ , name='shortcut' )
if should_apply_shortcut
else tf.keras.layers.Activation('linear' , name='shortcut' )
)
UpperCamelCase = [
TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ),
TFRegNetConvLayer(
A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ),
TFRegNetSELayer(A_ , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ),
TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.3' ),
]
UpperCamelCase = ACTaFN[config.hidden_act]
def UpperCAmelCase_ ( self , A_ )-> List[Any]:
'''simple docstring'''
UpperCamelCase = hidden_state
for layer_module in self.layers:
UpperCamelCase = layer_module(A_ )
UpperCamelCase = self.shortcut(A_ )
hidden_state += residual
UpperCamelCase = self.activation(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ , A_ , A_ = 2 , A_ = 2 , **A_ )-> Dict:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer
UpperCamelCase = [
# downsampling is done in the first layer with stride of 2
layer(A_ , A_ , A_ , stride=A_ , name='layers.0' ),
*[layer(A_ , A_ , A_ , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )],
]
def UpperCAmelCase_ ( self , A_ )-> List[Any]:
'''simple docstring'''
for layer_module in self.layers:
UpperCamelCase = layer_module(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , **A_ )-> str:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
A_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) )
UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(A_ , config.depths[1:] ) ):
self.stages.append(TFRegNetStage(A_ , A_ , A_ , depth=A_ , name=F'''stages.{i+1}''' ) )
def UpperCAmelCase_ ( self , A_ , A_ = False , A_ = True )-> TFBaseModelOutputWithNoAttention:
'''simple docstring'''
UpperCamelCase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
UpperCamelCase = hidden_states + (hidden_state,)
UpperCamelCase = stage_module(A_ )
if output_hidden_states:
UpperCamelCase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=A_ , hidden_states=A_ )
@keras_serializable
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
lowerCAmelCase_ = RegNetConfig
def __init__( self , A_ , **A_ )-> Union[str, Any]:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = config
UpperCamelCase = TFRegNetEmbeddings(A_ , name='embedder' )
UpperCamelCase = TFRegNetEncoder(A_ , name='encoder' )
UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' )
@unpack_inputs
def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_ = False , )-> TFBaseModelOutputWithPoolingAndNoAttention:
'''simple docstring'''
UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
UpperCamelCase = self.embedder(A_ , training=A_ )
UpperCamelCase = self.encoder(
A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ )
UpperCamelCase = encoder_outputs[0]
UpperCamelCase = self.pooler(A_ )
# Change to NCHW output format have uniformity in the modules
UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) )
UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
UpperCamelCase = tuple([tf.transpose(A_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=A_ , pooler_output=A_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , )
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = RegNetConfig
lowerCAmelCase_ = """regnet"""
lowerCAmelCase_ = """pixel_values"""
@property
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )}
lowerCAmelCase : str = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowerCAmelCase : List[str] = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"""The bare RegNet model outputting raw features without any specific head on top.""" , snake_case_ , )
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ , *A_ , **A_ )-> List[Any]:
'''simple docstring'''
super().__init__(A_ , *A_ , **A_ )
UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' )
@unpack_inputs
@add_start_docstrings_to_model_forward(A_ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_=False , )-> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]:
'''simple docstring'''
UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
UpperCamelCase = self.regnet(
pixel_values=A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ , )
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , )
@add_start_docstrings(
"""
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""" , snake_case_ , )
class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_):
def __init__( self , A_ , *A_ , **A_ )-> str:
'''simple docstring'''
super().__init__(A_ , *A_ , **A_ )
UpperCamelCase = config.num_labels
UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' )
# classification head
UpperCamelCase = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(A_ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def UpperCAmelCase_ ( self , A_ = None , A_ = None , A_ = None , A_ = None , A_=False , )-> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
'''simple docstring'''
UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
UpperCamelCase = self.regnet(
A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ )
UpperCamelCase = outputs.pooler_output if return_dict else outputs[1]
UpperCamelCase = self.classifier[0](A_ )
UpperCamelCase = self.classifier[1](A_ )
UpperCamelCase = None if labels is None else self.hf_compute_loss(labels=A_ , logits=A_ )
if not return_dict:
UpperCamelCase = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=A_ , logits=A_ , hidden_states=outputs.hidden_states )
| 3 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
lowerCAmelCase : Tuple = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
lowerCAmelCase : Optional[int] = TaTokenizerFast
lowerCAmelCase : Any = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[int] = [
'MT5EncoderModel',
'MT5ForConditionalGeneration',
'MT5ForQuestionAnswering',
'MT5Model',
'MT5PreTrainedModel',
'MT5Stack',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Dict = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[Any] = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model']
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
lowerCAmelCase : Tuple = _LazyModule(
__name__,
globals()['__file__'],
_import_structure,
extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast},
module_spec=__spec__,
)
| 3 | 1 |
'''simple docstring'''
import uuid
from typing import Any, Dict, List, Optional, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ :
def __init__( self , A_ = None , A_ = None , A_=None , A_=None )-> Optional[Any]:
'''simple docstring'''
if not conversation_id:
UpperCamelCase = uuid.uuida()
if past_user_inputs is None:
UpperCamelCase = []
if generated_responses is None:
UpperCamelCase = []
UpperCamelCase = conversation_id
UpperCamelCase = past_user_inputs
UpperCamelCase = generated_responses
UpperCamelCase = text
def __eq__( self , A_ )-> List[Any]:
'''simple docstring'''
if not isinstance(A_ , A_ ):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def UpperCAmelCase_ ( self , A_ , A_ = False )-> int:
'''simple docstring'''
if self.new_user_input:
if overwrite:
logger.warning(
F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten '''
F'''with: "{text}".''' )
UpperCamelCase = text
else:
logger.warning(
F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input '''
F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' )
else:
UpperCamelCase = text
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input )
UpperCamelCase = None
def UpperCAmelCase_ ( self , A_ )-> int:
'''simple docstring'''
self.generated_responses.append(A_ )
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__( self )-> Any:
'''simple docstring'''
UpperCamelCase = F'''Conversation id: {self.uuid} \n'''
for is_user, text in self.iter_texts():
UpperCamelCase = 'user' if is_user else 'bot'
output += F'''{name} >> {text} \n'''
return output
@add_end_docstrings(
snake_case_ , R"""
min_length_for_response (`int`, *optional*, defaults to 32):
The minimum length (in number of tokens) for a response.
minimum_tokens (`int`, *optional*, defaults to 10):
The minimum length of tokens to leave for a response.
""" , )
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , *A_ , **A_ )-> Any:
'''simple docstring'''
super().__init__(*A_ , **A_ )
if self.tokenizer.pad_token_id is None:
UpperCamelCase = self.tokenizer.eos_token
def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , **A_ )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = {}
UpperCamelCase = {}
UpperCamelCase = {}
if min_length_for_response is not None:
UpperCamelCase = min_length_for_response
if minimum_tokens is not None:
UpperCamelCase = minimum_tokens
if "max_length" in generate_kwargs:
UpperCamelCase = generate_kwargs['max_length']
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
UpperCamelCase = clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(A_ )
return preprocess_params, forward_params, postprocess_params
def __call__( self , A_ , A_=0 , **A_ )-> Any:
'''simple docstring'''
UpperCamelCase = super().__call__(A_ , num_workers=A_ , **A_ )
if isinstance(A_ , A_ ) and len(A_ ) == 1:
return outputs[0]
return outputs
def UpperCAmelCase_ ( self , A_ , A_=32 )-> Dict[str, Any]:
'''simple docstring'''
if not isinstance(A_ , A_ ):
raise ValueError('ConversationalPipeline, expects Conversation as inputs' )
if conversation.new_user_input is None:
raise ValueError(
F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. '''
'Add user inputs with the conversation\'s `add_user_input` method' )
if hasattr(self.tokenizer , '_build_conversation_input_ids' ):
UpperCamelCase = self.tokenizer._build_conversation_input_ids(A_ )
else:
# If the tokenizer cannot handle conversations, we default to only the old version
UpperCamelCase = self._legacy_parse_and_tokenize(A_ )
if self.framework == "pt":
UpperCamelCase = torch.LongTensor([input_ids] )
elif self.framework == "tf":
UpperCamelCase = tf.constant([input_ids] )
return {"input_ids": input_ids, "conversation": conversation}
def UpperCAmelCase_ ( self , A_ , A_=10 , **A_ )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length )
UpperCamelCase = model_inputs['input_ids'].shape[1]
if max_length - minimum_tokens < n:
logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' )
UpperCamelCase = max_length - minimum_tokens
UpperCamelCase = model_inputs['input_ids'][:, -trim:]
if "attention_mask" in model_inputs:
UpperCamelCase = model_inputs['attention_mask'][:, -trim:]
UpperCamelCase = model_inputs.pop('conversation' )
UpperCamelCase = max_length
UpperCamelCase = self.model.generate(**A_ , **A_ )
if self.model.config.is_encoder_decoder:
UpperCamelCase = 1
else:
UpperCamelCase = n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def UpperCAmelCase_ ( self , A_ , A_=True )-> Tuple:
'''simple docstring'''
UpperCamelCase = model_outputs['output_ids']
UpperCamelCase = self.tokenizer.decode(
output_ids[0] , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , )
UpperCamelCase = model_outputs['conversation']
conversation.mark_processed()
conversation.append_response(A_ )
return conversation
def UpperCAmelCase_ ( self , A_ )-> Dict:
'''simple docstring'''
UpperCamelCase = self.tokenizer.eos_token_id
UpperCamelCase = []
for is_user, text in conversation.iter_texts():
if eos_token_id is not None:
input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) + [eos_token_id] )
else:
input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) )
if len(A_ ) > self.tokenizer.model_max_length:
UpperCamelCase = input_ids[-self.tokenizer.model_max_length :]
return input_ids
| 3 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=False , A_=True , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , )-> Dict:
'''simple docstring'''
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = num_channels
UpperCamelCase = image_size
UpperCamelCase = min_resolution
UpperCamelCase = max_resolution
UpperCamelCase = do_resize
UpperCamelCase = size if size is not None else {'height': 18, 'width': 20}
UpperCamelCase = do_thumbnail
UpperCamelCase = do_align_axis
UpperCamelCase = do_pad
UpperCamelCase = do_normalize
UpperCamelCase = image_mean
UpperCamelCase = image_std
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase):
lowerCAmelCase_ = DonutImageProcessor if is_vision_available() else None
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
UpperCamelCase = DonutImageProcessingTester(self )
@property
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A_ , 'do_resize' ) )
self.assertTrue(hasattr(A_ , 'size' ) )
self.assertTrue(hasattr(A_ , 'do_thumbnail' ) )
self.assertTrue(hasattr(A_ , 'do_align_long_axis' ) )
self.assertTrue(hasattr(A_ , 'do_pad' ) )
self.assertTrue(hasattr(A_ , 'do_normalize' ) )
self.assertTrue(hasattr(A_ , 'image_mean' ) )
self.assertTrue(hasattr(A_ , 'image_std' ) )
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 20} )
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
# Previous config had dimensions in (width, height) order
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {'height': 84, 'width': 42} )
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
pass
@is_flaky()
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , Image.Image )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , np.ndarray )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , torch.Tensor )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
| 3 | 1 |
'''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def A_( A : float , A : float , A : int):
UpperCamelCase = x
UpperCamelCase = y
for step in range(A): # noqa: B007
UpperCamelCase = a * a - b * b + x
UpperCamelCase = 2 * a * b + y
UpperCamelCase = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def A_( A : float):
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def A_( A : float):
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(A , 1 , 1))
def A_( A : int = 800 , A : int = 600 , A : float = -0.6 , A : float = 0 , A : float = 3.2 , A : int = 50 , A : bool = True , ):
UpperCamelCase = Image.new('RGB' , (image_width, image_height))
UpperCamelCase = img.load()
# loop through the image-coordinates
for image_x in range(A):
for image_y in range(A):
# determine the figure-coordinates based on the image-coordinates
UpperCamelCase = figure_width / image_width * image_height
UpperCamelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width
UpperCamelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height
UpperCamelCase = get_distance(A , A , A)
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
UpperCamelCase = get_color_coded_rgb(A)
else:
UpperCamelCase = get_black_and_white_rgb(A)
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
lowerCAmelCase : Any = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 3 |
'''simple docstring'''
def A_( A : list[int]):
UpperCamelCase = []
if len(A) == 1:
return [nums.copy()]
for _ in range(len(A)):
UpperCamelCase = nums.pop(0)
UpperCamelCase = permute(A)
for perm in permutations:
perm.append(A)
result.extend(A)
nums.append(A)
return result
def A_( A : str):
def backtrack(A : str):
if start == len(A) - 1:
output.append(nums[:])
else:
for i in range(A , len(A)):
UpperCamelCase , UpperCamelCase = nums[i], nums[start]
backtrack(start + 1)
UpperCamelCase , UpperCamelCase = nums[i], nums[start] # backtrack
UpperCamelCase = []
backtrack(0)
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
lowerCAmelCase : Dict = permutea([1, 2, 3])
print(res)
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
lowerCAmelCase : Optional[int] = TypeVar('T')
class SCREAMING_SNAKE_CASE__ ( Generic[T]):
def __init__( self , A_ )-> Dict:
'''simple docstring'''
UpperCamelCase = data
UpperCamelCase = None
def __str__( self )-> str:
'''simple docstring'''
return F'''{self.data}'''
class SCREAMING_SNAKE_CASE__ ( Generic[T]):
def __init__( self )-> None:
'''simple docstring'''
UpperCamelCase = None
def __iter__( self )-> Iterator[T]:
'''simple docstring'''
UpperCamelCase = self.top
while node:
yield node.data
UpperCamelCase = node.next
def __str__( self )-> str:
'''simple docstring'''
return "->".join([str(A_ ) for item in self] )
def __len__( self )-> int:
'''simple docstring'''
return len(tuple(iter(self ) ) )
def UpperCAmelCase_ ( self )-> bool:
'''simple docstring'''
return self.top is None
def UpperCAmelCase_ ( self , A_ )-> None:
'''simple docstring'''
UpperCamelCase = Node(A_ )
if not self.is_empty():
UpperCamelCase = self.top
UpperCamelCase = node
def UpperCAmelCase_ ( self )-> T:
'''simple docstring'''
if self.is_empty():
raise IndexError('pop from empty stack' )
assert isinstance(self.top , A_ )
UpperCamelCase = self.top
UpperCamelCase = self.top.next
return pop_node.data
def UpperCAmelCase_ ( self )-> T:
'''simple docstring'''
if self.is_empty():
raise IndexError('peek from empty stack' )
assert self.top is not None
return self.top.data
def UpperCAmelCase_ ( self )-> None:
'''simple docstring'''
UpperCamelCase = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| 3 |
'''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def A_( A : float , A : float , A : int):
UpperCamelCase = x
UpperCamelCase = y
for step in range(A): # noqa: B007
UpperCamelCase = a * a - b * b + x
UpperCamelCase = 2 * a * b + y
UpperCamelCase = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def A_( A : float):
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def A_( A : float):
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(A , 1 , 1))
def A_( A : int = 800 , A : int = 600 , A : float = -0.6 , A : float = 0 , A : float = 3.2 , A : int = 50 , A : bool = True , ):
UpperCamelCase = Image.new('RGB' , (image_width, image_height))
UpperCamelCase = img.load()
# loop through the image-coordinates
for image_x in range(A):
for image_y in range(A):
# determine the figure-coordinates based on the image-coordinates
UpperCamelCase = figure_width / image_width * image_height
UpperCamelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width
UpperCamelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height
UpperCamelCase = get_distance(A , A , A)
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
UpperCamelCase = get_color_coded_rgb(A)
else:
UpperCamelCase = get_black_and_white_rgb(A)
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
lowerCAmelCase : Any = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 3 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase : Union[str, Any] = {
'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'],
'processing_git': ['GitProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : List[Any] = [
'GIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GitForCausalLM',
'GitModel',
'GitPreTrainedModel',
'GitVisionModel',
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 3 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowerCAmelCase : Optional[Any] = {
'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : str = [
'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST',
'FalconForCausalLM',
'FalconModel',
'FalconPreTrainedModel',
'FalconForSequenceClassification',
'FalconForTokenClassification',
'FalconForQuestionAnswering',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 3 | 1 |
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase):
lowerCAmelCase_ = IFImgaImgSuperResolutionPipeline
lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""}
lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""})
lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {"""latents"""}
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
return self._get_superresolution_dummy_components()
def UpperCAmelCase_ ( self , A_ , A_=0 )-> int:
'''simple docstring'''
if str(A_ ).startswith('mps' ):
UpperCamelCase = torch.manual_seed(A_ )
else:
UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ )
UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ )
UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(A_ ) ).to(A_ )
UpperCamelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'original_image': original_image,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' )
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
super().test_save_load_floataa(expected_max_diff=1e-1 )
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
self._test_save_load_local()
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 3 |
'''simple docstring'''
lowerCAmelCase : Optional[Any] = {
'A': ['B', 'C', 'E'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B', 'D'],
'F': ['C'],
'G': ['C'],
}
def A_( A : dict , A : str , A : Optional[Any]):
UpperCamelCase = set()
# keep track of all the paths to be checked
UpperCamelCase = [[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
UpperCamelCase = queue.pop(0)
# get the last node from the path
UpperCamelCase = path[-1]
if node not in explored:
UpperCamelCase = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
UpperCamelCase = list(A)
new_path.append(A)
queue.append(A)
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(A)
# in case there's no path between the 2 nodes
return []
def A_( A : dict , A : str , A : Tuple):
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
UpperCamelCase = [start]
UpperCamelCase = set(A)
# Keep tab on distances from `start` node.
UpperCamelCase = {start: 0, target: -1}
while queue:
UpperCamelCase = queue.pop(0)
if node == target:
UpperCamelCase = (
dist[node] if dist[target] == -1 else min(dist[target] , dist[node])
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(A)
queue.append(A)
UpperCamelCase = dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
| 3 | 1 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ....feature_extraction_sequence_utils import SequenceFeatureExtractor
from ....feature_extraction_utils import BatchFeature
from ....file_utils import PaddingStrategy, TensorType
from ....utils import logging
lowerCAmelCase : int = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = ["""input_features""", """attention_mask"""]
def __init__( self , A_=80 , A_=16000 , A_=0.0 , A_=10 , A_=25 , A_="hamming_window" , A_=32_768.0 , A_=0.97 , A_=1.0 , A_=True , A_=True , A_=False , **A_ , )-> List[str]:
'''simple docstring'''
super().__init__(feature_size=A_ , sampling_rate=A_ , padding_value=A_ , **A_ )
UpperCamelCase = feature_size
UpperCamelCase = sampling_rate
UpperCamelCase = padding_value
UpperCamelCase = hop_length
UpperCamelCase = win_length
UpperCamelCase = frame_signal_scale
UpperCamelCase = preemphasis_coeff
UpperCamelCase = mel_floor
UpperCamelCase = normalize_means
UpperCamelCase = normalize_vars
UpperCamelCase = win_function
UpperCamelCase = return_attention_mask
UpperCamelCase = win_length * sampling_rate // 1000
UpperCamelCase = hop_length * sampling_rate // 1000
UpperCamelCase = optimal_fft_length(self.sample_size )
UpperCamelCase = (self.n_fft // 2) + 1
def UpperCAmelCase_ ( self , A_ )-> np.ndarray:
'''simple docstring'''
if self.win_function == "hamming_window":
UpperCamelCase = window_function(window_length=self.sample_size , name=self.win_function , periodic=A_ )
else:
UpperCamelCase = window_function(window_length=self.sample_size , name=self.win_function )
UpperCamelCase = mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , )
UpperCamelCase = spectrogram(
one_waveform * self.frame_signal_scale , window=A_ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=A_ , preemphasis=self.preemphasis_coeff , mel_filters=A_ , mel_floor=self.mel_floor , log_mel='log' , )
return msfc_features.T
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Dict:
'''simple docstring'''
if self.normalize_means:
UpperCamelCase = x[:input_length].mean(axis=0 )
UpperCamelCase = np.subtract(A_ , A_ )
if self.normalize_vars:
UpperCamelCase = x[:input_length].std(axis=0 )
UpperCamelCase = np.divide(A_ , A_ )
if input_length < x.shape[0]:
UpperCamelCase = padding_value
# make sure array is in float32
UpperCamelCase = x.astype(np.floataa )
return x
def UpperCAmelCase_ ( self , A_ , A_ = None )-> List[np.ndarray]:
'''simple docstring'''
UpperCamelCase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [self._normalize_one(A_ , A_ , self.padding_value ) for x, n in zip(A_ , A_ )]
def __call__( self , A_ , A_ = False , A_ = None , A_ = False , A_ = None , A_ = None , A_ = None , A_ = None , **A_ , )-> BatchFeature:
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with'''
F''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the ``sampling_rate`` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
UpperCamelCase = isinstance(A_ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
UpperCamelCase = is_batched_numpy or (
isinstance(A_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
UpperCamelCase = [np.asarray(A_ , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(A_ , np.ndarray ):
UpperCamelCase = np.asarray(A_ , dtype=np.floataa )
elif isinstance(A_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
UpperCamelCase = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
UpperCamelCase = [raw_speech]
# extract fbank features
UpperCamelCase = [self._extract_mfsc_features(A_ ) for one_waveform in raw_speech]
# convert into correct format for padding
UpperCamelCase = BatchFeature({'input_features': features} )
UpperCamelCase = self.pad(
A_ , padding=A_ , max_length=A_ , truncation=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , **A_ , )
# make sure list is in array format
UpperCamelCase = padded_inputs.get('input_features' )
if isinstance(input_features[0] , A_ ):
UpperCamelCase = [np.asarray(A_ , dtype=np.floataa ) for feature in input_features]
UpperCamelCase = padded_inputs.get('attention_mask' )
if attention_mask is not None:
UpperCamelCase = [np.asarray(A_ , dtype=np.intaa ) for array in attention_mask]
if self.normalize_means or self.normalize_vars:
UpperCamelCase = (
np.array(A_ , dtype=np.intaa )
if self._get_padding_strategies(A_ , max_length=A_ ) is not PaddingStrategy.DO_NOT_PAD
and padding
else None
)
UpperCamelCase = self.normalize(
padded_inputs['input_features'] , attention_mask=A_ )
if return_tensors is not None:
UpperCamelCase = padded_inputs.convert_to_tensors(A_ )
return padded_inputs
| 3 |
'''simple docstring'''
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class SCREAMING_SNAKE_CASE__ :
def __init__( self )-> Dict:
'''simple docstring'''
UpperCamelCase = ''
UpperCamelCase = ''
UpperCamelCase = []
UpperCamelCase = 0
UpperCamelCase = 256
UpperCamelCase = 0
UpperCamelCase = 0
UpperCamelCase = 0
UpperCamelCase = 0
def UpperCAmelCase_ ( self , A_ )-> str:
'''simple docstring'''
UpperCamelCase = cva.imread(A_ , 0 )
UpperCamelCase = copy.deepcopy(self.img )
UpperCamelCase , UpperCamelCase , UpperCamelCase = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' )
UpperCamelCase = np.sum(A_ )
for i in range(len(A_ ) ):
UpperCamelCase = x[i] / self.k
self.sk += prk
UpperCamelCase = (self.L - 1) * self.sk
if self.rem != 0:
UpperCamelCase = int(last % last )
UpperCamelCase = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(A_ )
UpperCamelCase = int(np.ma.count(self.img ) / self.img[1].size )
UpperCamelCase = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCamelCase = self.img[j][i]
if num != self.last_list[num]:
UpperCamelCase = self.last_list[num]
cva.imwrite('output_data/output.jpg' , self.img )
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
plt.hist(self.img.ravel() , 256 , [0, 256] )
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
cva.imshow('Output-Image' , self.img )
cva.imshow('Input-Image' , self.original_image )
cva.waitKey(5000 )
cva.destroyAllWindows()
if __name__ == "__main__":
lowerCAmelCase : Union[str, Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg')
lowerCAmelCase : str = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 3 | 1 |
'''simple docstring'''
import argparse
import dataclasses
import json
import logging
import os
import shutil
from typing import List, Optional
import datasets
from accelerate import Accelerator
from datasets import load_dataset
from finetuning import finetune
from tqdm.auto import tqdm
import transformers
from transformers import AutoConfig, set_seed
from transformers.trainer_utils import IntervalStrategy
lowerCAmelCase : Optional[Any] = logging.getLogger(__name__)
lowerCAmelCase : Union[str, Any] = 'pytorch_model.bin'
@dataclasses.dataclass
class SCREAMING_SNAKE_CASE__ :
lowerCAmelCase_ = dataclasses.field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models."""})
lowerCAmelCase_ = dataclasses.field(
default=snake_case_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co."""} , )
@dataclasses.dataclass
class SCREAMING_SNAKE_CASE__ :
lowerCAmelCase_ = dataclasses.field(metadata={"""help""": """A csv or a json file containing the training data."""})
lowerCAmelCase_ = dataclasses.field(metadata={"""help""": """A csv or a json file containing the data to predict on."""})
lowerCAmelCase_ = dataclasses.field(
default=snake_case_ , metadata={"""help""": """A csv or a json file containing the validation data."""})
lowerCAmelCase_ = dataclasses.field(
default=snake_case_ , metadata={"""help""": """The name of the task to train on."""} , )
lowerCAmelCase_ = dataclasses.field(
default=snake_case_ , metadata={"""help""": """The list of labels for the task."""})
@dataclasses.dataclass
class SCREAMING_SNAKE_CASE__ :
lowerCAmelCase_ = dataclasses.field(
metadata={"""help""": """The output directory where the model predictions and checkpoints will be written."""})
lowerCAmelCase_ = dataclasses.field(
default="""accuracy""" , metadata={"""help""": """The evaluation metric used for the task."""})
lowerCAmelCase_ = dataclasses.field(
default="""no""" , metadata={
"""help""": """The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]"""
} , )
lowerCAmelCase_ = dataclasses.field(
default=10 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , )
lowerCAmelCase_ = dataclasses.field(
default=0.0 , metadata={
"""help""": """How much the specified evaluation metric must improve to satisfy early stopping conditions."""
} , )
lowerCAmelCase_ = dataclasses.field(
default=snake_case_ , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the confidence score."""} , )
lowerCAmelCase_ = dataclasses.field(
default=snake_case_ , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the validation performance."""} , )
lowerCAmelCase_ = dataclasses.field(
default=snake_case_ , metadata={"""help""": """Whether to fine-tune on labeled data after pseudo training."""} , )
lowerCAmelCase_ = dataclasses.field(
default=0.0 , metadata={"""help""": """Confidence threshold for pseudo-labeled data filtering."""} , )
lowerCAmelCase_ = dataclasses.field(
default=1_00 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , )
lowerCAmelCase_ = dataclasses.field(
default=snake_case_ , metadata={"""help""": """Random seed for initialization."""} , )
def A_( A : List[str] , A : int , A : Optional[Any] , A : Tuple , A : List[str] , A : Any):
UpperCamelCase = datasets.concatenate_datasets([infer_input, infer_output] , axis=1)
if args.do_filter_by_confidence:
UpperCamelCase = dataset.filter(lambda A: example["probability"] > args.confidence_threshold)
if args.do_filter_by_val_performance:
assert eval_result >= 0.0 and eval_result <= 1.0
UpperCamelCase = int(eval_result * len(A))
print(A)
UpperCamelCase = dataset.sort('probability' , reverse=A)
UpperCamelCase = dataset.select(range(A))
UpperCamelCase = dataset.remove_columns(['label', 'probability'])
UpperCamelCase = dataset.rename_column('prediction' , 'label')
UpperCamelCase = dataset.map(lambda A: {"label": idalabel[example["label"]]})
UpperCamelCase = dataset.shuffle(seed=args.seed)
UpperCamelCase = os.path.join(A , f'''train_pseudo.{args.data_file_extension}''')
if args.data_file_extension == "csv":
dataset.to_csv(A , index=A)
else:
dataset.to_json(A)
def A_( A : Union[str, Any] , A : Tuple , A : Tuple , A : Any , **A : Any):
UpperCamelCase = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , )
logger.info(accelerator.state)
# Setup logging, we only want one process per machine to log things on the
# screen. accelerator.is_local_main_process is only True for one process per
# machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
UpperCamelCase = STModelArguments(model_name_or_path=A)
UpperCamelCase = STDataArguments(train_file=A , infer_file=A)
UpperCamelCase = STTrainingArguments(output_dir=A)
UpperCamelCase = argparse.Namespace()
for arg_class in (model_args, data_args, training_args):
for key, value in vars(A).items():
setattr(A , A , A)
for key, value in kwargs.items():
if hasattr(A , A):
setattr(A , A , A)
# Sanity checks
UpperCamelCase = {}
UpperCamelCase = None
# You need to provide the training data and the data to predict on
assert args.train_file is not None
assert args.infer_file is not None
UpperCamelCase = args.train_file
UpperCamelCase = args.infer_file
if args.evaluation_strategy != IntervalStrategy.NO.value:
assert args.eval_file is not None
UpperCamelCase = args.eval_file
for key in data_files:
UpperCamelCase = data_files[key].split('.')[-1]
assert extension in ["csv", "json"], f'''`{key}_file` should be a csv or a json file.'''
if args.data_file_extension is None:
UpperCamelCase = extension
else:
assert extension == args.data_file_extension, f'''`{key}_file` should be a {args.data_file_extension} file`.'''
assert (
args.eval_metric in datasets.list_metrics()
), f'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.'''
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
logger.info('Creating the initial data directory for self-training...')
UpperCamelCase = f'''{args.output_dir}/self-train_iter-{{}}'''.format
UpperCamelCase = data_dir_format(0)
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir , exist_ok=A)
os.makedirs(A , exist_ok=A)
accelerator.wait_for_everyone()
UpperCamelCase = None
UpperCamelCase = None
UpperCamelCase = 0
UpperCamelCase = False
# Show the progress bar
UpperCamelCase = tqdm(range(args.max_selftrain_iterations) , disable=not accelerator.is_local_main_process)
# Self-train
for iteration in range(0 , int(args.max_selftrain_iterations)):
UpperCamelCase = data_dir_format(A)
assert os.path.exists(A)
# Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for
# iteration > 0
UpperCamelCase = os.path.join(A , 'stage-1')
UpperCamelCase = {
'accelerator': accelerator,
'model_name_or_path': args.model_name_or_path,
'cache_dir': args.cache_dir,
'do_train': True,
'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'],
'do_eval': True if args.eval_file is not None else False,
'eval_file': data_files['eval'],
'do_predict': True,
'infer_file': data_files['infer'],
'task_name': args.task_name,
'label_list': args.label_list,
'output_dir': current_output_dir,
'eval_metric': args.eval_metric,
'evaluation_strategy': args.evaluation_strategy,
'early_stopping_patience': args.early_stopping_patience,
'early_stopping_threshold': args.early_stopping_threshold,
'seed': args.seed,
}
# Add additional training arguments
for key, value in kwargs.items():
if key not in arguments_dict and not hasattr(A , A):
arguments_dict.update({key: value})
UpperCamelCase = os.path.join(A , 'best-checkpoint' , A)
if os.path.exists(A):
logger.info(
'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , A , A , )
else:
logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , A)
finetune(**A)
accelerator.wait_for_everyone()
assert os.path.exists(A)
logger.info('Self-training job completed: iteration: %d, stage: 1.' , A)
if iteration > 0 and args.finetune_on_labeled_data:
# Stage 2 (optional): fine-tuning on the original labeled data
UpperCamelCase = os.path.join(A , 'best-checkpoint')
UpperCamelCase = os.path.join(A , 'stage-2')
# Update arguments_dict
UpperCamelCase = model_path
UpperCamelCase = data_files['train']
UpperCamelCase = current_output_dir
UpperCamelCase = os.path.join(A , 'best-checkpoint' , A)
if os.path.exists(A):
logger.info(
'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , A , A , )
else:
logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , A)
finetune(**A)
accelerator.wait_for_everyone()
assert os.path.exists(A)
logger.info('Self-training job completed: iteration: %d, stage: 2.' , A)
UpperCamelCase = iteration
UpperCamelCase = data_dir_format(iteration + 1)
UpperCamelCase = AutoConfig.from_pretrained(os.path.join(A , 'best-checkpoint'))
UpperCamelCase = config.idalabel
UpperCamelCase = os.path.join(A , 'eval_results_best-checkpoint.json')
UpperCamelCase = os.path.join(A , 'test_results_best-checkpoint.json')
assert os.path.exists(A)
with open(A , 'r') as f:
UpperCamelCase = float(json.load(A)[args.eval_metric])
UpperCamelCase = os.path.join(A , 'infer_output_best-checkpoint.csv')
assert os.path.exists(A)
