code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : List[str]=32 , SCREAMING_SNAKE_CASE__ : List[str]=3 , SCREAMING_SNAKE_CASE__ : Dict=10 , SCREAMING_SNAKE_CASE__ : str=[10, 20, 30, 40] , SCREAMING_SNAKE_CASE__ : Any=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Any="relu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=3 , SCREAMING_SNAKE_CASE__ : Dict=None , ) -> Dict: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = embeddings_size lowerCAmelCase__ = hidden_sizes lowerCAmelCase__ = depths lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_act lowerCAmelCase__ = num_labels lowerCAmelCase__ = scope lowerCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) def a ( self : List[str] ) -> List[str]: lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def a ( self : Tuple ) -> str: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any ) -> Dict: lowerCAmelCase__ = RegNetModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = RegNetForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self : List[Any] ) -> int: lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" snake_case__ = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () snake_case__ = ( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def a ( self : List[Any] ) -> List[Any]: lowerCAmelCase__ = RegNetModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ ) def a ( self : Union[str, Any] ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a ( self : Any ) -> Dict: return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def a ( self : Union[str, Any] ) -> Dict: pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def a ( self : List[Any] ) -> Dict: pass def a ( self : Tuple ) -> Dict: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def a ( self : Dict ) -> Dict: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def a ( self : Any ) -> List[Any]: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(config=SCREAMING_SNAKE_CASE__ ) for name, module in model.named_modules(): if isinstance(SCREAMING_SNAKE_CASE__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def a ( self : int ) -> Optional[Any]: def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): lowerCAmelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase__ = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase__ = layer_type lowerCAmelCase__ = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a ( self : str ) -> List[str]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) @slow def a ( self : Dict ) -> List[str]: for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = RegNetModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def _A ( ): """simple docstring""" lowerCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def a ( self : Dict ) -> List[Any]: return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def a ( self : Tuple ) -> Any: lowerCAmelCase__ = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits lowerCAmelCase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = torch.tensor([-0.4_180, -1.5_051, -3.4_836] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
61
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase : Tuple = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase : Optional[int] = TaTokenizerFast lowerCAmelCase : Any = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase : Tuple = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
3
0
def lowerCamelCase__ ( ): """simple docstring""" return 1 def lowerCamelCase__ ( lowercase ): """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase__ ( lowercase ): """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowercase ) def lowerCamelCase__ ( lowercase = 200 ): """simple docstring""" return two_pound(lowercase ) if __name__ == "__main__": print(solution(int(input().strip())))
62
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=False , A_=True , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , )-> Dict: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size if size is not None else {'height': 18, 'width': 20} UpperCamelCase = do_thumbnail UpperCamelCase = do_align_axis UpperCamelCase = do_pad UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase): lowerCAmelCase_ = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = DonutImageProcessingTester(self ) @property def UpperCAmelCase_ ( self )-> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'do_thumbnail' ) ) self.assertTrue(hasattr(A_ , 'do_align_long_axis' ) ) self.assertTrue(hasattr(A_ , 'do_pad' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' pass @is_flaky() def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
3
0
from ....configuration_utils import PretrainedConfig from ....utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : Any = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class a ( lowercase__ ): """simple docstring""" a : Optional[Any] = 'van' def __init__( self : Union[str, Any] , __lowercase : int=224 , __lowercase : List[Any]=3 , __lowercase : List[str]=[7, 3, 3, 3] , __lowercase : Tuple=[4, 2, 2, 2] , __lowercase : Any=[64, 128, 320, 512] , __lowercase : str=[3, 3, 12, 3] , __lowercase : Tuple=[8, 8, 4, 4] , __lowercase : Union[str, Any]="gelu" , __lowercase : Optional[int]=0.02 , __lowercase : Union[str, Any]=1e-6 , __lowercase : Tuple=1e-2 , __lowercase : int=0.0 , __lowercase : Any=0.0 , **__lowercase : Any , ) -> List[str]: super().__init__(**__lowercase ) __UpperCAmelCase : Dict = image_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : List[str] = patch_sizes __UpperCAmelCase : Tuple = strides __UpperCAmelCase : List[Any] = hidden_sizes __UpperCAmelCase : Tuple = depths __UpperCAmelCase : Optional[int] = mlp_ratios __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Dict = layer_norm_eps __UpperCAmelCase : Union[str, Any] = layer_scale_init_value __UpperCAmelCase : Optional[int] = drop_path_rate __UpperCAmelCase : Optional[int] = dropout_rate
63
'''simple docstring''' def A_( A : list[int]): UpperCamelCase = [] if len(A) == 1: return [nums.copy()] for _ in range(len(A)): UpperCamelCase = nums.pop(0) UpperCamelCase = permute(A) for perm in permutations: perm.append(A) result.extend(A) nums.append(A) return result def A_( A : str): def backtrack(A : str): if start == len(A) - 1: output.append(nums[:]) else: for i in range(A , len(A)): UpperCamelCase , UpperCamelCase = nums[i], nums[start] backtrack(start + 1) UpperCamelCase , UpperCamelCase = nums[i], nums[start] # backtrack UpperCamelCase = [] backtrack(0) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCAmelCase : Dict = permutea([1, 2, 3]) print(res) doctest.testmod()
3
0
def A__ ( snake_case_ : list ): SCREAMING_SNAKE_CASE__: Dict= 0 while len(snake_case_ ) > 1: SCREAMING_SNAKE_CASE__: Any= 0 # Consider two files with minimum cost to be merged for _ in range(2 ): SCREAMING_SNAKE_CASE__: Optional[int]= files.index(min(snake_case_ ) ) temp += files[min_index] files.pop(snake_case_ ) files.append(snake_case_ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
64
'''simple docstring''' import colorsys from PIL import Image # type: ignore def A_( A : float , A : float , A : int): UpperCamelCase = x UpperCamelCase = y for step in range(A): # noqa: B007 UpperCamelCase = a * a - b * b + x UpperCamelCase = 2 * a * b + y UpperCamelCase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def A_( A : float): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def A_( A : float): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(A , 1 , 1)) def A_( A : int = 800 , A : int = 600 , A : float = -0.6 , A : float = 0 , A : float = 3.2 , A : int = 50 , A : bool = True , ): UpperCamelCase = Image.new('RGB' , (image_width, image_height)) UpperCamelCase = img.load() # loop through the image-coordinates for image_x in range(A): for image_y in range(A): # determine the figure-coordinates based on the image-coordinates UpperCamelCase = figure_width / image_width * image_height UpperCamelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCamelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCamelCase = get_distance(A , A , A) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCamelCase = get_color_coded_rgb(A) else: UpperCamelCase = get_black_and_white_rgb(A) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCAmelCase : Any = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
3
0
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __UpperCAmelCase = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __lowercase : snake_case_ = PegasusConfig snake_case_ = {} snake_case_ = """gelu""" def __init__( self : List[Any] ,A : int ,A : Optional[Any]=13 ,A : Dict=7 ,A : Dict=True ,A : Any=False ,A : Dict=99 ,A : int=32 ,A : Optional[int]=5 ,A : Union[str, Any]=4 ,A : Union[str, Any]=37 ,A : str=0.1 ,A : int=0.1 ,A : Optional[int]=20 ,A : Tuple=2 ,A : str=1 ,A : Optional[Any]=0 ,): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Union[str, Any] = batch_size UpperCAmelCase__ : List[Any] = seq_length UpperCAmelCase__ : int = is_training UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : int = vocab_size UpperCAmelCase__ : Dict = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Any = intermediate_size UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Union[str, Any] = eos_token_id UpperCAmelCase__ : Union[str, Any] = pad_token_id UpperCAmelCase__ : List[str] = bos_token_id def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ).clip(3 ,self.vocab_size ) UpperCAmelCase__ : List[str] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) ,1 ) UpperCAmelCase__ : Any = np.concatenate([input_ids, eos_tensor] ,axis=1 ) UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase__ : str = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) UpperCAmelCase__ : Optional[Any] = prepare_pegasus_inputs_dict(A ,A ,A ) return config, inputs_dict def __lowercase ( self : Any ,A : Optional[int] ,A : str ,A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = 20 UpperCAmelCase__ : Dict = model_class_name(A ) UpperCAmelCase__ : str = model.encode(inputs_dict["""input_ids"""] ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) UpperCAmelCase__ : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] ,A ,A ) UpperCAmelCase__ : Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) ,dtype="""i4""" ) UpperCAmelCase__ : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] ,(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) ,) UpperCAmelCase__ : Optional[int] = model.decode( decoder_input_ids[:, :-1] ,A ,decoder_attention_mask=A ,past_key_values=A ,decoder_position_ids=A ,) UpperCAmelCase__ : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] ,dtype="""i4""" ) UpperCAmelCase__ : int = model.decode( decoder_input_ids[:, -1:] ,A ,decoder_attention_mask=A ,past_key_values=outputs_cache.past_key_values ,decoder_position_ids=A ,) UpperCAmelCase__ : Dict = model.decode(A ,A ) UpperCAmelCase__ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 ,msg=f"Max diff is {diff}" ) def __lowercase ( self : Optional[int] ,A : str ,A : Dict ,A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = 20 UpperCAmelCase__ : str = model_class_name(A ) UpperCAmelCase__ : Any = model.encode(inputs_dict["""input_ids"""] ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) UpperCAmelCase__ : Optional[int] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] ,axis=-1 ,) UpperCAmelCase__ : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] ,A ,A ) UpperCAmelCase__ : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] ,(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) ,) UpperCAmelCase__ : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] ,A ,decoder_attention_mask=A ,past_key_values=A ,decoder_position_ids=A ,) UpperCAmelCase__ : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] ,dtype="""i4""" ) UpperCAmelCase__ : Dict = model.decode( decoder_input_ids[:, -1:] ,A ,past_key_values=outputs_cache.past_key_values ,decoder_attention_mask=A ,decoder_position_ids=A ,) UpperCAmelCase__ : Union[str, Any] = model.decode(A ,A ,decoder_attention_mask=A ) UpperCAmelCase__ : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 ,msg=f"Max diff is {diff}" ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , ): '''simple docstring''' if attention_mask is None: UpperCAmelCase__ : Union[str, Any] = np.not_equal(__UpperCamelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: UpperCAmelCase__ : Tuple = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __lowercase ( __lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) snake_case_ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = FlaxPegasusModelTester(self ) UpperCAmelCase__ : Optional[Any] = ConfigTester(self ,config_class=A ) def __lowercase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(A ,A ,A ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(A ,A ,A ) def __lowercase ( self : Any ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : List[Any] = self._prepare_for_class(A ,A ) UpperCAmelCase__ : int = model_class(A ) @jax.jit def encode_jitted(A : Optional[int] ,A : Union[str, Any]=None ,**A : Optional[Any] ): return model.encode(input_ids=A ,attention_mask=A ) with self.subTest("""JIT Enabled""" ): UpperCAmelCase__ : int = encode_jitted(**A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase__ : Dict = encode_jitted(**A ).to_tuple() self.assertEqual(len(A ) ,len(A ) ) for jitted_output, output in zip(A ,A ): self.assertEqual(jitted_output.shape ,output.shape ) def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : Dict = model_class(A ) UpperCAmelCase__ : str = model.encode(inputs_dict["""input_ids"""] ,inputs_dict["""attention_mask"""] ) UpperCAmelCase__ : Dict = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(A : List[Any] ,A : Any ,A : List[Any] ): return model.decode( decoder_input_ids=A ,decoder_attention_mask=A ,encoder_outputs=A ,) with self.subTest("""JIT Enabled""" ): UpperCAmelCase__ : Tuple = decode_jitted(**A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase__ : str = decode_jitted(**A ).to_tuple() self.assertEqual(len(A ) ,len(A ) ) for jitted_output, output in zip(A ,A ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def __lowercase ( self : List[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase__ : List[str] = model_class_name.from_pretrained("""google/pegasus-large""" ,from_pt=A ) UpperCAmelCase__ : Any = np.ones((1, 1) ) UpperCAmelCase__ : Optional[Any] = model(A ) self.assertIsNotNone(A ) @slow def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) UpperCAmelCase__ : Optional[Any] = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) UpperCAmelCase__ : Union[str, Any] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] UpperCAmelCase__ : str = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] UpperCAmelCase__ : str = tokenizer(A ,return_tensors="""np""" ,truncation=A ,max_length=512 ,padding=A ) UpperCAmelCase__ : Union[str, Any] = model.generate(**A ,num_beams=2 ).sequences UpperCAmelCase__ : int = tokenizer.batch_decode(A ,skip_special_tokens=A ) assert tgt_text == decoded
65
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase : Optional[Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
0
import string import numpy def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: return b if a == 0 else greatest_common_divisor(b % a , SCREAMING_SNAKE_CASE ) class lowerCAmelCase_ : _UpperCamelCase : Any = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) _UpperCamelCase : Tuple = numpy.vectorize(lambda __snake_case : x % 36 ) _UpperCamelCase : Any = numpy.vectorize(__snake_case ) def __init__( self , _lowerCAmelCase ): _lowercase : str = self.modulus(_lowerCAmelCase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _lowercase : int = encrypt_key.shape[0] def __a ( self , _lowerCAmelCase ): return self.key_string.index(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): return self.key_string[round(_lowerCAmelCase )] def __a ( self ): _lowercase : str = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _lowercase : int = det % len(self.key_string ) _lowercase : List[str] = len(self.key_string ) if greatest_common_divisor(_lowerCAmelCase , len(self.key_string ) ) != 1: _lowercase : str = ( F"""determinant modular {req_l} of encryption key({det}) """ F"""is not co prime w.r.t {req_l}.\nTry another key.""" ) raise ValueError(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): _lowercase : Optional[Any] = [char for char in text.upper() if char in self.key_string] _lowercase : Union[str, Any] = chars[-1] while len(_lowerCAmelCase ) % self.break_key != 0: chars.append(_lowerCAmelCase ) return "".join(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): _lowercase : Optional[int] = self.process_text(text.upper() ) _lowercase : Dict = '' for i in range(0 , len(_lowerCAmelCase ) - self.break_key + 1 , self.break_key ): _lowercase : List[Any] = text[i : i + self.break_key] _lowercase : str = [self.replace_letters(_lowerCAmelCase ) for char in batch] _lowercase : Union[str, Any] = numpy.array([vec] ).T _lowercase : List[Any] = self.modulus(self.encrypt_key.dot(_lowerCAmelCase ) ).T.tolist()[ 0 ] _lowercase : Any = ''.join( self.replace_digits(_lowerCAmelCase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def __a ( self ): _lowercase : Any = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _lowercase : Any = det % len(self.key_string ) _lowercase : Any = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: _lowercase : Union[str, Any] = i break _lowercase : List[str] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(_lowerCAmelCase ) ) def __a ( self , _lowerCAmelCase ): _lowercase : Optional[int] = self.make_decrypt_key() _lowercase : Union[str, Any] = self.process_text(text.upper() ) _lowercase : List[str] = '' for i in range(0 , len(_lowerCAmelCase ) - self.break_key + 1 , self.break_key ): _lowercase : List[Any] = text[i : i + self.break_key] _lowercase : Any = [self.replace_letters(_lowerCAmelCase ) for char in batch] _lowercase : Optional[int] = numpy.array([vec] ).T _lowercase : int = self.modulus(decrypt_key.dot(_lowerCAmelCase ) ).T.tolist()[0] _lowercase : str = ''.join( self.replace_digits(_lowerCAmelCase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def __magic_name__ ( ) -> None: _lowercase : Any = int(input('Enter the order of the encryption key: ' ) ) _lowercase : Any = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(SCREAMING_SNAKE_CASE ): _lowercase : Tuple = [int(SCREAMING_SNAKE_CASE ) for x in input().split()] hill_matrix.append(SCREAMING_SNAKE_CASE ) _lowercase : int = HillCipher(numpy.array(SCREAMING_SNAKE_CASE ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) _lowercase : List[str] = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": _lowercase : int = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(SCREAMING_SNAKE_CASE ) ) elif option == "2": _lowercase : List[str] = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
66
'''simple docstring''' lowerCAmelCase : Optional[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def A_( A : dict , A : str , A : Optional[Any]): UpperCamelCase = set() # keep track of all the paths to be checked UpperCamelCase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCamelCase = queue.pop(0) # get the last node from the path UpperCamelCase = path[-1] if node not in explored: UpperCamelCase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCamelCase = list(A) new_path.append(A) queue.append(A) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(A) # in case there's no path between the 2 nodes return [] def A_( A : dict , A : str , A : Tuple): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCamelCase = [start] UpperCamelCase = set(A) # Keep tab on distances from `start` node. UpperCamelCase = {start: 0, target: -1} while queue: UpperCamelCase = queue.pop(0) if node == target: UpperCamelCase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node]) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(A) queue.append(A) UpperCamelCase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
3
0
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A_ : """simple docstring""" def __init__( self : str ,__A : Any ,__A : Optional[int]=3 ,__A : List[str]=32 ,__A : Optional[int]=3 ,__A : Optional[Any]=10 ,__A : Any=[8, 16, 32, 64] ,__A : Optional[int]=[1, 1, 2, 1] ,__A : int=True ,__A : Dict=True ,__A : List[str]="relu" ,__A : List[Any]=3 ,__A : Optional[Any]=None ,__A : Any=["stage2", "stage3", "stage4"] ,__A : str=[2, 3, 4] ,__A : Optional[int]=1 ,) -> List[Any]: _lowercase = parent _lowercase = batch_size _lowercase = image_size _lowercase = num_channels _lowercase = embeddings_size _lowercase = hidden_sizes _lowercase = depths _lowercase = is_training _lowercase = use_labels _lowercase = hidden_act _lowercase = num_labels _lowercase = scope _lowercase = len(__A ) _lowercase = out_features _lowercase = out_indices _lowercase = num_groups def __UpperCAmelCase ( self : Any ) -> Optional[int]: _lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase = None if self.use_labels: _lowercase = ids_tensor([self.batch_size] ,self.num_labels ) _lowercase = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self : Tuple ) -> List[str]: return BitConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,out_features=self.out_features ,out_indices=self.out_indices ,num_groups=self.num_groups ,) def __UpperCAmelCase ( self : List[str] ,__A : int ,__A : Union[str, Any] ,__A : int ) -> List[Any]: _lowercase = BitModel(config=__A ) model.to(__A ) model.eval() _lowercase = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __UpperCAmelCase ( self : List[str] ,__A : List[Any] ,__A : Optional[Any] ,__A : str ) -> Union[str, Any]: _lowercase = self.num_labels _lowercase = BitForImageClassification(__A ) model.to(__A ) model.eval() _lowercase = model(__A ,labels=__A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : str ,__A : List[str] ,__A : Optional[Any] ,__A : int ) -> List[Any]: _lowercase = BitBackbone(config=__A ) model.to(__A ) model.eval() _lowercase = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None _lowercase = None _lowercase = BitBackbone(config=__A ) model.to(__A ) model.eval() _lowercase = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def __UpperCAmelCase ( self : Tuple ) -> List[Any]: _lowercase = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase = config_and_inputs _lowercase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A_ ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Dict = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Any = False def __UpperCAmelCase ( self : Optional[int] ) -> Dict: _lowercase = BitModelTester(self ) _lowercase = ConfigTester(self ,config_class=__A ,has_text_modality=__A ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCAmelCase ( self : Tuple ) -> Tuple: return @unittest.skip(reason='Bit does not output attentions' ) def __UpperCAmelCase ( self : Optional[Any] ) -> Dict: pass @unittest.skip(reason='Bit