# Loading the dataset from local csv or json files.
UpperCamelCase = load_dataset(args.data_file_extension , data_files={'data': data_files['infer']})['data']
UpperCamelCase = load_dataset('csv' , data_files={'data': infer_output_file})['data']
if accelerator.is_main_process:
os.makedirs(A , exist_ok=A)
shutil.copy(A , os.path.join(A , f'''eval_results_iter-{iteration}.json'''))
if os.path.exists(A):
shutil.copy(A , os.path.join(A , f'''test_results_iter-{iteration}.json'''))
create_pseudo_labeled_data(A , A , A , A , A , A)
accelerator.wait_for_everyone()
UpperCamelCase = os.path.join(A , f'''train_pseudo.{args.data_file_extension}''')
if args.evaluation_strategy != IntervalStrategy.NO.value:
UpperCamelCase = eval_result
if best_iteration is None:
UpperCamelCase = new_iteration
UpperCamelCase = new_eval_result
else:
if new_eval_result - best_eval_result > args.early_stopping_threshold:
UpperCamelCase = new_iteration
UpperCamelCase = new_eval_result
UpperCamelCase = 0
else:
if new_eval_result == best_eval_result:
UpperCamelCase = new_iteration
UpperCamelCase = new_eval_result
early_stopping_patience_counter += 1
if early_stopping_patience_counter >= args.early_stopping_patience:
UpperCamelCase = True
progress_bar.update(1)
if should_training_stop:
break
if best_iteration is not None:
# Save the best iteration
logger.info('Best iteration: %d' , A)
logger.info('Best evaluation result: %s = %f' , args.eval_metric , A)
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(A , f'''eval_results_iter-{iteration}.json''') , os.path.join(A , 'eval_results_best-iteration.json') , )
else:
# Assume that the last iteration is the best
logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1)
logger.info('Best evaluation result: %s = %f' , args.eval_metric , A)
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(A , f'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''') , os.path.join(A , 'eval_results_best-iteration.json') , )
| 3 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : int = logging.get_logger(__name__)
lowerCAmelCase : Tuple = {
'microsoft/unispeech-sat-base-100h-libri-ft': (
'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json'
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """unispeech-sat"""
def __init__( self , A_=32 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.1 , A_=0.1 , A_=0.02 , A_=1e-5 , A_="group" , A_="gelu" , A_=(512, 512, 512, 512, 512, 512, 512) , A_=(5, 2, 2, 2, 2, 2, 2) , A_=(10, 3, 3, 3, 3, 2, 2) , A_=False , A_=128 , A_=16 , A_=False , A_=True , A_=0.05 , A_=10 , A_=2 , A_=0.0 , A_=10 , A_=0 , A_=320 , A_=2 , A_=0.1 , A_=100 , A_=256 , A_=256 , A_=0.1 , A_="mean" , A_=False , A_=False , A_=256 , A_=(512, 512, 512, 512, 1500) , A_=(5, 3, 3, 1, 1) , A_=(1, 2, 3, 1, 1) , A_=512 , A_=0 , A_=1 , A_=2 , A_=504 , **A_ , )-> Tuple:
'''simple docstring'''
super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ )
UpperCamelCase = hidden_size
UpperCamelCase = feat_extract_norm
UpperCamelCase = feat_extract_activation
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = conv_bias
UpperCamelCase = num_conv_pos_embeddings
UpperCamelCase = num_conv_pos_embedding_groups
UpperCamelCase = len(self.conv_dim )
UpperCamelCase = num_hidden_layers
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = num_attention_heads
UpperCamelCase = hidden_dropout
UpperCamelCase = attention_dropout
UpperCamelCase = activation_dropout
UpperCamelCase = feat_proj_dropout
UpperCamelCase = final_dropout
UpperCamelCase = layerdrop
UpperCamelCase = layer_norm_eps
UpperCamelCase = initializer_range
UpperCamelCase = vocab_size
UpperCamelCase = num_clusters
UpperCamelCase = do_stable_layer_norm
UpperCamelCase = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCamelCase = apply_spec_augment
UpperCamelCase = mask_time_prob
UpperCamelCase = mask_time_length
UpperCamelCase = mask_time_min_masks
UpperCamelCase = mask_feature_prob
UpperCamelCase = mask_feature_length
UpperCamelCase = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
UpperCamelCase = num_codevectors_per_group
UpperCamelCase = num_codevector_groups
UpperCamelCase = contrastive_logits_temperature
UpperCamelCase = feat_quantizer_dropout
UpperCamelCase = num_negatives
UpperCamelCase = codevector_dim
UpperCamelCase = proj_codevector_dim
UpperCamelCase = diversity_loss_weight
# ctc loss
UpperCamelCase = ctc_loss_reduction
UpperCamelCase = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
UpperCamelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = xvector_output_dim
@property
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 3 | 1 |
'''simple docstring'''
def A_( A : int , A : Any):
UpperCamelCase = ''
for i in table:
res += inp[i - 1]
return res
def A_( A : Union[str, Any]):
return data[1:] + data[0]
def A_( A : List[Any] , A : int):
UpperCamelCase = ''
for i in range(len(A)):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def A_( A : List[str] , A : Optional[int]):
UpperCamelCase = int('0b' + data[0] + data[-1] , 2)
UpperCamelCase = int('0b' + data[1:3] , 2)
return bin(s[row][col])[2:]
def A_( A : int , A : Dict , A : Union[str, Any] , A : Tuple , A : Tuple):
UpperCamelCase = message[:4]
UpperCamelCase = message[4:]
UpperCamelCase = apply_table(A , A)
UpperCamelCase = xor(A , A)
UpperCamelCase = apply_sbox(A , temp[:4]) # noqa: E741
UpperCamelCase = apply_sbox(A , temp[4:])
UpperCamelCase = '0' * (2 - len(A)) + l # noqa: E741
UpperCamelCase = '0' * (2 - len(A)) + r
UpperCamelCase = apply_table(l + r , A)
UpperCamelCase = xor(A , A)
return temp + right
if __name__ == "__main__":
lowerCAmelCase : Dict = input('Enter 10 bit key: ')
lowerCAmelCase : Tuple = input('Enter 8 bit message: ')
lowerCAmelCase : Any = [6, 3, 7, 4, 8, 5, 10, 9]
lowerCAmelCase : Any = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6]
lowerCAmelCase : Optional[int] = [2, 4, 3, 1]
lowerCAmelCase : List[str] = [2, 6, 3, 1, 4, 8, 5, 7]
lowerCAmelCase : Tuple = [4, 1, 3, 5, 7, 2, 8, 6]
lowerCAmelCase : Union[str, Any] = [4, 1, 2, 3, 2, 3, 4, 1]
lowerCAmelCase : Tuple = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
lowerCAmelCase : Tuple = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
lowerCAmelCase : Optional[Any] = apply_table(key, paa_table)
lowerCAmelCase : int = temp[:5]
lowerCAmelCase : str = temp[5:]
lowerCAmelCase : List[Any] = left_shift(left)
lowerCAmelCase : List[str] = left_shift(right)
lowerCAmelCase : Tuple = apply_table(left + right, pa_table)
lowerCAmelCase : Optional[int] = left_shift(left)
lowerCAmelCase : List[str] = left_shift(right)
lowerCAmelCase : int = left_shift(left)
lowerCAmelCase : str = left_shift(right)
lowerCAmelCase : int = apply_table(left + right, pa_table)
# encryption
lowerCAmelCase : Union[str, Any] = apply_table(message, IP)
lowerCAmelCase : Dict = function(expansion, sa, sa, keya, temp)
lowerCAmelCase : int = temp[4:] + temp[:4]
lowerCAmelCase : str = function(expansion, sa, sa, keya, temp)
lowerCAmelCase : Dict = apply_table(temp, IP_inv)
print('Cipher text is:', CT)
# decryption
lowerCAmelCase : Tuple = apply_table(CT, IP)
lowerCAmelCase : Optional[int] = function(expansion, sa, sa, keya, temp)
lowerCAmelCase : List[Any] = temp[4:] + temp[:4]
lowerCAmelCase : Dict = function(expansion, sa, sa, keya, temp)
lowerCAmelCase : Dict = apply_table(temp, IP_inv)
print('Plain text after decypting is:', PT)
| 3 |
'''simple docstring'''
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class SCREAMING_SNAKE_CASE__ :
def __init__( self , A_ , A_=100 , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=4 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=None , A_=[0, 1, 2, 3] , )-> Any:
'''simple docstring'''
UpperCamelCase = parent
UpperCamelCase = 100
UpperCamelCase = batch_size
UpperCamelCase = image_size
UpperCamelCase = patch_size
UpperCamelCase = num_channels
UpperCamelCase = is_training
UpperCamelCase = use_labels
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = type_sequence_label_size
UpperCamelCase = initializer_range
UpperCamelCase = scope
UpperCamelCase = out_indices
UpperCamelCase = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCamelCase = (image_size // patch_size) ** 2
UpperCamelCase = num_patches + 1
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = None
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCamelCase = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> List[str]:
'''simple docstring'''
UpperCamelCase = BeitModel(config=A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Any:
'''simple docstring'''
UpperCamelCase = BeitForMaskedImageModeling(config=A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.type_sequence_label_size
UpperCamelCase = BeitForImageClassification(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ , labels=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCamelCase = 1
UpperCamelCase = BeitForImageClassification(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase = model(A_ , labels=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = self.num_labels
UpperCamelCase = BeitForSemanticSegmentation(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
UpperCamelCase = model(A_ , labels=A_ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs
UpperCamelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase):
lowerCAmelCase_ = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
lowerCAmelCase_ = (
{
"""feature-extraction""": BeitModel,
"""image-classification""": BeitForImageClassification,
"""image-segmentation""": BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = BeitModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 )
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='BEiT does not use inputs_embeds' )
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
pass
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(A_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCamelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A_ , nn.Linear ) )
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(A_ )
UpperCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , A_ )
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*A_ )
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A_ )
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*A_ )
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
if not self.model_tester.is_training:
return
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(A_ ), BeitForMaskedImageModeling]:
continue
UpperCamelCase = model_class(A_ )
model.to(A_ )
model.train()
UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ )
UpperCamelCase = model(**A_ ).loss
loss.backward()
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
UpperCamelCase = False
UpperCamelCase = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(A_ ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
UpperCamelCase = model_class(A_ )
model.gradient_checkpointing_enable()
model.to(A_ )
model.train()
UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ )
UpperCamelCase = model(**A_ ).loss
loss.backward()
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = _config_zero_init(A_ )
for model_class in self.all_model_classes:
UpperCamelCase = model_class(config=A_ )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@slow
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase = BeitModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
def A_( ):
UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
@cached_property
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None
@slow
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(A_ )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).pixel_values.to(A_ )
# prepare bool_masked_pos
UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(pixel_values=A_ , bool_masked_pos=A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 196, 8192) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = torch.tensor(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(A_ )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , A_ , atol=1e-2 ) )
@slow
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(A_ )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 1000) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(A_ )
self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) )
UpperCamelCase = 281
self.assertEqual(logits.argmax(-1 ).item() , A_ )
@slow
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to(
A_ )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 21841) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(A_ )
self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) )
UpperCamelCase = 2396
self.assertEqual(logits.argmax(-1 ).item() , A_ )
@slow
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
UpperCamelCase = model.to(A_ )
UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ )
UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' )
UpperCamelCase = Image.open(ds[0]['file'] )
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' )
if is_pillow_less_than_a:
UpperCamelCase = torch.tensor(
[
[[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]],
[[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]],
[[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]],
] , device=A_ , )
else:
UpperCamelCase = torch.tensor(
[
[[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]],
[[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]],
[[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]],
] , device=A_ , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1e-4 ) )
@slow
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
UpperCamelCase = model.to(A_ )
UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ )
UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' )
UpperCamelCase = Image.open(ds[0]['file'] )
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits.detach().cpu()
UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ , target_sizes=[(500, 300)] )
UpperCamelCase = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape , A_ )
UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ )
UpperCamelCase = torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape , A_ )
| 3 | 1 |
'''simple docstring'''
def A_( A : Optional[Any]):
stooge(A , 0 , len(A) - 1)
return arr
def A_( A : List[Any] , A : Any , A : List[Any]):
if i >= h:
return
# If first element is smaller than the last then swap them
if arr[i] > arr[h]:
UpperCamelCase , UpperCamelCase = arr[h], arr[i]
# If there are more than 2 elements in the array
if h - i + 1 > 2:
UpperCamelCase = (int)((h - i + 1) / 3)
# Recursively sort first 2/3 elements
stooge(A , A , (h - t))
# Recursively sort last 2/3 elements
stooge(A , i + t , (A))
# Recursively sort first 2/3 elements
stooge(A , A , (h - t))
if __name__ == "__main__":
lowerCAmelCase : Any = input('Enter numbers separated by a comma:\n').strip()
lowerCAmelCase : Optional[int] = [int(item) for item in user_input.split(',')]
print(stooge_sort(unsorted))
| 3 |
'''simple docstring'''
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
lowerCAmelCase : Dict = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( enum.Enum):
lowerCAmelCase_ = 0
lowerCAmelCase_ = 1
@add_end_docstrings(snake_case_)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """generated"""
def __init__( self , *A_ , **A_ )-> Optional[int]:
'''simple docstring'''
super().__init__(*A_ , **A_ )
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == 'tf'
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , **A_ , )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = {}
if truncation is not None:
UpperCamelCase = truncation
UpperCamelCase = generate_kwargs
UpperCamelCase = {}
if return_tensors is not None and return_type is None:
UpperCamelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
UpperCamelCase = return_type
if clean_up_tokenization_spaces is not None:
UpperCamelCase = clean_up_tokenization_spaces
if stop_sequence is not None:
UpperCamelCase = self.tokenizer.encode(A_ , add_special_tokens=A_ )
if len(A_ ) > 1:
warnings.warn(
'Stopping on a multiple token sequence is not yet supported on transformers. The first token of'
' the stop sequence will be used as the stop sequence string in the interim.' )
UpperCamelCase = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Optional[int]:
'''simple docstring'''
return True
def UpperCAmelCase_ ( self , *A_ , A_ )-> Any:
'''simple docstring'''
UpperCamelCase = self.model.config.prefix if self.model.config.prefix is not None else ''
if isinstance(args[0] , A_ ):
if self.tokenizer.pad_token_id is None:
raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' )
UpperCamelCase = ([prefix + arg for arg in args[0]],)
UpperCamelCase = True
elif isinstance(args[0] , A_ ):
UpperCamelCase = (prefix + args[0],)
UpperCamelCase = False
else:
raise ValueError(
F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' )
UpperCamelCase = self.tokenizer(*A_ , padding=A_ , truncation=A_ , return_tensors=self.framework )
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self , *A_ , **A_ )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = super().__call__(*A_ , **A_ )
if (
isinstance(args[0] , A_ )
and all(isinstance(A_ , A_ ) for el in args[0] )
and all(len(A_ ) == 1 for res in result )
):
return [res[0] for res in result]
return result
def UpperCAmelCase_ ( self , A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , **A_ )-> Any:
'''simple docstring'''
UpperCamelCase = self._parse_and_tokenize(A_ , truncation=A_ , **A_ )
return inputs
def UpperCAmelCase_ ( self , A_ , **A_ )-> int:
'''simple docstring'''
if self.framework == "pt":
UpperCamelCase , UpperCamelCase = model_inputs['input_ids'].shape
elif self.framework == "tf":
UpperCamelCase , UpperCamelCase = tf.shape(model_inputs['input_ids'] ).numpy()
UpperCamelCase = generate_kwargs.get('min_length' , self.model.config.min_length )
UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length )
self.check_inputs(A_ , generate_kwargs['min_length'] , generate_kwargs['max_length'] )
UpperCamelCase = self.model.generate(**A_ , **A_ )
UpperCamelCase = output_ids.shape[0]
if self.framework == "pt":
UpperCamelCase = output_ids.reshape(A_ , out_b // in_b , *output_ids.shape[1:] )
elif self.framework == "tf":
UpperCamelCase = tf.reshape(A_ , (in_b, out_b // in_b, *output_ids.shape[1:]) )
return {"output_ids": output_ids}
def UpperCAmelCase_ ( self , A_ , A_=ReturnType.TEXT , A_=False )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
UpperCamelCase = {F'''{self.return_name}_token_ids''': output_ids}
elif return_type == ReturnType.TEXT:
UpperCamelCase = {
F'''{self.return_name}_text''': self.tokenizer.decode(
A_ , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , )
}
records.append(A_ )
return records
@add_end_docstrings(snake_case_)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """summary"""
def __call__( self , *A_ , **A_ )-> Optional[int]:
'''simple docstring'''
return super().__call__(*A_ , **A_ )
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> bool:
'''simple docstring'''
if max_length < min_length:
logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' )
if input_length < max_length:
logger.warning(
F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is '''
'a summarization task, where outputs shorter than the input are typically wanted, you might '
F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' )
@add_end_docstrings(snake_case_)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """translation"""
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> List[Any]:
'''simple docstring'''
if input_length > 0.9 * max_length:
logger.warning(
F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider '''
'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' )
return True
def UpperCAmelCase_ ( self , *A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , A_=None , A_=None )-> Dict:
'''simple docstring'''
if getattr(self.tokenizer , '_build_translation_inputs' , A_ ):
return self.tokenizer._build_translation_inputs(
*A_ , return_tensors=self.framework , truncation=A_ , src_lang=A_ , tgt_lang=A_ )
else:
return super()._parse_and_tokenize(*A_ , truncation=A_ )
def UpperCAmelCase_ ( self , A_=None , A_=None , **A_ )-> str:
'''simple docstring'''
UpperCamelCase , UpperCamelCase , UpperCamelCase = super()._sanitize_parameters(**A_ )
if src_lang is not None:
UpperCamelCase = src_lang
if tgt_lang is not None:
UpperCamelCase = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
UpperCamelCase = kwargs.get('task' , self.task )
UpperCamelCase = task.split('_' )
if task and len(A_ ) == 4:
# translation, XX, to YY
UpperCamelCase = items[1]
UpperCamelCase = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self , *A_ , **A_ )-> Any:
'''simple docstring'''
return super().__call__(*A_ , **A_ )
| 3 | 1 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = ["""image_processor""", """feature_extractor"""]
lowerCAmelCase_ = """TvltImageProcessor"""
lowerCAmelCase_ = """TvltFeatureExtractor"""
def __init__( self , A_ , A_ )-> Union[str, Any]:
'''simple docstring'''
super().__init__(image_processor=A_ , feature_extractor=A_ )
UpperCamelCase = image_processor
UpperCamelCase = feature_extractor
def __call__( self , A_=None , A_=None , A_=None , A_=None , A_=False , A_=False , *A_ , **A_ , )-> Dict:
'''simple docstring'''
if images is None and audio is None:
raise ValueError('You need to specify either an `images` or `audio` input to process.' )
UpperCamelCase = None
if images is not None:
UpperCamelCase = self.image_processor(A_ , mask_pixel=A_ , *A_ , **A_ )
if images_mixed is not None:
UpperCamelCase = self.image_processor(A_ , is_mixed=A_ , *A_ , **A_ )
if audio is not None:
UpperCamelCase = self.feature_extractor(
A_ , *A_ , sampling_rate=A_ , mask_audio=A_ , **A_ )
UpperCamelCase = {}
if audio is not None:
output_dict.update(A_ )
if images is not None:
output_dict.update(A_ )
if images_mixed_dict is not None:
output_dict.update(A_ )
return output_dict
@property
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
UpperCamelCase = self.image_processor.model_input_names
UpperCamelCase = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
| 3 |
'''simple docstring'''
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = 0
lowerCAmelCase_ = False
lowerCAmelCase_ = 3.0
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} )
self.assertDictEqual(MockClass(a=2 , b=A_ ).to_kwargs() , {'a': 2, 'b': True} )
self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} )
@require_cuda
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
UpperCamelCase = GradScalerKwargs(init_scale=1024 , growth_factor=2 )
AcceleratorState._reset_state()
UpperCamelCase = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
UpperCamelCase = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 1_024.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 2000 )
self.assertEqual(scaler._enabled , A_ )
@require_multi_gpu
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
execute_subprocess_async(A_ , env=os.environ.copy() )
if __name__ == "__main__":
lowerCAmelCase : Tuple = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True)
lowerCAmelCase : List[str] = Accelerator(kwargs_handlers=[ddp_scaler])
lowerCAmelCase : List[Any] = torch.nn.Linear(1_00, 2_00)
lowerCAmelCase : int = accelerator.prepare(model)
# Check the values changed in kwargs
lowerCAmelCase : Dict = ''
lowerCAmelCase : Dict = model.bucket_bytes_cap // (10_24 * 10_24)
if observed_bucket_cap_map != 15:
error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 3 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class SCREAMING_SNAKE_CASE__ :
def __init__( self , A_ , A_=3 , A_=32 , A_=3 , A_=10 , A_=[8, 16, 32, 64] , A_=[1, 1, 2, 1] , A_=True , A_=True , A_="relu" , A_=3 , A_=None , A_=["stage2", "stage3", "stage4"] , A_=[2, 3, 4] , A_=1 , )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = image_size
UpperCamelCase = num_channels
UpperCamelCase = embeddings_size
UpperCamelCase = hidden_sizes
UpperCamelCase = depths
UpperCamelCase = is_training
UpperCamelCase = use_labels
UpperCamelCase = hidden_act
UpperCamelCase = num_labels
UpperCamelCase = scope
UpperCamelCase = len(A_ )
UpperCamelCase = out_features
UpperCamelCase = out_indices
UpperCamelCase = num_groups
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels )
UpperCamelCase = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Tuple:
'''simple docstring'''
UpperCamelCase = BitModel(config=A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> int:
'''simple docstring'''
UpperCamelCase = self.num_labels
UpperCamelCase = BitForImageClassification(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ , labels=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = BitBackbone(config=A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
UpperCamelCase = None
UpperCamelCase = BitBackbone(config=A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs
UpperCamelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase):
lowerCAmelCase_ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
lowerCAmelCase_ = (
{"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification}
if is_torch_available()
else {}
)
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase = BitModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ )
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
return
@unittest.skip(reason='Bit does not output attentions' )
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
pass
@unittest.skip(reason='Bit does not use inputs_embeds' )
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
pass
@unittest.skip(reason='Bit does not support input and output embeddings' )
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
pass
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(A_ )
UpperCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , A_ )
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*A_ )
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(config=A_ )
for name, module in model.named_modules():
if isinstance(A_ , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
def check_hidden_states_output(A_ , A_ , A_ ):
UpperCamelCase = model_class(A_ )
model.to(A_ )
model.eval()
with torch.no_grad():
UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) )
UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCamelCase = self.model_tester.num_stages
self.assertEqual(len(A_ ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = ['preactivation', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
UpperCamelCase = layer_type
UpperCamelCase = True
check_hidden_states_output(A_ , A_ , A_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase = True
check_hidden_states_output(A_ , A_ , A_ )
@unittest.skip(reason='Bit does not use feedforward chunking' )
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
pass
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A_ )
@slow
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase = BitModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
def A_( ):
UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
@cached_property
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(A_ )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
# verify the logits
UpperCamelCase = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , A_ )
UpperCamelCase = torch.tensor([[-0.6_526, -0.5_263, -1.4_398]] ).to(A_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
@require_torch
class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase):
lowerCAmelCase_ = (BitBackbone,) if is_torch_available() else ()
lowerCAmelCase_ = BitConfig
lowerCAmelCase_ = False
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = BitModelTester(self )
| 3 |
'''simple docstring'''
from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_):
@register_to_config
def __init__( self , A_ , A_ = None , A_ = None )-> Tuple:
'''simple docstring'''
super().__init__()
UpperCamelCase = learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
UpperCamelCase = torch.zeros(A_ , A_ )
else:
UpperCamelCase = None
UpperCamelCase = torch.nn.Parameter(A_ )
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , )-> Union[str, Any]:
'''simple docstring'''
super().__init__()
self.register_modules(
vqvae=A_ , transformer=A_ , text_encoder=A_ , tokenizer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , )
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Tuple:
'''simple docstring'''
UpperCamelCase = len(A_ ) if isinstance(A_ , A_ ) else 1
# get prompt text embeddings
UpperCamelCase = self.tokenizer(
A_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , )
UpperCamelCase = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'The following part of your input was truncated because CLIP can only handle sequences up to'
F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' )
UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length]
UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=A_ )
# duplicate text embeddings for each generation per prompt
UpperCamelCase = prompt_embeds.repeat_interleave(A_ , dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings
UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(A_ , 1 , 1 )
else:
UpperCamelCase = [''] * batch_size
UpperCamelCase = text_input_ids.shape[-1]
UpperCamelCase = self.tokenizer(
A_ , padding='max_length' , max_length=A_ , truncation=A_ , return_tensors='pt' , )
UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=A_ )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
UpperCamelCase = negative_prompt_embeds.shape[1]
UpperCamelCase = negative_prompt_embeds.repeat(1 , A_ , 1 )
UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__( self , A_ , A_ = 100 , A_ = 5.0 , A_ = 1.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , A_ = None , A_ = 1 , )-> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
if isinstance(A_ , A_ ):
UpperCamelCase = 1
elif isinstance(A_ , A_ ):
UpperCamelCase = len(A_ )
else:
raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(A_ )}''' )
UpperCamelCase = batch_size * num_images_per_prompt
UpperCamelCase = guidance_scale > 1.0
UpperCamelCase = self._encode_prompt(A_ , A_ , A_ )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(A_ , A_ ) or callback_steps <= 0)
):
raise ValueError(
F'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
F''' {type(A_ )}.''' )
# get the initial completely masked latents unless the user supplied it
UpperCamelCase = (batch_size, self.transformer.num_latent_pixels)
if latents is None:
UpperCamelCase = self.transformer.num_vector_embeds - 1
UpperCamelCase = torch.full(A_ , A_ ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,'
F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' )
UpperCamelCase = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(A_ , device=self.device )
UpperCamelCase = self.scheduler.timesteps.to(self.device )
UpperCamelCase = latents
for i, t in enumerate(self.progress_bar(A_ ) ):
# expand the sample if we are doing classifier free guidance
UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
UpperCamelCase = self.transformer(A_ , encoder_hidden_states=A_ , timestep=A_ ).sample
if do_classifier_free_guidance:
UpperCamelCase , UpperCamelCase = model_output.chunk(2 )
UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(A_ , dim=1 , keepdim=A_ )
UpperCamelCase = self.truncate(A_ , A_ )
# remove `log(0)`'s (`-inf`s)
UpperCamelCase = model_output.clamp(-70 )
# compute the previous noisy sample x_t -> x_t-1
UpperCamelCase = self.scheduler.step(A_ , timestep=A_ , sample=A_ , generator=A_ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(A_ , A_ , A_ )
UpperCamelCase = self.vqvae.config.vq_embed_dim
UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
UpperCamelCase = self.vqvae.quantize.get_codebook_entry(A_ , shape=A_ )
UpperCamelCase = self.vqvae.decode(A_ , force_not_quantize=A_ ).sample
UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 )
UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCamelCase = self.numpy_to_pil(A_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=A_ )
def UpperCAmelCase_ ( self , A_ , A_ )-> torch.FloatTensor:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = torch.sort(A_ , 1 , descending=A_ )
UpperCamelCase = torch.exp(A_ )
UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , A_ )
UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 )
UpperCamelCase = keep_mask[:, :-1, :]
UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) )
UpperCamelCase = log_p_x_0.clone()
UpperCamelCase = -torch.inf # -inf = log(0)
return rv
| 3 | 1 |
'''simple docstring'''
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
lowerCAmelCase : Optional[int] = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = ["""audio_values""", """audio_mask"""]
def __init__( self , A_=2048 , A_=1 , A_=[16, 16] , A_=128 , A_=44100 , A_=86 , A_=2048 , A_=0.0 , **A_ , )-> Dict:
'''simple docstring'''
super().__init__(
feature_size=A_ , sampling_rate=A_ , padding_value=A_ , **A_ , )
UpperCamelCase = spectrogram_length
UpperCamelCase = num_channels
UpperCamelCase = patch_size
UpperCamelCase = feature_size // self.patch_size[1]
UpperCamelCase = n_fft
UpperCamelCase = sampling_rate // hop_length_to_sampling_rate
UpperCamelCase = sampling_rate
UpperCamelCase = padding_value
UpperCamelCase = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=A_ , min_frequency=0.0 , max_frequency=22_050.0 , sampling_rate=A_ , norm='slaney' , mel_scale='slaney' , ).T
def UpperCAmelCase_ ( self , A_ )-> np.ndarray:
'''simple docstring'''
UpperCamelCase = spectrogram(
A_ , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , )
UpperCamelCase = log_spec[:, :-1]
UpperCamelCase = log_spec - 20.0
UpperCamelCase = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0
return log_spec
def __call__( self , A_ , A_ = None , A_ = True , A_ = None , A_ = False , A_ = False , **A_ , )-> BatchFeature:
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
'This feature extractor is set to support sampling rate'
F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled'''
F''' with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
UpperCamelCase = isinstance(A_ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
UpperCamelCase = is_batched_numpy or (
isinstance(A_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
UpperCamelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(A_ , np.ndarray ):
UpperCamelCase = np.asarray(A_ , dtype=np.floataa )
elif isinstance(A_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
UpperCamelCase = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
UpperCamelCase = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
UpperCamelCase = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0] , A_ ):
UpperCamelCase = [np.asarray(A_ , dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
UpperCamelCase = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
UpperCamelCase = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
UpperCamelCase = np.array(A_ ).astype(np.floataa )
# convert into correct format for padding
UpperCamelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
UpperCamelCase = np.ones([len(A_ ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
UpperCamelCase = padded_audio_features * self.padding_value
for i in range(len(A_ ) ):
UpperCamelCase = audio_features[i]
UpperCamelCase = feature
# return as BatchFeature
if return_attention_mask:
UpperCamelCase = {'audio_values': padded_audio_features, 'audio_mask': audio_mask}
else:
UpperCamelCase = {'audio_values': padded_audio_features}
UpperCamelCase = BatchFeature(data=A_ , tensor_type=A_ )
return encoded_inputs
| 3 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase : Union[str, Any] = {
'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'],
'processing_git': ['GitProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : List[Any] = [
'GIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GitForCausalLM',
'GitModel',
'GitPreTrainedModel',
'GitVisionModel',
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 3 | 1 |
'''simple docstring'''
import argparse
import random
import joblib
import numpy as np
import torch
from igf.igf import (
SecondaryLearner,
collect_objective_set,
compute_perplexity,
generate_datasets,
load_gpta,
recopy_gpta,
set_seed,
train_secondary_learner,
)
from torch.utils.data import DataLoader, RandomSampler
from transformers import GPTaLMHeadModel
def A_( A : Optional[Any]=32 , A : List[Any]=10 , A : Union[str, Any]=100 , A : List[str]=1026 , A : List[Any]=True , A : Dict="data/tokenized_stories_train_wikitext103.jbl" , A : Dict="igf_context_pairs.jbl" , ):
set_seed(3)
# generate train_data and objective_set
UpperCamelCase , UpperCamelCase = generate_datasets(
A , A , number=A , min_len=1026 , trim=A)
# keeps model same across runs
set_seed(4)
# model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights
# can we train on GPU?
UpperCamelCase = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# load pretrained model
UpperCamelCase = load_gpta('gpt2').to(A)
print('computing perplexity on objective set')
UpperCamelCase = compute_perplexity(A , A , A).item()
print('perplexity on objective set:' , A)
# collect igf pairs and save to file demo.jbl
collect_objective_set(A , A , A , A , A , A , A , A)
# clean up, delete model and data we don't need anymore
del model, train_data, objective_set
torch.cuda.empty_cache()
def A_( A : Union[str, Any] , A : Any=15 , A : List[str]=128 , A : List[str]=100 , A : Tuple="igf_model.pt" , ):
set_seed(42)
# Load pre-trained model
UpperCamelCase = GPTaLMHeadModel.from_pretrained('gpt2')
# Initialize secondary learner to use embedding weights of model
UpperCamelCase = SecondaryLearner(A)
# Train secondary learner
UpperCamelCase = train_secondary_learner(
A , A , max_epochs=A , batch_size=A , eval_freq=100 , igf_model_path=A , )
del model, secondary_learner_train_data
torch.cuda.empty_cache()
return secondary_learner
def A_( A : Tuple , A : List[Any] , A : int , A : Optional[int]=32 , A : Any=1000 , A : List[str]=16 , A : List[str]=1.0 , A : Union[str, Any]=recopy_gpta , A : Any=None , A : Dict=10 , A : Any="gpt2_finetuned.pt" , ):
UpperCamelCase = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
UpperCamelCase = RandomSampler(A)
UpperCamelCase = DataLoader(A , sampler=A)
UpperCamelCase = max_steps // (len(A)) + 1
UpperCamelCase = 0
UpperCamelCase = torch.zeros((1, context_len) , dtype=torch.long , device=A)
UpperCamelCase , UpperCamelCase , UpperCamelCase = recopy_model(A , A , A)
model.train()
if secondary_learner is not None:
secondary_learner.to(A)
secondary_learner.eval()
UpperCamelCase = []
UpperCamelCase = 0
UpperCamelCase = []
UpperCamelCase = []
# Compute the performance of the transformer model at the beginning
UpperCamelCase = compute_perplexity(A , A , A)
test_perps.append(A)
print('Test perplexity, step' , A , ':' , A)
for epoch in range(int(A)):
for step, example in enumerate(A):
torch.cuda.empty_cache()
UpperCamelCase = random.randint(0 , example.size(2) - context_len - 1)
UpperCamelCase = example[0, 0, start : start + context_len]
lm_optimizer.zero_grad()
UpperCamelCase = model(A , labels=A)
UpperCamelCase = True
if secondary_learner is not None:
UpperCamelCase = secondary_learner.forward(
torch.tensor(A , dtype=torch.long , device=A).unsqueeze(0))[0].item()
observed_qs.append(float(A))
# Here we implement the simple non-constant threshold for the predicted IG(X) value
# We will decay the selectivity of our secondary learner filter from
# 1 standard deviation above average to 1 below average after 10 batches.
if global_step == 10:
UpperCamelCase = -1
if predicted_q < threshold:
UpperCamelCase = False
# If we passed the filter, add the context to the batch!
if do_backprop:
contexts.append(np.array(context.cpu()))
UpperCamelCase = outputs[0]
lm_loss.backward()
examples += 1
del outputs
# Once the batch is filled with enough contexts, backprop on the batch.
if examples == batch_size:
torch.cuda.empty_cache()
UpperCamelCase = 0
# Do LM backprop
torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0)
lm_optimizer.step()
lm_scheduler.step() # Update learning rate schedule
global_step += 1
# Compute the performance of the transformer model at this batch
if global_step % eval_interval == 0:
UpperCamelCase = compute_perplexity(A , A , A)
test_perps.append(A)
print('Test perplexity, step' , A , ':' , A)
# Break out of the loop after 60 batches
if max_steps > 0 and global_step > 60:
break
if max_steps > 0 and global_step > 60:
break
# save finetuned transformer model
torch.save(model.state_dict() , A)
torch.cuda.empty_cache()
# Do some cleaning up so we can reinitialize for the next run of this function
del lm_optimizer
del lm_scheduler
return model
def A_( ):
UpperCamelCase = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task')
# Required parameters
parser.add_argument(
'--data_dir' , default=A , type=A , required=A , help='The input data dir. Should contain data files for WikiText.' , )
parser.add_argument(
'--model_name_or_path' , default=A , type=A , required=A , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--data_file' , type=A , default=A , help=(
'A jbl file containing tokenized data which can be split as objective dataset, '
'train_dataset and test_dataset.'