does not use inputs_embeds' ) def __UpperCAmelCase ( self : Optional[Any] ) -> Dict: pass @unittest.skip(reason='Bit does not support input and output embeddings' ) def __UpperCAmelCase ( self : str ) -> Dict: pass def __UpperCAmelCase ( self : Tuple ) -> List[Any]: _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase = model_class(__A ) _lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase = [*signature.parameters.keys()] _lowercase = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__A ) def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __UpperCAmelCase ( self : int ) -> List[str]: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__A ) def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase = model_class(config=__A ) for name, module in model.named_modules(): if isinstance(__A ,(nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) self.assertTrue( torch.all(module.bias == 0 ) ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) def __UpperCAmelCase ( self : Any ) -> Optional[int]: def check_hidden_states_output(__A : str ,__A : List[str] ,__A : int ): _lowercase = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowercase = model(**self._prepare_for_class(__A ,__A ) ) _lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowercase = self.model_tester.num_stages self.assertEqual(len(__A ) ,expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() _lowercase = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowercase = layer_type _lowercase = True check_hidden_states_output(__A ,__A ,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase = True check_hidden_states_output(__A ,__A ,__A ) @unittest.skip(reason='Bit does not use feedforward chunking' ) def __UpperCAmelCase ( self : Dict ) -> Tuple: pass def __UpperCAmelCase ( self : Any ) -> List[Any]: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @slow def __UpperCAmelCase ( self : Dict ) -> Optional[int]: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase = BitModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: _lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): """simple docstring""" @cached_property def __UpperCAmelCase ( self : Tuple ) -> Dict: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self : str ) -> Any: _lowercase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__A ) _lowercase = self.default_image_processor _lowercase = prepare_img() _lowercase = image_processor(images=__A ,return_tensors='pt' ).to(__A ) # forward pass with torch.no_grad(): _lowercase = model(**__A ) # verify the logits _lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,__A ) _lowercase = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__A ,atol=1e-4 ) ) @require_torch class A_ ( UpperCAmelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = (BitBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Optional[Any] = BitConfig SCREAMING_SNAKE_CASE_ : Optional[int] = False def __UpperCAmelCase ( self : List[Any] ) -> Tuple: _lowercase = BitModelTester(self )
67
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class SCREAMING_SNAKE_CASE__ : def __init__( self )-> Dict: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = '' UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = 256 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 def UpperCAmelCase_ ( self , A_ )-> str: '''simple docstring''' UpperCamelCase = cva.imread(A_ , 0 ) UpperCamelCase = copy.deepcopy(self.img ) UpperCamelCase , UpperCamelCase , UpperCamelCase = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) UpperCamelCase = np.sum(A_ ) for i in range(len(A_ ) ): UpperCamelCase = x[i] / self.k self.sk += prk UpperCamelCase = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase = int(last % last ) UpperCamelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(A_ ) UpperCamelCase = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase = self.img[j][i] if num != self.last_list[num]: UpperCamelCase = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') lowerCAmelCase : str = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
3
0
import math import os import sys def lowercase__ ( A_: str ) -> str: """simple docstring""" __UpperCAmelCase ="""""" try: with open(A_ , """rb""" ) as binary_file: __UpperCAmelCase =binary_file.read() for dat in data: __UpperCAmelCase =F'''{dat:08b}''' result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def lowercase__ ( A_: dict[str, str] , A_: str , A_: int , A_: str ) -> None: """simple docstring""" lexicon.pop(A_ ) __UpperCAmelCase =last_match_id if math.loga(A_ ).is_integer(): for curr_key in lexicon: __UpperCAmelCase ="""0""" + lexicon[curr_key] __UpperCAmelCase =bin(A_ )[2:] def lowercase__ ( A_: str ) -> str: """simple docstring""" __UpperCAmelCase ={"""0""": """0""", """1""": """1"""} __UpperCAmelCase , __UpperCAmelCase ="""""", """""" __UpperCAmelCase =len(A_ ) for i in range(len(A_ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __UpperCAmelCase =lexicon[curr_string] result += last_match_id add_key_to_lexicon(A_ , A_ , A_ , A_ ) index += 1 __UpperCAmelCase ="""""" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __UpperCAmelCase =lexicon[curr_string] result += last_match_id return result def lowercase__ ( A_: str , A_: str ) -> str: """simple docstring""" __UpperCAmelCase =os.path.getsize(A_ ) __UpperCAmelCase =bin(A_ )[2:] __UpperCAmelCase =len(A_ ) return "0" * (length_length - 1) + file_length_binary + compressed def lowercase__ ( A_: str , A_: str ) -> None: """simple docstring""" __UpperCAmelCase =8 try: with open(A_ , """wb""" ) as opened_file: __UpperCAmelCase =[ to_write[i : i + byte_length] for i in range(0 , len(A_ ) , A_ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(A_ , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def lowercase__ ( A_: str , A_: str ) -> None: """simple docstring""" __UpperCAmelCase =read_file_binary(A_ ) __UpperCAmelCase =compress_data(A_ ) __UpperCAmelCase =add_file_length(A_ , A_ ) write_file_binary(A_ , A_ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
68
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Tuple = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """unispeech-sat""" def __init__( self , A_=32 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.1 , A_=0.1 , A_=0.02 , A_=1e-5 , A_="group" , A_="gelu" , A_=(512, 512, 512, 512, 512, 512, 512) , A_=(5, 2, 2, 2, 2, 2, 2) , A_=(10, 3, 3, 3, 3, 2, 2) , A_=False , A_=128 , A_=16 , A_=False , A_=True , A_=0.05 , A_=10 , A_=2 , A_=0.0 , A_=10 , A_=0 , A_=320 , A_=2 , A_=0.1 , A_=100 , A_=256 , A_=256 , A_=0.1 , A_="mean" , A_=False , A_=False , A_=256 , A_=(512, 512, 512, 512, 1500) , A_=(5, 3, 3, 1, 1) , A_=(1, 2, 3, 1, 1) , A_=512 , A_=0 , A_=1 , A_=2 , A_=504 , **A_ , )-> Tuple: '''simple docstring''' super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) UpperCamelCase = hidden_size UpperCamelCase = feat_extract_norm UpperCamelCase = feat_extract_activation UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = conv_bias UpperCamelCase = num_conv_pos_embeddings UpperCamelCase = num_conv_pos_embedding_groups UpperCamelCase = len(self.conv_dim ) UpperCamelCase = num_hidden_layers UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = num_attention_heads UpperCamelCase = hidden_dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = feat_proj_dropout UpperCamelCase = final_dropout UpperCamelCase = layerdrop UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = vocab_size UpperCamelCase = num_clusters UpperCamelCase = do_stable_layer_norm UpperCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase = apply_spec_augment UpperCamelCase = mask_time_prob UpperCamelCase = mask_time_length UpperCamelCase = mask_time_min_masks UpperCamelCase = mask_feature_prob UpperCamelCase = mask_feature_length UpperCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCamelCase = num_codevectors_per_group UpperCamelCase = num_codevector_groups UpperCamelCase = contrastive_logits_temperature UpperCamelCase = feat_quantizer_dropout UpperCamelCase = num_negatives UpperCamelCase = codevector_dim UpperCamelCase = proj_codevector_dim UpperCamelCase = diversity_loss_weight # ctc loss UpperCamelCase = ctc_loss_reduction UpperCamelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = xvector_output_dim @property def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
3
0
'''simple docstring''' from __future__ import annotations import math def __UpperCAmelCase ( _UpperCAmelCase : int ) -> list[int]: if num <= 0: __snake_case = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(_UpperCAmelCase ) __snake_case = [True] * (num + 1) __snake_case = [] __snake_case = 2 __snake_case = int(math.sqrt(_UpperCAmelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_UpperCAmelCase ) # Set multiples of start be False for i in range(start * start , num + 1 , _UpperCAmelCase ): if sieve[i] is True: __snake_case = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_UpperCAmelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
69
'''simple docstring''' import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ , A_=100 , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=4 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=None , A_=[0, 1, 2, 3] , )-> Any: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = 100 UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = scope UpperCamelCase = out_indices UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = num_patches + 1 def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> List[str]: '''simple docstring''' UpperCamelCase = BeitModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Any: '''simple docstring''' UpperCamelCase = BeitForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.type_sequence_label_size UpperCamelCase = BeitForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = BeitForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[Any]: '''simple docstring''' UpperCamelCase = self.num_labels UpperCamelCase = BeitForSemanticSegmentation(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase_ = ( { """feature-extraction""": BeitModel, """image-classification""": BeitForImageClassification, """image-segmentation""": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = BeitModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A_ ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' if not self.model_tester.is_training: return UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(A_ ), BeitForMaskedImageModeling]: continue UpperCamelCase = model_class(A_ ) model.to(A_ ) model.train() UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ ) UpperCamelCase = model(**A_ ).loss loss.backward() def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase = False UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(A_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCamelCase = model_class(A_ ) model.gradient_checkpointing_enable() model.to(A_ ) model.train() UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ ) UpperCamelCase = model(**A_ ).loss loss.backward() def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = _config_zero_init(A_ ) for model_class in self.all_model_classes: UpperCamelCase = model_class(config=A_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = BeitModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A_( ): UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @cached_property def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).pixel_values.to(A_ ) # prepare