) , )
parser.add_argument(
'--igf_data_file' , type=A , default=A , help='A jbl file containing the context and information gain pairs to train secondary learner.' , )
parser.add_argument(
'--output_dir' , default=A , type=A , required=A , help='The output directory where the final fine-tuned model is stored.' , )
parser.add_argument(
'--tokenizer_name' , default=A , type=A , help='Pretrained tokenizer name or path if not the same as model_name' , )
parser.add_argument('--seed' , type=A , default=A , help='A seed for reproducible training.')
parser.add_argument(
'--context_len' , default=32 , type=A , help=(
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
) , )
parser.add_argument(
'--size_objective_set' , default=100 , type=A , help='number of articles that are long enough to be used as our objective set' , )
parser.add_argument(
'--eval_freq' , default=100 , type=A , help='secondary model evaluation is triggered at eval_freq')
parser.add_argument('--max_steps' , default=1000 , type=A , help='To calculate training epochs')
parser.add_argument(
'--secondary_learner_batch_size' , default=128 , type=A , help='batch size of training data for secondary learner' , )
parser.add_argument(
'--batch_size' , default=16 , type=A , help='batch size of training data of language model(gpt2) ')
parser.add_argument(
'--eval_interval' , default=10 , type=A , help=(
'decay the selectivity of our secondary learner filter from'
'1 standard deviation above average to 1 below average after 10 batches'
) , )
parser.add_argument(
'--number' , default=100 , type=A , help='The number of examples split to be used as objective_set/test_data')
parser.add_argument(
'--min_len' , default=1026 , type=A , help='The minimum length of the article to be used as objective set')
parser.add_argument(
'--secondary_learner_max_epochs' , default=15 , type=A , help='number of epochs to train secondary learner')
parser.add_argument('--trim' , default=A , type=A , help='truncate the example if it exceeds context length')
parser.add_argument(
'--threshold' , default=1.0 , type=A , help=(
'The threshold value used by secondary learner to filter the train_data and allow only'
' informative data as input to the model'
) , )
parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=A , help='finetuned_model_name')
parser.add_argument(
'--recopy_model' , default=A , type=A , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , )
# function calls
# Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner
generate_n_pairs(
context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=A , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , )
# Load train data for secondary learner
UpperCamelCase = joblib.load('data/IGF_values.jbl')
# Train secondary learner
UpperCamelCase = training_secondary_learner(
A , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , )
# load pretrained gpt2 model
UpperCamelCase = GPTaLMHeadModel.from_pretrained('gpt2')
set_seed(42)
# Generate train and test data to train and evaluate gpt2 model
UpperCamelCase , UpperCamelCase = generate_datasets(
context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=A)
# fine-tuning of the gpt2 model using igf (Information Gain Filtration)
finetune(
A , A , A , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=A , secondary_learner=A , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , )
if __name__ == "__main__":
main()
| 3 |
'''simple docstring'''
import uuid
from typing import Any, Dict, List, Optional, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ :
def __init__( self , A_ = None , A_ = None , A_=None , A_=None )-> Optional[Any]:
'''simple docstring'''
if not conversation_id:
UpperCamelCase = uuid.uuida()
if past_user_inputs is None:
UpperCamelCase = []
if generated_responses is None:
UpperCamelCase = []
UpperCamelCase = conversation_id
UpperCamelCase = past_user_inputs
UpperCamelCase = generated_responses
UpperCamelCase = text
def __eq__( self , A_ )-> List[Any]:
'''simple docstring'''
if not isinstance(A_ , A_ ):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def UpperCAmelCase_ ( self , A_ , A_ = False )-> int:
'''simple docstring'''
if self.new_user_input:
if overwrite:
logger.warning(
F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten '''
F'''with: "{text}".''' )
UpperCamelCase = text
else:
logger.warning(
F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input '''
F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' )
else:
UpperCamelCase = text
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input )
UpperCamelCase = None
def UpperCAmelCase_ ( self , A_ )-> int:
'''simple docstring'''
self.generated_responses.append(A_ )
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__( self )-> Any:
'''simple docstring'''
UpperCamelCase = F'''Conversation id: {self.uuid} \n'''
for is_user, text in self.iter_texts():
UpperCamelCase = 'user' if is_user else 'bot'
output += F'''{name} >> {text} \n'''
return output
@add_end_docstrings(
snake_case_ , R"""
min_length_for_response (`int`, *optional*, defaults to 32):
The minimum length (in number of tokens) for a response.
minimum_tokens (`int`, *optional*, defaults to 10):
The minimum length of tokens to leave for a response.
""" , )
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , *A_ , **A_ )-> Any:
'''simple docstring'''
super().__init__(*A_ , **A_ )
if self.tokenizer.pad_token_id is None:
UpperCamelCase = self.tokenizer.eos_token
def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , **A_ )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = {}
UpperCamelCase = {}
UpperCamelCase = {}
if min_length_for_response is not None:
UpperCamelCase = min_length_for_response
if minimum_tokens is not None:
UpperCamelCase = minimum_tokens
if "max_length" in generate_kwargs:
UpperCamelCase = generate_kwargs['max_length']
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
UpperCamelCase = clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(A_ )
return preprocess_params, forward_params, postprocess_params
def __call__( self , A_ , A_=0 , **A_ )-> Any:
'''simple docstring'''
UpperCamelCase = super().__call__(A_ , num_workers=A_ , **A_ )
if isinstance(A_ , A_ ) and len(A_ ) == 1:
return outputs[0]
return outputs
def UpperCAmelCase_ ( self , A_ , A_=32 )-> Dict[str, Any]:
'''simple docstring'''
if not isinstance(A_ , A_ ):
raise ValueError('ConversationalPipeline, expects Conversation as inputs' )
if conversation.new_user_input is None:
raise ValueError(
F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. '''
'Add user inputs with the conversation\'s `add_user_input` method' )
if hasattr(self.tokenizer , '_build_conversation_input_ids' ):
UpperCamelCase = self.tokenizer._build_conversation_input_ids(A_ )
else:
# If the tokenizer cannot handle conversations, we default to only the old version
UpperCamelCase = self._legacy_parse_and_tokenize(A_ )
if self.framework == "pt":
UpperCamelCase = torch.LongTensor([input_ids] )
elif self.framework == "tf":
UpperCamelCase = tf.constant([input_ids] )
return {"input_ids": input_ids, "conversation": conversation}
def UpperCAmelCase_ ( self , A_ , A_=10 , **A_ )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length )
UpperCamelCase = model_inputs['input_ids'].shape[1]
if max_length - minimum_tokens < n:
logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' )
UpperCamelCase = max_length - minimum_tokens
UpperCamelCase = model_inputs['input_ids'][:, -trim:]
if "attention_mask" in model_inputs:
UpperCamelCase = model_inputs['attention_mask'][:, -trim:]
UpperCamelCase = model_inputs.pop('conversation' )
UpperCamelCase = max_length
UpperCamelCase = self.model.generate(**A_ , **A_ )
if self.model.config.is_encoder_decoder:
UpperCamelCase = 1
else:
UpperCamelCase = n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def UpperCAmelCase_ ( self , A_ , A_=True )-> Tuple:
'''simple docstring'''
UpperCamelCase = model_outputs['output_ids']
UpperCamelCase = self.tokenizer.decode(
output_ids[0] , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , )
UpperCamelCase = model_outputs['conversation']
conversation.mark_processed()
conversation.append_response(A_ )
return conversation
def UpperCAmelCase_ ( self , A_ )-> Dict:
'''simple docstring'''
UpperCamelCase = self.tokenizer.eos_token_id
UpperCamelCase = []
for is_user, text in conversation.iter_texts():
if eos_token_id is not None:
input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) + [eos_token_id] )
else:
input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) )
if len(A_ ) > self.tokenizer.model_max_length:
UpperCamelCase = input_ids[-self.tokenizer.model_max_length :]
return input_ids
| 3 | 1 |
'''simple docstring'''
def A_( A : int):
UpperCamelCase = int(A)
if decimal in (0, 1): # Exit cases for the recursion
return str(A)
UpperCamelCase , UpperCamelCase = divmod(A , 2)
return binary_recursive(A) + str(A)
def A_( A : str):
UpperCamelCase = str(A).strip()
if not number:
raise ValueError('No input value was provided')
UpperCamelCase = '-' if number.startswith('-') else ''
UpperCamelCase = number.lstrip('-')
if not number.isnumeric():
raise ValueError('Input value is not an integer')
return f'''{negative}0b{binary_recursive(int(A))}'''
if __name__ == "__main__":
from doctest import testmod
testmod()
| 3 |
'''simple docstring'''
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print('Googling.....')
lowerCAmelCase : List[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:])
lowerCAmelCase : List[Any] = requests.get(url, headers={'UserAgent': UserAgent().random})
# res.raise_for_status()
with open('project1a.html', 'wb') as out_file: # only for knowing the class
for data in res.iter_content(1_00_00):
out_file.write(data)
lowerCAmelCase : Tuple = BeautifulSoup(res.text, 'html.parser')
lowerCAmelCase : List[Any] = list(soup.select('.eZt8xd'))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get('href'))
else:
webbrowser.open(f"""https://google.com{link.get('href')}""")
| 3 | 1 |
'''simple docstring'''
def A_( A : int):
if not isinstance(A , A):
UpperCamelCase = f'''Input value of [number={number}] must be an integer'''
raise TypeError(A)
if number < 0:
return False
UpperCamelCase = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 |
'''simple docstring'''
import numpy as np
def A_( A : str , A : Optional[Any] , A : Tuple , A : Optional[int] , A : str):
UpperCamelCase = int(np.ceil((x_end - xa) / h))
UpperCamelCase = np.zeros((n + 1,))
UpperCamelCase = ya
UpperCamelCase = xa
for k in range(A):
UpperCamelCase = f(A , y[k])
UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka)
UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka)
UpperCamelCase = f(x + h , y[k] + h * ka)
UpperCamelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka)
x += h
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
import numpy as np
lowerCAmelCase : Union[str, Any] = [
['a', 'b', 'c', 'd', 'e'],
['f', 'g', 'h', 'i', 'k'],
['l', 'm', 'n', 'o', 'p'],
['q', 'r', 's', 't', 'u'],
['v', 'w', 'x', 'y', 'z'],
]
class SCREAMING_SNAKE_CASE__ :
def __init__( self )-> None:
'''simple docstring'''
UpperCamelCase = np.array(A_ )
def UpperCAmelCase_ ( self , A_ )-> np.ndarray:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = np.where(letter == self.SQUARE )
UpperCamelCase = np.concatenate([indexa + 1, indexa + 1] )
return indexes
def UpperCAmelCase_ ( self , A_ , A_ )-> str:
'''simple docstring'''
UpperCamelCase = self.SQUARE[indexa - 1, indexa - 1]
return letter
def UpperCAmelCase_ ( self , A_ )-> str:
'''simple docstring'''
UpperCamelCase = message.lower()
UpperCamelCase = message.replace(' ' , '' )
UpperCamelCase = message.replace('j' , 'i' )
UpperCamelCase = np.empty((2, len(A_ )) )
for letter_index in range(len(A_ ) ):
UpperCamelCase = self.letter_to_numbers(message[letter_index] )
UpperCamelCase = numbers[0]
UpperCamelCase = numbers[1]
UpperCamelCase = first_step.reshape(2 * len(A_ ) )
UpperCamelCase = ''
for numbers_index in range(len(A_ ) ):
UpperCamelCase = int(second_step[numbers_index * 2] )
UpperCamelCase = int(second_step[(numbers_index * 2) + 1] )
UpperCamelCase = self.numbers_to_letter(A_ , A_ )
UpperCamelCase = encoded_message + letter
return encoded_message
def UpperCAmelCase_ ( self , A_ )-> str:
'''simple docstring'''
UpperCamelCase = message.lower()
message.replace(' ' , '' )
UpperCamelCase = np.empty(2 * len(A_ ) )
for letter_index in range(len(A_ ) ):
UpperCamelCase = self.letter_to_numbers(message[letter_index] )
UpperCamelCase = numbers[0]
UpperCamelCase = numbers[1]
UpperCamelCase = first_step.reshape((2, len(A_ )) )
UpperCamelCase = ''
for numbers_index in range(len(A_ ) ):
UpperCamelCase = int(second_step[0, numbers_index] )
UpperCamelCase = int(second_step[1, numbers_index] )
UpperCamelCase = self.numbers_to_letter(A_ , A_ )
UpperCamelCase = decoded_message + letter
return decoded_message
| 3 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=snake_case_)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True})
lowerCAmelCase_ = Features({"""text""": Value("""string""")})
lowerCAmelCase_ = Features({})
lowerCAmelCase_ = "text"
@property
def UpperCAmelCase_ ( self )-> Dict[str, str]:
'''simple docstring'''
return {self.text_column: "text"}
| 3 | 1 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
ImageTextPipelineOutput,
UniDiffuserPipeline,
)
else:
from .modeling_text_decoder import UniDiffuserTextDecoder
from .modeling_uvit import UniDiffuserModel, UTransformeraDModel
from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
| 3 |
'''simple docstring'''
from __future__ import annotations
lowerCAmelCase : Union[str, Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0]
lowerCAmelCase : List[str] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1]
def A_( A : list[float]):
UpperCamelCase = []
UpperCamelCase = len(A)
for i in range(A):
UpperCamelCase = -1
for j in range(i + 1 , A):
if arr[i] < arr[j]:
UpperCamelCase = arr[j]
break
result.append(A)
return result
def A_( A : list[float]):
UpperCamelCase = []
for i, outer in enumerate(A):
UpperCamelCase = -1
for inner in arr[i + 1 :]:
if outer < inner:
UpperCamelCase = inner
break
result.append(A)
return result
def A_( A : list[float]):
UpperCamelCase = len(A)
UpperCamelCase = []
UpperCamelCase = [-1] * arr_size
for index in reversed(range(A)):
if stack:
while stack[-1] <= arr[index]:
stack.pop()
if not stack:
break
if stack:
UpperCamelCase = stack[-1]
stack.append(arr[index])
return result
if __name__ == "__main__":
from doctest import testmod
from timeit import timeit
testmod()
print(next_greatest_element_slow(arr))
print(next_greatest_element_fast(arr))
print(next_greatest_element(arr))
lowerCAmelCase : Optional[Any] = (
'from __main__ import arr, next_greatest_element_slow, '
'next_greatest_element_fast, next_greatest_element'
)
print(
'next_greatest_element_slow():',
timeit('next_greatest_element_slow(arr)', setup=setup),
)
print(
'next_greatest_element_fast():',
timeit('next_greatest_element_fast(arr)', setup=setup),
)
print(
' next_greatest_element():',
timeit('next_greatest_element(arr)', setup=setup),
)
| 3 | 1 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
lowerCAmelCase : List[str] = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = ["""input_values""", """padding_mask"""]
def __init__( self , A_ = 1 , A_ = 24000 , A_ = 0.0 , A_ = None , A_ = None , **A_ , )-> Optional[Any]:
'''simple docstring'''
super().__init__(feature_size=A_ , sampling_rate=A_ , padding_value=A_ , **A_ )
UpperCamelCase = chunk_length_s
UpperCamelCase = overlap
@property
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self , A_ , A_ = None , A_ = False , A_ = None , A_ = None , A_ = None , )-> BatchFeature:
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'''
F''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
if padding and truncation:
raise ValueError('Both padding and truncation were set. Make sure you only set one.' )
elif padding is None:
# by default let's pad the inputs
UpperCamelCase = True
UpperCamelCase = bool(
isinstance(A_ , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) )
if is_batched:
UpperCamelCase = [np.asarray(A_ , dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(A_ , np.ndarray ):
UpperCamelCase = np.asarray(A_ , dtype=np.floataa )
elif isinstance(A_ , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
UpperCamelCase = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
UpperCamelCase = [np.asarray(A_ ).T]
# verify inputs are valid
for idx, example in enumerate(A_ ):
if example.ndim > 2:
raise ValueError(F'''Expected input shape (channels, length) but got shape {example.shape}''' )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(F'''Expected mono audio but example has {example.shape[-1]} channels''' )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(F'''Expected stereo audio but example has {example.shape[-1]} channels''' )
UpperCamelCase = None
UpperCamelCase = BatchFeature({'input_values': raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
UpperCamelCase = min(array.shape[0] for array in raw_audio )
UpperCamelCase = int(np.floor(max_length / self.chunk_stride ) )
UpperCamelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
UpperCamelCase = max(array.shape[0] for array in raw_audio )
UpperCamelCase = int(np.ceil(max_length / self.chunk_stride ) )
UpperCamelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length
UpperCamelCase = 'max_length'
else:
UpperCamelCase = input_values
# normal padding on batch
if padded_inputs is None:
UpperCamelCase = self.pad(
A_ , max_length=A_ , truncation=A_ , padding=A_ , return_attention_mask=A_ , )
if padding:
UpperCamelCase = padded_inputs.pop('attention_mask' )
UpperCamelCase = []
for example in padded_inputs.pop('input_values' ):
if self.feature_size == 1:
UpperCamelCase = example[..., None]
input_values.append(example.T )
UpperCamelCase = input_values
if return_tensors is not None:
UpperCamelCase = padded_inputs.convert_to_tensors(A_ )
return padded_inputs
| 3 |
'''simple docstring'''
from string import ascii_lowercase, ascii_uppercase
def A_( A : str):
if not sentence:
return ""
UpperCamelCase = dict(zip(A , A))
return lower_to_upper.get(sentence[0] , sentence[0]) + sentence[1:]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 3 | 1 |
'''simple docstring'''
import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
lowerCAmelCase : Union[str, Any] = [
# tf -> hf
('/', '.'),
('layer_', 'layers.'),
('kernel', 'weight'),
('beta', 'bias'),
('gamma', 'weight'),
('pegasus', 'model'),
]
lowerCAmelCase : Tuple = [
('.output.dense', '.fc2'),
('intermediate.LayerNorm', 'final_layer_norm'),
('intermediate.dense', 'fc1'),
]
lowerCAmelCase : Union[str, Any] = (
INIT_COMMON
+ [
('attention.self.LayerNorm', 'self_attn_layer_norm'),
('attention.output.dense', 'self_attn.out_proj'),
('attention.self', 'self_attn'),
('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'),
('attention.encdec_output.dense', 'encoder_attn.out_proj'),
('attention.encdec', 'encoder_attn'),
('key', 'k_proj'),
('value', 'v_proj'),
('query', 'q_proj'),
('decoder.LayerNorm', 'decoder.layernorm_embedding'),
]
+ END_COMMON
)
lowerCAmelCase : Optional[Any] = (
INIT_COMMON
+ [
('embeddings.word_embeddings', 'shared.weight'),
('embeddings.position_embeddings', 'embed_positions.weight'),
('attention.self.LayerNorm', 'self_attn_layer_norm'),
('attention.output.dense', 'self_attn.output'),
('attention.self', 'self_attn.self'),
('encoder.LayerNorm', 'encoder.layernorm_embedding'),
]
+ END_COMMON
)
lowerCAmelCase : Union[str, Any] = [
'encdec/key/bias',
'encdec/query/bias',
'encdec/value/bias',
'self/key/bias',
'self/query/bias',
'self/value/bias',
'encdec_output/dense/bias',
'attention/output/dense/bias',
]
def A_( A : Optional[int] , A : List[str]):
for tf_name, hf_name in patterns:
UpperCamelCase = k.replace(A , A)
return k
def A_( A : dict , A : dict):
UpperCamelCase = BigBirdPegasusConfig(**A)
UpperCamelCase = BigBirdPegasusForConditionalGeneration(A)
UpperCamelCase = torch_model.state_dict()
UpperCamelCase = {}
# separating decoder weights
UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder')}
UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder')}
for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion'):
UpperCamelCase = [k.endswith(A) for ending in KEYS_TO_IGNORE]
if any(A):
continue
UpperCamelCase = DECODER_PATTERNS
UpperCamelCase = rename_state_dict_key(A , A)
if new_k not in state_dict:
raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''')
if any(True if i in k else False for i in ['dense', 'query', 'key', 'value']):
UpperCamelCase = v.T
UpperCamelCase = torch.from_numpy(A)
assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'''
for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion'):
UpperCamelCase = [k.endswith(A) for ending in KEYS_TO_IGNORE]
if any(A):
continue
UpperCamelCase = REMAINING_PATTERNS
UpperCamelCase = rename_state_dict_key(A , A)
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''')
if any(True if i in k else False for i in ['dense', 'query', 'key', 'value']):
UpperCamelCase = v.T
UpperCamelCase = torch.from_numpy(A)
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'''
UpperCamelCase = mapping['model.embed_positions.weight']
UpperCamelCase = mapping.pop('model.embed_positions.weight')
UpperCamelCase , UpperCamelCase = torch_model.load_state_dict(A , strict=A)
UpperCamelCase = [
k
for k in missing
if k
not in [
'final_logits_bias',
'model.encoder.embed_tokens.weight',
'model.decoder.embed_tokens.weight',
'lm_head.weight',
]
]
assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}'''
assert extra == [], f'''no matches found for the following tf keys {extra}'''
return torch_model
def A_( A : List[str]):
UpperCamelCase = tf.train.list_variables(A)
UpperCamelCase = {}
UpperCamelCase = ['global_step']
for name, shape in tqdm(A , desc='converting tf checkpoint to dict'):
UpperCamelCase = any(pat in name for pat in ignore_name)
if skip_key:
continue
UpperCamelCase = tf.train.load_variable(A , A)
UpperCamelCase = array
return tf_weights
def A_( A : str , A : str , A : dict):
UpperCamelCase = get_tf_weights_as_numpy(A)
UpperCamelCase = convert_bigbird_pegasus(A , A)
torch_model.save_pretrained(A)
if __name__ == "__main__":
lowerCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables')
parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.')
lowerCAmelCase : Dict = parser.parse_args()
lowerCAmelCase : Any = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 3 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
lowerCAmelCase : Dict = logging.get_logger(__name__)
# General docstring
lowerCAmelCase : str = 'RegNetConfig'
# Base docstring
lowerCAmelCase : str = 'facebook/regnet-y-040'
lowerCAmelCase : Dict = [1, 10_88, 7, 7]
# Image classification docstring
lowerCAmelCase : Dict = 'facebook/regnet-y-040'
lowerCAmelCase : int = 'tabby, tabby cat'
lowerCAmelCase : int = [
'facebook/regnet-y-040',
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ = 3 , A_ = 1 , A_ = 1 , A_ = "relu" , **A_ , )-> str:
'''simple docstring'''
super().__init__(**A_ )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
UpperCamelCase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
UpperCamelCase = tf.keras.layers.ConvaD(
filters=A_ , kernel_size=A_ , strides=A_ , padding='VALID' , groups=A_ , use_bias=A_ , name='convolution' , )
UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' )
UpperCamelCase = ACTaFN[activation] if activation is not None else tf.identity
def UpperCAmelCase_ ( self , A_ )-> Any:
'''simple docstring'''
UpperCamelCase = self.convolution(self.padding(A_ ) )
UpperCamelCase = self.normalization(A_ )
UpperCamelCase = self.activation(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , **A_ )-> Optional[Any]:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = config.num_channels
UpperCamelCase = TFRegNetConvLayer(
out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , )
def UpperCAmelCase_ ( self , A_ )-> List[Any]:
'''simple docstring'''
UpperCamelCase = shape_list(A_ )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
UpperCamelCase = tf.transpose(A_ , perm=(0, 2, 3, 1) )
UpperCamelCase = self.embedder(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ = 2 , **A_ )-> List[Any]:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = tf.keras.layers.ConvaD(
filters=A_ , kernel_size=1 , strides=A_ , use_bias=A_ , name='convolution' )
UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' )
def UpperCAmelCase_ ( self , A_ , A_ = False )-> tf.Tensor:
'''simple docstring'''
return self.normalization(self.convolution(A_ ) , training=A_ )
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ , **A_ )-> Optional[Any]:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' )
UpperCamelCase = [
tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='relu' , name='attention.0' ),
tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='sigmoid' , name='attention.2' ),
]
def UpperCAmelCase_ ( self , A_ )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.pooler(A_ )
for layer_module in self.attention:
UpperCamelCase = layer_module(A_ )
UpperCamelCase = hidden_state * pooled
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Dict:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = in_channels != out_channels or stride != 1
UpperCamelCase = max(1 , out_channels // config.groups_width )
UpperCamelCase = (
TFRegNetShortCut(A_ , stride=A_ , name='shortcut' )
if should_apply_shortcut
else tf.keras.layers.Activation('linear' , name='shortcut' )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
UpperCamelCase = [
TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ),
TFRegNetConvLayer(
A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ),
TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.2' ),
]
UpperCamelCase = ACTaFN[config.hidden_act]
def UpperCAmelCase_ ( self , A_ )-> Tuple:
'''simple docstring'''
UpperCamelCase = hidden_state
for layer_module in self.layers:
UpperCamelCase = layer_module(A_ )
UpperCamelCase = self.shortcut(A_ )
hidden_state += residual
UpperCamelCase = self.activation(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Any:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = in_channels != out_channels or stride != 1
UpperCamelCase = max(1 , out_channels // config.groups_width )
UpperCamelCase = (
TFRegNetShortCut(A_ , stride=A_ , name='shortcut' )
if should_apply_shortcut
else tf.keras.layers.Activation('linear' , name='shortcut' )
)
UpperCamelCase = [
TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ),
TFRegNetConvLayer(
A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ),
TFRegNetSELayer(A_ , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ),
TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.3' ),
]
UpperCamelCase = ACTaFN[config.hidden_act]
def UpperCAmelCase_ ( self , A_ )-> List[Any]:
'''simple docstring'''
UpperCamelCase = hidden_state
for layer_module in self.layers:
UpperCamelCase = layer_module(A_ )
UpperCamelCase = self.shortcut(A_ )
hidden_state += residual
UpperCamelCase = self.activation(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ , A_ , A_ = 2 , A_ = 2 , **A_ )-> Dict:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer
UpperCamelCase = [
# downsampling is done in the first layer with stride of 2
layer(A_ , A_ , A_ , stride=A_ , name='layers.0' ),
*[layer(A_ , A_ , A_ , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )],
]
def UpperCAmelCase_ ( self , A_ )-> List[Any]:
'''simple docstring'''
for layer_module in self.layers:
UpperCamelCase = layer_module(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , **A_ )-> str:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
A_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) )
UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(A_ , config.depths[1:] ) ):
self.stages.append(TFRegNetStage(A_ , A_ , A_ , depth=A_ , name=F'''stages.{i+1}''' ) )
def UpperCAmelCase_ ( self , A_ , A_ = False , A_ = True )-> TFBaseModelOutputWithNoAttention:
'''simple docstring'''
UpperCamelCase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
UpperCamelCase = hidden_states + (hidden_state,)
UpperCamelCase = stage_module(A_ )
if output_hidden_states:
UpperCamelCase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=A_ , hidden_states=A_ )
@keras_serializable
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
lowerCAmelCase_ = RegNetConfig
def __init__( self , A_ , **A_ )-> Union[str, Any]:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = config
UpperCamelCase = TFRegNetEmbeddings(A_ , name='embedder' )
UpperCamelCase = TFRegNetEncoder(A_ , name='encoder' )
UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' )
@unpack_inputs
def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_ = False , )-> TFBaseModelOutputWithPoolingAndNoAttention:
'''simple docstring'''
UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
UpperCamelCase = self.embedder(A_ , training=A_ )
UpperCamelCase = self.encoder(
A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ )
UpperCamelCase = encoder_outputs[0]
UpperCamelCase = self.pooler(A_ )
# Change to NCHW output format have uniformity in the modules
UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) )
UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
UpperCamelCase = tuple([tf.transpose(A_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=A_ , pooler_output=A_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , )
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = RegNetConfig
lowerCAmelCase_ = """regnet"""
lowerCAmelCase_ = """pixel_values"""
@property
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )}
lowerCAmelCase : str = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowerCAmelCase : List[str] = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"""The bare RegNet model outputting raw features without any specific head on top.""" , snake_case_ , )
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ , *A_ , **A_ )-> List[Any]:
'''simple docstring'''
super().__init__(A_ , *A_ , **A_ )
UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' )
@unpack_inputs
@add_start_docstrings_to_model_forward(A_ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_=False , )-> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]:
'''simple docstring'''
UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
UpperCamelCase = self.regnet(
pixel_values=A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ , )
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , )
@add_start_docstrings(
"""
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""" , snake_case_ , )
class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_):
def __init__( self , A_ , *A_ , **A_ )-> str:
'''simple docstring'''
super().__init__(A_ , *A_ , **A_ )
UpperCamelCase = config.num_labels
UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' )
# classification head
UpperCamelCase = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(A_ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def UpperCAmelCase_ ( self , A_ = None , A_ = None , A_ = None , A_ = None , A_=False , )-> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
'''simple docstring'''
UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
UpperCamelCase = self.regnet(
A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ )
UpperCamelCase = outputs.pooler_output if return_dict else outputs[1]
UpperCamelCase = self.classifier[0](A_ )
UpperCamelCase = self.classifier[1](A_ )
UpperCamelCase = None if labels is None else self.hf_compute_loss(labels=A_ , logits=A_ )
if not return_dict:
UpperCamelCase = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=A_ , logits=A_ , hidden_states=outputs.hidden_states )
| 3 | 1 |
'''simple docstring'''
from PIL import Image
def A_( A : Image , A : int):
UpperCamelCase = (259 * (level + 255)) / (255 * (259 - level))
def contrast(A : int) -> int:
return int(128 + factor * (c - 128))
return img.point(A)
if __name__ == "__main__":
# Load image
with Image.open('image_data/lena.jpg') as img:
# Change contrast to 170
lowerCAmelCase : str = change_contrast(img, 1_70)
cont_img.save('image_data/lena_high_contrast.png', format='png')
| 3 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...feature_extraction_utils import FeatureExtractionMixin
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType, logging
lowerCAmelCase : Any = logging.get_logger(__name__)
lowerCAmelCase : Optional[int] = {
'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json',
# See all Perceiver models at https://huggingface.co/models?filter=perceiver
}
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """perceiver"""
def __init__( self , A_=256 , A_=1280 , A_=768 , A_=1 , A_=26 , A_=8 , A_=8 , A_=None , A_=None , A_="kv" , A_=1 , A_=1 , A_="gelu" , A_=0.1 , A_=0.02 , A_=1e-12 , A_=True , A_=262 , A_=2048 , A_=56 , A_=[368, 496] , A_=16 , A_=1920 , A_=16 , A_=[1, 16, 224, 224] , **A_ , )-> str:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = num_latents
UpperCamelCase = d_latents
UpperCamelCase = d_model
UpperCamelCase = num_blocks
UpperCamelCase = num_self_attends_per_block
UpperCamelCase = num_self_attention_heads
UpperCamelCase = num_cross_attention_heads
UpperCamelCase = qk_channels
UpperCamelCase = v_channels
UpperCamelCase = cross_attention_shape_for_attention
UpperCamelCase = self_attention_widening_factor
UpperCamelCase = cross_attention_widening_factor
UpperCamelCase = hidden_act
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = initializer_range
UpperCamelCase = layer_norm_eps
UpperCamelCase = use_query_residual
# masked language modeling attributes
UpperCamelCase = vocab_size
UpperCamelCase = max_position_embeddings
# image classification attributes
UpperCamelCase = image_size
# flow attributes
UpperCamelCase = train_size
# multimodal autoencoding attributes
UpperCamelCase = num_frames
UpperCamelCase = audio_samples_per_frame
UpperCamelCase = samples_per_patch
UpperCamelCase = output_shape
class SCREAMING_SNAKE_CASE__ ( snake_case_):
@property
def UpperCAmelCase_ ( self )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('inputs', dynamic_axis),
('attention_mask', dynamic_axis),
] )
@property
def UpperCAmelCase_ ( self )-> float:
'''simple docstring'''
return 1e-4
def UpperCAmelCase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = -1 , A_ = False , A_ = None , A_ = 3 , A_ = 40 , A_ = 40 , )-> Mapping[str, Any]:
'''simple docstring'''
if isinstance(A_ , A_ ):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCamelCase = compute_effective_axis_dimension(
A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCamelCase = preprocessor.num_special_tokens_to_add(A_ )
UpperCamelCase = compute_effective_axis_dimension(
A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ )
# Generate dummy inputs according to compute batch and sequence
UpperCamelCase = [' '.join(['a'] ) * seq_length] * batch_size
UpperCamelCase = dict(preprocessor(A_ , return_tensors=A_ ) )
UpperCamelCase = inputs.pop('input_ids' )
return inputs
elif isinstance(A_ , A_ ) and preprocessor.model_input_names[0] == "pixel_values":
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCamelCase = compute_effective_axis_dimension(A_ , fixed_dimension=OnnxConfig.default_fixed_batch )
UpperCamelCase = self._generate_dummy_images(A_ , A_ , A_ , A_ )
UpperCamelCase = dict(preprocessor(images=A_ , return_tensors=A_ ) )
UpperCamelCase = inputs.pop('pixel_values' )
return inputs
else:
raise ValueError(
'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
| 3 | 1 |
'''simple docstring'''
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def A_( A : BertModel , A : str , A : str):
UpperCamelCase = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value')
UpperCamelCase = (
('layer.', 'layer_'),
('word_embeddings.weight', 'word_embeddings'),
('position_embeddings.weight', 'position_embeddings'),
('token_type_embeddings.weight', 'token_type_embeddings'),
('.', '/'),
('LayerNorm/weight', 'LayerNorm/gamma'),
('LayerNorm/bias', 'LayerNorm/beta'),
('weight', 'kernel'),
)
if not os.path.isdir(A):
os.makedirs(A)
UpperCamelCase = model.state_dict()
def to_tf_var_name(A : str):
for patt, repl in iter(A):
UpperCamelCase = name.replace(A , A)
return f'''bert/{name}'''
def create_tf_var(A : np.ndarray , A : str , A : tf.Session):
UpperCamelCase = tf.dtypes.as_dtype(tensor.dtype)
UpperCamelCase = tf.get_variable(dtype=A , shape=tensor.shape , name=A , initializer=tf.zeros_initializer())
session.run(tf.variables_initializer([tf_var]))
session.run(A)
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
UpperCamelCase = to_tf_var_name(A)
UpperCamelCase = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose):
UpperCamelCase = torch_tensor.T
UpperCamelCase = create_tf_var(tensor=A , name=A , session=A)
tf.keras.backend.set_value(A , A)
UpperCamelCase = session.run(A)
print(f'''Successfully created {tf_name}: {np.allclose(A , A)}''')
UpperCamelCase = tf.train.Saver(tf.trainable_variables())
saver.save(A , os.path.join(A , model_name.replace('-' , '_') + '.ckpt'))
def A_( A : Optional[int]=None):
UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('--model_name' , type=A , required=A , help='model name e.g. bert-base-uncased')
parser.add_argument(
'--cache_dir' , type=A , default=A , required=A , help='Directory containing pytorch model')
parser.add_argument('--pytorch_model_path' , type=A , required=A , help='/path/to/<pytorch-model-name>.bin')
parser.add_argument('--tf_cache_dir' , type=A , required=A , help='Directory in which to save tensorflow model')
UpperCamelCase = parser.parse_args(A)
UpperCamelCase = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=A , ckpt_dir=args.tf_cache_dir , model_name=args.model_name)
if __name__ == "__main__":
main()
| 3 |
'''simple docstring'''
from ....configuration_utils import PretrainedConfig
from ....utils import logging
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
lowerCAmelCase : Dict = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """mctct"""
def __init__( self , A_=8065 , A_=1536 , A_=36 , A_=6144 , A_=4 , A_=384 , A_=920 , A_=1e-5 , A_=0.3 , A_="relu" , A_=0.02 , A_=0.3 , A_=0.3 , A_=1 , A_=0 , A_=2 , A_=1 , A_=0.3 , A_=1 , A_=(7,) , A_=(3,) , A_=80 , A_=1 , A_=None , A_="sum" , A_=False , **A_ , )-> str:
'''simple docstring'''
super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ )
UpperCamelCase = vocab_size
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = intermediate_size
UpperCamelCase = num_attention_heads
UpperCamelCase = attention_head_dim
UpperCamelCase = max_position_embeddings
UpperCamelCase = layer_norm_eps
UpperCamelCase = layerdrop
UpperCamelCase = hidden_act
UpperCamelCase = initializer_range
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = pad_token_id
UpperCamelCase = bos_token_id
UpperCamelCase = eos_token_id
UpperCamelCase = conv_glu_dim
UpperCamelCase = conv_dropout
UpperCamelCase = num_conv_layers
UpperCamelCase = input_feat_per_channel
UpperCamelCase = input_channels
UpperCamelCase = conv_channels
UpperCamelCase = ctc_loss_reduction
UpperCamelCase = ctc_zero_infinity
# prevents config testing fail with exporting to json
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` '
F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, '''
F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
| 3 | 1 |
'''simple docstring'''
import importlib
import math
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Tuple, Union
import flax
import jax.numpy as jnp
from ..utils import BaseOutput
lowerCAmelCase : int = 'scheduler_config.json'
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = 1
lowerCAmelCase_ = 2
lowerCAmelCase_ = 3
lowerCAmelCase_ = 4
lowerCAmelCase_ = 5
@dataclass
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = 42
class SCREAMING_SNAKE_CASE__ :
lowerCAmelCase_ = SCHEDULER_CONFIG_NAME
lowerCAmelCase_ = ["""dtype"""]
lowerCAmelCase_ = []
lowerCAmelCase_ = True
@classmethod
def UpperCAmelCase_ ( cls , A_ = None , A_ = None , A_=False , **A_ , )-> Tuple:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = cls.load_config(
pretrained_model_name_or_path=A_ , subfolder=A_ , return_unused_kwargs=A_ , **A_ , )
UpperCamelCase , UpperCamelCase = cls.from_config(A_ , return_unused_kwargs=A_ , **A_ )
if hasattr(A_ , 'create_state' ) and getattr(A_ , 'has_state' , A_ ):
UpperCamelCase = scheduler.create_state()
if return_unused_kwargs:
return scheduler, state, unused_kwargs
return scheduler, state
def UpperCAmelCase_ ( self , A_ , A_ = False , **A_ )-> Any:
'''simple docstring'''
self.save_config(save_directory=A_ , push_to_hub=A_ , **A_ )
@property
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
return self._get_compatibles()
@classmethod
def UpperCAmelCase_ ( cls )-> Any:
'''simple docstring'''
UpperCamelCase = list(set([cls.__name__] + cls._compatibles ) )
UpperCamelCase = importlib.import_module(__name__.split('.' )[0] )
UpperCamelCase = [
getattr(A_ , A_ ) for c in compatible_classes_str if hasattr(A_ , A_ )
]
return compatible_classes
def A_( A : jnp.ndarray , A : Tuple[int]):
assert len(A) >= x.ndim
return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(A) - x.ndim)) , A)
def A_( A : int , A : int=0.999 , A : List[Any]=jnp.floataa):
def alpha_bar(A : Union[str, Any]):
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2
UpperCamelCase = []
for i in range(A):
UpperCamelCase = i / num_diffusion_timesteps
UpperCamelCase = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(A) / alpha_bar(A) , A))
return jnp.array(A , dtype=A)
@flax.struct.dataclass
class SCREAMING_SNAKE_CASE__ :
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
@classmethod
def UpperCAmelCase_ ( cls , A_ )-> str:
'''simple docstring'''
UpperCamelCase = scheduler.config
if config.trained_betas is not None:
UpperCamelCase = jnp.asarray(config.trained_betas , dtype=scheduler.dtype )
elif config.beta_schedule == "linear":
UpperCamelCase = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype )
elif config.beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
UpperCamelCase = (
jnp.linspace(
config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype )
** 2
)
elif config.beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
UpperCamelCase = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype )
else:
raise NotImplementedError(
F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' )
UpperCamelCase = 1.0 - betas
UpperCamelCase = jnp.cumprod(A_ , axis=0 )
return cls(
alphas=A_ , betas=A_ , alphas_cumprod=A_ , )
def A_( A : CommonSchedulerState , A : jnp.ndarray , A : jnp.ndarray , A : jnp.ndarray):
UpperCamelCase = state.alphas_cumprod
UpperCamelCase = alphas_cumprod[timesteps] ** 0.5
UpperCamelCase = sqrt_alpha_prod.flatten()
UpperCamelCase = broadcast_to_shape_from_left(A , original_samples.shape)
UpperCamelCase = (1 - alphas_cumprod[timesteps]) ** 0.5
UpperCamelCase = sqrt_one_minus_alpha_prod.flatten()
UpperCamelCase = broadcast_to_shape_from_left(A , original_samples.shape)
return sqrt_alpha_prod, sqrt_one_minus_alpha_prod
def A_( A : CommonSchedulerState , A : jnp.ndarray , A : jnp.ndarray , A : jnp.ndarray):
UpperCamelCase , UpperCamelCase = get_sqrt_alpha_prod(A , A , A , A)
UpperCamelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def A_( A : CommonSchedulerState , A : jnp.ndarray , A : jnp.ndarray , A : jnp.ndarray):
UpperCamelCase , UpperCamelCase = get_sqrt_alpha_prod(A , A , A , A)
UpperCamelCase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
return velocity
| 3 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
lowerCAmelCase : Tuple = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
lowerCAmelCase : Optional[int] = TaTokenizerFast
lowerCAmelCase : Any = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[int] = [
'MT5EncoderModel',
'MT5ForConditionalGeneration',
'MT5ForQuestionAnswering',
'MT5Model',
'MT5PreTrainedModel',
'MT5Stack',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Dict = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[Any] = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model']
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
lowerCAmelCase : Tuple = _LazyModule(
__name__,
globals()['__file__'],
_import_structure,
extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast},
module_spec=__spec__,
)
| 3 | 1 |
'''simple docstring'''
from __future__ import annotations
from functools import lru_cache
from math import ceil
lowerCAmelCase : Tuple = 1_00
lowerCAmelCase : Tuple = set(range(3, NUM_PRIMES, 2))
primes.add(2)
lowerCAmelCase : int
for prime in range(3, ceil(NUM_PRIMES**0.5), 2):
if prime not in primes:
continue
primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime)))
@lru_cache(maxsize=100)
def A_( A : int):
if number_to_partition < 0:
return set()
elif number_to_partition == 0:
return {1}
UpperCamelCase = set()
UpperCamelCase = 42
UpperCamelCase = 42
for prime in primes:
if prime > number_to_partition:
continue
for sub in partition(number_to_partition - prime):
ret.add(sub * prime)
return ret
def A_( A : int = 5000):
for number_to_partition in range(1 , A):
if len(partition(A)) > number_unique_partitions:
return number_to_partition
return None
if __name__ == "__main__":
print(f"""{solution() = }""")
| 3 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=False , A_=True , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , )-> Dict:
'''simple docstring'''
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = num_channels
UpperCamelCase = image_size
UpperCamelCase = min_resolution
UpperCamelCase = max_resolution
UpperCamelCase = do_resize
UpperCamelCase = size if size is not None else {'height': 18, 'width': 20}
UpperCamelCase = do_thumbnail
UpperCamelCase = do_align_axis
UpperCamelCase = do_pad
UpperCamelCase = do_normalize
UpperCamelCase = image_mean
UpperCamelCase = image_std
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase):
lowerCAmelCase_ = DonutImageProcessor if is_vision_available() else None
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
UpperCamelCase = DonutImageProcessingTester(self )
@property
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A_ , 'do_resize' ) )
self.assertTrue(hasattr(A_ , 'size' ) )
self.assertTrue(hasattr(A_ , 'do_thumbnail' ) )
self.assertTrue(hasattr(A_ , 'do_align_long_axis' ) )
self.assertTrue(hasattr(A_ , 'do_pad' ) )
self.assertTrue(hasattr(A_ , 'do_normalize' ) )
self.assertTrue(hasattr(A_ , 'image_mean' ) )
self.assertTrue(hasattr(A_ , 'image_std' ) )
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 20} )
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
# Previous config had dimensions in (width, height) order
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {'height': 84, 'width': 42} )
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
pass
@is_flaky()
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , Image.Image )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , np.ndarray )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , torch.Tensor )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
| 3 | 1 |
'''simple docstring'''
from __future__ import annotations
lowerCAmelCase : Union[str, Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0]
lowerCAmelCase : List[str] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1]
def A_( A : list[float]):
UpperCamelCase = []
UpperCamelCase = len(A)
for i in range(A):
UpperCamelCase = -1
for j in range(i + 1 , A):
if arr[i] < arr[j]:
UpperCamelCase = arr[j]
break
result.append(A)
return result
def A_( A : list[float]):
UpperCamelCase = []
for i, outer in enumerate(A):
UpperCamelCase = -1
for inner in arr[i + 1 :]:
if outer < inner:
UpperCamelCase = inner
break
result.append(A)
return result
def A_( A : list[float]):
UpperCamelCase = len(A)
UpperCamelCase = []
UpperCamelCase = [-1] * arr_size
for index in reversed(range(A)):
if stack:
while stack[-1] <= arr[index]:
stack.pop()
if not stack:
break
if stack:
UpperCamelCase = stack[-1]
stack.append(arr[index])
return result
if __name__ == "__main__":
from doctest import testmod
from timeit import timeit
testmod()
print(next_greatest_element_slow(arr))
print(next_greatest_element_fast(arr))
print(next_greatest_element(arr))
lowerCAmelCase : Optional[Any] = (
'from __main__ import arr, next_greatest_element_slow, '
'next_greatest_element_fast, next_greatest_element'
)
print(
'next_greatest_element_slow():',
timeit('next_greatest_element_slow(arr)', setup=setup),
)
print(
'next_greatest_element_fast():',
timeit('next_greatest_element_fast(arr)', setup=setup),
)
print(
' next_greatest_element():',
timeit('next_greatest_element(arr)', setup=setup),
)
| 3 |
'''simple docstring'''
def A_( A : list[int]):
UpperCamelCase = []
if len(A) == 1:
return [nums.copy()]
for _ in range(len(A)):
UpperCamelCase = nums.pop(0)
UpperCamelCase = permute(A)
for perm in permutations:
perm.append(A)
result.extend(A)
nums.append(A)
return result
def A_( A : str):
def backtrack(A : str):
if start == len(A) - 1:
output.append(nums[:])
else:
for i in range(A , len(A)):
UpperCamelCase , UpperCamelCase = nums[i], nums[start]
backtrack(start + 1)
UpperCamelCase , UpperCamelCase = nums[i], nums[start] # backtrack
UpperCamelCase = []
backtrack(0)
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
lowerCAmelCase : Dict = permutea([1, 2, 3])
print(res)
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
import qiskit
def A_( A : int = 2):
UpperCamelCase = qubits
# Using Aer's simulator
UpperCamelCase = qiskit.Aer.get_backend('aer_simulator')
# Creating a Quantum Circuit acting on the q register
UpperCamelCase = qiskit.QuantumCircuit(A , A)
# Adding a H gate on qubit 0 (now q0 in superposition)
circuit.h(0)
for i in range(1 , A):
# Adding CX (CNOT) gate
circuit.cx(i - 1 , A)
# Mapping the quantum measurement to the classical bits
circuit.measure(list(range(A)) , list(range(A)))
# Now measuring any one qubit would affect other qubits to collapse
# their super position and have same state as the measured one.
# Executing the circuit on the simulator
UpperCamelCase = qiskit.execute(A , A , shots=1000)
return job.result().get_counts(A)
if __name__ == "__main__":
print(f"""Total count for various states are: {quantum_entanglement(3)}""")
| 3 |
'''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def A_( A : float , A : float , A : int):
UpperCamelCase = x
UpperCamelCase = y
for step in range(A): # noqa: B007
UpperCamelCase = a * a - b * b + x
UpperCamelCase = 2 * a * b + y
UpperCamelCase = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def A_( A : float):
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def A_( A : float):
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(A , 1 , 1))
def A_( A : int = 800 , A : int = 600 , A : float = -0.6 , A : float = 0 , A : float = 3.2 , A : int = 50 , A : bool = True , ):
UpperCamelCase = Image.new('RGB' , (image_width, image_height))
UpperCamelCase = img.load()
# loop through the image-coordinates
for image_x in range(A):
for image_y in range(A):
# determine the figure-coordinates based on the image-coordinates
UpperCamelCase = figure_width / image_width * image_height
UpperCamelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width
UpperCamelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height
UpperCamelCase = get_distance(A , A , A)
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
UpperCamelCase = get_color_coded_rgb(A)
else:
UpperCamelCase = get_black_and_white_rgb(A)
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
lowerCAmelCase : Any = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 3 | 1 |
'''simple docstring'''
import argparse
import re
import requests
import torch
# git clone https://github.com/salesforce/BLIP.git
from models.blip import blip_decoder
from models.blip_itm import blip_itm
from models.blip_vqa import blip_vqa
from PIL import Image
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from transformers import (
BertTokenizer,
BlipConfig,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
)
def A_( A : Optional[int] , A : Optional[Any]):
UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
UpperCamelCase = Image.open(requests.get(A , stream=A).raw).convert('RGB')
UpperCamelCase = transforms.Compose(
[
transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711)),
])
UpperCamelCase = transform(A).unsqueeze(0).to(A)
return image
def A_( A : Any):
if "visual_encoder" in key:
UpperCamelCase = re.sub('visual_encoder*' , 'vision_model.encoder' , A)
if "blocks" in key:
UpperCamelCase = re.sub(r'blocks' , 'layers' , A)
if "attn" in key:
UpperCamelCase = re.sub(r'attn' , 'self_attn' , A)
if "norm1" in key:
UpperCamelCase = re.sub(r'norm1' , 'layer_norm1' , A)
if "norm2" in key:
UpperCamelCase = re.sub(r'norm2' , 'layer_norm2' , A)
if "encoder.norm" in key:
UpperCamelCase = re.sub(r'encoder.norm' , 'post_layernorm' , A)
if "encoder.patch_embed.proj" in key:
UpperCamelCase = re.sub(r'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , A)
if "encoder.pos_embed" in key:
UpperCamelCase = re.sub(r'encoder.pos_embed' , 'embeddings.position_embedding' , A)
if "encoder.cls_token" in key:
UpperCamelCase = re.sub(r'encoder.cls_token' , 'embeddings.class_embedding' , A)
if "self_attn" in key:
UpperCamelCase = re.sub(r'self_attn.proj' , 'self_attn.projection' , A)
return key
@torch.no_grad()
def A_( A : List[str] , A : Any=None):
if config_path is not None:
UpperCamelCase = BlipConfig.from_pretrained(A)
else:
UpperCamelCase = BlipConfig(projection_dim=512 , text_config={} , vision_config={})
UpperCamelCase = BlipForConditionalGeneration(A).eval()
UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth'
UpperCamelCase = blip_decoder(pretrained=A , image_size=384 , vit='base')
UpperCamelCase = pt_model.eval()
UpperCamelCase = pt_model.state_dict()
for key in modified_state_dict.copy():
UpperCamelCase = modified_state_dict.pop(A)
UpperCamelCase = rename_key(A)
UpperCamelCase = value
hf_model.load_state_dict(A)
UpperCamelCase = 384
UpperCamelCase = load_demo_image(image_size=A , device='cpu')
UpperCamelCase = BertTokenizer.from_pretrained('bert-base-uncased')
UpperCamelCase = tokenizer(['a picture of']).input_ids
UpperCamelCase = hf_model.generate(A , A)
assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]
UpperCamelCase = hf_model.generate(A)
assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]
if pytorch_dump_folder_path is not None:
hf_model.save_pretrained(A)
# model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth'
UpperCamelCase = (
'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth'
)
UpperCamelCase = blip_vqa(pretrained=A , image_size=A , vit='base')
vqa_model.eval()
UpperCamelCase = vqa_model.state_dict()
for key in modified_state_dict.copy():
UpperCamelCase = modified_state_dict.pop(A)
UpperCamelCase = rename_key(A)
UpperCamelCase = value
UpperCamelCase = BlipForQuestionAnswering(A)
hf_vqa_model.load_state_dict(A)
UpperCamelCase = ['How many dogs are in this image?']
UpperCamelCase = tokenizer(A , return_tensors='pt').input_ids
UpperCamelCase = hf_vqa_model.generate(A , A)
print(tokenizer.decode(answer[0]))
assert tokenizer.decode(answer[0]) == "[UNK] 1 [SEP]"
if pytorch_dump_folder_path is not None:
hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa')
UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'
UpperCamelCase = blip_itm(pretrained=A , image_size=A , vit='base')
itm_model.eval()
UpperCamelCase = itm_model.state_dict()
for key in modified_state_dict.copy():
UpperCamelCase = modified_state_dict.pop(A)
UpperCamelCase = rename_key(A)
UpperCamelCase = value
UpperCamelCase = BlipForImageTextRetrieval(A)
UpperCamelCase = ['A picture of a woman with a dog sitting in a beach']
UpperCamelCase = tokenizer(
A , return_tensors='pt' , padding='max_length' , truncation=A , max_length=35 , ).input_ids
hf_itm_model.load_state_dict(A)
hf_itm_model.eval()
UpperCamelCase = hf_itm_model(A , A , use_itm_head=A)
UpperCamelCase = hf_itm_model(A , A , use_itm_head=A)
assert out[0].item() == 0.2_110_687_494_277_954
assert torch.nn.functional.softmax(out_itm[0] , dim=1)[:, 1].item() == 0.45_698_845_386_505_127
if pytorch_dump_folder_path is not None:
hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm')
if __name__ == "__main__":
lowerCAmelCase : List[str] = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
lowerCAmelCase : Optional[Any] = parser.parse_args()
convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 3 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowerCAmelCase : Optional[Any] = {
'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : str = [
'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST',
'FalconForCausalLM',
'FalconModel',
'FalconPreTrainedModel',
'FalconForSequenceClassification',
'FalconForTokenClassification',
'FalconForQuestionAnswering',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 3 | 1 |
'''simple docstring'''
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def A_( A : str , A : Dict , A : Optional[Any] , A : List[str]):
for param, grad_param in zip(model_a.parameters() , model_b.parameters()):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'''
def A_( A : Union[str, Any] , A : List[Any] , A : Optional[Any] , A : Optional[Any] , A : Tuple=True):
model.train()
UpperCamelCase = model(A)
UpperCamelCase = F.mse_loss(A , target.to(output.device))
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(A)
def A_( A : str , A : List[str]=False):
set_seed(42)
UpperCamelCase = RegressionModel()
UpperCamelCase = deepcopy(A)
UpperCamelCase = RegressionDataset(length=80)
UpperCamelCase = DataLoader(A , batch_size=16)
model.to(accelerator.device)
if sched:
UpperCamelCase = AdamW(params=model.parameters() , lr=1E-3)
UpperCamelCase = AdamW(params=ddp_model.parameters() , lr=1E-3)
UpperCamelCase = LambdaLR(A , lr_lambda=lambda A: epoch**0.65)
UpperCamelCase = LambdaLR(A , lr_lambda=lambda A: epoch**0.65)
# Make a copy of `model`
if sched:
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare(A , A , A , A)
else:
UpperCamelCase , UpperCamelCase = accelerator.prepare(A , A)
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def A_( A : Union[str, Any]):
# Test when on a single CPU or GPU that the context manager does nothing
UpperCamelCase , UpperCamelCase , UpperCamelCase = get_training_setup(A)
# Use a single batch
UpperCamelCase , UpperCamelCase = next(iter(A)).values()
for iteration in range(3):
# Gather the distributed inputs and targs for the base model
UpperCamelCase , UpperCamelCase = accelerator.gather((ddp_input, ddp_target))
UpperCamelCase , UpperCamelCase = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(A , A , A , A)
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(A):
step_model(A , A , A , A)
else:
# Sync grads
step_model(A , A , A , A)
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(A , A , A , A)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
UpperCamelCase = ddp_input[torch.randperm(len(A))]
def A_( A : Optional[int]):
# Test on distributed setup that context manager behaves properly
UpperCamelCase , UpperCamelCase , UpperCamelCase = get_training_setup(A)
# Use a single batch
UpperCamelCase , UpperCamelCase = next(iter(A)).values()
for iteration in range(3):
# Gather the distributed inputs and targs for the base model
UpperCamelCase , UpperCamelCase = accelerator.gather((ddp_input, ddp_target))
UpperCamelCase , UpperCamelCase = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(A , A , A , A)
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(A):
step_model(A , A , A , A)
else:
# Sync grads
step_model(A , A , A , A)
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is False
), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is True
), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
UpperCamelCase = ddp_input[torch.randperm(len(A))]
def A_( A : int=False , A : Optional[Any]=False):
UpperCamelCase = Accelerator(
split_batches=A , dispatch_batches=A , gradient_accumulation_steps=2)
# Test that context manager behaves properly
UpperCamelCase , UpperCamelCase , UpperCamelCase = get_training_setup(A)
for iteration, batch in enumerate(A):
UpperCamelCase , UpperCamelCase = batch.values()
# Gather the distributed inputs and targs for the base model
UpperCamelCase , UpperCamelCase = accelerator.gather((ddp_input, ddp_target))
UpperCamelCase , UpperCamelCase = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(A , A , A , A , A)
# Do "gradient accumulation" (noop)
with accelerator.accumulate(A):
step_model(A , A , A , A)
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(A) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
UpperCamelCase = ddp_input[torch.randperm(len(A))]
GradientState._reset_state()
def A_( A : Any=False , A : Optional[int]=False):
UpperCamelCase = Accelerator(
split_batches=A , dispatch_batches=A , gradient_accumulation_steps=2)
# Test that context manager behaves properly
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = get_training_setup(A , A)
for iteration, batch in enumerate(A):
UpperCamelCase , UpperCamelCase = batch.values()
# Gather the distributed inputs and targs for the base model
UpperCamelCase , UpperCamelCase = accelerator.gather((ddp_input, ddp_target))
UpperCamelCase , UpperCamelCase = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(A , A , A , A , A)
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(A)):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(A):
step_model(A , A , A , A)
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n'''
UpperCamelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(A))
if accelerator.num_processes > 1:
check_model_parameters(A , A , A , A)
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
GradientState._reset_state()
def A_( ):
UpperCamelCase = Accelerator()
UpperCamelCase = RegressionDataset(length=80)
UpperCamelCase = DataLoader(A , batch_size=16)
UpperCamelCase = RegressionDataset(length=96)
UpperCamelCase = DataLoader(A , batch_size=16)
UpperCamelCase , UpperCamelCase = accelerator.prepare(A , A)
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(A):
assert id(accelerator.gradient_state.active_dataloader) == id(A)
if iteration < len(A) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(A):
assert id(accelerator.gradient_state.active_dataloader) == id(A)
if batch_num < len(A) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def A_( ):
UpperCamelCase = Accelerator()
UpperCamelCase = accelerator.state
if state.local_process_index == 0:
print('**Test `accumulate` gradient accumulation with dataloader break**')
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print('**Test NOOP `no_sync` context manager**')
test_noop_sync(A)
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print('**Test Distributed `no_sync` context manager**')
test_distributed_sync(A)
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
'**Test `accumulate` gradient accumulation, ' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation(A , A)
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version('<' , '2.0') or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
'**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , '`split_batches=False`, `dispatch_batches=False`**' , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
'**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation_with_opt_and_scheduler(A , A)
def A_( A : List[str]):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 3 |
'''simple docstring'''
lowerCAmelCase : Optional[Any] = {
'A': ['B', 'C', 'E'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B', 'D'],
'F': ['C'],
'G': ['C'],
}
def A_( A : dict , A : str , A : Optional[Any]):
UpperCamelCase = set()
# keep track of all the paths to be checked
UpperCamelCase = [[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
UpperCamelCase = queue.pop(0)
# get the last node from the path
UpperCamelCase = path[-1]
if node not in explored:
UpperCamelCase = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
UpperCamelCase = list(A)
new_path.append(A)
queue.append(A)
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(A)
# in case there's no path between the 2 nodes
return []
def A_( A : dict , A : str , A : Tuple):
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
UpperCamelCase = [start]
UpperCamelCase = set(A)
# Keep tab on distances from `start` node.
UpperCamelCase = {start: 0, target: -1}
while queue:
UpperCamelCase = queue.pop(0)
if node == target:
UpperCamelCase = (
dist[node] if dist[target] == -1 else min(dist[target] , dist[node])
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(A)
queue.append(A)
UpperCamelCase = dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
| 3 | 1 |
'''simple docstring'''
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
lowerCAmelCase : List[str] = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n'
lowerCAmelCase : Optional[Any] = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n'
lowerCAmelCase : Optional[int] = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n'
def A_( A : Dict , A : str):
return float((preds == labels).mean())
def A_( A : List[str] , A : List[str]):
UpperCamelCase = simple_accuracy(A , A)
UpperCamelCase = float(fa_score(y_true=A , y_pred=A))
return {
"accuracy": acc,
"f1": fa,
}
def A_( A : Any , A : List[str]):
UpperCamelCase = float(pearsonr(A , A)[0])
UpperCamelCase = float(spearmanr(A , A)[0])
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class SCREAMING_SNAKE_CASE__ ( datasets.Metric):
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
if self.config_name not in [
"sst2",
"mnli",
"mnli_mismatched",
"mnli_matched",
"cola",
"stsb",
"mrpc",
"qqp",
"qnli",
"rte",
"wnli",
"hans",
]:
raise KeyError(
'You should supply a configuration name selected in '
'["sst2", "mnli", "mnli_mismatched", "mnli_matched", '
'"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ),
'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ),
} ) , codebase_urls=[] , reference_urls=[] , format='numpy' , )
def UpperCAmelCase_ ( self , A_ , A_ )-> int:
'''simple docstring'''
if self.config_name == "cola":
return {"matthews_correlation": matthews_corrcoef(A_ , A_ )}
elif self.config_name == "stsb":
return pearson_and_spearman(A_ , A_ )
elif self.config_name in ["mrpc", "qqp"]:
return acc_and_fa(A_ , A_ )
elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]:
return {"accuracy": simple_accuracy(A_ , A_ )}
else:
raise KeyError(
'You should supply a configuration name selected in '
'["sst2", "mnli", "mnli_mismatched", "mnli_matched", '
'"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
| 3 |
'''simple docstring'''
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class SCREAMING_SNAKE_CASE__ :
def __init__( self )-> Dict:
'''simple docstring'''
UpperCamelCase = ''
UpperCamelCase = ''
UpperCamelCase = []
UpperCamelCase = 0
UpperCamelCase = 256
UpperCamelCase = 0
UpperCamelCase = 0
UpperCamelCase = 0
UpperCamelCase = 0
def UpperCAmelCase_ ( self , A_ )-> str:
'''simple docstring'''
UpperCamelCase = cva.imread(A_ , 0 )
UpperCamelCase = copy.deepcopy(self.img )
UpperCamelCase , UpperCamelCase , UpperCamelCase = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' )
UpperCamelCase = np.sum(A_ )
for i in range(len(A_ ) ):
UpperCamelCase = x[i] / self.k
self.sk += prk
UpperCamelCase = (self.L - 1) * self.sk
if self.rem != 0:
UpperCamelCase = int(last % last )
UpperCamelCase = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(A_ )
UpperCamelCase = int(np.ma.count(self.img ) / self.img[1].size )
UpperCamelCase = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCamelCase = self.img[j][i]
if num != self.last_list[num]:
UpperCamelCase = self.last_list[num]
cva.imwrite('output_data/output.jpg' , self.img )
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
plt.hist(self.img.ravel() , 256 , [0, 256] )
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
cva.imshow('Output-Image' , self.img )
cva.imshow('Input-Image' , self.original_image )
cva.waitKey(5000 )
cva.destroyAllWindows()
if __name__ == "__main__":
lowerCAmelCase : Union[str, Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg')
lowerCAmelCase : str = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 3 | 1 |
'''simple docstring'''
from math import factorial
def A_( A : int = 20):
UpperCamelCase = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
UpperCamelCase = n // 2
return int(factorial(A) / (factorial(A) * factorial(n - k)))
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
lowerCAmelCase : int = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 3 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : int = logging.get_logger(__name__)
lowerCAmelCase : Tuple = {
'microsoft/unispeech-sat-base-100h-libri-ft': (
'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json'
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """unispeech-sat"""
def __init__( self , A_=32 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.1 , A_=0.1 , A_=0.02 , A_=1e-5 , A_="group" , A_="gelu" , A_=(512, 512, 512, 512, 512, 512, 512) , A_=(5, 2, 2, 2, 2, 2, 2) , A_=(10, 3, 3, 3, 3, 2, 2) , A_=False , A_=128 , A_=16 , A_=False , A_=True , A_=0.05 , A_=10 , A_=2 , A_=0.0 , A_=10 , A_=0 , A_=320 , A_=2 , A_=0.1 , A_=100 , A_=256 , A_=256 , A_=0.1 , A_="mean" , A_=False , A_=False , A_=256 , A_=(512, 512, 512, 512, 1500) , A_=(5, 3, 3, 1, 1) , A_=(1, 2, 3, 1, 1) , A_=512 , A_=0 , A_=1 , A_=2 , A_=504 , **A_ , )-> Tuple:
'''simple docstring'''
super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ )
UpperCamelCase = hidden_size
UpperCamelCase = feat_extract_norm
UpperCamelCase = feat_extract_activation
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = conv_bias
UpperCamelCase = num_conv_pos_embeddings
UpperCamelCase = num_conv_pos_embedding_groups
UpperCamelCase = len(self.conv_dim )
UpperCamelCase = num_hidden_layers
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = num_attention_heads
UpperCamelCase = hidden_dropout
UpperCamelCase = attention_dropout
UpperCamelCase = activation_dropout
UpperCamelCase = feat_proj_dropout
UpperCamelCase = final_dropout
UpperCamelCase = layerdrop
UpperCamelCase = layer_norm_eps
UpperCamelCase = initializer_range
UpperCamelCase = vocab_size
UpperCamelCase = num_clusters
UpperCamelCase = do_stable_layer_norm
UpperCamelCase = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCamelCase = apply_spec_augment
UpperCamelCase = mask_time_prob
UpperCamelCase = mask_time_length
UpperCamelCase = mask_time_min_masks
UpperCamelCase = mask_feature_prob
UpperCamelCase = mask_feature_length
UpperCamelCase = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
UpperCamelCase = num_codevectors_per_group
UpperCamelCase = num_codevector_groups
UpperCamelCase = contrastive_logits_temperature
UpperCamelCase = feat_quantizer_dropout
UpperCamelCase = num_negatives
UpperCamelCase = codevector_dim
UpperCamelCase = proj_codevector_dim
UpperCamelCase = diversity_loss_weight
# ctc loss
UpperCamelCase = ctc_loss_reduction
UpperCamelCase = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
UpperCamelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = xvector_output_dim
@property
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 3 | 1 |
'''simple docstring'''
from __future__ import annotations
from math import pow, sqrt
def A_( A : float , A : float , A : float):
if (resistance, reactance, impedance).count(0) != 1:
raise ValueError('One and only one argument must be 0')
if resistance == 0:
return {"resistance": sqrt(pow(A , 2) - pow(A , 2))}
elif reactance == 0:
return {"reactance": sqrt(pow(A , 2) - pow(A , 2))}
elif impedance == 0:
return {"impedance": sqrt(pow(A , 2) + pow(A , 2))}
else:
raise ValueError('Exactly one argument must be 0')
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 |
'''simple docstring'''
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class SCREAMING_SNAKE_CASE__ :
def __init__( self , A_ , A_=100 , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=4 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=None , A_=[0, 1, 2, 3] , )-> Any:
'''simple docstring'''
UpperCamelCase = parent
UpperCamelCase = 100
UpperCamelCase = batch_size
UpperCamelCase = image_size
UpperCamelCase = patch_size
UpperCamelCase = num_channels
UpperCamelCase = is_training
UpperCamelCase = use_labels
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = type_sequence_label_size
UpperCamelCase = initializer_range
UpperCamelCase = scope
UpperCamelCase = out_indices
UpperCamelCase = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCamelCase = (image_size // patch_size) ** 2
UpperCamelCase = num_patches + 1
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = None
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCamelCase = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> List[str]:
'''simple docstring'''
UpperCamelCase = BeitModel(config=A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Any:
'''simple docstring'''
UpperCamelCase = BeitForMaskedImageModeling(config=A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.type_sequence_label_size
UpperCamelCase = BeitForImageClassification(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ , labels=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCamelCase = 1
UpperCamelCase = BeitForImageClassification(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase = model(A_ , labels=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = self.num_labels
UpperCamelCase = BeitForSemanticSegmentation(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
UpperCamelCase = model(A_ , labels=A_ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs
UpperCamelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase):
lowerCAmelCase_ = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
lowerCAmelCase_ = (
{
"""feature-extraction""": BeitModel,
"""image-classification""": BeitForImageClassification,
"""image-segmentation""": BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = BeitModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 )
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='BEiT does not use inputs_embeds' )
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
pass
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(A_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCamelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A_ , nn.Linear ) )
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(A_ )
UpperCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , A_ )
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*A_ )
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A_ )
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*A_ )
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
if not self.model_tester.is_training:
return
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(A_ ), BeitForMaskedImageModeling]:
continue
UpperCamelCase = model_class(A_ )
model.to(A_ )
model.train()
UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ )
UpperCamelCase = model(**A_ ).loss
loss.backward()
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
UpperCamelCase = False
UpperCamelCase = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(A_ ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
UpperCamelCase = model_class(A_ )
model.gradient_checkpointing_enable()
model.to(A_ )
model.train()
UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ )
UpperCamelCase = model(**A_ ).loss
loss.backward()
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = _config_zero_init(A_ )
for model_class in self.all_model_classes:
UpperCamelCase = model_class(config=A_ )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@slow
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase = BeitModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
def A_( ):
UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
@cached_property
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None
@slow
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(A_ )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).pixel_values.to(A_ )
# prepare bool_masked_pos
UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(pixel_values=A_ , bool_masked_pos=A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 196, 8192) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = torch.tensor(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(A_ )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , A_ , atol=1e-2 ) )
@slow
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(A_ )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 1000) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(A_ )
self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) )
UpperCamelCase = 281
self.assertEqual(logits.argmax(-1 ).item() , A_ )
@slow
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to(
A_ )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 21841) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(A_ )
self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) )
UpperCamelCase = 2396
self.assertEqual(logits.argmax(-1 ).item() , A_ )
@slow
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
UpperCamelCase = model.to(A_ )
UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ )
UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' )
UpperCamelCase = Image.open(ds[0]['file'] )
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' )
if is_pillow_less_than_a:
UpperCamelCase = torch.tensor(
[
[[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]],
[[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]],
[[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]],
] , device=A_ , )
else:
UpperCamelCase = torch.tensor(
[
[[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]],
[[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]],
[[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]],
] , device=A_ , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1e-4 ) )
@slow
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
UpperCamelCase = model.to(A_ )
UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ )
UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' )
UpperCamelCase = Image.open(ds[0]['file'] )
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits.detach().cpu()
UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ , target_sizes=[(500, 300)] )
UpperCamelCase = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape , A_ )
UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ )
UpperCamelCase = torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape , A_ )
| 3 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase : Tuple = {
'configuration_blip_2': [
'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP',
'Blip2Config',
'Blip2QFormerConfig',
'Blip2VisionConfig',
],
'processing_blip_2': ['Blip2Processor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : int = [
'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Blip2Model',
'Blip2QFormerModel',
'Blip2PreTrainedModel',
'Blip2ForConditionalGeneration',
'Blip2VisionModel',
]
if TYPE_CHECKING:
from .configuration_blip_a import (
BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlipaConfig,
BlipaQFormerConfig,
BlipaVisionConfig,
)
from .processing_blip_a import BlipaProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip_a import (
BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipaForConditionalGeneration,
BlipaModel,
BlipaPreTrainedModel,
BlipaQFormerModel,
BlipaVisionModel,
)
else:
import sys
lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 3 |
'''simple docstring'''
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
lowerCAmelCase : Dict = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( enum.Enum):
lowerCAmelCase_ = 0
lowerCAmelCase_ = 1
@add_end_docstrings(snake_case_)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """generated"""
def __init__( self , *A_ , **A_ )-> Optional[int]:
'''simple docstring'''
super().__init__(*A_ , **A_ )
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == 'tf'
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , **A_ , )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = {}
if truncation is not None:
UpperCamelCase = truncation
UpperCamelCase = generate_kwargs
UpperCamelCase = {}
if return_tensors is not None and return_type is None:
UpperCamelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
UpperCamelCase = return_type
if clean_up_tokenization_spaces is not None:
UpperCamelCase = clean_up_tokenization_spaces
if stop_sequence is not None:
UpperCamelCase = self.tokenizer.encode(A_ , add_special_tokens=A_ )
if len(A_ ) > 1:
warnings.warn(
'Stopping on a multiple token sequence is not yet supported on transformers. The first token of'
' the stop sequence will be used as the stop sequence string in the interim.' )
UpperCamelCase = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Optional[int]:
'''simple docstring'''
return True
def UpperCAmelCase_ ( self , *A_ , A_ )-> Any:
'''simple docstring'''
UpperCamelCase = self.model.config.prefix if self.model.config.prefix is not None else ''
if isinstance(args[0] , A_ ):
if self.tokenizer.pad_token_id is None:
raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' )
UpperCamelCase = ([prefix + arg for arg in args[0]],)
UpperCamelCase = True
elif isinstance(args[0] , A_ ):
UpperCamelCase = (prefix + args[0],)
UpperCamelCase = False
else:
raise ValueError(
F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' )
UpperCamelCase = self.tokenizer(*A_ , padding=A_ , truncation=A_ , return_tensors=self.framework )
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self , *A_ , **A_ )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = super().__call__(*A_ , **A_ )
if (
isinstance(args[0] , A_ )
and all(isinstance(A_ , A_ ) for el in args[0] )
and all(len(A_ ) == 1 for res in result )
):
return [res[0] for res in result]
return result
def UpperCAmelCase_ ( self , A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , **A_ )-> Any:
'''simple docstring'''
UpperCamelCase = self._parse_and_tokenize(A_ , truncation=A_ , **A_ )
return inputs
def UpperCAmelCase_ ( self , A_ , **A_ )-> int:
'''simple docstring'''
if self.framework == "pt":
UpperCamelCase , UpperCamelCase = model_inputs['input_ids'].shape
elif self.framework == "tf":
UpperCamelCase , UpperCamelCase = tf.shape(model_inputs['input_ids'] ).numpy()
UpperCamelCase = generate_kwargs.get('min_length' , self.model.config.min_length )
UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length )
self.check_inputs(A_ , generate_kwargs['min_length'] , generate_kwargs['max_length'] )
UpperCamelCase = self.model.generate(**A_ , **A_ )
UpperCamelCase = output_ids.shape[0]
if self.framework == "pt":
UpperCamelCase = output_ids.reshape(A_ , out_b // in_b , *output_ids.shape[1:] )
elif self.framework == "tf":
UpperCamelCase = tf.reshape(A_ , (in_b, out_b // in_b, *output_ids.shape[1:]) )
return {"output_ids": output_ids}
def UpperCAmelCase_ ( self , A_ , A_=ReturnType.TEXT , A_=False )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
UpperCamelCase = {F'''{self.return_name}_token_ids''': output_ids}
elif return_type == ReturnType.TEXT:
UpperCamelCase = {
F'''{self.return_name}_text''': self.tokenizer.decode(
A_ , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , )
}
records.append(A_ )
return records
@add_end_docstrings(snake_case_)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """summary"""
def __call__( self , *A_ , **A_ )-> Optional[int]:
'''simple docstring'''
return super().__call__(*A_ , **A_ )
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> bool:
'''simple docstring'''
if max_length < min_length:
logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' )
if input_length < max_length:
logger.warning(
F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is '''
'a summarization task, where outputs shorter than the input are typically wanted, you might '
F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' )
@add_end_docstrings(snake_case_)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """translation"""
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> List[Any]:
'''simple docstring'''
if input_length > 0.9 * max_length:
logger.warning(
F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider '''
'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' )
return True
def UpperCAmelCase_ ( self , *A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , A_=None , A_=None )-> Dict:
'''simple docstring'''
if getattr(self.tokenizer , '_build_translation_inputs' , A_ ):
return self.tokenizer._build_translation_inputs(
*A_ , return_tensors=self.framework , truncation=A_ , src_lang=A_ , tgt_lang=A_ )
else:
return super()._parse_and_tokenize(*A_ , truncation=A_ )
def UpperCAmelCase_ ( self , A_=None , A_=None , **A_ )-> str:
'''simple docstring'''
UpperCamelCase , UpperCamelCase , UpperCamelCase = super()._sanitize_parameters(**A_ )
if src_lang is not None:
UpperCamelCase = src_lang
if tgt_lang is not None:
UpperCamelCase = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
UpperCamelCase = kwargs.get('task' , self.task )
UpperCamelCase = task.split('_' )
if task and len(A_ ) == 4:
# translation, XX, to YY
UpperCamelCase = items[1]
UpperCamelCase = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self , *A_ , **A_ )-> Any:
'''simple docstring'''
return super().__call__(*A_ , **A_ )
| 3 | 1 |
'''simple docstring'''
from __future__ import annotations
import bisect
def A_( A : list[int] , A : int , A : int = 0 , A : int = -1):
if hi < 0:
UpperCamelCase = len(A)
while lo < hi:
UpperCamelCase = lo + (hi - lo) // 2
if sorted_collection[mid] < item:
UpperCamelCase = mid + 1
else:
UpperCamelCase = mid
return lo
def A_( A : list[int] , A : int , A : int = 0 , A : int = -1):
if hi < 0:
UpperCamelCase = len(A)
while lo < hi:
UpperCamelCase = lo + (hi - lo) // 2
if sorted_collection[mid] <= item:
UpperCamelCase = mid + 1
else:
UpperCamelCase = mid
return lo
def A_( A : list[int] , A : int , A : int = 0 , A : int = -1):
sorted_collection.insert(bisect_left(A , A , A , A) , A)
def A_( A : list[int] , A : int , A : int = 0 , A : int = -1):
sorted_collection.insert(bisect_right(A , A , A , A) , A)
def A_( A : list[int] , A : int):
UpperCamelCase = 0
UpperCamelCase = len(A) - 1
while left <= right:
UpperCamelCase = left + (right - left) // 2
UpperCamelCase = sorted_collection[midpoint]
if current_item == item:
return midpoint
elif item < current_item:
UpperCamelCase = midpoint - 1
else:
UpperCamelCase = midpoint + 1
return None
def A_( A : list[int] , A : int):
UpperCamelCase = bisect.bisect_left(A , A)
if index != len(A) and sorted_collection[index] == item:
return index
return None
def A_( A : list[int] , A : int , A : int , A : int):
if right < left:
return None
UpperCamelCase = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(A , A , A , midpoint - 1)
else:
return binary_search_by_recursion(A , A , midpoint + 1 , A)
if __name__ == "__main__":
lowerCAmelCase : Tuple = input('Enter numbers separated by comma:\n').strip()
lowerCAmelCase : int = sorted(int(item) for item in user_input.split(','))
lowerCAmelCase : Optional[Any] = int(input('Enter a single number to be found in the list:\n'))
lowerCAmelCase : Any = binary_search(collection, target)
if result is None:
print(f"""{target} was not found in {collection}.""")