bool_masked_pos UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(pixel_values=A_ , bool_masked_pos=A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(A_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , A_ , atol=1e-2 ) ) @slow def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(A_ ) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) ) UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , A_ ) @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 21841) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(A_ ) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) ) UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , A_ ) @slow def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) UpperCamelCase = model.to(A_ ) UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ ) UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) UpperCamelCase = Image.open(ds[0]['file'] ) UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: UpperCamelCase = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] , device=A_ , ) else: UpperCamelCase = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] , device=A_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1e-4 ) ) @slow def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) UpperCamelCase = model.to(A_ ) UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ ) UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) UpperCamelCase = Image.open(ds[0]['file'] ) UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits.detach().cpu() UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ , target_sizes=[(500, 300)] ) UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , A_ ) UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ ) UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , A_ )
3
0
def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int , lowercase : int ): '''simple docstring''' lowerCamelCase_ = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
70
'''simple docstring''' import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase : Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( enum.Enum): lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 @add_end_docstrings(snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """generated""" def __init__( self , *A_ , **A_ )-> Optional[int]: '''simple docstring''' super().__init__(*A_ , **A_ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , **A_ , )-> Optional[Any]: '''simple docstring''' UpperCamelCase = {} if truncation is not None: UpperCamelCase = truncation UpperCamelCase = generate_kwargs UpperCamelCase = {} if return_tensors is not None and return_type is None: UpperCamelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: UpperCamelCase = return_type if clean_up_tokenization_spaces is not None: UpperCamelCase = clean_up_tokenization_spaces if stop_sequence is not None: UpperCamelCase = self.tokenizer.encode(A_ , add_special_tokens=A_ ) if len(A_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) UpperCamelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' return True def UpperCAmelCase_ ( self , *A_ , A_ )-> Any: '''simple docstring''' UpperCamelCase = self.model.config.prefix if self.model.config.prefix is not None else '' if isinstance(args[0] , A_ ): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' ) UpperCamelCase = ([prefix + arg for arg in args[0]],) UpperCamelCase = True elif isinstance(args[0] , A_ ): UpperCamelCase = (prefix + args[0],) UpperCamelCase = False else: raise ValueError( F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) UpperCamelCase = self.tokenizer(*A_ , padding=A_ , truncation=A_ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A_ , **A_ )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = super().__call__(*A_ , **A_ ) if ( isinstance(args[0] , A_ ) and all(isinstance(A_ , A_ ) for el in args[0] ) and all(len(A_ ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase_ ( self , A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , **A_ )-> Any: '''simple docstring''' UpperCamelCase = self._parse_and_tokenize(A_ , truncation=A_ , **A_ ) return inputs def UpperCAmelCase_ ( self , A_ , **A_ )-> int: '''simple docstring''' if self.framework == "pt": UpperCamelCase , UpperCamelCase = model_inputs['input_ids'].shape elif self.framework == "tf": UpperCamelCase , UpperCamelCase = tf.shape(model_inputs['input_ids'] ).numpy() UpperCamelCase = generate_kwargs.get('min_length' , self.model.config.min_length ) UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) self.check_inputs(A_ , generate_kwargs['min_length'] , generate_kwargs['max_length'] ) UpperCamelCase = self.model.generate(**A_ , **A_ ) UpperCamelCase = output_ids.shape[0] if self.framework == "pt": UpperCamelCase = output_ids.reshape(A_ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": UpperCamelCase = tf.reshape(A_ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase_ ( self , A_ , A_=ReturnType.TEXT , A_=False )-> Optional[Any]: '''simple docstring''' UpperCamelCase = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: UpperCamelCase = {F'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: UpperCamelCase = { F'''{self.return_name}_text''': self.tokenizer.decode( A_ , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , ) } records.append(A_ ) return records @add_end_docstrings(snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """summary""" def __call__( self , *A_ , **A_ )-> Optional[int]: '''simple docstring''' return super().__call__(*A_ , **A_ ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> bool: '''simple docstring''' if max_length < min_length: logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' 'a summarization task, where outputs shorter than the input are typically wanted, you might ' F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """translation""" def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> List[Any]: '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' ) return True def UpperCAmelCase_ ( self , *A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , A_=None , A_=None )-> Dict: '''simple docstring''' if getattr(self.tokenizer , '_build_translation_inputs' , A_ ): return self.tokenizer._build_translation_inputs( *A_ , return_tensors=self.framework , truncation=A_ , src_lang=A_ , tgt_lang=A_ ) else: return super()._parse_and_tokenize(*A_ , truncation=A_ ) def UpperCAmelCase_ ( self , A_=None , A_=None , **A_ )-> str: '''simple docstring''' UpperCamelCase , UpperCamelCase , UpperCamelCase = super()._sanitize_parameters(**A_ ) if src_lang is not None: UpperCamelCase = src_lang if tgt_lang is not None: UpperCamelCase = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. UpperCamelCase = kwargs.get('task' , self.task ) UpperCamelCase = task.split('_' ) if task and len(A_ ) == 4: # translation, XX, to YY UpperCamelCase = items[1] UpperCamelCase = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A_ , **A_ )-> Any: '''simple docstring''' return super().__call__(*A_ , **A_ )
3
0
'''simple docstring''' import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _snake_case : def __init__( self ,_snake_case ,_snake_case=99 ,_snake_case=13 ,_snake_case=7 ,_snake_case=9 ,_snake_case=True ,_snake_case=True ,_snake_case=False ,_snake_case=32 ,_snake_case=5 ,_snake_case=4 ,_snake_case=37 ,_snake_case=8 ,_snake_case=0.1 ,_snake_case=0.002 ,_snake_case=1 ,_snake_case=0 ,_snake_case=0 ,_snake_case=None ,_snake_case=None ,): UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : int = encoder_seq_length UpperCAmelCase_ : int = decoder_seq_length # For common tests UpperCAmelCase_ : Any = self.decoder_seq_length UpperCAmelCase_ : str = is_training UpperCAmelCase_ : List[Any] = use_attention_mask UpperCAmelCase_ : List[str] = use_labels UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : Any = d_ff UpperCAmelCase_ : List[Any] = relative_attention_num_buckets UpperCAmelCase_ : str = dropout_rate UpperCAmelCase_ : Optional[int] = initializer_factor UpperCAmelCase_ : Union[str, Any] = eos_token_id UpperCAmelCase_ : int = pad_token_id UpperCAmelCase_ : List[str] = decoder_start_token_id UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = decoder_layers def UpperCamelCase__ ( self ): return TaConfig.from_pretrained("google/umt5-base" ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case=None ,_snake_case=None ,_snake_case=None ,_snake_case=None ,_snake_case=None ,): if attention_mask is None: UpperCAmelCase_ : Union[str, Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCAmelCase_ : int = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCAmelCase_ : List[str] = torch.ones(config.num_hidden_layers ,config.num_attention_heads ,device=_snake_case ) if decoder_head_mask is None: UpperCAmelCase_ : str = torch.ones(config.num_decoder_layers ,config.num_attention_heads ,device=_snake_case ) if cross_attn_head_mask is None: UpperCAmelCase_ : Optional[Any] = torch.ones( config.num_decoder_layers ,config.num_attention_heads ,device=_snake_case ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.encoder_seq_length] ,self.vocab_size ) UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.decoder_seq_length] ,self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCAmelCase_ : Tuple = input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase_ : List[str] = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase_ : Any = self.get_config() UpperCAmelCase_ : Union[str, Any] = config.num_attention_heads UpperCAmelCase_ : List[Any] = self.prepare_inputs_dict(_snake_case ,_snake_case ,_snake_case ) return config, input_dict def UpperCamelCase__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase__ ( self ): return TaConfig( vocab_size=1_66 ,d_model=self.hidden_size ,d_ff=self.d_ff ,d_kv=self.hidden_size // self.num_attention_heads ,num_layers=self.num_hidden_layers ,num_decoder_layers=self.decoder_layers ,num_heads=self.num_attention_heads ,relative_attention_num_buckets=self.relative_attention_num_buckets ,dropout_rate=self.dropout_rate ,initializer_factor=self.initializer_factor ,eos_token_id=self.eos_token_id ,bos_token_id=self.pad_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.decoder_start_token_id ,) def UpperCamelCase__ ( self ): return TaConfig( vocab_size=self.vocab_size ,d_model=self.hidden_size ,d_ff=self.d_ff ,d_kv=self.hidden_size // self.num_attention_heads ,num_layers=self.num_hidden_layers ,num_decoder_layers=self.decoder_layers ,num_heads=self.num_attention_heads ,relative_attention_num_buckets=self.relative_attention_num_buckets ,dropout_rate=self.dropout_rate ,initializer_factor=self.initializer_factor ,eos_token_id=self.eos_token_id ,bos_token_id=self.pad_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.decoder_start_token_id ,) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,): UpperCAmelCase_ : int = UMTaModel(config=_snake_case ) model.to(_snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model( input_ids=_snake_case ,decoder_input_ids=_snake_case ,attention_mask=_snake_case ,decoder_attention_mask=_snake_case ,) UpperCAmelCase_ : str = model(input_ids=_snake_case ,decoder_input_ids=_snake_case ) UpperCAmelCase_ : Union[str, Any] = result.last_hidden_state UpperCAmelCase_ : List[Any] = result.past_key_values UpperCAmelCase_ : Any = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() ,(self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() ,(self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_snake_case ) ,config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) ,4 ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,): UpperCAmelCase_ : Dict = UMTaModel(config=_snake_case ).get_decoder().to(_snake_case ).eval() # first forward pass UpperCAmelCase_ : Dict = model(_snake_case ,use_cache=_snake_case ) UpperCAmelCase_ : int = model(_snake_case ) UpperCAmelCase_ : Optional[int] = model(_snake_case ,use_cache=_snake_case ) self.parent.assertTrue(len(_snake_case ) == len(_snake_case ) ) self.parent.assertTrue(len(_snake_case ) == len(_snake_case ) + 1 ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ : Dict = ids_tensor((self.batch_size, 1) ,config.vocab_size ) # append to next input_ids and UpperCAmelCase_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 ) UpperCAmelCase_ : Dict = model(_snake_case )["last_hidden_state"] UpperCAmelCase_ : Dict = model(_snake_case ,past_key_values=_snake_case )["last_hidden_state"] # select random slice UpperCAmelCase_ : str = ids_tensor((1,) ,output_from_past.shape[-1] ).item() UpperCAmelCase_ : Tuple = output_from_no_past[:, -1, random_slice_idx].detach() UpperCAmelCase_ : Any = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case ,_snake_case ,atol=1E-3 ) ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,): UpperCAmelCase_ : Dict = UMTaModel(config=_snake_case ).to(_snake_case ).half().eval() UpperCAmelCase_ : List[str] = model(**_snake_case )["last_hidden_state"] self.parent.assertFalse(torch.isnan(_snake_case ).any().item() ) @require_torch class _snake_case (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase): __A : Optional[int] =( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) __A : Any =(UMTaForConditionalGeneration,) if is_torch_available() else () __A : str =( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) __A : List[Any] =True __A : str =False __A : List[str] =False __A : int =True __A : Tuple =True # The small UMT5 model needs higher percentages for CPU/MP tests __A : Optional[int] =[0.8, 0.9] def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[str] = UMTaModelTester(self ) @unittest.skip("Test has a segmentation fault on torch 1.8.0" ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_ : Union[str, Any] = UMTaModel(config_and_inputs[0] ).to(_snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _snake_case ,(config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) ,f'''{tmpdirname}/t5_test.onnx''' ,export_params=_snake_case ,opset_version=9 ,input_names=["input_ids", "decoder_input_ids"] ,) @unittest.skipIf(torch_device == "cpu" ,"Cant do half precision" ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = ["encoder_attentions", "decoder_attentions", "cross_attentions"] UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_ : str = config_and_inputs[0] UpperCAmelCase_ : Optional[int] = UMTaForConditionalGeneration(_snake_case ).eval() model.to(_snake_case ) UpperCAmelCase_ : Optional[Any] = { "head_mask": torch.zeros(config.num_layers ,config.num_heads ,device=_snake_case ), "decoder_head_mask": torch.zeros(config.num_decoder_layers ,config.num_heads ,device=_snake_case ), "cross_attn_head_mask": torch.zeros(config.num_decoder_layers ,config.num_heads ,device=_snake_case ), } for attn_name, (name, mask) in zip(_snake_case ,head_masking.items() ): UpperCAmelCase_ : int = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": UpperCAmelCase_ : str = torch.ones( config.num_decoder_layers ,config.num_heads ,device=_snake_case ) UpperCAmelCase_ : int = model.generate( config_and_inputs[1]["input_ids"] ,num_beams=1 ,max_length=3 ,output_attentions=_snake_case ,return_dict_in_generate=_snake_case ,**_snake_case ,) # We check the state of decoder_attentions and cross_attentions just from the last step UpperCAmelCase_ : Union[str, Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) ,0.0 ) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases." ) def UpperCamelCase__ ( self ): pass @require_torch @require_sentencepiece @require_tokenizers class _snake_case (unittest.TestCase): @slow @unittest.skip( "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = UMTaForConditionalGeneration.from_pretrained("google/umt5-small" ,return_dict=_snake_case ).to(_snake_case ) UpperCAmelCase_ : str = AutoTokenizer.from_pretrained("google/umt5-small" ,use_fast=_snake_case ,legacy=_snake_case ) UpperCAmelCase_ : Optional[int] = [ "Bonjour monsieur <extra_id_0> bien <extra_id_1>.", "No se como puedo <extra_id_0>.", "This is the reason why we <extra_id_0> them.", "The <extra_id_0> walks in <extra_id_1>, seats", "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.", ] UpperCAmelCase_ : Tuple = tokenizer(_snake_case ,return_tensors="pt" ,padding=_snake_case ).input_ids # fmt: off UpperCAmelCase_ : Any = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(_snake_case ,_snake_case ) UpperCAmelCase_ : int = model.generate(input_ids.to(_snake_case ) ) UpperCAmelCase_ : int = [ "<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>", "<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", ] UpperCAmelCase_ : Dict = tokenizer.batch_decode(_snake_case ) self.assertEqual(_snake_case ,_snake_case )
71
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = 0 lowerCAmelCase_ = False lowerCAmelCase_ = 3.0 class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def UpperCAmelCase_ ( self )-> int: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=A_ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() UpperCamelCase = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , A_ ) @require_multi_gpu def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_ , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase : Tuple = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCAmelCase : List[str] = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCAmelCase : List[Any] = torch.nn.Linear(1_00, 2_00) lowerCAmelCase : int = accelerator.prepare(model) # Check the values changed in kwargs lowerCAmelCase : Dict = '' lowerCAmelCase : Dict = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
3
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : List[Any] = {'''configuration_timm_backbone''': ['''TimmBackboneConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = ['''TimmBackbone'''] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys _UpperCAmelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_): @register_to_config def __init__( self , A_ , A_ = None , A_ = None )-> Tuple: '''simple docstring''' super().__init__() UpperCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCamelCase = torch.zeros(A_ , A_ ) else: UpperCamelCase = None UpperCamelCase = torch.nn.Parameter(A_ ) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , )-> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( vqvae=A_ , transformer=A_ , text_encoder=A_ , tokenizer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Tuple: '''simple docstring''' UpperCamelCase = len(A_ ) if isinstance(A_ , A_ ) else 1 # get prompt text embeddings UpperCamelCase = self.tokenizer( A_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) UpperCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate text embeddings for each generation per prompt UpperCamelCase = prompt_embeds.repeat_interleave(A_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(A_ , 1 , 1 ) else: UpperCamelCase = [''] * batch_size UpperCamelCase = text_input_ids.shape[-1] UpperCamelCase = self.tokenizer( A_ , padding='max_length' , max_length=A_ , truncation=A_ , return_tensors='pt' , ) UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase = negative_prompt_embeds.shape[1] UpperCamelCase = negative_prompt_embeds.repeat(1 , A_ , 1 ) UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , A_ , A_ = 100 , A_ = 5.0 , A_ = 1.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , A_ = None , A_ = 1 , )-> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(A_ , A_ ): UpperCamelCase = 1 elif isinstance(A_ , A_ ): UpperCamelCase = len(A_ ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(A_ )}''' ) UpperCamelCase = batch_size * num_images_per_prompt UpperCamelCase = guidance_scale > 1.0 UpperCamelCase = self._encode_prompt(A_ , A_ , A_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A_ , A_ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(A_ )}.''' ) # get the initial completely masked latents unless the user supplied it UpperCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCamelCase = self.transformer.num_vector_embeds - 1 UpperCamelCase = torch.full(A_ , A_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) UpperCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(A_ , device=self.device ) UpperCamelCase = self.scheduler.timesteps.to(self.device ) UpperCamelCase = latents for i, t in enumerate(self.progress_bar(A_ ) ): # expand the sample if we are doing classifier free guidance UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCamelCase = self.transformer(A_ , encoder_hidden_states=A_ , timestep=A_ ).sample if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase = model_output.chunk(2 ) UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(A_ , dim=1 , keepdim=A_ ) UpperCamelCase = self.truncate(A_ , A_ ) # remove `log(0)`'s (`-inf`s) UpperCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(A_ , timestep=A_ , sample=A_ , generator=A_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A_ , A_ , A_ ) UpperCamelCase = self.vqvae.config.vq_embed_dim UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCamelCase = self.vqvae.quantize.get_codebook_entry(A_ , shape=A_ ) UpperCamelCase = self.vqvae.decode(A_ , force_not_quantize=A_ ).sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ ) def UpperCAmelCase_ ( self , A_ , A_ )-> torch.FloatTensor: '''simple docstring''' UpperCamelCase , UpperCamelCase = torch.sort(A_ , 1 , descending=A_ ) UpperCamelCase = torch.exp(A_ ) UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , A_ ) UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) UpperCamelCase = keep_mask[:, :-1, :] UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) UpperCamelCase = log_p_x_0.clone() UpperCamelCase = -torch.inf # -inf = log(0) return rv
3
0
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = 1.5 SCREAMING_SNAKE_CASE = int(factor * num_class_images) SCREAMING_SNAKE_CASE = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=_UpperCAmelCase , aesthetic_weight=0.1) os.makedirs(F'''{class_data_dir}/images''' , exist_ok=_UpperCAmelCase) if len(list(Path(F'''{class_data_dir}/images''').iterdir())) >= num_class_images: return while True: SCREAMING_SNAKE_CASE = client.query(text=_UpperCAmelCase) if len(_UpperCAmelCase) >= factor * num_class_images or num_images > 1e4: break else: SCREAMING_SNAKE_CASE = int(factor * num_images) SCREAMING_SNAKE_CASE = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=_UpperCAmelCase , aesthetic_weight=0.1 , ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = tqdm(desc='downloading real regularization images' , total=_UpperCAmelCase) with open(F'''{class_data_dir}/caption.txt''' , 'w') as fa, open(F'''{class_data_dir}/urls.txt''' , 'w') as fa, open( F'''{class_data_dir}/images.txt''' , 'w') as fa: while total < num_class_images: SCREAMING_SNAKE_CASE = class_images[count] count += 1 try: SCREAMING_SNAKE_CASE = requests.get(images['url']) if img.status_code == 200: SCREAMING_SNAKE_CASE = Image.open(BytesIO(img.content)) with open(F'''{class_data_dir}/images/{total}.jpg''' , 'wb') as f: f.write(img.content) fa.write(images['caption'] + '\n') fa.write(images['url'] + '\n') fa.write(F'''{class_data_dir}/images/{total}.jpg''' + '\n') total += 1 pbar.update(1) else: continue except Exception: continue return def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = argparse.ArgumentParser('' , add_help=_UpperCAmelCase) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=_UpperCAmelCase , type=_UpperCAmelCase) parser.add_argument('--class_data_dir' , help='path to save images' , required=_UpperCAmelCase , type=_UpperCAmelCase) parser.add_argument('--num_class_images' , help='number of images to download' , default=200 , type=_UpperCAmelCase) return parser.parse_args() if __name__ == "__main__": a_ : int = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