else:
print(f"""{target} was found at position {result} in {collection}.""")
| 3 |
'''simple docstring'''
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = 0
lowerCAmelCase_ = False
lowerCAmelCase_ = 3.0
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} )
self.assertDictEqual(MockClass(a=2 , b=A_ ).to_kwargs() , {'a': 2, 'b': True} )
self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} )
@require_cuda
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
UpperCamelCase = GradScalerKwargs(init_scale=1024 , growth_factor=2 )
AcceleratorState._reset_state()
UpperCamelCase = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
UpperCamelCase = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 1_024.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 2000 )
self.assertEqual(scaler._enabled , A_ )
@require_multi_gpu
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
execute_subprocess_async(A_ , env=os.environ.copy() )
if __name__ == "__main__":
lowerCAmelCase : Tuple = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True)
lowerCAmelCase : List[str] = Accelerator(kwargs_handlers=[ddp_scaler])
lowerCAmelCase : List[Any] = torch.nn.Linear(1_00, 2_00)
lowerCAmelCase : int = accelerator.prepare(model)
# Check the values changed in kwargs
lowerCAmelCase : Dict = ''
lowerCAmelCase : Dict = model.bucket_bytes_cap // (10_24 * 10_24)
if observed_bucket_cap_map != 15:
error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 3 | 1 |
'''simple docstring'''
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def A_( A : Dataset , A : Dict[str, str]):
UpperCamelCase = args.log_outputs
UpperCamelCase = '_'.join(args.dataset.split('/') + [args.config, args.split])
# load metric
UpperCamelCase = load_metric('wer')
UpperCamelCase = load_metric('cer')
# compute metrics
UpperCamelCase = wer.compute(references=result['target'] , predictions=result['prediction'])
UpperCamelCase = cer.compute(references=result['target'] , predictions=result['prediction'])
# print & log results
UpperCamelCase = f'''WER: {wer_result}\nCER: {cer_result}'''
print(A)
with open(f'''{dataset_id}_eval_results.txt''' , 'w') as f:
f.write(A)
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
UpperCamelCase = f'''log_{dataset_id}_predictions.txt'''
UpperCamelCase = f'''log_{dataset_id}_targets.txt'''
with open(A , 'w') as p, open(A , 'w') as t:
# mapping function to write output
def write_to_file(A : int , A : List[Any]):
p.write(f'''{i}''' + '\n')
p.write(batch['prediction'] + '\n')
t.write(f'''{i}''' + '\n')
t.write(batch['target'] + '\n')
result.map(A , with_indices=A)
def A_( A : str):
UpperCamelCase = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
UpperCamelCase = re.sub(A , '' , text.lower())
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
UpperCamelCase = ['\n\n', '\n', ' ', ' ']
for t in token_sequences_to_ignore:
UpperCamelCase = ' '.join(text.split(A))
return text
def A_( A : Optional[Any]):
# load dataset
UpperCamelCase = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=A)
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
UpperCamelCase = AutoFeatureExtractor.from_pretrained(args.model_id)
UpperCamelCase = feature_extractor.sampling_rate
# resample audio
UpperCamelCase = dataset.cast_column('audio' , Audio(sampling_rate=A))
# load eval pipeline
if args.device is None:
UpperCamelCase = 0 if torch.cuda.is_available() else -1
UpperCamelCase = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device)
# map function to decode audio
def map_to_pred(A : Optional[int]):
UpperCamelCase = asr(
batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s)
UpperCamelCase = prediction['text']
UpperCamelCase = normalize_text(batch['sentence'])
return batch
# run inference on all examples
UpperCamelCase = dataset.map(A , remove_columns=dataset.column_names)
# compute and log_results
# do not change function below
log_results(A , A)
if __name__ == "__main__":
lowerCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
'--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers'
)
parser.add_argument(
'--dataset',
type=str,
required=True,
help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets',
)
parser.add_argument(
'--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice'
)
parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`')
parser.add_argument(
'--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.'
)
parser.add_argument(
'--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.'
)
parser.add_argument(
'--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.'
)
parser.add_argument(
'--device',
type=int,
default=None,
help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.',
)
lowerCAmelCase : int = parser.parse_args()
main(args)
| 3 |
'''simple docstring'''
from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_):
@register_to_config
def __init__( self , A_ , A_ = None , A_ = None )-> Tuple:
'''simple docstring'''
super().__init__()
UpperCamelCase = learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
UpperCamelCase = torch.zeros(A_ , A_ )
else:
UpperCamelCase = None
UpperCamelCase = torch.nn.Parameter(A_ )
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , )-> Union[str, Any]:
'''simple docstring'''
super().__init__()
self.register_modules(
vqvae=A_ , transformer=A_ , text_encoder=A_ , tokenizer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , )
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Tuple:
'''simple docstring'''
UpperCamelCase = len(A_ ) if isinstance(A_ , A_ ) else 1
# get prompt text embeddings
UpperCamelCase = self.tokenizer(
A_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , )
UpperCamelCase = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'The following part of your input was truncated because CLIP can only handle sequences up to'
F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' )
UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length]
UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=A_ )
# duplicate text embeddings for each generation per prompt
UpperCamelCase = prompt_embeds.repeat_interleave(A_ , dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings
UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(A_ , 1 , 1 )
else:
UpperCamelCase = [''] * batch_size
UpperCamelCase = text_input_ids.shape[-1]
UpperCamelCase = self.tokenizer(
A_ , padding='max_length' , max_length=A_ , truncation=A_ , return_tensors='pt' , )
UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=A_ )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
UpperCamelCase = negative_prompt_embeds.shape[1]
UpperCamelCase = negative_prompt_embeds.repeat(1 , A_ , 1 )
UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__( self , A_ , A_ = 100 , A_ = 5.0 , A_ = 1.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , A_ = None , A_ = 1 , )-> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
if isinstance(A_ , A_ ):
UpperCamelCase = 1
elif isinstance(A_ , A_ ):
UpperCamelCase = len(A_ )
else:
raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(A_ )}''' )
UpperCamelCase = batch_size * num_images_per_prompt
UpperCamelCase = guidance_scale > 1.0
UpperCamelCase = self._encode_prompt(A_ , A_ , A_ )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(A_ , A_ ) or callback_steps <= 0)
):
raise ValueError(
F'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
F''' {type(A_ )}.''' )
# get the initial completely masked latents unless the user supplied it
UpperCamelCase = (batch_size, self.transformer.num_latent_pixels)
if latents is None:
UpperCamelCase = self.transformer.num_vector_embeds - 1
UpperCamelCase = torch.full(A_ , A_ ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,'
F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' )
UpperCamelCase = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(A_ , device=self.device )
UpperCamelCase = self.scheduler.timesteps.to(self.device )
UpperCamelCase = latents
for i, t in enumerate(self.progress_bar(A_ ) ):
# expand the sample if we are doing classifier free guidance
UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
UpperCamelCase = self.transformer(A_ , encoder_hidden_states=A_ , timestep=A_ ).sample
if do_classifier_free_guidance:
UpperCamelCase , UpperCamelCase = model_output.chunk(2 )
UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(A_ , dim=1 , keepdim=A_ )
UpperCamelCase = self.truncate(A_ , A_ )
# remove `log(0)`'s (`-inf`s)
UpperCamelCase = model_output.clamp(-70 )
# compute the previous noisy sample x_t -> x_t-1
UpperCamelCase = self.scheduler.step(A_ , timestep=A_ , sample=A_ , generator=A_ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(A_ , A_ , A_ )
UpperCamelCase = self.vqvae.config.vq_embed_dim
UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
UpperCamelCase = self.vqvae.quantize.get_codebook_entry(A_ , shape=A_ )
UpperCamelCase = self.vqvae.decode(A_ , force_not_quantize=A_ ).sample
UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 )
UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCamelCase = self.numpy_to_pil(A_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=A_ )
def UpperCAmelCase_ ( self , A_ , A_ )-> torch.FloatTensor:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = torch.sort(A_ , 1 , descending=A_ )
UpperCamelCase = torch.exp(A_ )
UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , A_ )
UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 )
UpperCamelCase = keep_mask[:, :-1, :]
UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) )
UpperCamelCase = log_p_x_0.clone()
UpperCamelCase = -torch.inf # -inf = log(0)
return rv
| 3 | 1 |
'''simple docstring'''
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase):
lowerCAmelCase_ = BarthezTokenizer
lowerCAmelCase_ = BarthezTokenizerFast
lowerCAmelCase_ = True
lowerCAmelCase_ = True
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
super().setUp()
UpperCamelCase = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=A_ )
UpperCamelCase = tokenizer
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = '<pad>'
UpperCamelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ )
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(A_ ) , 101122 )
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 101122 )
@require_torch
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
UpperCamelCase = [0, 57, 3018, 70307, 91, 2]
UpperCamelCase = self.tokenizer(
A_ , max_length=len(A_ ) , padding=A_ , truncation=A_ , return_tensors='pt' )
self.assertIsInstance(A_ , A_ )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
UpperCamelCase = batch.input_ids.tolist()[0]
self.assertListEqual(A_ , A_ )
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
UpperCamelCase = self.get_tokenizer()
UpperCamelCase = self.get_rust_tokenizer()
UpperCamelCase = 'I was born in 92000, and this is falsé.'
UpperCamelCase = tokenizer.tokenize(A_ )
UpperCamelCase = rust_tokenizer.tokenize(A_ )
self.assertListEqual(A_ , A_ )
UpperCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ )
UpperCamelCase = rust_tokenizer.encode(A_ , add_special_tokens=A_ )
self.assertListEqual(A_ , A_ )
UpperCamelCase = self.get_rust_tokenizer()
UpperCamelCase = tokenizer.encode(A_ )
UpperCamelCase = rust_tokenizer.encode(A_ )
self.assertListEqual(A_ , A_ )
@slow
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase = {'input_ids': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
UpperCamelCase = [
'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, '
'utilisé principalement dans le domaine du traitement automatique des langues (TAL).',
'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus '
'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches '
'telles que la traduction et la synthèse de texte.',
]
self.tokenizer_integration_test_util(
expected_encoding=A_ , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=A_ , )
| 3 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase : Union[str, Any] = {
'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'],
'processing_git': ['GitProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : List[Any] = [
'GIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GitForCausalLM',
'GitModel',
'GitPreTrainedModel',
'GitVisionModel',
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 3 | 1 |
'''simple docstring'''
import argparse
import re
import numpy as np
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SamConfig,
SamImageProcessor,
SamModel,
SamProcessor,
SamVisionConfig,
)
lowerCAmelCase : Tuple = {
'iou_prediction_head.layers.0': 'iou_prediction_head.proj_in',
'iou_prediction_head.layers.1': 'iou_prediction_head.layers.0',
'iou_prediction_head.layers.2': 'iou_prediction_head.proj_out',
'mask_decoder.output_upscaling.0': 'mask_decoder.upscale_conv1',
'mask_decoder.output_upscaling.1': 'mask_decoder.upscale_layer_norm',
'mask_decoder.output_upscaling.3': 'mask_decoder.upscale_conv2',
'mask_downscaling.0': 'mask_embed.conv1',
'mask_downscaling.1': 'mask_embed.layer_norm1',
'mask_downscaling.3': 'mask_embed.conv2',
'mask_downscaling.4': 'mask_embed.layer_norm2',
'mask_downscaling.6': 'mask_embed.conv3',
'point_embeddings': 'point_embed',
'pe_layer.positional_encoding_gaussian_matrix': 'shared_embedding.positional_embedding',
'image_encoder': 'vision_encoder',
'neck.0': 'neck.conv1',
'neck.1': 'neck.layer_norm1',
'neck.2': 'neck.conv2',
'neck.3': 'neck.layer_norm2',
'patch_embed.proj': 'patch_embed.projection',
'.norm': '.layer_norm',
'blocks': 'layers',
}
def A_( A : List[str]):
UpperCamelCase = {}
state_dict.pop('pixel_mean' , A)
state_dict.pop('pixel_std' , A)
UpperCamelCase = r'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*'
for key, value in state_dict.items():
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
UpperCamelCase = key.replace(A , A)
if re.match(A , A):
UpperCamelCase = int(re.match(A , A).group(2))
if layer_nb == 0:
UpperCamelCase = key.replace('layers.0' , 'proj_in')
elif layer_nb == 1:
UpperCamelCase = key.replace('layers.1' , 'layers.0')
elif layer_nb == 2:
UpperCamelCase = key.replace('layers.2' , 'proj_out')
UpperCamelCase = value
UpperCamelCase = model_state_dict[
'prompt_encoder.shared_embedding.positional_embedding'
]
return model_state_dict
def A_( A : Dict , A : List[Any] , A : List[Any] , A : List[str]="ybelkada/segment-anything"):
UpperCamelCase = hf_hub_download(A , f'''checkpoints/{model_name}.pth''')
if "sam_vit_b" in model_name:
UpperCamelCase = SamConfig()
elif "sam_vit_l" in model_name:
UpperCamelCase = SamVisionConfig(
hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , )
UpperCamelCase = SamConfig(
vision_config=A , )
elif "sam_vit_h" in model_name:
UpperCamelCase = SamVisionConfig(
hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , )
UpperCamelCase = SamConfig(
vision_config=A , )
UpperCamelCase = torch.load(A , map_location='cpu')
UpperCamelCase = replace_keys(A)
UpperCamelCase = SamImageProcessor()
UpperCamelCase = SamProcessor(image_processor=A)
UpperCamelCase = SamModel(A)
hf_model.load_state_dict(A)
UpperCamelCase = hf_model.to('cuda')
UpperCamelCase = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png'
UpperCamelCase = Image.open(requests.get(A , stream=A).raw).convert('RGB')
UpperCamelCase = [[[400, 650]]]
UpperCamelCase = [[1]]
UpperCamelCase = processor(images=np.array(A) , return_tensors='pt').to('cuda')
with torch.no_grad():
UpperCamelCase = hf_model(**A)
UpperCamelCase = output.iou_scores.squeeze()
if model_name == "sam_vit_h_4b8939":
assert scores[-1].item() == 0.579_890_251_159_668
UpperCamelCase = processor(
images=np.array(A) , input_points=A , input_labels=A , return_tensors='pt').to('cuda')
with torch.no_grad():
UpperCamelCase = hf_model(**A)
UpperCamelCase = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9_712_603_092_193_604
UpperCamelCase = ((75, 275, 1725, 850),)
UpperCamelCase = processor(images=np.array(A) , input_boxes=A , return_tensors='pt').to('cuda')
with torch.no_grad():
UpperCamelCase = hf_model(**A)
UpperCamelCase = output.iou_scores.squeeze()
assert scores[-1].item() == 0.8_686_015_605_926_514
# Test with 2 points and 1 image.
UpperCamelCase = [[[400, 650], [800, 650]]]
UpperCamelCase = [[1, 1]]
UpperCamelCase = processor(
images=np.array(A) , input_points=A , input_labels=A , return_tensors='pt').to('cuda')
with torch.no_grad():
UpperCamelCase = hf_model(**A)
UpperCamelCase = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9_936_047_792_434_692
if __name__ == "__main__":
lowerCAmelCase : Tuple = argparse.ArgumentParser()
lowerCAmelCase : List[str] = ['sam_vit_b_01ec64', 'sam_vit_h_4b8939', 'sam_vit_l_0b3195']
parser.add_argument(
'--model_name',
default='sam_vit_h_4b8939',
choices=choices,
type=str,
help='Path to hf config.json of model to convert',
)
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model and processor to the hub after converting',
)
parser.add_argument(
'--model_hub_id',
default='ybelkada/segment-anything',
choices=choices,
type=str,
help='Path to hf config.json of model to convert',
)
lowerCAmelCase : Dict = parser.parse_args()
convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
| 3 |
'''simple docstring'''
import uuid
from typing import Any, Dict, List, Optional, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ :
def __init__( self , A_ = None , A_ = None , A_=None , A_=None )-> Optional[Any]:
'''simple docstring'''
if not conversation_id:
UpperCamelCase = uuid.uuida()
if past_user_inputs is None:
UpperCamelCase = []
if generated_responses is None:
UpperCamelCase = []
UpperCamelCase = conversation_id
UpperCamelCase = past_user_inputs
UpperCamelCase = generated_responses
UpperCamelCase = text
def __eq__( self , A_ )-> List[Any]:
'''simple docstring'''
if not isinstance(A_ , A_ ):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def UpperCAmelCase_ ( self , A_ , A_ = False )-> int:
'''simple docstring'''
if self.new_user_input:
if overwrite:
logger.warning(
F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten '''
F'''with: "{text}".''' )
UpperCamelCase = text
else:
logger.warning(
F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input '''
F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' )
else:
UpperCamelCase = text
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input )
UpperCamelCase = None
def UpperCAmelCase_ ( self , A_ )-> int:
'''simple docstring'''
self.generated_responses.append(A_ )
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__( self )-> Any:
'''simple docstring'''
UpperCamelCase = F'''Conversation id: {self.uuid} \n'''
for is_user, text in self.iter_texts():
UpperCamelCase = 'user' if is_user else 'bot'
output += F'''{name} >> {text} \n'''
return output
@add_end_docstrings(
snake_case_ , R"""
min_length_for_response (`int`, *optional*, defaults to 32):
The minimum length (in number of tokens) for a response.
minimum_tokens (`int`, *optional*, defaults to 10):
The minimum length of tokens to leave for a response.
""" , )
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , *A_ , **A_ )-> Any:
'''simple docstring'''
super().__init__(*A_ , **A_ )
if self.tokenizer.pad_token_id is None:
UpperCamelCase = self.tokenizer.eos_token
def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , **A_ )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = {}
UpperCamelCase = {}
UpperCamelCase = {}
if min_length_for_response is not None:
UpperCamelCase = min_length_for_response
if minimum_tokens is not None:
UpperCamelCase = minimum_tokens
if "max_length" in generate_kwargs:
UpperCamelCase = generate_kwargs['max_length']
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
UpperCamelCase = clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(A_ )
return preprocess_params, forward_params, postprocess_params
def __call__( self , A_ , A_=0 , **A_ )-> Any:
'''simple docstring'''
UpperCamelCase = super().__call__(A_ , num_workers=A_ , **A_ )
if isinstance(A_ , A_ ) and len(A_ ) == 1:
return outputs[0]
return outputs
def UpperCAmelCase_ ( self , A_ , A_=32 )-> Dict[str, Any]:
'''simple docstring'''
if not isinstance(A_ , A_ ):
raise ValueError('ConversationalPipeline, expects Conversation as inputs' )
if conversation.new_user_input is None:
raise ValueError(
F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. '''
'Add user inputs with the conversation\'s `add_user_input` method' )
if hasattr(self.tokenizer , '_build_conversation_input_ids' ):
UpperCamelCase = self.tokenizer._build_conversation_input_ids(A_ )
else:
# If the tokenizer cannot handle conversations, we default to only the old version
UpperCamelCase = self._legacy_parse_and_tokenize(A_ )
if self.framework == "pt":
UpperCamelCase = torch.LongTensor([input_ids] )
elif self.framework == "tf":
UpperCamelCase = tf.constant([input_ids] )
return {"input_ids": input_ids, "conversation": conversation}
def UpperCAmelCase_ ( self , A_ , A_=10 , **A_ )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length )
UpperCamelCase = model_inputs['input_ids'].shape[1]
if max_length - minimum_tokens < n:
logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' )
UpperCamelCase = max_length - minimum_tokens
UpperCamelCase = model_inputs['input_ids'][:, -trim:]
if "attention_mask" in model_inputs:
UpperCamelCase = model_inputs['attention_mask'][:, -trim:]
UpperCamelCase = model_inputs.pop('conversation' )
UpperCamelCase = max_length
UpperCamelCase = self.model.generate(**A_ , **A_ )
if self.model.config.is_encoder_decoder:
UpperCamelCase = 1
else:
UpperCamelCase = n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def UpperCAmelCase_ ( self , A_ , A_=True )-> Tuple:
'''simple docstring'''
UpperCamelCase = model_outputs['output_ids']
UpperCamelCase = self.tokenizer.decode(
output_ids[0] , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , )
UpperCamelCase = model_outputs['conversation']
conversation.mark_processed()
conversation.append_response(A_ )
return conversation
def UpperCAmelCase_ ( self , A_ )-> Dict:
'''simple docstring'''
UpperCamelCase = self.tokenizer.eos_token_id
UpperCamelCase = []
for is_user, text in conversation.iter_texts():
if eos_token_id is not None:
input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) + [eos_token_id] )
else:
input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) )
if len(A_ ) > self.tokenizer.model_max_length:
UpperCamelCase = input_ids[-self.tokenizer.model_max_length :]
return input_ids
| 3 | 1 |
'''simple docstring'''
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
lowerCAmelCase : List[str] = logging.get_logger(__name__)
lowerCAmelCase : int = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'encoder.layer_norm_for_extract': 'layer_norm_for_extract',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'label_embs_concat': 'label_embeddings_concat',
'mask_emb': 'masked_spec_embed',
'spk_proj': 'speaker_proj',
}
lowerCAmelCase : Dict = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'label_embeddings_concat',
'speaker_proj',
'layer_norm_for_extract',
]
def A_( A : Optional[Any] , A : Optional[int] , A : List[str] , A : Dict , A : Optional[int]):
for attribute in key.split('.'):
UpperCamelCase = getattr(A , A)
if weight_type is not None:
UpperCamelCase = getattr(A , A).shape
else:
UpperCamelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}''')
if weight_type == "weight":
UpperCamelCase = value
elif weight_type == "weight_g":
UpperCamelCase = value
elif weight_type == "weight_v":
UpperCamelCase = value
elif weight_type == "bias":
UpperCamelCase = value
else:
UpperCamelCase = value
logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''')
def A_( A : Tuple , A : List[str]):
UpperCamelCase = []
UpperCamelCase = fairseq_model.state_dict()
UpperCamelCase = hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
UpperCamelCase = False
if "conv_layers" in name:
load_conv_layer(
A , A , A , A , hf_model.config.feat_extract_norm == 'group' , )
UpperCamelCase = True
else:
for key, mapped_key in MAPPING.items():
UpperCamelCase = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]:
if "layer_norm_for_extract" in name and (".".join(name.split('.')[:-1]) != key):
# special case since naming is very similar
continue
UpperCamelCase = True
if "*" in mapped_key:
UpperCamelCase = name.split(A)[0].split('.')[-2]
UpperCamelCase = mapped_key.replace('*' , A)
if "weight_g" in name:
UpperCamelCase = 'weight_g'
elif "weight_v" in name:
UpperCamelCase = 'weight_v'
elif "bias" in name:
UpperCamelCase = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCamelCase = 'weight'
else:
UpperCamelCase = None
set_recursively(A , A , A , A , A)
continue
if not is_used:
unused_weights.append(A)
logger.warning(f'''Unused weights: {unused_weights}''')
def A_( A : List[Any] , A : str , A : int , A : str , A : str):
UpperCamelCase = full_name.split('conv_layers.')[-1]
UpperCamelCase = name.split('.')
UpperCamelCase = int(items[0])
UpperCamelCase = int(items[1])
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''')
UpperCamelCase = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''')
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''')
UpperCamelCase = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''')
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''')
UpperCamelCase = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''')
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''')
UpperCamelCase = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''')
else:
unused_weights.append(A)
@torch.no_grad()
def A_( A : Union[str, Any] , A : Optional[Any] , A : Optional[int]=None , A : List[str]=None , A : Any=True):
if config_path is not None:
UpperCamelCase = UniSpeechSatConfig.from_pretrained(A)
else:
UpperCamelCase = UniSpeechSatConfig()
UpperCamelCase = ''
if is_finetuned:
UpperCamelCase = UniSpeechSatForCTC(A)
else:
UpperCamelCase = UniSpeechSatForPreTraining(A)
UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1])})
UpperCamelCase = model[0].eval()
recursively_load_weights(A , A)
hf_wavavec.save_pretrained(A)
if __name__ == "__main__":
lowerCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
lowerCAmelCase : List[str] = parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 3 |
'''simple docstring'''
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print('Googling.....')
lowerCAmelCase : List[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:])
lowerCAmelCase : List[Any] = requests.get(url, headers={'UserAgent': UserAgent().random})
# res.raise_for_status()
with open('project1a.html', 'wb') as out_file: # only for knowing the class
for data in res.iter_content(1_00_00):
out_file.write(data)
lowerCAmelCase : Tuple = BeautifulSoup(res.text, 'html.parser')
lowerCAmelCase : List[Any] = list(soup.select('.eZt8xd'))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get('href'))
else:
webbrowser.open(f"""https://google.com{link.get('href')}""")
| 3 | 1 |
'''simple docstring'''
lowerCAmelCase : Any = {
'Pillow': 'Pillow<10.0.0',
'accelerate': 'accelerate>=0.20.3',
'av': 'av==9.2.0',
'beautifulsoup4': 'beautifulsoup4',
'black': 'black~=23.1',
'codecarbon': 'codecarbon==1.2.0',
'cookiecutter': 'cookiecutter==1.7.3',
'dataclasses': 'dataclasses',
'datasets': 'datasets!=2.5.0',
'decord': 'decord==0.6.0',
'deepspeed': 'deepspeed>=0.9.3',
'diffusers': 'diffusers',
'dill': 'dill<0.3.5',
'evaluate': 'evaluate>=0.2.0',
'fairscale': 'fairscale>0.3',
'faiss-cpu': 'faiss-cpu',
'fastapi': 'fastapi',
'filelock': 'filelock',
'flax': 'flax>=0.4.1,<=0.7.0',
'ftfy': 'ftfy',
'fugashi': 'fugashi>=1.0',
'GitPython': 'GitPython<3.1.19',
'hf-doc-builder': 'hf-doc-builder>=0.3.0',
'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0',
'importlib_metadata': 'importlib_metadata',
'ipadic': 'ipadic>=1.0.0,<2.0',
'isort': 'isort>=5.5.4',
'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13',
'jaxlib': 'jaxlib>=0.1.65,<=0.4.13',
'jieba': 'jieba',
'kenlm': 'kenlm',
'keras-nlp': 'keras-nlp>=0.3.1',
'librosa': 'librosa',
'nltk': 'nltk',
'natten': 'natten>=0.14.6',
'numpy': 'numpy>=1.17',
'onnxconverter-common': 'onnxconverter-common',
'onnxruntime-tools': 'onnxruntime-tools>=1.4.2',
'onnxruntime': 'onnxruntime>=1.4.0',
'opencv-python': 'opencv-python',
'optuna': 'optuna',
'optax': 'optax>=0.0.8,<=0.1.4',
'packaging': 'packaging>=20.0',
'parameterized': 'parameterized',
'phonemizer': 'phonemizer',
'protobuf': 'protobuf',
'psutil': 'psutil',
'pyyaml': 'pyyaml>=5.1',
'pydantic': 'pydantic<2',
'pytest': 'pytest>=7.2.0',
'pytest-timeout': 'pytest-timeout',
'pytest-xdist': 'pytest-xdist',
'python': 'python>=3.8.0',
'ray[tune]': 'ray[tune]',
'regex': 'regex!=2019.12.17',
'requests': 'requests',
'rhoknp': 'rhoknp>=1.1.0,<1.3.1',
'rjieba': 'rjieba',
'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1',
'ruff': 'ruff>=0.0.241,<=0.0.259',
'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0',
'sacremoses': 'sacremoses',
'safetensors': 'safetensors>=0.3.1',
'sagemaker': 'sagemaker>=2.31.0',
'scikit-learn': 'scikit-learn',
'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92',
'sigopt': 'sigopt',
'starlette': 'starlette',
'sudachipy': 'sudachipy>=0.6.6',
'sudachidict_core': 'sudachidict_core>=20220729',
'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14',
'tensorflow': 'tensorflow>=2.6,<2.14',
'tensorflow-text': 'tensorflow-text<2.14',
'tf2onnx': 'tf2onnx',
'timeout-decorator': 'timeout-decorator',
'timm': 'timm',
'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14',
'torch': 'torch>=1.9,!=1.12.0',
'torchaudio': 'torchaudio',
'torchvision': 'torchvision',
'pyctcdecode': 'pyctcdecode>=0.4.0',
'tqdm': 'tqdm>=4.27',
'unidic': 'unidic>=1.0.2',
'unidic_lite': 'unidic_lite>=1.0.7',
'urllib3': 'urllib3<2.0.0',
'uvicorn': 'uvicorn',
}
| 3 |
'''simple docstring'''
import numpy as np
def A_( A : str , A : Optional[Any] , A : Tuple , A : Optional[int] , A : str):
UpperCamelCase = int(np.ceil((x_end - xa) / h))
UpperCamelCase = np.zeros((n + 1,))
UpperCamelCase = ya
UpperCamelCase = xa
for k in range(A):
UpperCamelCase = f(A , y[k])
UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka)
UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka)
UpperCamelCase = f(x + h , y[k] + h * ka)
UpperCamelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka)
x += h
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase : Any = logging.get_logger(__name__)
lowerCAmelCase : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'}
lowerCAmelCase : str = {
'vocab_file': {
'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json',
'allenai/longformer-large-4096': (
'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json'
),
'allenai/longformer-large-4096-finetuned-triviaqa': (
'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json'
),
'allenai/longformer-base-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json'
),
'allenai/longformer-large-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json'
),
},
'merges_file': {
'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt',
'allenai/longformer-large-4096': (
'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt'
),
'allenai/longformer-large-4096-finetuned-triviaqa': (
'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt'
),
'allenai/longformer-base-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt'
),
'allenai/longformer-large-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt'
),
},
}
lowerCAmelCase : int = {
'allenai/longformer-base-4096': 40_96,
'allenai/longformer-large-4096': 40_96,
'allenai/longformer-large-4096-finetuned-triviaqa': 40_96,
'allenai/longformer-base-4096-extra.pos.embd.only': 40_96,
'allenai/longformer-large-4096-extra.pos.embd.only': 40_96,
}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def A_( ):
UpperCamelCase = (
list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1))
)
UpperCamelCase = bs[:]
UpperCamelCase = 0
for b in range(2**8):
if b not in bs:
bs.append(A)
cs.append(2**8 + n)
n += 1
UpperCamelCase = [chr(A) for n in cs]
return dict(zip(A , A))
def A_( A : str):
UpperCamelCase = set()
UpperCamelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
UpperCamelCase = char
return pairs
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = VOCAB_FILES_NAMES
lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase_ = ["""input_ids""", """attention_mask"""]
def __init__( self , A_ , A_ , A_="replace" , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=False , **A_ , )-> List[str]:
'''simple docstring'''
UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token
UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token
UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token
UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token
UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token
UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token
super().__init__(
errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , )
with open(A_ , encoding='utf-8' ) as vocab_handle:
UpperCamelCase = json.load(A_ )
UpperCamelCase = {v: k for k, v in self.encoder.items()}
UpperCamelCase = errors # how to handle errors in decoding
UpperCamelCase = bytes_to_unicode()
UpperCamelCase = {v: k for k, v in self.byte_encoder.items()}
with open(A_ , encoding='utf-8' ) as merges_handle:
UpperCamelCase = merges_handle.read().split('\n' )[1:-1]
UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges]
UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) )
UpperCamelCase = {}
UpperCamelCase = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
UpperCamelCase = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' )
@property
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
return len(self.encoder )
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def UpperCAmelCase_ ( self , A_ )-> List[str]:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
UpperCamelCase = tuple(A_ )
UpperCamelCase = get_pairs(A_ )
if not pairs:
return token
while True:
UpperCamelCase = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
UpperCamelCase , UpperCamelCase = bigram
UpperCamelCase = []
UpperCamelCase = 0
while i < len(A_ ):
try:
UpperCamelCase = word.index(A_ , A_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCamelCase = j
if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCamelCase = tuple(A_ )
UpperCamelCase = new_word
if len(A_ ) == 1:
break
else:
UpperCamelCase = get_pairs(A_ )
UpperCamelCase = ' '.join(A_ )
UpperCamelCase = word
return word
def UpperCAmelCase_ ( self , A_ )-> Dict:
'''simple docstring'''
UpperCamelCase = []
for token in re.findall(self.pat , A_ ):
UpperCamelCase = ''.join(
self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) )
return bpe_tokens
def UpperCAmelCase_ ( self , A_ )-> List[Any]:
'''simple docstring'''
return self.encoder.get(A_ , self.encoder.get(self.unk_token ) )
def UpperCAmelCase_ ( self , A_ )-> Dict:
'''simple docstring'''
return self.decoder.get(A_ )
def UpperCAmelCase_ ( self , A_ )-> List[Any]:
'''simple docstring'''
UpperCamelCase = ''.join(A_ )
UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors )
return text
def UpperCAmelCase_ ( self , A_ , A_ = None )-> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(A_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCamelCase = os.path.join(
A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
UpperCamelCase = os.path.join(
A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(A_ , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' )
UpperCamelCase = 0
with open(A_ , 'w' , encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
' Please check that the tokenizer is not corrupted!' )
UpperCamelCase = token_index
writer.write(' '.join(A_ ) + '\n' )
index += 1
return vocab_file, merge_file
def UpperCAmelCase_ ( self , A_ , A_ = None )-> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCamelCase = [self.cls_token_id]
UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = False )-> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ )
if token_ids_a is None:
return [1] + ([0] * len(A_ )) + [1]
return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1]
def UpperCAmelCase_ ( self , A_ , A_ = None )-> List[int]:
'''simple docstring'''
UpperCamelCase = [self.sep_token_id]
UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def UpperCAmelCase_ ( self , A_ , A_=False , **A_ )-> int:
'''simple docstring'''
UpperCamelCase = kwargs.pop('add_prefix_space' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()):
UpperCamelCase = ' ' + text
return (text, kwargs)
| 3 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=snake_case_)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True})
lowerCAmelCase_ = Features({"""text""": Value("""string""")})
lowerCAmelCase_ = Features({})
lowerCAmelCase_ = "text"
@property
def UpperCAmelCase_ ( self )-> Dict[str, str]:
'''simple docstring'''
return {self.text_column: "text"}
| 3 | 1 |
'''simple docstring'''
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def A_( A : Union[str, Any] , A : List[str]=None):
UpperCamelCase = None
if token is not None:
UpperCamelCase = {'Accept': 'application/vnd.github+json', 'Authorization': f'''Bearer {token}'''}
UpperCamelCase = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
UpperCamelCase = requests.get(A , headers=A).json()
UpperCamelCase = {}
try:
job_links.update({job['name']: job['html_url'] for job in result['jobs']})
UpperCamelCase = math.ceil((result['total_count'] - 100) / 100)
for i in range(A):
UpperCamelCase = requests.get(url + f'''&page={i + 2}''' , headers=A).json()
job_links.update({job['name']: job['html_url'] for job in result['jobs']})
return job_links
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''')
return {}
def A_( A : Dict , A : Optional[Any]=None):
UpperCamelCase = None
if token is not None:
UpperCamelCase = {'Accept': 'application/vnd.github+json', 'Authorization': f'''Bearer {token}'''}
UpperCamelCase = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'''
UpperCamelCase = requests.get(A , headers=A).json()
UpperCamelCase = {}
try:
artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']})
UpperCamelCase = math.ceil((result['total_count'] - 100) / 100)
for i in range(A):
UpperCamelCase = requests.get(url + f'''&page={i + 2}''' , headers=A).json()
artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']})
return artifacts
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''')
return {}
def A_( A : int , A : Any , A : str , A : Dict):
UpperCamelCase = None
if token is not None:
UpperCamelCase = {'Accept': 'application/vnd.github+json', 'Authorization': f'''Bearer {token}'''}
UpperCamelCase = requests.get(A , headers=A , allow_redirects=A)
UpperCamelCase = result.headers['Location']
UpperCamelCase = requests.get(A , allow_redirects=A)
UpperCamelCase = os.path.join(A , f'''{artifact_name}.zip''')
with open(A , 'wb') as fp:
fp.write(response.content)
def A_( A : str , A : Optional[int]=None):
UpperCamelCase = []
UpperCamelCase = []
UpperCamelCase = None
with zipfile.ZipFile(A) as z:
for filename in z.namelist():
if not os.path.isdir(A):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(A) as f:
for line in f:
UpperCamelCase = line.decode('UTF-8').strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
UpperCamelCase = line[: line.index(': ')]
UpperCamelCase = line[line.index(': ') + len(': ') :]
errors.append([error_line, error])
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith('FAILED '):
# `test` is the test method that failed
UpperCamelCase = line[len('FAILED ') :]
failed_tests.append(A)
elif filename == "job_name.txt":
UpperCamelCase = line
if len(A) != len(A):
raise ValueError(
f'''`errors` and `failed_tests` should have the same number of elements. Got {len(A)} for `errors` '''
f'''and {len(A)} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'''
' problem.')
UpperCamelCase = None
if job_name and job_links:
UpperCamelCase = job_links.get(A , A)
# A list with elements of the form (line of error, error, failed test)
UpperCamelCase = [x + [y] + [job_link] for x, y in zip(A , A)]
return result
def A_( A : List[Any] , A : Tuple=None):
UpperCamelCase = []
UpperCamelCase = [os.path.join(A , A) for p in os.listdir(A) if p.endswith('.zip')]
for p in paths:
errors.extend(get_errors_from_single_artifact(A , job_links=A))
return errors
def A_( A : List[Any] , A : Optional[int]=None):
UpperCamelCase = Counter()
counter.update([x[1] for x in logs])
UpperCamelCase = counter.most_common()
UpperCamelCase = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
UpperCamelCase = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]}
UpperCamelCase = dict(sorted(r.items() , key=lambda A: item[1]["count"] , reverse=A))
return r
def A_( A : Union[str, Any]):
UpperCamelCase = test.split('::')[0]
if test.startswith('tests/models/'):
UpperCamelCase = test.split('/')[2]
else:
UpperCamelCase = None
return test
def A_( A : Optional[int] , A : Any=None):
UpperCamelCase = [(x[0], x[1], get_model(x[2])) for x in logs]
UpperCamelCase = [x for x in logs if x[2] is not None]
UpperCamelCase = {x[2] for x in logs}
UpperCamelCase = {}
for test in tests:
UpperCamelCase = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test])
UpperCamelCase = counter.most_common()
UpperCamelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
UpperCamelCase = sum(error_counts.values())
if n_errors > 0:
UpperCamelCase = {'count': n_errors, 'errors': error_counts}
UpperCamelCase = dict(sorted(r.items() , key=lambda A: item[1]["count"] , reverse=A))
return r
def A_( A : Optional[Any]):
UpperCamelCase = '| no. | error | status |'
UpperCamelCase = '|-:|:-|:-|'
UpperCamelCase = [header, sep]
for error in reduced_by_error:
UpperCamelCase = reduced_by_error[error]['count']
UpperCamelCase = f'''| {count} | {error[:100]} | |'''
lines.append(A)
return "\n".join(A)
def A_( A : int):
UpperCamelCase = '| model | no. of errors | major error | count |'
UpperCamelCase = '|-:|-:|-:|-:|'
UpperCamelCase = [header, sep]
for model in reduced_by_model:
UpperCamelCase = reduced_by_model[model]['count']
UpperCamelCase , UpperCamelCase = list(reduced_by_model[model]['errors'].items())[0]
UpperCamelCase = f'''| {model} | {count} | {error[:60]} | {_count} |'''
lines.append(A)
return "\n".join(A)
if __name__ == "__main__":
lowerCAmelCase : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.')
parser.add_argument(
'--output_dir',
type=str,
required=True,
help='Where to store the downloaded artifacts and other result files.',
)
parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.')
lowerCAmelCase : Optional[Any] = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
lowerCAmelCase : List[Any] = get_job_links(args.workflow_run_id, token=args.token)
lowerCAmelCase : List[Any] = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
lowerCAmelCase : Tuple = k.find(' / ')
lowerCAmelCase : int = k[index + len(' / ') :]
lowerCAmelCase : Any = v
with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
lowerCAmelCase : Optional[Any] = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
lowerCAmelCase : int = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
lowerCAmelCase : List[str] = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
lowerCAmelCase : Optional[int] = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
lowerCAmelCase : str = reduce_by_error(errors)
lowerCAmelCase : List[str] = reduce_by_model(errors)
lowerCAmelCase : Union[str, Any] = make_github_table(reduced_by_error)
lowerCAmelCase : str = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
| 3 |
'''simple docstring'''
from __future__ import annotations
lowerCAmelCase : Union[str, Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0]
lowerCAmelCase : List[str] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1]
def A_( A : list[float]):
UpperCamelCase = []
UpperCamelCase = len(A)
for i in range(A):
UpperCamelCase = -1
for j in range(i + 1 , A):
if arr[i] < arr[j]:
UpperCamelCase = arr[j]
break
result.append(A)
return result
def A_( A : list[float]):
UpperCamelCase = []
for i, outer in enumerate(A):
UpperCamelCase = -1
for inner in arr[i + 1 :]:
if outer < inner:
UpperCamelCase = inner
break
result.append(A)
return result
def A_( A : list[float]):
UpperCamelCase = len(A)
UpperCamelCase = []
UpperCamelCase = [-1] * arr_size
for index in reversed(range(A)):
if stack:
while stack[-1] <= arr[index]:
stack.pop()
if not stack:
break
if stack:
UpperCamelCase = stack[-1]
stack.append(arr[index])
return result
if __name__ == "__main__":
from doctest import testmod
from timeit import timeit
testmod()
print(next_greatest_element_slow(arr))
print(next_greatest_element_fast(arr))
print(next_greatest_element(arr))
lowerCAmelCase : Optional[Any] = (
'from __main__ import arr, next_greatest_element_slow, '
'next_greatest_element_fast, next_greatest_element'
)
print(
'next_greatest_element_slow():',
timeit('next_greatest_element_slow(arr)', setup=setup),
)
print(
'next_greatest_element_fast():',
timeit('next_greatest_element_fast(arr)', setup=setup),
)
print(
' next_greatest_element():',
timeit('next_greatest_element(arr)', setup=setup),
)
| 3 | 1 |
'''simple docstring'''
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast
@require_vision
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = tempfile.mkdtemp()
UpperCamelCase = BlipImageProcessor()
UpperCamelCase = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' )
UpperCamelCase = BlipaProcessor(A_ , A_ )
processor.save_pretrained(self.tmpdirname )
def UpperCAmelCase_ ( self , **A_ )-> Tuple:
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **A_ ).tokenizer
def UpperCAmelCase_ ( self , **A_ )-> str:
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **A_ ).image_processor
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
UpperCamelCase = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
UpperCamelCase = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
UpperCamelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
UpperCamelCase = self.get_image_processor(do_normalize=A_ , padding_value=1.0 )
UpperCamelCase = BlipaProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , A_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , A_ )
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase = self.get_image_processor()
UpperCamelCase = self.get_tokenizer()
UpperCamelCase = BlipaProcessor(tokenizer=A_ , image_processor=A_ )
UpperCamelCase = self.prepare_image_inputs()
UpperCamelCase = image_processor(A_ , return_tensors='np' )
UpperCamelCase = processor(images=A_ , return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase = self.get_image_processor()
UpperCamelCase = self.get_tokenizer()
UpperCamelCase = BlipaProcessor(tokenizer=A_ , image_processor=A_ )
UpperCamelCase = 'lower newer'
UpperCamelCase = processor(text=A_ )
UpperCamelCase = tokenizer(A_ , return_token_type_ids=A_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
UpperCamelCase = self.get_image_processor()
UpperCamelCase = self.get_tokenizer()
UpperCamelCase = BlipaProcessor(tokenizer=A_ , image_processor=A_ )
UpperCamelCase = 'lower newer'
UpperCamelCase = self.prepare_image_inputs()
UpperCamelCase = processor(text=A_ , images=A_ )
self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
# test if it raises when no input is passed
with pytest.raises(A_ ):
processor()
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase = self.get_image_processor()
UpperCamelCase = self.get_tokenizer()
UpperCamelCase = BlipaProcessor(tokenizer=A_ , image_processor=A_ )
UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
UpperCamelCase = processor.batch_decode(A_ )
UpperCamelCase = tokenizer.batch_decode(A_ )
self.assertListEqual(A_ , A_ )
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
UpperCamelCase = self.get_image_processor()
UpperCamelCase = self.get_tokenizer()
UpperCamelCase = BlipaProcessor(tokenizer=A_ , image_processor=A_ )
UpperCamelCase = 'lower newer'
UpperCamelCase = self.prepare_image_inputs()
UpperCamelCase = processor(text=A_ , images=A_ )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
| 3 |
'''simple docstring'''
from string import ascii_lowercase, ascii_uppercase
def A_( A : str):
if not sentence:
return ""
UpperCamelCase = dict(zip(A , A))
return lower_to_upper.get(sentence[0] , sentence[0]) + sentence[1:]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 3 | 1 |
'''simple docstring'''
from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_):
@register_to_config
def __init__( self , A_ , A_ = None , A_ = None )-> Tuple:
'''simple docstring'''
super().__init__()
UpperCamelCase = learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
UpperCamelCase = torch.zeros(A_ , A_ )
else:
UpperCamelCase = None
UpperCamelCase = torch.nn.Parameter(A_ )
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , )-> Union[str, Any]:
'''simple docstring'''
super().__init__()
self.register_modules(
vqvae=A_ , transformer=A_ , text_encoder=A_ , tokenizer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , )
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Tuple:
'''simple docstring'''
UpperCamelCase = len(A_ ) if isinstance(A_ , A_ ) else 1
# get prompt text embeddings
UpperCamelCase = self.tokenizer(
A_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , )
UpperCamelCase = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'The following part of your input was truncated because CLIP can only handle sequences up to'
F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' )
UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length]
UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=A_ )
# duplicate text embeddings for each generation per prompt
UpperCamelCase = prompt_embeds.repeat_interleave(A_ , dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings
UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(A_ , 1 , 1 )
else:
UpperCamelCase = [''] * batch_size
UpperCamelCase = text_input_ids.shape[-1]
UpperCamelCase = self.tokenizer(
A_ , padding='max_length' , max_length=A_ , truncation=A_ , return_tensors='pt' , )
UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=A_ )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
UpperCamelCase = negative_prompt_embeds.shape[1]
UpperCamelCase = negative_prompt_embeds.repeat(1 , A_ , 1 )
UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__( self , A_ , A_ = 100 , A_ = 5.0 , A_ = 1.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , A_ = None , A_ = 1 , )-> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
if isinstance(A_ , A_ ):
UpperCamelCase = 1
elif isinstance(A_ , A_ ):
UpperCamelCase = len(A_ )
else:
raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(A_ )}''' )
UpperCamelCase = batch_size * num_images_per_prompt
UpperCamelCase = guidance_scale > 1.0
UpperCamelCase = self._encode_prompt(A_ , A_ , A_ )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(A_ , A_ ) or callback_steps <= 0)
):
raise ValueError(
F'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
F''' {type(A_ )}.''' )
# get the initial completely masked latents unless the user supplied it
UpperCamelCase = (batch_size, self.transformer.num_latent_pixels)
if latents is None:
UpperCamelCase = self.transformer.num_vector_embeds - 1
UpperCamelCase = torch.full(A_ , A_ ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,'
F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' )
UpperCamelCase = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(A_ , device=self.device )
UpperCamelCase = self.scheduler.timesteps.to(self.device )
UpperCamelCase = latents
for i, t in enumerate(self.progress_bar(A_ ) ):
# expand the sample if we are doing classifier free guidance
UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
UpperCamelCase = self.transformer(A_ , encoder_hidden_states=A_ , timestep=A_ ).sample
if do_classifier_free_guidance:
UpperCamelCase , UpperCamelCase = model_output.chunk(2 )
UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(A_ , dim=1 , keepdim=A_ )
UpperCamelCase = self.truncate(A_ , A_ )
# remove `log(0)`'s (`-inf`s)
UpperCamelCase = model_output.clamp(-70 )
# compute the previous noisy sample x_t -> x_t-1
UpperCamelCase = self.scheduler.step(A_ , timestep=A_ , sample=A_ , generator=A_ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(A_ , A_ , A_ )
UpperCamelCase = self.vqvae.config.vq_embed_dim
UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
UpperCamelCase = self.vqvae.quantize.get_codebook_entry(A_ , shape=A_ )
UpperCamelCase = self.vqvae.decode(A_ , force_not_quantize=A_ ).sample
UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 )
UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCamelCase = self.numpy_to_pil(A_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=A_ )
def UpperCAmelCase_ ( self , A_ , A_ )-> torch.FloatTensor:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = torch.sort(A_ , 1 , descending=A_ )
UpperCamelCase = torch.exp(A_ )
UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , A_ )
UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 )
UpperCamelCase = keep_mask[:, :-1, :]
UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) )
UpperCamelCase = log_p_x_0.clone()
UpperCamelCase = -torch.inf # -inf = log(0)
return rv
| 3 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
lowerCAmelCase : Dict = logging.get_logger(__name__)
# General docstring
lowerCAmelCase : str = 'RegNetConfig'
# Base docstring
lowerCAmelCase : str = 'facebook/regnet-y-040'
lowerCAmelCase : Dict = [1, 10_88, 7, 7]
# Image classification docstring
lowerCAmelCase : Dict = 'facebook/regnet-y-040'
lowerCAmelCase : int = 'tabby, tabby cat'
lowerCAmelCase : int = [
'facebook/regnet-y-040',
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ = 3 , A_ = 1 , A_ = 1 , A_ = "relu" , **A_ , )-> str:
'''simple docstring'''
super().__init__(**A_ )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
UpperCamelCase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
UpperCamelCase = tf.keras.layers.ConvaD(
filters=A_ , kernel_size=A_ , strides=A_ , padding='VALID' , groups=A_ , use_bias=A_ , name='convolution' , )
UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' )
UpperCamelCase = ACTaFN[activation] if activation is not None else tf.identity
def UpperCAmelCase_ ( self , A_ )-> Any:
'''simple docstring'''
UpperCamelCase = self.convolution(self.padding(A_ ) )
UpperCamelCase = self.normalization(A_ )
UpperCamelCase = self.activation(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , **A_ )-> Optional[Any]:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = config.num_channels
UpperCamelCase = TFRegNetConvLayer(
out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , )
def UpperCAmelCase_ ( self , A_ )-> List[Any]:
'''simple docstring'''
UpperCamelCase = shape_list(A_ )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
UpperCamelCase = tf.transpose(A_ , perm=(0, 2, 3, 1) )
UpperCamelCase = self.embedder(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ = 2 , **A_ )-> List[Any]:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = tf.keras.layers.ConvaD(
filters=A_ , kernel_size=1 , strides=A_ , use_bias=A_ , name='convolution' )
UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' )
def UpperCAmelCase_ ( self , A_ , A_ = False )-> tf.Tensor:
'''simple docstring'''
return self.normalization(self.convolution(A_ ) , training=A_ )
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ , **A_ )-> Optional[Any]:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' )
UpperCamelCase = [
tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='relu' , name='attention.0' ),
tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='sigmoid' , name='attention.2' ),
]
def UpperCAmelCase_ ( self , A_ )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.pooler(A_ )
for layer_module in self.attention:
UpperCamelCase = layer_module(A_ )
UpperCamelCase = hidden_state * pooled
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Dict:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = in_channels != out_channels or stride != 1
UpperCamelCase = max(1 , out_channels // config.groups_width )
UpperCamelCase = (
TFRegNetShortCut(A_ , stride=A_ , name='shortcut' )
if should_apply_shortcut
else tf.keras.layers.Activation('linear' , name='shortcut' )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
UpperCamelCase = [
TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ),
TFRegNetConvLayer(
A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ),
TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.2' ),
]
UpperCamelCase = ACTaFN[config.hidden_act]
def UpperCAmelCase_ ( self , A_ )-> Tuple:
'''simple docstring'''
UpperCamelCase = hidden_state
for layer_module in self.layers:
UpperCamelCase = layer_module(A_ )
UpperCamelCase = self.shortcut(A_ )
hidden_state += residual
UpperCamelCase = self.activation(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Any:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = in_channels != out_channels or stride != 1
UpperCamelCase = max(1 , out_channels // config.groups_width )
UpperCamelCase = (
TFRegNetShortCut(A_ , stride=A_ , name='shortcut' )
if should_apply_shortcut
else tf.keras.layers.Activation('linear' , name='shortcut' )
)
UpperCamelCase = [
TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ),
TFRegNetConvLayer(
A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ),
TFRegNetSELayer(A_ , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ),
TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.3' ),
]
UpperCamelCase = ACTaFN[config.hidden_act]
def UpperCAmelCase_ ( self , A_ )-> List[Any]:
'''simple docstring'''
UpperCamelCase = hidden_state
for layer_module in self.layers:
UpperCamelCase = layer_module(A_ )
UpperCamelCase = self.shortcut(A_ )
hidden_state += residual
UpperCamelCase = self.activation(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , A_ , A_ , A_ = 2 , A_ = 2 , **A_ )-> Dict:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer
UpperCamelCase = [
# downsampling is done in the first layer with stride of 2
layer(A_ , A_ , A_ , stride=A_ , name='layers.0' ),
*[layer(A_ , A_ , A_ , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )],
]
def UpperCAmelCase_ ( self , A_ )-> List[Any]:
'''simple docstring'''
for layer_module in self.layers:
UpperCamelCase = layer_module(A_ )
return hidden_state
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
def __init__( self , A_ , **A_ )-> str:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
A_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) )
UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(A_ , config.depths[1:] ) ):
self.stages.append(TFRegNetStage(A_ , A_ , A_ , depth=A_ , name=F'''stages.{i+1}''' ) )
def UpperCAmelCase_ ( self , A_ , A_ = False , A_ = True )-> TFBaseModelOutputWithNoAttention:
'''simple docstring'''
UpperCamelCase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
UpperCamelCase = hidden_states + (hidden_state,)
UpperCamelCase = stage_module(A_ )
if output_hidden_states:
UpperCamelCase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=A_ , hidden_states=A_ )
@keras_serializable
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer):
lowerCAmelCase_ = RegNetConfig
def __init__( self , A_ , **A_ )-> Union[str, Any]:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = config
UpperCamelCase = TFRegNetEmbeddings(A_ , name='embedder' )
UpperCamelCase = TFRegNetEncoder(A_ , name='encoder' )
UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' )
@unpack_inputs
def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_ = False , )-> TFBaseModelOutputWithPoolingAndNoAttention:
'''simple docstring'''
UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
UpperCamelCase = self.embedder(A_ , training=A_ )
UpperCamelCase = self.encoder(
A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ )
UpperCamelCase = encoder_outputs[0]
UpperCamelCase = self.pooler(A_ )
# Change to NCHW output format have uniformity in the modules
UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) )
UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
UpperCamelCase = tuple([tf.transpose(A_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=A_ , pooler_output=A_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , )
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = RegNetConfig
lowerCAmelCase_ = """regnet"""
lowerCAmelCase_ = """pixel_values"""
@property
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )}
lowerCAmelCase : str = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowerCAmelCase : List[str] = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"""The bare RegNet model outputting raw features without any specific head on top.""" , snake_case_ , )
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ , *A_ , **A_ )-> List[Any]:
'''simple docstring'''
super().__init__(A_ , *A_ , **A_ )
UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' )
@unpack_inputs
@add_start_docstrings_to_model_forward(A_ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_=False , )-> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]:
'''simple docstring'''
UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
UpperCamelCase = self.regnet(
pixel_values=A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ , )
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , )
@add_start_docstrings(
"""
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""" , snake_case_ , )
class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_):
def __init__( self , A_ , *A_ , **A_ )-> str:
'''simple docstring'''
super().__init__(A_ , *A_ , **A_ )
UpperCamelCase = config.num_labels
UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' )
# classification head
UpperCamelCase = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(A_ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def UpperCAmelCase_ ( self , A_ = None , A_ = None , A_ = None , A_ = None , A_=False , )-> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
'''simple docstring'''
UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
UpperCamelCase = self.regnet(
A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ )
UpperCamelCase = outputs.pooler_output if return_dict else outputs[1]
UpperCamelCase = self.classifier[0](A_ )
UpperCamelCase = self.classifier[1](A_ )
UpperCamelCase = None if labels is None else self.hf_compute_loss(labels=A_ , logits=A_ )
if not return_dict:
UpperCamelCase = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=A_ , logits=A_ , hidden_states=outputs.hidden_states )
| 3 | 1 |
'''simple docstring'''
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class SCREAMING_SNAKE_CASE__ :
def __init__( self , A_ , A_=13 , A_=10 , A_=3 , A_=2 , A_=2 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_="divided_space_time" , A_=None , )-> int:
'''simple docstring'''
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = image_size
UpperCamelCase = num_channels
UpperCamelCase = patch_size
UpperCamelCase = num_frames
UpperCamelCase = is_training
UpperCamelCase = use_labels
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = attention_type
UpperCamelCase = initializer_range
UpperCamelCase = scope
UpperCamelCase = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
UpperCamelCase = (image_size // patch_size) ** 2
UpperCamelCase = (num_frames) * self.num_patches_per_frame + 1
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels )
UpperCamelCase = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase = TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
UpperCamelCase = self.num_labels
return config
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Tuple:
'''simple docstring'''
UpperCamelCase = TimesformerModel(config=A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Any:
'''simple docstring'''
UpperCamelCase = TimesformerForVideoClassification(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
# verify the logits shape
UpperCamelCase = torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , A_ )
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs
UpperCamelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase):
lowerCAmelCase_ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
lowerCAmelCase_ = (
{"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification}
if is_torch_available()
else {}
)
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase = TimesformerModelTester(self )
UpperCamelCase = ConfigTester(
self , config_class=A_ , has_text_modality=A_ , hidden_size=37 )
def UpperCAmelCase_ ( self , A_ , A_ , A_=False )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = copy.deepcopy(A_ )
if return_labels:
if model_class in get_values(A_ ):
UpperCamelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=A_ )
return inputs_dict
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='TimeSformer does not use inputs_embeds' )
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
pass
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(A_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCamelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A_ , nn.Linear ) )
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(A_ )
UpperCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , A_ )
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*A_ )
@slow
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase = TimesformerModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
if not self.has_attentions:
pass
else:
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = True
for model_class in self.all_model_classes:
UpperCamelCase = self.model_tester.seq_length
UpperCamelCase = self.model_tester.num_frames
UpperCamelCase = True
UpperCamelCase = False
UpperCamelCase = True
UpperCamelCase = model_class(A_ )
model.to(A_ )
model.eval()
with torch.no_grad():
UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) )
UpperCamelCase = outputs.attentions
self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
UpperCamelCase = True
UpperCamelCase = model_class(A_ )
model.to(A_ )
model.eval()
with torch.no_grad():
UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) )
UpperCamelCase = outputs.attentions
self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
UpperCamelCase = len(A_ )
# Check attention is always last and order is fine
UpperCamelCase = True
UpperCamelCase = True
UpperCamelCase = model_class(A_ )
model.to(A_ )
model.eval()
with torch.no_grad():
UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) )
self.assertEqual(out_len + 1 , len(A_ ) )
UpperCamelCase = outputs.attentions
self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
def check_hidden_states_output(A_ , A_ , A_ ):
UpperCamelCase = model_class(A_ )
model.to(A_ )
model.eval()
with torch.no_grad():
UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) )
UpperCamelCase = outputs.hidden_states
UpperCamelCase = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(A_ ) , A_ )
UpperCamelCase = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = True
check_hidden_states_output(A_ , A_ , A_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase = True
check_hidden_states_output(A_ , A_ , A_ )
def A_( ):
UpperCamelCase = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset')
UpperCamelCase = np.load(A)
return list(A)
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
@cached_property
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = TimesformerForVideoClassification.from_pretrained('facebook/timesformer-base-finetuned-k400' ).to(
A_ )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_video()
UpperCamelCase = image_processor(video[:8] , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
# verify the logits
UpperCamelCase = torch.Size((1, 400) )
self.assertEqual(outputs.logits.shape , A_ )
UpperCamelCase = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(A_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
| 3 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...feature_extraction_utils import FeatureExtractionMixin
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType, logging
lowerCAmelCase : Any = logging.get_logger(__name__)
lowerCAmelCase : Optional[int] = {
'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json',
# See all Perceiver models at https://huggingface.co/models?filter=perceiver
}
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """perceiver"""
def __init__( self , A_=256 , A_=1280 , A_=768 , A_=1 , A_=26 , A_=8 , A_=8 , A_=None , A_=None , A_="kv" , A_=1 , A_=1 , A_="gelu" , A_=0.1 , A_=0.02 , A_=1e-12 , A_=True , A_=262 , A_=2048 , A_=56 , A_=[368, 496] , A_=16 , A_=1920 , A_=16 , A_=[1, 16, 224, 224] , **A_ , )-> str:
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase = num_latents
UpperCamelCase = d_latents
UpperCamelCase = d_model
UpperCamelCase = num_blocks
UpperCamelCase = num_self_attends_per_block
UpperCamelCase = num_self_attention_heads
UpperCamelCase = num_cross_attention_heads
UpperCamelCase = qk_channels
UpperCamelCase = v_channels
UpperCamelCase = cross_attention_shape_for_attention
UpperCamelCase = self_attention_widening_factor
UpperCamelCase = cross_attention_widening_factor
UpperCamelCase = hidden_act
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = initializer_range
UpperCamelCase = layer_norm_eps
UpperCamelCase = use_query_residual
# masked language modeling attributes
UpperCamelCase = vocab_size
UpperCamelCase = max_position_embeddings
# image classification attributes
UpperCamelCase = image_size
# flow attributes
UpperCamelCase = train_size
# multimodal autoencoding attributes
UpperCamelCase = num_frames
UpperCamelCase = audio_samples_per_frame
UpperCamelCase = samples_per_patch
UpperCamelCase = output_shape
class SCREAMING_SNAKE_CASE__ ( snake_case_):
@property
def UpperCAmelCase_ ( self )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('inputs', dynamic_axis),
('attention_mask', dynamic_axis),
] )
@property
def UpperCAmelCase_ ( self )-> float:
'''simple docstring'''
return 1e-4
def UpperCAmelCase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = -1 , A_ = False , A_ = None , A_ = 3 , A_ = 40 , A_ = 40 , )-> Mapping[str, Any]:
'''simple docstring'''
if isinstance(A_ , A_ ):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCamelCase = compute_effective_axis_dimension(
A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCamelCase = preprocessor.num_special_tokens_to_add(A_ )
UpperCamelCase = compute_effective_axis_dimension(
A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ )
# Generate dummy inputs according to compute batch and sequence
UpperCamelCase = [' '.join(['a'] ) * seq_length] * batch_size
UpperCamelCase = dict(preprocessor(A_ , return_tensors=A_ ) )
UpperCamelCase = inputs.pop('input_ids' )
return inputs
elif isinstance(A_ , A_ ) and preprocessor.model_input_names[0] == "pixel_values":
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCamelCase = compute_effective_axis_dimension(A_ , fixed_dimension=OnnxConfig.default_fixed_batch )
UpperCamelCase = self._generate_dummy_images(A_ , A_ , A_ , A_ )
UpperCamelCase = dict(preprocessor(images=A_ , return_tensors=A_ ) )
UpperCamelCase = inputs.pop('pixel_values' )
return inputs
else:
raise ValueError(
'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
| 3 | 1 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
lowerCAmelCase : int = logging.get_logger(__name__)
lowerCAmelCase : Any = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k',
'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v',
'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q',
'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u',
'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v',
'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out',
'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos',
'self_attn.rotary_emb': 'encoder.embed_positions',
'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm',
'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1',
'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2',
'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv',
'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm',
'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm',
'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense',
'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense',
'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm',
'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense',
'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense',
'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
}
lowerCAmelCase : Union[str, Any] = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
]
def A_( A : Union[str, Any] , A : List[str] , A : Dict , A : Tuple , A : Any):
for attribute in key.split('.'):
UpperCamelCase = getattr(A , A)
if weight_type is not None:
UpperCamelCase = getattr(A , A).shape
else:
UpperCamelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}''')
if weight_type == "weight":
UpperCamelCase = value
elif weight_type == "weight_g":
UpperCamelCase = value
elif weight_type == "weight_v":
UpperCamelCase = value
elif weight_type == "bias":
UpperCamelCase = value
elif weight_type == "running_mean":
UpperCamelCase = value
elif weight_type == "running_var":
UpperCamelCase = value
elif weight_type == "num_batches_tracked":
UpperCamelCase = value
elif weight_type == "inv_freq":
UpperCamelCase = value
else:
UpperCamelCase = value
logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''')
def A_( A : int , A : Union[str, Any] , A : str):
UpperCamelCase = []
UpperCamelCase = fairseq_model.state_dict()
UpperCamelCase = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
UpperCamelCase = False
if "conv_layers" in name:
load_conv_layer(
A , A , A , A , hf_model.config.feat_extract_norm == 'group' , )
UpperCamelCase = True
else:
for key, mapped_key in MAPPING.items():
UpperCamelCase = 'wav2vec2_conformer.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]:
UpperCamelCase = True
if "*" in mapped_key:
UpperCamelCase = name.split(A)[0].split('.')[-2]
UpperCamelCase = mapped_key.replace('*' , A)
if "pos_bias_u" in name:
UpperCamelCase = None
elif "pos_bias_v" in name:
UpperCamelCase = None
elif "weight_g" in name:
UpperCamelCase = 'weight_g'
elif "weight_v" in name:
UpperCamelCase = 'weight_v'
elif "bias" in name:
UpperCamelCase = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCamelCase = 'weight'
elif "running_mean" in name:
UpperCamelCase = 'running_mean'
elif "inv_freq" in name:
UpperCamelCase = 'inv_freq'
elif "running_var" in name:
UpperCamelCase = 'running_var'
elif "num_batches_tracked" in name:
UpperCamelCase = 'num_batches_tracked'
else:
UpperCamelCase = None
set_recursively(A , A , A , A , A)
continue
if not is_used:
unused_weights.append(A)
logger.warning(f'''Unused weights: {unused_weights}''')
def A_( A : str , A : int , A : int , A : List[str] , A : Tuple):
UpperCamelCase = full_name.split('conv_layers.')[-1]
UpperCamelCase = name.split('.')