73
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Union[str, Any] = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
0
def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = 0 while b > 0: if b & 1: __SCREAMING_SNAKE_CASE : int = ((res % c) + (a % c)) % c a += a b >>= 1 return res
74
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ = None , A_ = None , A_=None , A_=None )-> Optional[Any]: '''simple docstring''' if not conversation_id: UpperCamelCase = uuid.uuida() if past_user_inputs is None: UpperCamelCase = [] if generated_responses is None: UpperCamelCase = [] UpperCamelCase = conversation_id UpperCamelCase = past_user_inputs UpperCamelCase = generated_responses UpperCamelCase = text def __eq__( self , A_ )-> List[Any]: '''simple docstring''' if not isinstance(A_ , A_ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def UpperCAmelCase_ ( self , A_ , A_ = False )-> int: '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' F'''with: "{text}".''' ) UpperCamelCase = text else: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: UpperCamelCase = text def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) UpperCamelCase = None def UpperCAmelCase_ ( self , A_ )-> int: '''simple docstring''' self.generated_responses.append(A_ ) def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self )-> Any: '''simple docstring''' UpperCamelCase = F'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): UpperCamelCase = 'user' if is_user else 'bot' output += F'''{name} >> {text} \n''' return output @add_end_docstrings( snake_case_ , R""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , *A_ , **A_ )-> Any: '''simple docstring''' super().__init__(*A_ , **A_ ) if self.tokenizer.pad_token_id is None: UpperCamelCase = self.tokenizer.eos_token def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , **A_ )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = {} UpperCamelCase = {} UpperCamelCase = {} if min_length_for_response is not None: UpperCamelCase = min_length_for_response if minimum_tokens is not None: UpperCamelCase = minimum_tokens if "max_length" in generate_kwargs: UpperCamelCase = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: UpperCamelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(A_ ) return preprocess_params, forward_params, postprocess_params def __call__( self , A_ , A_=0 , **A_ )-> Any: '''simple docstring''' UpperCamelCase = super().__call__(A_ , num_workers=A_ , **A_ ) if isinstance(A_ , A_ ) and len(A_ ) == 1: return outputs[0] return outputs def UpperCAmelCase_ ( self , A_ , A_=32 )-> Dict[str, Any]: '''simple docstring''' if not isinstance(A_ , A_ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): UpperCamelCase = self.tokenizer._build_conversation_input_ids(A_ ) else: # If the tokenizer cannot handle conversations, we default to only the old version UpperCamelCase = self._legacy_parse_and_tokenize(A_ ) if self.framework == "pt": UpperCamelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": UpperCamelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def UpperCAmelCase_ ( self , A_ , A_=10 , **A_ )-> Optional[Any]: '''simple docstring''' UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) UpperCamelCase = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) UpperCamelCase = max_length - minimum_tokens UpperCamelCase = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: UpperCamelCase = model_inputs['attention_mask'][:, -trim:] UpperCamelCase = model_inputs.pop('conversation' ) UpperCamelCase = max_length UpperCamelCase = self.model.generate(**A_ , **A_ ) if self.model.config.is_encoder_decoder: UpperCamelCase = 1 else: UpperCamelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def UpperCAmelCase_ ( self , A_ , A_=True )-> Tuple: '''simple docstring''' UpperCamelCase = model_outputs['output_ids'] UpperCamelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , ) UpperCamelCase = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(A_ ) return conversation def UpperCAmelCase_ ( self , A_ )-> Dict: '''simple docstring''' UpperCamelCase = self.tokenizer.eos_token_id UpperCamelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) ) if len(A_ ) > self.tokenizer.model_max_length: UpperCamelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
3
0
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_ : def __init__( self : Tuple , _A : Any , _A : List[str]=13 , _A : Optional[int]=[30, 30] , _A : List[str]=2 , _A : Union[str, Any]=3 , _A : Union[str, Any]=True , _A : Optional[Any]=True , _A : Tuple=32 , _A : Optional[Any]=5 , _A : List[Any]=4 , _A : Any=37 , _A : List[str]="gelu" , _A : Tuple=0.1 , _A : str=0.1 , _A : Tuple=10 , _A : List[Any]=0.0_2 , _A : Any=3 , _A : Optional[int]=None , _A : Tuple=8 , _A : Optional[Any]=10 , ): '''simple docstring''' UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : Dict = batch_size UpperCAmelCase__ : str = image_size UpperCAmelCase__ : List[Any] = patch_size UpperCAmelCase__ : str = num_channels UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : Optional[int] = use_labels UpperCAmelCase__ : str = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : Dict = num_attention_heads UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : List[str] = hidden_act UpperCAmelCase__ : str = hidden_dropout_prob UpperCAmelCase__ : List[str] = attention_probs_dropout_prob UpperCAmelCase__ : Optional[Any] = type_sequence_label_size UpperCAmelCase__ : List[str] = initializer_range UpperCAmelCase__ : str = num_labels UpperCAmelCase__ : List[str] = scope UpperCAmelCase__ : Union[str, Any] = n_targets UpperCAmelCase__ : int = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens UpperCAmelCase__ : Any = (image_size[1] // patch_size) * (image_size[0] // patch_size) UpperCAmelCase__ : Tuple = num_patches + 1 + self.num_detection_tokens def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) UpperCAmelCase__ : Optional[int] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) UpperCAmelCase__ : List[Any] = [] for i in range(self.batch_size ): UpperCAmelCase__ : str = {} UpperCAmelCase__ : Optional[Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_A ) UpperCAmelCase__ : Union[str, Any] = torch.rand(self.n_targets , 4 , device=_A ) labels.append(_A ) UpperCAmelCase__ : List[Any] = self.get_config() return config, pixel_values, labels def lowercase_ ( self : Tuple ): '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def lowercase_ ( self : Union[str, Any] , _A : int , _A : List[str] , _A : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = YolosModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase__ : List[Any] = model(_A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def lowercase_ ( self : List[Any] , _A : Union[str, Any] , _A : Dict , _A : Dict ): '''simple docstring''' UpperCAmelCase__ : List[str] = YolosForObjectDetection(_A ) model.to(_A ) model.eval() UpperCAmelCase__ : Optional[Any] = model(pixel_values=_A ) UpperCAmelCase__ : Dict = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) UpperCAmelCase__ : Dict = model(pixel_values=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : int = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = config_and_inputs UpperCAmelCase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCAmelCase__ = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowercase_ ( self : Union[str, Any] , _A : List[str] , _A : Union[str, Any] , _A : Any=False ): '''simple docstring''' UpperCAmelCase__ : Tuple = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": UpperCAmelCase__ : int = [] for i in range(self.model_tester.batch_size ): UpperCAmelCase__ : str = {} UpperCAmelCase__ : str = torch.ones( size=(self.model_tester.n_targets,) , device=_A , dtype=torch.long ) UpperCAmelCase__ : str = torch.ones( self.model_tester.n_targets , 4 , device=_A , dtype=torch.float ) labels.append(_A ) UpperCAmelCase__ : str = labels return inputs_dict def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = YolosModelTester(self ) UpperCAmelCase__ : Optional[int] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' pass def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Any = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(_A ) UpperCAmelCase__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : List[str] = [*signature.parameters.keys()] UpperCAmelCase__ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : List[Any] = True # in YOLOS, the seq_len is different UpperCAmelCase__ : Union[str, Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: UpperCAmelCase__ : Any = True UpperCAmelCase__ : Any = False UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : Union[str, Any] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase__ : Any = outputs.attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : int = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase__ : Any = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase__ : str = outputs.attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) UpperCAmelCase__ : str = len(_A ) # Check attention is always last and order is fine UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : Optional[int] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase__ : Any = 1 self.assertEqual(out_len + added_hidden_states , len(_A ) ) UpperCAmelCase__ : List[str] = outputs.attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' def check_hidden_states_output(_A : Optional[int] , _A : int , _A : List[str] ): UpperCAmelCase__ : Union[str, Any] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase__ : str = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase__ : Optional[int] = outputs.hidden_states UpperCAmelCase__ : List[str] = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ) , _A ) # YOLOS has a different seq_length UpperCAmelCase__ : Optional[Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : int = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : Any = True check_hidden_states_output(_A , _A , _A ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_A ) @slow def lowercase_ ( self : Optional[Any] ): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : str = YolosModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def a__ ( ) -> Dict: UpperCAmelCase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def lowercase_ ( self : List[str] ): '''simple docstring''' return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(_A ) UpperCAmelCase__ : Optional[Any] = self.default_image_processor UpperCAmelCase__ : Dict = prepare_img() UpperCAmelCase__ : Dict = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Union[str, Any] = model(inputs.pixel_values ) # verify outputs UpperCAmelCase__ : Any = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase__ : Dict = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=_A , ) UpperCAmelCase__ : Optional[Any] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _A , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _A , atol=1e-4 ) ) # verify postprocessing UpperCAmelCase__ : Any = image_processor.post_process_object_detection( _A , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] UpperCAmelCase__ : str = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(_A ) UpperCAmelCase__ : Any = [75, 75, 17, 63, 17] UpperCAmelCase__ : int = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(_A ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , _A , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , _A ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , _A ) )