UpperCamelCase = int(items[0])
UpperCamelCase = int(items[1])
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''')
UpperCamelCase = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''')
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''')
UpperCamelCase = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''')
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''')
UpperCamelCase = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''')
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''')
UpperCamelCase = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''')
else:
unused_weights.append(A)
@torch.no_grad()
def A_( A : Dict , A : List[str] , A : Any=None , A : str=None , A : Optional[int]=True):
if config_path is not None:
UpperCamelCase = WavaVecaConformerConfig.from_pretrained(A , hidden_act='swish')
else:
UpperCamelCase = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
UpperCamelCase = 'rotary'
if is_finetuned:
if dict_path:
UpperCamelCase = Dictionary.load(A)
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCamelCase = target_dict.pad_index
UpperCamelCase = target_dict.bos_index
UpperCamelCase = target_dict.eos_index
UpperCamelCase = len(target_dict.symbols)
UpperCamelCase = os.path.join(A , 'vocab.json')
if not os.path.isdir(A):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(A))
return
os.makedirs(A , exist_ok=A)
UpperCamelCase = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCamelCase = 0
UpperCamelCase = 1
with open(A , 'w' , encoding='utf-8') as vocab_handle:
json.dump(A , A)
UpperCamelCase = WavaVecaCTCTokenizer(
A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=A , )
UpperCamelCase = True if config.feat_extract_norm == 'layer' else False
UpperCamelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=A , return_attention_mask=A , )
UpperCamelCase = WavaVecaProcessor(feature_extractor=A , tokenizer=A)
processor.save_pretrained(A)
UpperCamelCase = WavaVecaConformerForCTC(A)
else:
UpperCamelCase = WavaVecaConformerForPreTraining(A)
if is_finetuned:
UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1])})
else:
UpperCamelCase = argparse.Namespace(task='audio_pretraining')
UpperCamelCase = fairseq.tasks.setup_task(A)
UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=A)
UpperCamelCase = model[0].eval()
recursively_load_weights(A , A , not is_finetuned)
hf_wavavec.save_pretrained(A)
if __name__ == "__main__":
lowerCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
lowerCAmelCase : Optional[int] = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 3 |
'''simple docstring'''
from ....configuration_utils import PretrainedConfig
from ....utils import logging
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
lowerCAmelCase : Dict = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """mctct"""
def __init__( self , A_=8065 , A_=1536 , A_=36 , A_=6144 , A_=4 , A_=384 , A_=920 , A_=1e-5 , A_=0.3 , A_="relu" , A_=0.02 , A_=0.3 , A_=0.3 , A_=1 , A_=0 , A_=2 , A_=1 , A_=0.3 , A_=1 , A_=(7,) , A_=(3,) , A_=80 , A_=1 , A_=None , A_="sum" , A_=False , **A_ , )-> str:
'''simple docstring'''
super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ )
UpperCamelCase = vocab_size
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = intermediate_size
UpperCamelCase = num_attention_heads
UpperCamelCase = attention_head_dim
UpperCamelCase = max_position_embeddings
UpperCamelCase = layer_norm_eps
UpperCamelCase = layerdrop
UpperCamelCase = hidden_act
UpperCamelCase = initializer_range
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = pad_token_id
UpperCamelCase = bos_token_id
UpperCamelCase = eos_token_id
UpperCamelCase = conv_glu_dim
UpperCamelCase = conv_dropout
UpperCamelCase = num_conv_layers
UpperCamelCase = input_feat_per_channel
UpperCamelCase = input_channels
UpperCamelCase = conv_channels
UpperCamelCase = ctc_loss_reduction
UpperCamelCase = ctc_zero_infinity
# prevents config testing fail with exporting to json
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` '
F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, '''
F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
| 3 | 1 |
'''simple docstring'''
import numpy
# List of input, output pairs
lowerCAmelCase : Dict = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
lowerCAmelCase : int = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50))
lowerCAmelCase : str = [2, 4, 1, 5]
lowerCAmelCase : int = len(train_data)
lowerCAmelCase : Union[str, Any] = 0.009
def A_( A : List[str] , A : Any="train"):
return calculate_hypothesis_value(A , A) - output(
A , A)
def A_( A : Dict):
UpperCamelCase = 0
for i in range(len(A) - 1):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def A_( A : int , A : int):
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def A_( A : str , A : Optional[Any]):
if data_set == "train":
return _hypothesis_value(train_data[example_no][0])
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0])
return None
def A_( A : List[Any] , A : Optional[Any]=m):
UpperCamelCase = 0
for i in range(A):
if index == -1:
summation_value += _error(A)
else:
summation_value += _error(A) * train_data[i][0][index]
return summation_value
def A_( A : Dict):
UpperCamelCase = summation_of_cost_derivative(A , A) / m
return cost_derivative_value
def A_( ):
global parameter_vector
# Tune these values to set a tolerance value for predicted output
UpperCamelCase = 0.000_002
UpperCamelCase = 0
UpperCamelCase = 0
while True:
j += 1
UpperCamelCase = [0, 0, 0, 0]
for i in range(0 , len(A)):
UpperCamelCase = get_cost_derivative(i - 1)
UpperCamelCase = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
A , A , atol=A , rtol=A , ):
break
UpperCamelCase = temp_parameter_vector
print(('Number of iterations:', j))
def A_( ):
for i in range(len(A)):
print(('Actual output value:', output(A , 'test')))
print(('Hypothesis output:', calculate_hypothesis_value(A , 'test')))
if __name__ == "__main__":
run_gradient_descent()
print('\nTesting gradient descent for a linear hypothesis function.\n')
test_gradient_descent()
| 3 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
lowerCAmelCase : Tuple = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
lowerCAmelCase : Optional[int] = TaTokenizerFast
lowerCAmelCase : Any = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[int] = [
'MT5EncoderModel',
'MT5ForConditionalGeneration',
'MT5ForQuestionAnswering',
'MT5Model',
'MT5PreTrainedModel',
'MT5Stack',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Dict = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[Any] = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model']
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
lowerCAmelCase : Tuple = _LazyModule(
__name__,
globals()['__file__'],
_import_structure,
extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast},
module_spec=__spec__,
)
| 3 | 1 |
'''simple docstring'''
from abc import ABC, abstractmethod
from typing import List, Optional
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self )-> Tuple:
'''simple docstring'''
self.test()
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
UpperCamelCase = 0
UpperCamelCase = False
while not completed:
if counter == 1:
self.reset()
UpperCamelCase = self.advance()
if not self.does_advance(A_ ):
raise Exception(
'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' )
UpperCamelCase , UpperCamelCase , UpperCamelCase = self.update(A_ )
counter += 1
if counter > 10000:
raise Exception('update() does not fulfill the constraint.' )
if self.remaining() != 0:
raise Exception('Custom Constraint is not defined correctly.' )
@abstractmethod
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def UpperCAmelCase_ ( self , A_ )-> Dict:
'''simple docstring'''
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def UpperCAmelCase_ ( self , A_ )-> Optional[int]:
'''simple docstring'''
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def UpperCAmelCase_ ( self , A_=False )-> Optional[int]:
'''simple docstring'''
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ )-> Dict:
'''simple docstring'''
super(A_ , self ).__init__()
if not isinstance(A_ , A_ ) or len(A_ ) == 0:
raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' )
if any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids ):
raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' )
UpperCamelCase = token_ids
UpperCamelCase = len(self.token_ids )
UpperCamelCase = -1 # the index of the currently fulfilled step
UpperCamelCase = False
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
if self.completed:
return None
return self.token_ids[self.fulfilled_idx + 1]
def UpperCAmelCase_ ( self , A_ )-> Optional[int]:
'''simple docstring'''
if not isinstance(A_ , A_ ):
raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}''' )
if self.completed:
return False
return token_id == self.token_ids[self.fulfilled_idx + 1]
def UpperCAmelCase_ ( self , A_ )-> Tuple:
'''simple docstring'''
if not isinstance(A_ , A_ ):
raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}''' )
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
if self.does_advance(A_ ):
self.fulfilled_idx += 1
UpperCamelCase = True
if self.fulfilled_idx == (self.seqlen - 1):
UpperCamelCase = True
UpperCamelCase = completed
else:
# failed to make progress.
UpperCamelCase = True
self.reset()
return stepped, completed, reset
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
UpperCamelCase = False
UpperCamelCase = 0
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
return self.seqlen - (self.fulfilled_idx + 1)
def UpperCAmelCase_ ( self , A_=False )-> str:
'''simple docstring'''
UpperCamelCase = PhrasalConstraint(self.token_ids )
if stateful:
UpperCamelCase = self.seqlen
UpperCamelCase = self.fulfilled_idx
UpperCamelCase = self.completed
return new_constraint
class SCREAMING_SNAKE_CASE__ :
def __init__( self , A_ , A_=True )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = max([len(A_ ) for one in nested_token_ids] )
UpperCamelCase = {}
for token_ids in nested_token_ids:
UpperCamelCase = root
for tidx, token_id in enumerate(A_ ):
if token_id not in level:
UpperCamelCase = {}
UpperCamelCase = level[token_id]
if no_subsets and self.has_subsets(A_ , A_ ):
raise ValueError(
'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is'
F''' {nested_token_ids}.''' )
UpperCamelCase = root
def UpperCAmelCase_ ( self , A_ )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.trie
for current_token in current_seq:
UpperCamelCase = start[current_token]
UpperCamelCase = list(start.keys() )
return next_tokens
def UpperCAmelCase_ ( self , A_ )-> List[str]:
'''simple docstring'''
UpperCamelCase = self.next_tokens(A_ )
return len(A_ ) == 0
def UpperCAmelCase_ ( self , A_ )-> str:
'''simple docstring'''
UpperCamelCase = list(root.values() )
if len(A_ ) == 0:
return 1
else:
return sum([self.count_leaves(A_ ) for nn in next_nodes] )
def UpperCAmelCase_ ( self , A_ , A_ )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = self.count_leaves(A_ )
return len(A_ ) != leaf_count
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ )-> Optional[int]:
'''simple docstring'''
super(A_ , self ).__init__()
if not isinstance(A_ , A_ ) or len(A_ ) == 0:
raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' )
if any(not isinstance(A_ , A_ ) for token_ids in nested_token_ids ):
raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' )
if any(
any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids )
for token_ids in nested_token_ids ):
raise ValueError(
F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' )
UpperCamelCase = DisjunctiveTrie(A_ )
UpperCamelCase = nested_token_ids
UpperCamelCase = self.trie.max_height
UpperCamelCase = []
UpperCamelCase = False
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase = self.trie.next_tokens(self.current_seq )
if len(A_ ) == 0:
return None
else:
return token_list
def UpperCAmelCase_ ( self , A_ )-> Any:
'''simple docstring'''
if not isinstance(A_ , A_ ):
raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}''' )
UpperCamelCase = self.trie.next_tokens(self.current_seq )
return token_id in next_tokens
def UpperCAmelCase_ ( self , A_ )-> Any:
'''simple docstring'''
if not isinstance(A_ , A_ ):
raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}''' )
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
if self.does_advance(A_ ):
self.current_seq.append(A_ )
UpperCamelCase = True
else:
UpperCamelCase = True
self.reset()
UpperCamelCase = self.trie.reached_leaf(self.current_seq )
UpperCamelCase = completed
return stepped, completed, reset
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = False
UpperCamelCase = []
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
if self.completed:
# since this can be completed without reaching max height
return 0
else:
return self.seqlen - len(self.current_seq )
def UpperCAmelCase_ ( self , A_=False )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = DisjunctiveConstraint(self.token_ids )
if stateful:
UpperCamelCase = self.seqlen
UpperCamelCase = self.current_seq
UpperCamelCase = self.completed
return new_constraint
class SCREAMING_SNAKE_CASE__ :
def __init__( self , A_ )-> int:
'''simple docstring'''
UpperCamelCase = constraints
# max # of steps required to fulfill a given constraint
UpperCamelCase = max([c.seqlen for c in constraints] )
UpperCamelCase = len(A_ )
UpperCamelCase = False
self.init_state()
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
UpperCamelCase = []
UpperCamelCase = None
UpperCamelCase = [constraint.copy(stateful=A_ ) for constraint in self.constraints]
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = 0
if self.inprogress_constraint:
# extra points for having a constraint mid-fulfilled
add += self.max_seqlen - self.inprogress_constraint.remaining()
return (len(self.complete_constraints ) * self.max_seqlen) + add
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = []
if self.inprogress_constraint is None:
for constraint in self.pending_constraints: # "pending" == "unfulfilled yet"
UpperCamelCase = constraint.advance()
if isinstance(A_ , A_ ):
token_list.append(A_ )
elif isinstance(A_ , A_ ):
token_list.extend(A_ )
else:
UpperCamelCase = self.inprogress_constraint.advance()
if isinstance(A_ , A_ ):
token_list.append(A_ )
elif isinstance(A_ , A_ ):
token_list.extend(A_ )
if len(A_ ) == 0:
return None
else:
return token_list
def UpperCAmelCase_ ( self , A_ )-> Tuple:
'''simple docstring'''
self.init_state()
if token_ids is not None:
for token in token_ids:
# completes or steps **one** constraint
UpperCamelCase , UpperCamelCase = self.add(A_ )
# the entire list of constraints are fulfilled
if self.completed:
break
def UpperCAmelCase_ ( self , A_ )-> int:
'''simple docstring'''
if not isinstance(A_ , A_ ):
raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' )
UpperCamelCase , UpperCamelCase = False, False
if self.completed:
UpperCamelCase = True
UpperCamelCase = False
return complete, stepped
if self.inprogress_constraint is not None:
# In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current
# job, simply update the state
UpperCamelCase , UpperCamelCase , UpperCamelCase = self.inprogress_constraint.update(A_ )
if reset:
# 1. If the next token breaks the progress, then we must restart.
# e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books".
# But that doesn't mean we self.init_state(), since we only reset the state for this particular
# constraint, not the full list of constraints.
self.pending_constraints.append(self.inprogress_constraint.copy(stateful=A_ ) )
UpperCamelCase = None
if complete:
# 2. If the next token completes the constraint, move it to completed list, set
# inprogress to None. If there are no pending constraints either, then this full list of constraints
# is complete.
self.complete_constraints.append(self.inprogress_constraint )
UpperCamelCase = None
if len(self.pending_constraints ) == 0:
# we're done!
UpperCamelCase = True
else:
# Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list
# of constraints?
for cidx, pending_constraint in enumerate(self.pending_constraints ):
if pending_constraint.does_advance(A_ ):
UpperCamelCase , UpperCamelCase , UpperCamelCase = pending_constraint.update(A_ )
if not stepped:
raise Exception(
'`constraint.update(token_id)` is not yielding incremental progress, '
'even though `constraint.does_advance(token_id)` is true.' )
if complete:
self.complete_constraints.append(A_ )
UpperCamelCase = None
if not complete and stepped:
UpperCamelCase = pending_constraint
if complete or stepped:
# If we made any progress at all, then it's at least not a "pending constraint".
UpperCamelCase = (
self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]
)
if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None:
# If there's no longer any pending after this and no inprogress either, then we must be
# complete.
UpperCamelCase = True
break # prevent accidentally stepping through multiple constraints with just one token.
return complete, stepped
def UpperCAmelCase_ ( self , A_=True )-> Dict:
'''simple docstring'''
UpperCamelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects
# throughout this process. So it's at initialization state.
if stateful:
UpperCamelCase = [
constraint.copy(stateful=A_ ) for constraint in self.complete_constraints
]
if self.inprogress_constraint is not None:
UpperCamelCase = self.inprogress_constraint.copy(stateful=A_ )
UpperCamelCase = [constraint.copy() for constraint in self.pending_constraints]
return new_state
| 3 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=False , A_=True , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , )-> Dict:
'''simple docstring'''
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = num_channels
UpperCamelCase = image_size
UpperCamelCase = min_resolution
UpperCamelCase = max_resolution
UpperCamelCase = do_resize
UpperCamelCase = size if size is not None else {'height': 18, 'width': 20}
UpperCamelCase = do_thumbnail
UpperCamelCase = do_align_axis
UpperCamelCase = do_pad
UpperCamelCase = do_normalize
UpperCamelCase = image_mean
UpperCamelCase = image_std
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase):
lowerCAmelCase_ = DonutImageProcessor if is_vision_available() else None
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
UpperCamelCase = DonutImageProcessingTester(self )
@property
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A_ , 'do_resize' ) )
self.assertTrue(hasattr(A_ , 'size' ) )
self.assertTrue(hasattr(A_ , 'do_thumbnail' ) )
self.assertTrue(hasattr(A_ , 'do_align_long_axis' ) )
self.assertTrue(hasattr(A_ , 'do_pad' ) )
self.assertTrue(hasattr(A_ , 'do_normalize' ) )
self.assertTrue(hasattr(A_ , 'image_mean' ) )
self.assertTrue(hasattr(A_ , 'image_std' ) )
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 20} )
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
# Previous config had dimensions in (width, height) order
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {'height': 84, 'width': 42} )
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
pass
@is_flaky()
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , Image.Image )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , np.ndarray )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , torch.Tensor )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
| 3 | 1 |
'''simple docstring'''
import re
def A_( A : str):
if len(re.findall('[ATCG]' , A)) != len(A):
raise ValueError('Invalid Strand')
return dna.translate(dna.maketrans('ATCG' , 'TAGC'))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 |
'''simple docstring'''
def A_( A : list[int]):
UpperCamelCase = []
if len(A) == 1:
return [nums.copy()]
for _ in range(len(A)):
UpperCamelCase = nums.pop(0)
UpperCamelCase = permute(A)
for perm in permutations:
perm.append(A)
result.extend(A)
nums.append(A)
return result
def A_( A : str):
def backtrack(A : str):
if start == len(A) - 1:
output.append(nums[:])
else:
for i in range(A , len(A)):
UpperCamelCase , UpperCamelCase = nums[i], nums[start]
backtrack(start + 1)
UpperCamelCase , UpperCamelCase = nums[i], nums[start] # backtrack
UpperCamelCase = []
backtrack(0)
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
lowerCAmelCase : Dict = permutea([1, 2, 3])
print(res)
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
def A_( ):
for n in range(1 , 100_0000):
yield n * (n + 1) // 2
def A_( A : Tuple):
UpperCamelCase = 1
UpperCamelCase = 2
while i * i <= n:
UpperCamelCase = 0
while n % i == 0:
n //= i
multiplicity += 1
divisors_count *= multiplicity + 1
i += 1
if n > 1:
divisors_count *= 2
return divisors_count
def A_( ):
return next(i for i in triangle_number_generator() if count_divisors(A) > 500)
if __name__ == "__main__":
print(solution())
| 3 |
'''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def A_( A : float , A : float , A : int):
UpperCamelCase = x
UpperCamelCase = y
for step in range(A): # noqa: B007
UpperCamelCase = a * a - b * b + x
UpperCamelCase = 2 * a * b + y
UpperCamelCase = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def A_( A : float):
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def A_( A : float):
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(A , 1 , 1))
def A_( A : int = 800 , A : int = 600 , A : float = -0.6 , A : float = 0 , A : float = 3.2 , A : int = 50 , A : bool = True , ):
UpperCamelCase = Image.new('RGB' , (image_width, image_height))
UpperCamelCase = img.load()
# loop through the image-coordinates
for image_x in range(A):
for image_y in range(A):
# determine the figure-coordinates based on the image-coordinates
UpperCamelCase = figure_width / image_width * image_height
UpperCamelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width
UpperCamelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height
UpperCamelCase = get_distance(A , A , A)
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
UpperCamelCase = get_color_coded_rgb(A)
else:
UpperCamelCase = get_black_and_white_rgb(A)
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
lowerCAmelCase : Any = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 3 | 1 |
'''simple docstring'''
import random
import unittest
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
skip_first_batches,
)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_=0.01 , A_=1000 )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = p_stop
UpperCamelCase = max_length
def __iter__( self )-> Any:
'''simple docstring'''
UpperCamelCase = 0
UpperCamelCase = False
while not stop and count < self.max_length:
yield count
count += 1
UpperCamelCase = random.random() < self.p_stop
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
def UpperCAmelCase_ ( self , A_ , A_ , A_=False , A_=True )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = [
BatchSamplerShard(A_ , 2 , A_ , split_batches=A_ , even_batches=A_ )
for i in range(2 )
]
UpperCamelCase = [list(A_ ) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
self.assertListEqual([len(A_ ) for shard in batch_sampler_shards] , [len(A_ ) for e in expected] )
self.assertListEqual(A_ , A_ )
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=A_ )
UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(A_ , A_ )
UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=A_ )
# Expected shouldn't change
self.check_batch_sampler_shards(A_ , A_ )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=A_ )
UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]],
]
self.check_batch_sampler_shards(A_ , A_ )
UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=A_ )
UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A_ , A_ )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=A_ )
UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]],
]
self.check_batch_sampler_shards(A_ , A_ )
UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=A_ )
UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A_ , A_ )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=A_ )
UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]],
]
self.check_batch_sampler_shards(A_ , A_ )
UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=A_ )
UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A_ , A_ )
# Check the shards when the dataset is very small.
UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=A_ )
UpperCamelCase = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(A_ , A_ )
UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=A_ )
UpperCamelCase = [[], []]
self.check_batch_sampler_shards(A_ , A_ )
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=A_ )
UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ )
UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=A_ )
# Expected shouldn't change
self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ )
# Check the shards when the dataset is not a round multiple of batch size.
UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=A_ )
UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]],
]
self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ )
UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=A_ )
UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=A_ )
UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]],
]
self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ )
UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=A_ )
UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ )
# Check the shards when the dataset is very small.
UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=A_ )
UpperCamelCase = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ )
UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=A_ )
UpperCamelCase = [[], []]
self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ )
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=A_ )
UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ )
UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=A_ )
# Expected shouldn't change
self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=A_ )
UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ )
UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=A_ )
UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=A_ )
UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]],
]
self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ )
UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=A_ )
UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=A_ )
UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ )
UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=A_ )
UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ )
# Check the shards when the dataset is very small.
UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=A_ )
UpperCamelCase = [[[0, 1]], []]
self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ )
UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=A_ )
UpperCamelCase = [[], []]
self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ )
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=A_ )
UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ , even_batches=A_ )
UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=A_ )
# Expected shouldn't change
self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ , even_batches=A_ )
# Check the shards when the dataset is not a round multiple of batch size.
UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=A_ )
UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ , even_batches=A_ )
UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=A_ )
UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ , even_batches=A_ )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=A_ )
UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ , even_batches=A_ )
UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=A_ )
UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ , even_batches=A_ )
# Check the shards when the dataset is very small.
UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=A_ )
UpperCamelCase = [[[0, 1]], []]
self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ , even_batches=A_ )
UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=A_ )
UpperCamelCase = [[], []]
self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ , even_batches=A_ )
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
UpperCamelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]]
UpperCamelCase = [BatchSamplerShard(A_ , 2 , A_ , even_batches=A_ ) for i in range(2 )]
self.assertEqual(len(batch_sampler_shards[0] ) , 3 )
self.assertEqual(len(batch_sampler_shards[1] ) , 2 )
self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] )
self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_=False , A_=2 , A_=False )-> Optional[int]:
'''simple docstring'''
random.seed(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = [
IterableDatasetShard(
A_ , batch_size=A_ , drop_last=A_ , num_processes=A_ , process_index=A_ , split_batches=A_ , )
for i in range(A_ )
]
UpperCamelCase = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(A_ )
iterable_dataset_lists.append(list(A_ ) )
UpperCamelCase = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
UpperCamelCase = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
self.assertEqual(len(A_ ) , len(A_ ) )
self.assertTrue(len(A_ ) % shard_batch_size == 0 )
UpperCamelCase = []
for idx in range(0 , len(A_ ) , A_ ):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(A_ ) < len(A_ ):
reference += reference
self.assertListEqual(A_ , reference[: len(A_ )] )
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase = 42
UpperCamelCase = RandomIterableDataset()
self.check_iterable_dataset_shards(A_ , A_ , batch_size=4 , drop_last=A_ , split_batches=A_ )
self.check_iterable_dataset_shards(A_ , A_ , batch_size=4 , drop_last=A_ , split_batches=A_ )
self.check_iterable_dataset_shards(A_ , A_ , batch_size=4 , drop_last=A_ , split_batches=A_ )
self.check_iterable_dataset_shards(A_ , A_ , batch_size=4 , drop_last=A_ , split_batches=A_ )
# Edge case with a very small dataset
UpperCamelCase = RandomIterableDataset(max_length=2 )
self.check_iterable_dataset_shards(A_ , A_ , batch_size=4 , drop_last=A_ , split_batches=A_ )
self.check_iterable_dataset_shards(A_ , A_ , batch_size=4 , drop_last=A_ , split_batches=A_ )
self.check_iterable_dataset_shards(A_ , A_ , batch_size=4 , drop_last=A_ , split_batches=A_ )
self.check_iterable_dataset_shards(A_ , A_ , batch_size=4 , drop_last=A_ , split_batches=A_ )
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = BatchSampler(range(16 ) , batch_size=4 , drop_last=A_ )
UpperCamelCase = SkipBatchSampler(A_ , 2 )
self.assertListEqual(list(A_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 )
self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = DataLoader(list(range(16 ) ) , batch_size=4 )
UpperCamelCase = skip_first_batches(A_ , num_batches=2 )
self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = DataLoaderShard(list(range(16 ) ) , batch_size=4 )
for idx, _ in enumerate(A_ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(A_ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
Accelerator()
UpperCamelCase = DataLoaderDispatcher(range(16 ) , batch_size=4 )
for idx, _ in enumerate(A_ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(A_ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
| 3 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowerCAmelCase : Optional[Any] = {
'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : str = [
'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST',
'FalconForCausalLM',
'FalconModel',
'FalconPreTrainedModel',
'FalconForSequenceClassification',
'FalconForTokenClassification',
'FalconForQuestionAnswering',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 3 | 1 |
'''simple docstring'''
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
lowerCAmelCase : str = None
try:
import msvcrt
except ImportError:
lowerCAmelCase : Optional[Any] = None
try:
import fcntl
except ImportError:
lowerCAmelCase : Any = None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
lowerCAmelCase : Optional[Any] = OSError
# Data
# ------------------------------------------------
lowerCAmelCase : List[str] = [
'Timeout',
'BaseFileLock',
'WindowsFileLock',
'UnixFileLock',
'SoftFileLock',
'FileLock',
]
lowerCAmelCase : Dict = '3.0.12'
lowerCAmelCase : Optional[int] = None
def A_( ):
global _logger
UpperCamelCase = _logger or logging.getLogger(__name__)
return _logger
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ )-> str:
'''simple docstring'''
UpperCamelCase = lock_file
return None
def __str__( self )-> Tuple:
'''simple docstring'''
UpperCamelCase = F'''The file lock \'{self.lock_file}\' could not be acquired.'''