75
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase : List[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase : List[Any] = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase : Tuple = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase : List[Any] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
3
0
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
76
'''simple docstring''' import numpy as np def A_( A : str , A : Optional[Any] , A : Tuple , A : Optional[int] , A : str): UpperCamelCase = int(np.ceil((x_end - xa) / h)) UpperCamelCase = np.zeros((n + 1,)) UpperCamelCase = ya UpperCamelCase = xa for k in range(A): UpperCamelCase = f(A , y[k]) UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka) UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka) UpperCamelCase = f(x + h , y[k] + h * ka) UpperCamelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
3
0
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() A = logging.get_logger(__name__) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[str]: """simple docstring""" __UpperCAmelCase : Any = WavaVecaForSequenceClassification.from_pretrained(UpperCamelCase , config=UpperCamelCase ) __UpperCAmelCase : int = downstream_dict["projector.weight"] __UpperCAmelCase : List[Any] = downstream_dict["projector.bias"] __UpperCAmelCase : Optional[Any] = downstream_dict["model.post_net.linear.weight"] __UpperCAmelCase : List[Any] = downstream_dict["model.post_net.linear.bias"] return model def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Union[str, Any] = WavaVecaForAudioFrameClassification.from_pretrained(UpperCamelCase , config=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = downstream_dict["model.linear.weight"] __UpperCAmelCase : Union[str, Any] = downstream_dict["model.linear.bias"] return model def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: """simple docstring""" __UpperCAmelCase : List[str] = WavaVecaForXVector.from_pretrained(UpperCamelCase , config=UpperCamelCase ) __UpperCAmelCase : Tuple = downstream_dict["connector.weight"] __UpperCAmelCase : str = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __UpperCAmelCase : int = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __UpperCAmelCase : Union[str, Any] = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __UpperCAmelCase : Tuple = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] __UpperCAmelCase : Union[str, Any] = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] __UpperCAmelCase : Dict = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] __UpperCAmelCase : Union[str, Any] = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] __UpperCAmelCase : int = downstream_dict["objective.W"] return model @torch.no_grad() def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Dict: """simple docstring""" __UpperCAmelCase : Union[str, Any] = torch.load(UpperCamelCase , map_location="cpu" ) __UpperCAmelCase : Optional[Any] = checkpoint["Downstream"] __UpperCAmelCase : int = WavaVecaConfig.from_pretrained(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained( UpperCamelCase , return_attention_mask=UpperCamelCase , do_normalize=UpperCamelCase ) __UpperCAmelCase : Dict = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): __UpperCAmelCase : List[Any] = convert_classification(UpperCamelCase , UpperCamelCase , UpperCamelCase ) elif arch.endswith("ForAudioFrameClassification" ): __UpperCAmelCase : List[str] = convert_diarization(UpperCamelCase , UpperCamelCase , UpperCamelCase ) elif arch.endswith("ForXVector" ): __UpperCAmelCase : str = convert_xvector(UpperCamelCase , UpperCamelCase , UpperCamelCase ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __UpperCAmelCase : Optional[Any] = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(UpperCamelCase ) hf_model.save_pretrained(UpperCamelCase ) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") A = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
77
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True}) lowerCAmelCase_ = Features({"""text""": Value("""string""")}) lowerCAmelCase_ = Features({}) lowerCAmelCase_ = "text" @property def UpperCAmelCase_ ( self )-> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
3
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int ) -> int: '''simple docstring''' assert isinstance(snake_case_ , snake_case_ ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: UpperCAmelCase_ = f"""The input value of [n={number}] has to be > 0""" raise ValueError(snake_case_ ) else: UpperCAmelCase_ = sylvester(number - 1 ) UpperCAmelCase_ = num - 1 UpperCAmelCase_ = num return lower * upper + 1 if __name__ == "__main__": print(f"The 8th number in Sylvester's sequence: {sylvester(8)}")
78
'''simple docstring''' from __future__ import annotations lowerCAmelCase : Union[str, Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCAmelCase : List[str] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def A_( A : list[float]): UpperCamelCase = [] UpperCamelCase = len(A) for i in range(A): UpperCamelCase = -1 for j in range(i + 1 , A): if arr[i] < arr[j]: UpperCamelCase = arr[j] break result.append(A) return result def A_( A : list[float]): UpperCamelCase = [] for i, outer in enumerate(A): UpperCamelCase = -1 for inner in arr[i + 1 :]: if outer < inner: UpperCamelCase = inner break result.append(A) return result def A_( A : list[float]): UpperCamelCase = len(A) UpperCamelCase = [] UpperCamelCase = [-1] * arr_size for index in reversed(range(A)): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: UpperCamelCase = stack[-1] stack.append(arr[index]) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCAmelCase : Optional[Any] = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
3
0
def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> float: '''simple docstring''' UpperCAmelCase__ : int = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _lowerCamelCase ( ) -> str: '''simple docstring''' print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
79
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def A_( A : str): if not sentence: return "" UpperCamelCase = dict(zip(A , A)) return lower_to_upper.get(sentence[0] , sentence[0]) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
3
0
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __UpperCamelCase : Tuple = """hf-internal-testing/tiny-random-bert""" __UpperCamelCase : str = os.path.join(TRANSFORMERS_CACHE, """models--hf-internal-testing--tiny-random-bert""") __UpperCamelCase : Optional[Any] = """9b8c223d42b2188cb49d29af482996f9d0f3e5a6""" class __UpperCamelCase ( unittest.TestCase ): def _a ( self : List[Any] ) -> str: """simple docstring""" __lowercase = cached_file(_lowerCAmelCase , _lowerCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_lowerCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) ) with open(os.path.join(_lowerCAmelCase , """refs""" , """main""" ) ) as f: __lowercase = f.read() self.assertEqual(_lowerCAmelCase , os.path.join(_lowerCAmelCase , """snapshots""" , _lowerCAmelCase , _lowerCAmelCase ) ) self.assertTrue(os.path.isfile(_lowerCAmelCase ) ) # File is cached at the same place the second time. __lowercase = cached_file(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # Using a specific revision to test the full commit hash. __lowercase = cached_file(_lowerCAmelCase , _lowerCAmelCase , revision="""9b8c223""" ) self.assertEqual(_lowerCAmelCase , os.path.join(_lowerCAmelCase , """snapshots""" , _lowerCAmelCase , _lowerCAmelCase ) ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" with self.assertRaisesRegex(_lowerCAmelCase , """is not a valid model identifier""" ): __lowercase = cached_file("""tiny-random-bert""" , _lowerCAmelCase ) with self.assertRaisesRegex(_lowerCAmelCase , """is not a valid git identifier""" ): __lowercase = cached_file(_lowerCAmelCase , _lowerCAmelCase , revision="""aaaa""" ) with self.assertRaisesRegex(_lowerCAmelCase , """does not appear to have a file named""" ): __lowercase = cached_file(_lowerCAmelCase , """conf""" ) def _a ( self : Tuple ) -> str: """simple docstring""" with self.assertRaisesRegex(_lowerCAmelCase , """does not appear to have a file named""" ): __lowercase = cached_file(_lowerCAmelCase , """conf""" ) with open(os.path.join(_lowerCAmelCase , """refs""" , """main""" ) ) as f: __lowercase = f.read() self.assertTrue(os.path.isfile(os.path.join(_lowerCAmelCase , """.no_exist""" , _lowerCAmelCase , """conf""" ) ) ) __lowercase = cached_file(_lowerCAmelCase , """conf""" , _raise_exceptions_for_missing_entries=_lowerCAmelCase ) self.assertIsNone(_lowerCAmelCase ) __lowercase = cached_file(_lowerCAmelCase , """conf""" , local_files_only=_lowerCAmelCase , _raise_exceptions_for_missing_entries=_lowerCAmelCase ) self.assertIsNone(_lowerCAmelCase ) __lowercase = mock.Mock() __lowercase = 500 __lowercase = {} __lowercase = HTTPError __lowercase = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=_lowerCAmelCase ) as mock_head: __lowercase = cached_file(_lowerCAmelCase , """conf""" , _raise_exceptions_for_connection_errors=_lowerCAmelCase ) self.assertIsNone(_lowerCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def _a ( self : Optional[int] ) -> str: """simple docstring""" self.assertTrue(has_file("""hf-internal-testing/tiny-bert-pt-only""" , _lowerCAmelCase ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , _lowerCAmelCase ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , _lowerCAmelCase ) ) def _a ( self : int ) -> Tuple: """simple docstring""" self.assertIsNone(get_file_from_repo("""bert-base-cased""" , """ahah.txt""" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_lowerCAmelCase , """is not a valid model identifier""" ): get_file_from_repo("""bert-base-case""" , _lowerCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_lowerCAmelCase , """is not a valid git identifier""" ): get_file_from_repo("""bert-base-cased""" , _lowerCAmelCase , revision="""ahaha""" ) __lowercase = get_file_from_repo("""bert-base-cased""" , _lowerCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. __lowercase = json.loads(open(_lowerCAmelCase , """r""" ).read() ) self.assertEqual(config["""hidden_size"""] , 768 ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __lowercase = Path(_lowerCAmelCase ) / """a.txt""" filename.touch() self.assertEqual(get_file_from_repo(_lowerCAmelCase , """a.txt""" ) , str(_lowerCAmelCase ) ) self.assertIsNone(get_file_from_repo(_lowerCAmelCase , """b.txt""" ) )
80