return temp
class SCREAMING_SNAKE_CASE__ :
def __init__( self , A_ )-> Any:
'''simple docstring'''
UpperCamelCase = lock
return None
def __enter__( self )-> Any:
'''simple docstring'''
return self.lock
def __exit__( self , A_ , A_ , A_ )-> Any:
'''simple docstring'''
self.lock.release()
return None
class SCREAMING_SNAKE_CASE__ :
def __init__( self , A_ , A_=-1 , A_=None )-> List[Any]:
'''simple docstring'''
UpperCamelCase = max_filename_length if max_filename_length is not None else 255
# Hash the filename if it's too long
UpperCamelCase = self.hash_filename_if_too_long(A_ , A_ )
# The path to the lock file.
UpperCamelCase = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
UpperCamelCase = None
# The default timeout value.
UpperCamelCase = timeout
# We use this lock primarily for the lock counter.
UpperCamelCase = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
UpperCamelCase = 0
return None
@property
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
return self._lock_file
@property
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
return self._timeout
@timeout.setter
def UpperCAmelCase_ ( self , A_ )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = float(A_ )
return None
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
raise NotImplementedError()
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
raise NotImplementedError()
@property
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
return self._lock_file_fd is not None
def UpperCAmelCase_ ( self , A_=None , A_=0.05 )-> int:
'''simple docstring'''
if timeout is None:
UpperCamelCase = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
UpperCamelCase = id(self )
UpperCamelCase = self._lock_file
UpperCamelCase = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(F'''Attempting to acquire lock {lock_id} on {lock_filename}''' )
self._acquire()
if self.is_locked:
logger().debug(F'''Lock {lock_id} acquired on {lock_filename}''' )
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(F'''Timeout on acquiring lock {lock_id} on {lock_filename}''' )
raise Timeout(self._lock_file )
else:
logger().debug(
F'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' )
time.sleep(A_ )
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
UpperCamelCase = max(0 , self._lock_counter - 1 )
raise
return _Acquire_ReturnProxy(lock=self )
def UpperCAmelCase_ ( self , A_=False )-> str:
'''simple docstring'''
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
UpperCamelCase = id(self )
UpperCamelCase = self._lock_file
logger().debug(F'''Attempting to release lock {lock_id} on {lock_filename}''' )
self._release()
UpperCamelCase = 0
logger().debug(F'''Lock {lock_id} released on {lock_filename}''' )
return None
def __enter__( self )-> List[str]:
'''simple docstring'''
self.acquire()
return self
def __exit__( self , A_ , A_ , A_ )-> Union[str, Any]:
'''simple docstring'''
self.release()
return None
def __del__( self )-> List[Any]:
'''simple docstring'''
self.release(force=A_ )
return None
def UpperCAmelCase_ ( self , A_ , A_ )-> str:
'''simple docstring'''
UpperCamelCase = os.path.basename(A_ )
if len(A_ ) > max_length and max_length > 0:
UpperCamelCase = os.path.dirname(A_ )
UpperCamelCase = str(hash(A_ ) )
UpperCamelCase = filename[: max_length - len(A_ ) - 8] + '...' + hashed_filename + '.lock'
return os.path.join(A_ , A_ )
else:
return path
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ , A_=-1 , A_=None )-> Tuple:
'''simple docstring'''
from .file_utils import relative_to_absolute_path
super().__init__(A_ , timeout=A_ , max_filename_length=A_ )
UpperCamelCase = '\\\\?\\' + relative_to_absolute_path(self.lock_file )
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
UpperCamelCase = os.open(self._lock_file , A_ )
except OSError:
pass
else:
try:
msvcrt.locking(A_ , msvcrt.LK_NBLCK , 1 )
except OSError:
os.close(A_ )
else:
UpperCamelCase = fd
return None
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
UpperCamelCase = self._lock_file_fd
UpperCamelCase = None
msvcrt.locking(A_ , msvcrt.LK_UNLCK , 1 )
os.close(A_ )
try:
os.remove(self._lock_file )
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ , A_=-1 , A_=None )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = os.statvfs(os.path.dirname(A_ ) ).f_namemax
super().__init__(A_ , timeout=A_ , max_filename_length=A_ )
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC
UpperCamelCase = os.open(self._lock_file , A_ )
try:
fcntl.flock(A_ , fcntl.LOCK_EX | fcntl.LOCK_NB )
except OSError:
os.close(A_ )
else:
UpperCamelCase = fd
return None
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase = self._lock_file_fd
UpperCamelCase = None
fcntl.flock(A_ , fcntl.LOCK_UN )
os.close(A_ )
return None
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
UpperCamelCase = os.open(self._lock_file , A_ )
except OSError:
pass
else:
UpperCamelCase = fd
return None
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
os.close(self._lock_file_fd )
UpperCamelCase = None
try:
os.remove(self._lock_file )
# The file is already deleted and that's what we want.
except OSError:
pass
return None
lowerCAmelCase : List[str] = None
if msvcrt:
lowerCAmelCase : Union[str, Any] = WindowsFileLock
elif fcntl:
lowerCAmelCase : Any = UnixFileLock
else:
lowerCAmelCase : Dict = SoftFileLock
if warnings is not None:
warnings.warn('only soft file lock is available')
| 3 |
'''simple docstring'''
lowerCAmelCase : Optional[Any] = {
'A': ['B', 'C', 'E'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B', 'D'],
'F': ['C'],
'G': ['C'],
}
def A_( A : dict , A : str , A : Optional[Any]):
UpperCamelCase = set()
# keep track of all the paths to be checked
UpperCamelCase = [[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
UpperCamelCase = queue.pop(0)
# get the last node from the path
UpperCamelCase = path[-1]
if node not in explored:
UpperCamelCase = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
UpperCamelCase = list(A)
new_path.append(A)
queue.append(A)
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(A)
# in case there's no path between the 2 nodes
return []
def A_( A : dict , A : str , A : Tuple):
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
UpperCamelCase = [start]
UpperCamelCase = set(A)
# Keep tab on distances from `start` node.
UpperCamelCase = {start: 0, target: -1}
while queue:
UpperCamelCase = queue.pop(0)
if node == target:
UpperCamelCase = (
dist[node] if dist[target] == -1 else min(dist[target] , dist[node])
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(A)
queue.append(A)
UpperCamelCase = dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
| 3 | 1 |
'''simple docstring'''
from __future__ import annotations
from typing import Generic, TypeVar
lowerCAmelCase : Dict = TypeVar('T')
class SCREAMING_SNAKE_CASE__ ( Generic[T]):
def __init__( self , A_ )-> None:
'''simple docstring'''
UpperCamelCase = data
UpperCamelCase = self
UpperCamelCase = 0
class SCREAMING_SNAKE_CASE__ ( Generic[T]):
def __init__( self )-> None:
'''simple docstring'''
UpperCamelCase = {}
def UpperCAmelCase_ ( self , A_ )-> None:
'''simple docstring'''
UpperCamelCase = DisjointSetTreeNode(A_ )
def UpperCAmelCase_ ( self , A_ )-> DisjointSetTreeNode[T]:
'''simple docstring'''
UpperCamelCase = self.map[data]
if elem_ref != elem_ref.parent:
UpperCamelCase = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def UpperCAmelCase_ ( self , A_ , A_ )-> None:
'''simple docstring'''
if nodea.rank > nodea.rank:
UpperCamelCase = nodea
else:
UpperCamelCase = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def UpperCAmelCase_ ( self , A_ , A_ )-> None:
'''simple docstring'''
self.link(self.find_set(A_ ) , self.find_set(A_ ) )
class SCREAMING_SNAKE_CASE__ ( Generic[T]):
def __init__( self )-> None:
'''simple docstring'''
UpperCamelCase = {}
def UpperCAmelCase_ ( self , A_ )-> None:
'''simple docstring'''
if node not in self.connections:
UpperCamelCase = {}
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> None:
'''simple docstring'''
self.add_node(A_ )
self.add_node(A_ )
UpperCamelCase = weight
UpperCamelCase = weight
def UpperCAmelCase_ ( self )-> GraphUndirectedWeighted[T]:
'''simple docstring'''
UpperCamelCase = []
UpperCamelCase = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda A_ : x[2] )
# creating the disjoint set
UpperCamelCase = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(A_ )
# MST generation
UpperCamelCase = 0
UpperCamelCase = 0
UpperCamelCase = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
UpperCamelCase , UpperCamelCase , UpperCamelCase = edges[index]
index += 1
UpperCamelCase = disjoint_set.find_set(A_ )
UpperCamelCase = disjoint_set.find_set(A_ )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(A_ , A_ , A_ )
disjoint_set.union(A_ , A_ )
return graph
| 3 |
'''simple docstring'''
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class SCREAMING_SNAKE_CASE__ :
def __init__( self )-> Dict:
'''simple docstring'''
UpperCamelCase = ''
UpperCamelCase = ''
UpperCamelCase = []
UpperCamelCase = 0
UpperCamelCase = 256
UpperCamelCase = 0
UpperCamelCase = 0
UpperCamelCase = 0
UpperCamelCase = 0
def UpperCAmelCase_ ( self , A_ )-> str:
'''simple docstring'''
UpperCamelCase = cva.imread(A_ , 0 )
UpperCamelCase = copy.deepcopy(self.img )
UpperCamelCase , UpperCamelCase , UpperCamelCase = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' )
UpperCamelCase = np.sum(A_ )
for i in range(len(A_ ) ):
UpperCamelCase = x[i] / self.k
self.sk += prk
UpperCamelCase = (self.L - 1) * self.sk
if self.rem != 0:
UpperCamelCase = int(last % last )
UpperCamelCase = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(A_ )
UpperCamelCase = int(np.ma.count(self.img ) / self.img[1].size )
UpperCamelCase = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCamelCase = self.img[j][i]
if num != self.last_list[num]:
UpperCamelCase = self.last_list[num]
cva.imwrite('output_data/output.jpg' , self.img )
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
plt.hist(self.img.ravel() , 256 , [0, 256] )
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
cva.imshow('Output-Image' , self.img )
cva.imshow('Input-Image' , self.original_image )
cva.waitKey(5000 )
cva.destroyAllWindows()
if __name__ == "__main__":
lowerCAmelCase : Union[str, Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg')
lowerCAmelCase : str = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 3 | 1 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
import torch.nn.functional as F
from transformers import (
ClapTextConfig,
ClapTextModelWithProjection,
RobertaTokenizer,
SpeechTaHifiGan,
SpeechTaHifiGanConfig,
)
from diffusers import (
AudioLDMPipeline,
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase):
lowerCAmelCase_ = AudioLDMPipeline
lowerCAmelCase_ = TEXT_TO_AUDIO_PARAMS
lowerCAmelCase_ = TEXT_TO_AUDIO_BATCH_PARAMS
lowerCAmelCase_ = frozenset(
[
"""num_inference_steps""",
"""num_waveforms_per_prompt""",
"""generator""",
"""latents""",
"""output_type""",
"""return_dict""",
"""callback""",
"""callback_steps""",
])
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
torch.manual_seed(0 )
UpperCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(32, 64) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=32 , class_embeddings_concat=A_ , )
UpperCamelCase = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=A_ , set_alpha_to_one=A_ , )
torch.manual_seed(0 )
UpperCamelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
torch.manual_seed(0 )
UpperCamelCase = ClapTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , )
UpperCamelCase = ClapTextModelWithProjection(A_ )
UpperCamelCase = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=77 )
UpperCamelCase = SpeechTaHifiGanConfig(
model_in_dim=8 , sampling_rate=16000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=A_ , )
UpperCamelCase = SpeechTaHifiGan(A_ )
UpperCamelCase = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'vocoder': vocoder,
}
return components
def UpperCAmelCase_ ( self , A_ , A_=0 )-> Optional[int]:
'''simple docstring'''
if str(A_ ).startswith('mps' ):
UpperCamelCase = torch.manual_seed(A_ )
else:
UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ )
UpperCamelCase = {
'prompt': 'A hammer hitting a wooden surface',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
}
return inputs
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
UpperCamelCase = self.get_dummy_components()
UpperCamelCase = AudioLDMPipeline(**A_ )
UpperCamelCase = audioldm_pipe.to(A_ )
audioldm_pipe.set_progress_bar_config(disable=A_ )
UpperCamelCase = self.get_dummy_inputs(A_ )
UpperCamelCase = audioldm_pipe(**A_ )
UpperCamelCase = output.audios[0]
assert audio.ndim == 1
assert len(A_ ) == 256
UpperCamelCase = audio[:10]
UpperCamelCase = np.array(
[-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = self.get_dummy_components()
UpperCamelCase = AudioLDMPipeline(**A_ )
UpperCamelCase = audioldm_pipe.to(A_ )
UpperCamelCase = audioldm_pipe.to(A_ )
audioldm_pipe.set_progress_bar_config(disable=A_ )
UpperCamelCase = self.get_dummy_inputs(A_ )
UpperCamelCase = 3 * [inputs['prompt']]
# forward
UpperCamelCase = audioldm_pipe(**A_ )
UpperCamelCase = output.audios[0]
UpperCamelCase = self.get_dummy_inputs(A_ )
UpperCamelCase = 3 * [inputs.pop('prompt' )]
UpperCamelCase = audioldm_pipe.tokenizer(
A_ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=A_ , return_tensors='pt' , )
UpperCamelCase = text_inputs['input_ids'].to(A_ )
UpperCamelCase = audioldm_pipe.text_encoder(
A_ , )
UpperCamelCase = prompt_embeds.text_embeds
# additional L_2 normalization over each hidden-state
UpperCamelCase = F.normalize(A_ , dim=-1 )
UpperCamelCase = prompt_embeds
# forward
UpperCamelCase = audioldm_pipe(**A_ )
UpperCamelCase = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = self.get_dummy_components()
UpperCamelCase = AudioLDMPipeline(**A_ )
UpperCamelCase = audioldm_pipe.to(A_ )
UpperCamelCase = audioldm_pipe.to(A_ )
audioldm_pipe.set_progress_bar_config(disable=A_ )
UpperCamelCase = self.get_dummy_inputs(A_ )
UpperCamelCase = 3 * ['this is a negative prompt']
UpperCamelCase = negative_prompt
UpperCamelCase = 3 * [inputs['prompt']]
# forward
UpperCamelCase = audioldm_pipe(**A_ )
UpperCamelCase = output.audios[0]
UpperCamelCase = self.get_dummy_inputs(A_ )
UpperCamelCase = 3 * [inputs.pop('prompt' )]
UpperCamelCase = []
for p in [prompt, negative_prompt]:
UpperCamelCase = audioldm_pipe.tokenizer(
A_ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=A_ , return_tensors='pt' , )
UpperCamelCase = text_inputs['input_ids'].to(A_ )
UpperCamelCase = audioldm_pipe.text_encoder(
A_ , )
UpperCamelCase = text_embeds.text_embeds
# additional L_2 normalization over each hidden-state
UpperCamelCase = F.normalize(A_ , dim=-1 )
embeds.append(A_ )
UpperCamelCase , UpperCamelCase = embeds
# forward
UpperCamelCase = audioldm_pipe(**A_ )
UpperCamelCase = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
UpperCamelCase = self.get_dummy_components()
UpperCamelCase = PNDMScheduler(skip_prk_steps=A_ )
UpperCamelCase = AudioLDMPipeline(**A_ )
UpperCamelCase = audioldm_pipe.to(A_ )
audioldm_pipe.set_progress_bar_config(disable=A_ )
UpperCamelCase = self.get_dummy_inputs(A_ )
UpperCamelCase = 'egg cracking'
UpperCamelCase = audioldm_pipe(**A_ , negative_prompt=A_ )
UpperCamelCase = output.audios[0]
assert audio.ndim == 1
assert len(A_ ) == 256
UpperCamelCase = audio[:10]
UpperCamelCase = np.array(
[-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
UpperCamelCase = self.get_dummy_components()
UpperCamelCase = PNDMScheduler(skip_prk_steps=A_ )
UpperCamelCase = AudioLDMPipeline(**A_ )
UpperCamelCase = audioldm_pipe.to(A_ )
audioldm_pipe.set_progress_bar_config(disable=A_ )
UpperCamelCase = 'A hammer hitting a wooden surface'
# test num_waveforms_per_prompt=1 (default)
UpperCamelCase = audioldm_pipe(A_ , num_inference_steps=2 ).audios
assert audios.shape == (1, 256)
# test num_waveforms_per_prompt=1 (default) for batch of prompts
UpperCamelCase = 2
UpperCamelCase = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios
assert audios.shape == (batch_size, 256)
# test num_waveforms_per_prompt for single prompt
UpperCamelCase = 2
UpperCamelCase = audioldm_pipe(A_ , num_inference_steps=2 , num_waveforms_per_prompt=A_ ).audios
assert audios.shape == (num_waveforms_per_prompt, 256)
# test num_waveforms_per_prompt for batch of prompts
UpperCamelCase = 2
UpperCamelCase = audioldm_pipe(
[prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=A_ ).audios
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
UpperCamelCase = self.get_dummy_components()
UpperCamelCase = AudioLDMPipeline(**A_ )
UpperCamelCase = audioldm_pipe.to(A_ )
audioldm_pipe.set_progress_bar_config(disable=A_ )
UpperCamelCase = audioldm_pipe.vocoder.config.sampling_rate
UpperCamelCase = self.get_dummy_inputs(A_ )
UpperCamelCase = audioldm_pipe(audio_length_in_s=0.016 , **A_ )
UpperCamelCase = output.audios[0]
assert audio.ndim == 1
assert len(A_ ) / vocoder_sampling_rate == 0.016
UpperCamelCase = audioldm_pipe(audio_length_in_s=0.032 , **A_ )
UpperCamelCase = output.audios[0]
assert audio.ndim == 1
assert len(A_ ) / vocoder_sampling_rate == 0.032
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase = self.get_dummy_components()
UpperCamelCase = AudioLDMPipeline(**A_ )
UpperCamelCase = audioldm_pipe.to(A_ )
audioldm_pipe.set_progress_bar_config(disable=A_ )
UpperCamelCase = ['hey']
UpperCamelCase = audioldm_pipe(A_ , num_inference_steps=1 )
UpperCamelCase = output.audios.shape
assert audio_shape == (1, 256)
UpperCamelCase = audioldm_pipe.vocoder.config
config.model_in_dim *= 2
UpperCamelCase = SpeechTaHifiGan(A_ ).to(A_ )
UpperCamelCase = audioldm_pipe(A_ , num_inference_steps=1 )
UpperCamelCase = output.audios.shape
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
assert audio_shape == (1, 256)
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=A_ )
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
self._test_inference_batch_single_identical(test_mean_pixel_difference=A_ )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_ )
@slow
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase_ ( self , A_ , A_="cpu" , A_=torch.floataa , A_=0 )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ )
UpperCamelCase = np.random.RandomState(A_ ).standard_normal((1, 8, 128, 16) )
UpperCamelCase = torch.from_numpy(A_ ).to(device=A_ , dtype=A_ )
UpperCamelCase = {
'prompt': 'A hammer hitting a wooden surface',
'latents': latents,
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 2.5,
}
return inputs
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = AudioLDMPipeline.from_pretrained('cvssp/audioldm' )
UpperCamelCase = audioldm_pipe.to(A_ )
audioldm_pipe.set_progress_bar_config(disable=A_ )
UpperCamelCase = self.get_inputs(A_ )
UpperCamelCase = 25
UpperCamelCase = audioldm_pipe(**A_ ).audios[0]
assert audio.ndim == 1
assert len(A_ ) == 81920
UpperCamelCase = audio[77230:77240]
UpperCamelCase = np.array(
[-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] )
UpperCamelCase = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 1e-2
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = AudioLDMPipeline.from_pretrained('cvssp/audioldm' )
UpperCamelCase = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config )
UpperCamelCase = audioldm_pipe.to(A_ )
audioldm_pipe.set_progress_bar_config(disable=A_ )
UpperCamelCase = self.get_inputs(A_ )
UpperCamelCase = audioldm_pipe(**A_ ).audios[0]
assert audio.ndim == 1
assert len(A_ ) == 81920
UpperCamelCase = audio[27780:27790]
UpperCamelCase = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] )
UpperCamelCase = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 3e-2
| 3 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : int = logging.get_logger(__name__)
lowerCAmelCase : Tuple = {
'microsoft/unispeech-sat-base-100h-libri-ft': (
'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json'
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """unispeech-sat"""
def __init__( self , A_=32 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.1 , A_=0.1 , A_=0.02 , A_=1e-5 , A_="group" , A_="gelu" , A_=(512, 512, 512, 512, 512, 512, 512) , A_=(5, 2, 2, 2, 2, 2, 2) , A_=(10, 3, 3, 3, 3, 2, 2) , A_=False , A_=128 , A_=16 , A_=False , A_=True , A_=0.05 , A_=10 , A_=2 , A_=0.0 , A_=10 , A_=0 , A_=320 , A_=2 , A_=0.1 , A_=100 , A_=256 , A_=256 , A_=0.1 , A_="mean" , A_=False , A_=False , A_=256 , A_=(512, 512, 512, 512, 1500) , A_=(5, 3, 3, 1, 1) , A_=(1, 2, 3, 1, 1) , A_=512 , A_=0 , A_=1 , A_=2 , A_=504 , **A_ , )-> Tuple:
'''simple docstring'''
super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ )
UpperCamelCase = hidden_size
UpperCamelCase = feat_extract_norm
UpperCamelCase = feat_extract_activation
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = conv_bias
UpperCamelCase = num_conv_pos_embeddings
UpperCamelCase = num_conv_pos_embedding_groups
UpperCamelCase = len(self.conv_dim )
UpperCamelCase = num_hidden_layers
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = num_attention_heads
UpperCamelCase = hidden_dropout
UpperCamelCase = attention_dropout
UpperCamelCase = activation_dropout
UpperCamelCase = feat_proj_dropout
UpperCamelCase = final_dropout
UpperCamelCase = layerdrop
UpperCamelCase = layer_norm_eps
UpperCamelCase = initializer_range
UpperCamelCase = vocab_size
UpperCamelCase = num_clusters
UpperCamelCase = do_stable_layer_norm
UpperCamelCase = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCamelCase = apply_spec_augment
UpperCamelCase = mask_time_prob
UpperCamelCase = mask_time_length
UpperCamelCase = mask_time_min_masks
UpperCamelCase = mask_feature_prob
UpperCamelCase = mask_feature_length
UpperCamelCase = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
UpperCamelCase = num_codevectors_per_group
UpperCamelCase = num_codevector_groups
UpperCamelCase = contrastive_logits_temperature
UpperCamelCase = feat_quantizer_dropout
UpperCamelCase = num_negatives
UpperCamelCase = codevector_dim
UpperCamelCase = proj_codevector_dim
UpperCamelCase = diversity_loss_weight
# ctc loss
UpperCamelCase = ctc_loss_reduction
UpperCamelCase = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
UpperCamelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = list(A_ )
UpperCamelCase = xvector_output_dim
@property
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 3 | 1 |
'''simple docstring'''
import unittest
from datasets import load_dataset
from transformers import BloomTokenizerFast
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase):
lowerCAmelCase_ = None
lowerCAmelCase_ = BloomTokenizerFast
lowerCAmelCase_ = BloomTokenizerFast
lowerCAmelCase_ = True
lowerCAmelCase_ = False
lowerCAmelCase_ = """tokenizer_file"""
lowerCAmelCase_ = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""}
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
super().setUp()
UpperCamelCase = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase_ ( self , **A_ )-> Any:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return BloomTokenizerFast.from_pretrained(self.tmpdirname , **A_ )
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = self.get_rust_tokenizer()
UpperCamelCase = ['The quick brown fox</s>', 'jumps over the lazy dog</s>']
UpperCamelCase = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]]
UpperCamelCase = tokenizer.batch_encode_plus(A_ )['input_ids']
self.assertListEqual(A_ , A_ )
UpperCamelCase = tokenizer.batch_decode(A_ )
self.assertListEqual(A_ , A_ )
def UpperCAmelCase_ ( self , A_=6 )-> Optional[int]:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(A_ , **A_ )
# tokenizer_r.pad_token = None # Hotfixing padding = None
# Simple input
UpperCamelCase = 'This is a simple input'
UpperCamelCase = ['This is a simple input 1', 'This is a simple input 2']
UpperCamelCase = ('This is a simple input', 'This is a pair')
UpperCamelCase = [
('This is a simple input 1', 'This is a simple input 2'),
('This is a simple pair 1', 'This is a simple pair 2'),
]
# Simple input tests
try:
tokenizer_r.encode(A_ , max_length=A_ )
tokenizer_r.encode_plus(A_ , max_length=A_ )
tokenizer_r.batch_encode_plus(A_ , max_length=A_ )
tokenizer_r.encode(A_ , max_length=A_ )
tokenizer_r.batch_encode_plus(A_ , max_length=A_ )
except ValueError:
self.fail('Bloom Tokenizer should be able to deal with padding' )
UpperCamelCase = None # Hotfixing padding = None
self.assertRaises(A_ , tokenizer_r.encode , A_ , max_length=A_ , padding='max_length' )
# Simple input
self.assertRaises(A_ , tokenizer_r.encode_plus , A_ , max_length=A_ , padding='max_length' )
# Simple input
self.assertRaises(
A_ , tokenizer_r.batch_encode_plus , A_ , max_length=A_ , padding='max_length' , )
# Pair input
self.assertRaises(A_ , tokenizer_r.encode , A_ , max_length=A_ , padding='max_length' )
# Pair input
self.assertRaises(A_ , tokenizer_r.encode_plus , A_ , max_length=A_ , padding='max_length' )
# Pair input
self.assertRaises(
A_ , tokenizer_r.batch_encode_plus , A_ , max_length=A_ , padding='max_length' , )
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase = self.get_rust_tokenizer()
UpperCamelCase = load_dataset('xnli' , 'all_languages' , split='test' , streaming=A_ )
UpperCamelCase = next(iter(A_ ) )['premise'] # pick up one data
UpperCamelCase = list(sample_data.values() )
UpperCamelCase = list(map(tokenizer.encode , A_ ) )
UpperCamelCase = [tokenizer.decode(A_ , clean_up_tokenization_spaces=A_ ) for x in output_tokens]
self.assertListEqual(A_ , A_ )
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 )
self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
| 3 |
'''simple docstring'''
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class SCREAMING_SNAKE_CASE__ :
def __init__( self , A_ , A_=100 , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=4 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=None , A_=[0, 1, 2, 3] , )-> Any:
'''simple docstring'''
UpperCamelCase = parent
UpperCamelCase = 100
UpperCamelCase = batch_size
UpperCamelCase = image_size
UpperCamelCase = patch_size
UpperCamelCase = num_channels
UpperCamelCase = is_training
UpperCamelCase = use_labels
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = type_sequence_label_size
UpperCamelCase = initializer_range
UpperCamelCase = scope
UpperCamelCase = out_indices
UpperCamelCase = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCamelCase = (image_size // patch_size) ** 2
UpperCamelCase = num_patches + 1
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = None
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCamelCase = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> List[str]:
'''simple docstring'''
UpperCamelCase = BeitModel(config=A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Any:
'''simple docstring'''
UpperCamelCase = BeitForMaskedImageModeling(config=A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.type_sequence_label_size
UpperCamelCase = BeitForImageClassification(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ , labels=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCamelCase = 1
UpperCamelCase = BeitForImageClassification(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase = model(A_ , labels=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = self.num_labels
UpperCamelCase = BeitForSemanticSegmentation(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
UpperCamelCase = model(A_ , labels=A_ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs
UpperCamelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase):
lowerCAmelCase_ = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
lowerCAmelCase_ = (
{
"""feature-extraction""": BeitModel,
"""image-classification""": BeitForImageClassification,
"""image-segmentation""": BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = BeitModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 )
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='BEiT does not use inputs_embeds' )
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
pass
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(A_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCamelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A_ , nn.Linear ) )
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(A_ )
UpperCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , A_ )
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*A_ )
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A_ )
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*A_ )
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
if not self.model_tester.is_training:
return
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(A_ ), BeitForMaskedImageModeling]:
continue
UpperCamelCase = model_class(A_ )
model.to(A_ )
model.train()
UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ )
UpperCamelCase = model(**A_ ).loss
loss.backward()
def UpperCAmelCase_ ( self )-> List[str]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
UpperCamelCase = False
UpperCamelCase = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(A_ ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
UpperCamelCase = model_class(A_ )
model.gradient_checkpointing_enable()
model.to(A_ )
model.train()
UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ )
UpperCamelCase = model(**A_ ).loss
loss.backward()
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = _config_zero_init(A_ )
for model_class in self.all_model_classes:
UpperCamelCase = model_class(config=A_ )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@slow
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase = BeitModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
def A_( ):
UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
@cached_property
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None
@slow
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(A_ )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).pixel_values.to(A_ )
# prepare bool_masked_pos
UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(pixel_values=A_ , bool_masked_pos=A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 196, 8192) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = torch.tensor(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(A_ )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , A_ , atol=1e-2 ) )
@slow
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(A_ )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 1000) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(A_ )
self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) )
UpperCamelCase = 281
self.assertEqual(logits.argmax(-1 ).item() , A_ )
@slow
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to(
A_ )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 21841) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(A_ )
self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) )
UpperCamelCase = 2396
self.assertEqual(logits.argmax(-1 ).item() , A_ )
@slow
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
UpperCamelCase = model.to(A_ )
UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ )
UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' )
UpperCamelCase = Image.open(ds[0]['file'] )
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' )
if is_pillow_less_than_a:
UpperCamelCase = torch.tensor(
[
[[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]],
[[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]],
[[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]],
] , device=A_ , )
else:
UpperCamelCase = torch.tensor(
[
[[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]],
[[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]],
[[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]],
] , device=A_ , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1e-4 ) )
@slow
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
UpperCamelCase = model.to(A_ )
UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ )
UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' )
UpperCamelCase = Image.open(ds[0]['file'] )
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits.detach().cpu()
UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ , target_sizes=[(500, 300)] )
UpperCamelCase = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape , A_ )
UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ )
UpperCamelCase = torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape , A_ )
| 3 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
def __init__( self , A_ , A_=3 , A_=32 , A_=3 , A_=10 , A_=[10, 20, 30, 40] , A_=[1, 1, 2, 1] , A_=True , A_=True , A_="relu" , A_=3 , A_=None , )-> int:
'''simple docstring'''
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = image_size
UpperCamelCase = num_channels
UpperCamelCase = embeddings_size
UpperCamelCase = hidden_sizes
UpperCamelCase = depths
UpperCamelCase = is_training
UpperCamelCase = use_labels
UpperCamelCase = hidden_act
UpperCamelCase = num_labels
UpperCamelCase = scope
UpperCamelCase = len(A_ )
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = self.get_config()
return config, pixel_values
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def UpperCAmelCase_ ( self , A_ , A_ )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = FlaxRegNetModel(config=A_ )
UpperCamelCase = model(A_ )
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def UpperCAmelCase_ ( self , A_ , A_ )-> Tuple:
'''simple docstring'''
UpperCamelCase = self.num_labels
UpperCamelCase = FlaxRegNetForImageClassification(config=A_ )
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase = config_and_inputs
UpperCamelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_flax
class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase):
lowerCAmelCase_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def UpperCAmelCase_ ( self )-> None:
'''simple docstring'''
UpperCamelCase = FlaxRegNetModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ )
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
return
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A_ )
@unittest.skip(reason='RegNet does not use inputs_embeds' )
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
pass
@unittest.skip(reason='RegNet does not support input and output embeddings' )
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
pass
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(A_ )
UpperCamelCase = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , A_ )
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
def check_hidden_states_output(A_ , A_ , A_ ):
UpperCamelCase = model_class(A_ )
UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) )
UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCamelCase = self.model_tester.num_stages
self.assertEqual(len(A_ ) , expected_num_stages + 1 )
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = True
check_hidden_states_output(A_ , A_ , A_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase = True
check_hidden_states_output(A_ , A_ , A_ )
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCamelCase = self._prepare_for_class(A_ , A_ )
UpperCamelCase = model_class(A_ )
@jax.jit
def model_jitted(A_ , **A_ ):
return model(pixel_values=A_ , **A_ )
with self.subTest('JIT Enabled' ):
UpperCamelCase = model_jitted(**A_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
UpperCamelCase = model_jitted(**A_ ).to_tuple()
self.assertEqual(len(A_ ) , len(A_ ) )
for jitted_output, output in zip(A_ , A_ ):
self.assertEqual(jitted_output.shape , output.shape )
def A_( ):
UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
return image
@require_flax
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
@cached_property
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None
@slow
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='np' )
UpperCamelCase = model(**A_ )
# verify the logits
UpperCamelCase = (1, 1000)
self.assertEqual(outputs.logits.shape , A_ )
UpperCamelCase = jnp.array([-0.4_180, -1.5_051, -3.4_836] )
self.assertTrue(jnp.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
| 3 |
'''simple docstring'''
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
lowerCAmelCase : Dict = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( enum.Enum):
lowerCAmelCase_ = 0
lowerCAmelCase_ = 1
@add_end_docstrings(snake_case_)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """generated"""
def __init__( self , *A_ , **A_ )-> Optional[int]:
'''simple docstring'''
super().__init__(*A_ , **A_ )
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == 'tf'
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , **A_ , )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = {}
if truncation is not None:
UpperCamelCase = truncation
UpperCamelCase = generate_kwargs
UpperCamelCase = {}
if return_tensors is not None and return_type is None:
UpperCamelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
UpperCamelCase = return_type
if clean_up_tokenization_spaces is not None:
UpperCamelCase = clean_up_tokenization_spaces
if stop_sequence is not None:
UpperCamelCase = self.tokenizer.encode(A_ , add_special_tokens=A_ )
if len(A_ ) > 1:
warnings.warn(
'Stopping on a multiple token sequence is not yet supported on transformers. The first token of'
' the stop sequence will be used as the stop sequence string in the interim.' )
UpperCamelCase = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Optional[int]:
'''simple docstring'''
return True
def UpperCAmelCase_ ( self , *A_ , A_ )-> Any:
'''simple docstring'''
UpperCamelCase = self.model.config.prefix if self.model.config.prefix is not None else ''
if isinstance(args[0] , A_ ):
if self.tokenizer.pad_token_id is None:
raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' )
UpperCamelCase = ([prefix + arg for arg in args[0]],)
UpperCamelCase = True
elif isinstance(args[0] , A_ ):
UpperCamelCase = (prefix + args[0],)
UpperCamelCase = False
else:
raise ValueError(
F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' )
UpperCamelCase = self.tokenizer(*A_ , padding=A_ , truncation=A_ , return_tensors=self.framework )
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self , *A_ , **A_ )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = super().__call__(*A_ , **A_ )
if (
isinstance(args[0] , A_ )
and all(isinstance(A_ , A_ ) for el in args[0] )
and all(len(A_ ) == 1 for res in result )
):
return [res[0] for res in result]
return result
def UpperCAmelCase_ ( self , A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , **A_ )-> Any:
'''simple docstring'''
UpperCamelCase = self._parse_and_tokenize(A_ , truncation=A_ , **A_ )
return inputs
def UpperCAmelCase_ ( self , A_ , **A_ )-> int:
'''simple docstring'''
if self.framework == "pt":
UpperCamelCase , UpperCamelCase = model_inputs['input_ids'].shape
elif self.framework == "tf":
UpperCamelCase , UpperCamelCase = tf.shape(model_inputs['input_ids'] ).numpy()
UpperCamelCase = generate_kwargs.get('min_length' , self.model.config.min_length )
UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length )
self.check_inputs(A_ , generate_kwargs['min_length'] , generate_kwargs['max_length'] )
UpperCamelCase = self.model.generate(**A_ , **A_ )
UpperCamelCase = output_ids.shape[0]
if self.framework == "pt":
UpperCamelCase = output_ids.reshape(A_ , out_b // in_b , *output_ids.shape[1:] )
elif self.framework == "tf":
UpperCamelCase = tf.reshape(A_ , (in_b, out_b // in_b, *output_ids.shape[1:]) )
return {"output_ids": output_ids}
def UpperCAmelCase_ ( self , A_ , A_=ReturnType.TEXT , A_=False )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
UpperCamelCase = {F'''{self.return_name}_token_ids''': output_ids}
elif return_type == ReturnType.TEXT:
UpperCamelCase = {
F'''{self.return_name}_text''': self.tokenizer.decode(
A_ , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , )
}
records.append(A_ )
return records
@add_end_docstrings(snake_case_)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """summary"""
def __call__( self , *A_ , **A_ )-> Optional[int]:
'''simple docstring'''
return super().__call__(*A_ , **A_ )
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> bool:
'''simple docstring'''
if max_length < min_length:
logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' )
if input_length < max_length:
logger.warning(
F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is '''
'a summarization task, where outputs shorter than the input are typically wanted, you might '
F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' )
@add_end_docstrings(snake_case_)
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = """translation"""
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> List[Any]:
'''simple docstring'''
if input_length > 0.9 * max_length:
logger.warning(
F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider '''
'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' )
return True
def UpperCAmelCase_ ( self , *A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , A_=None , A_=None )-> Dict:
'''simple docstring'''
if getattr(self.tokenizer , '_build_translation_inputs' , A_ ):
return self.tokenizer._build_translation_inputs(
*A_ , return_tensors=self.framework , truncation=A_ , src_lang=A_ , tgt_lang=A_ )
else:
return super()._parse_and_tokenize(*A_ , truncation=A_ )
def UpperCAmelCase_ ( self , A_=None , A_=None , **A_ )-> str:
'''simple docstring'''
UpperCamelCase , UpperCamelCase , UpperCamelCase = super()._sanitize_parameters(**A_ )
if src_lang is not None:
UpperCamelCase = src_lang
if tgt_lang is not None:
UpperCamelCase = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
UpperCamelCase = kwargs.get('task' , self.task )
UpperCamelCase = task.split('_' )
if task and len(A_ ) == 4:
# translation, XX, to YY
UpperCamelCase = items[1]
UpperCamelCase = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self , *A_ , **A_ )-> Any:
'''simple docstring'''
return super().__call__(*A_ , **A_ )
| 3 | 1 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.