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase : Dict = logging.get_logger(__name__) # General docstring lowerCAmelCase : str = 'RegNetConfig' # Base docstring lowerCAmelCase : str = 'facebook/regnet-y-040' lowerCAmelCase : Dict = [1, 10_88, 7, 7] # Image classification docstring lowerCAmelCase : Dict = 'facebook/regnet-y-040' lowerCAmelCase : int = 'tabby, tabby cat' lowerCAmelCase : int = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ = 3 , A_ = 1 , A_ = 1 , A_ = "relu" , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb UpperCamelCase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) UpperCamelCase = tf.keras.layers.ConvaD( filters=A_ , kernel_size=A_ , strides=A_ , padding='VALID' , groups=A_ , use_bias=A_ , name='convolution' , ) UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) UpperCamelCase = ACTaFN[activation] if activation is not None else tf.identity def UpperCAmelCase_ ( self , A_ )-> Any: '''simple docstring''' UpperCamelCase = self.convolution(self.padding(A_ ) ) UpperCamelCase = self.normalization(A_ ) UpperCamelCase = self.activation(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , **A_ )-> Optional[Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = config.num_channels UpperCamelCase = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = shape_list(A_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) UpperCamelCase = tf.transpose(A_ , perm=(0, 2, 3, 1) ) UpperCamelCase = self.embedder(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ = 2 , **A_ )-> List[Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = tf.keras.layers.ConvaD( filters=A_ , kernel_size=1 , strides=A_ , use_bias=A_ , name='convolution' ) UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) def UpperCAmelCase_ ( self , A_ , A_ = False )-> tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(A_ ) , training=A_ ) class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , **A_ )-> Optional[Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' ) UpperCamelCase = [ tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def UpperCAmelCase_ ( self , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.pooler(A_ ) for layer_module in self.attention: UpperCamelCase = layer_module(A_ ) UpperCamelCase = hidden_state * pooled return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Dict: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = in_channels != out_channels or stride != 1 UpperCamelCase = max(1 , out_channels // config.groups_width ) UpperCamelCase = ( TFRegNetShortCut(A_ , stride=A_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. UpperCamelCase = [ TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.2' ), ] UpperCamelCase = ACTaFN[config.hidden_act] def UpperCAmelCase_ ( self , A_ )-> Tuple: '''simple docstring''' UpperCamelCase = hidden_state for layer_module in self.layers: UpperCamelCase = layer_module(A_ ) UpperCamelCase = self.shortcut(A_ ) hidden_state += residual UpperCamelCase = self.activation(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Any: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = in_channels != out_channels or stride != 1 UpperCamelCase = max(1 , out_channels // config.groups_width ) UpperCamelCase = ( TFRegNetShortCut(A_ , stride=A_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) UpperCamelCase = [ TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(A_ , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.3' ), ] UpperCamelCase = ACTaFN[config.hidden_act] def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = hidden_state for layer_module in self.layers: UpperCamelCase = layer_module(A_ ) UpperCamelCase = self.shortcut(A_ ) hidden_state += residual UpperCamelCase = self.activation(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ , A_ = 2 , A_ = 2 , **A_ )-> Dict: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer UpperCamelCase = [ # downsampling is done in the first layer with stride of 2 layer(A_ , A_ , A_ , stride=A_ , name='layers.0' ), *[layer(A_ , A_ , A_ , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' for layer_module in self.layers: UpperCamelCase = layer_module(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , **A_ )-> str: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( A_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(A_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(A_ , A_ , A_ , depth=A_ , name=F'''stages.{i+1}''' ) ) def UpperCAmelCase_ ( self , A_ , A_ = False , A_ = True )-> TFBaseModelOutputWithNoAttention: '''simple docstring''' UpperCamelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCamelCase = hidden_states + (hidden_state,) UpperCamelCase = stage_module(A_ ) if output_hidden_states: UpperCamelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=A_ , hidden_states=A_ ) @keras_serializable class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): lowerCAmelCase_ = RegNetConfig def __init__( self , A_ , **A_ )-> Union[str, Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = config UpperCamelCase = TFRegNetEmbeddings(A_ , name='embedder' ) UpperCamelCase = TFRegNetEncoder(A_ , name='encoder' ) UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' ) @unpack_inputs def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_ = False , )-> TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.embedder(A_ , training=A_ ) UpperCamelCase = self.encoder( A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ ) UpperCamelCase = encoder_outputs[0] UpperCamelCase = self.pooler(A_ ) # Change to NCHW output format have uniformity in the modules UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) ) UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: UpperCamelCase = tuple([tf.transpose(A_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A_ , pooler_output=A_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = RegNetConfig lowerCAmelCase_ = """regnet""" lowerCAmelCase_ = """pixel_values""" @property def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} lowerCAmelCase : str = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase : List[str] = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ , *A_ , **A_ )-> List[Any]: '''simple docstring''' super().__init__(A_ , *A_ , **A_ ) UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_=False , )-> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.regnet( pixel_values=A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_): def __init__( self , A_ , *A_ , **A_ )-> str: '''simple docstring''' super().__init__(A_ , *A_ , **A_ ) UpperCamelCase = config.num_labels UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' ) # classification head UpperCamelCase = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase_ ( self , A_ = None , A_ = None , A_ = None , A_ = None , A_=False , )-> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.regnet( A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ ) UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase = self.classifier[0](A_ ) UpperCamelCase = self.classifier[1](A_ ) UpperCamelCase = None if labels is None else self.hf_compute_loss(labels=A_ , logits=A_ ) if not return_dict: UpperCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=A_ , logits=A_ , hidden_states=outputs.hidden_states )
3
0
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): if digit_amount > 0: return round(number - int(__lowerCamelCase ) , __lowerCamelCase ) return number - int(__lowerCamelCase ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.3_45, 1)) print(decimal_isolate(35.3_45, 2)) print(decimal_isolate(35.3_45, 3)) print(decimal_isolate(-14.7_89, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.1_23, 1)) print(decimal_isolate(-14.1_23, 2)) print(decimal_isolate(-14.1_23, 3))
81
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Optional[int] = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """perceiver""" def __init__( self , A_=256 , A_=1280 , A_=768 , A_=1 , A_=26 , A_=8 , A_=8 , A_=None , A_=None , A_="kv" , A_=1 , A_=1 , A_="gelu" , A_=0.1 , A_=0.02 , A_=1e-12 , A_=True , A_=262 , A_=2048 , A_=56 , A_=[368, 496] , A_=16 , A_=1920 , A_=16 , A_=[1, 16, 224, 224] , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = num_latents UpperCamelCase = d_latents UpperCamelCase = d_model UpperCamelCase = num_blocks UpperCamelCase = num_self_attends_per_block UpperCamelCase = num_self_attention_heads UpperCamelCase = num_cross_attention_heads UpperCamelCase = qk_channels UpperCamelCase = v_channels UpperCamelCase = cross_attention_shape_for_attention UpperCamelCase = self_attention_widening_factor UpperCamelCase = cross_attention_widening_factor UpperCamelCase = hidden_act UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = use_query_residual # masked language modeling attributes UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings # image classification attributes UpperCamelCase = image_size # flow attributes UpperCamelCase = train_size # multimodal autoencoding attributes UpperCamelCase = num_frames UpperCamelCase = audio_samples_per_frame UpperCamelCase = samples_per_patch UpperCamelCase = output_shape class SCREAMING_SNAKE_CASE__ ( snake_case_): @property def UpperCAmelCase_ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def UpperCAmelCase_ ( self )-> float: '''simple docstring''' return 1e-4 def UpperCAmelCase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = -1 , A_ = False , A_ = None , A_ = 3 , A_ = 40 , A_ = 40 , )-> Mapping[str, Any]: '''simple docstring''' if isinstance(A_ , A_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase = preprocessor.num_special_tokens_to_add(A_ ) UpperCamelCase = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase = [' '.join(['a'] ) * seq_length] * batch_size UpperCamelCase = dict(preprocessor(A_ , return_tensors=A_ ) ) UpperCamelCase = inputs.pop('input_ids' ) return inputs elif isinstance(A_ , A_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase = compute_effective_axis_dimension(A_ , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCamelCase = self._generate_dummy_images(A_ , A_ , A_ , A_ ) UpperCamelCase = dict(preprocessor(images=A_ , return_tensors=A_ ) ) UpperCamelCase = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
3
0
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowerCamelCase = logging.getLogger(__name__) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=30_522, type=int) lowerCamelCase = parser.parse_args() logger.info(F"Loading data from {args.data_file}") with open(args.data_file, """rb""") as fp: lowerCamelCase = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") lowerCamelCase = Counter() for tk_ids in data: counter.update(tk_ids) lowerCamelCase = [0] * args.vocab_size for k, v in counter.items(): lowerCamelCase = v logger.info(F"Dump to {args.token_counts_dump}") with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
82
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Dict = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """mctct""" def __init__( self , A_=8065 , A_=1536 , A_=36 , A_=6144 , A_=4 , A_=384 , A_=920 , A_=1e-5 , A_=0.3 , A_="relu" , A_=0.02 , A_=0.3 , A_=0.3 , A_=1 , A_=0 , A_=2 , A_=1 , A_=0.3 , A_=1 , A_=(7,) , A_=(3,) , A_=80 , A_=1 , A_=None , A_="sum" , A_=False , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = intermediate_size UpperCamelCase = num_attention_heads UpperCamelCase = attention_head_dim UpperCamelCase = max_position_embeddings UpperCamelCase = layer_norm_eps UpperCamelCase = layerdrop UpperCamelCase = hidden_act UpperCamelCase = initializer_range UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = pad_token_id UpperCamelCase = bos_token_id UpperCamelCase = eos_token_id UpperCamelCase = conv_glu_dim UpperCamelCase = conv_dropout UpperCamelCase = num_conv_layers UpperCamelCase = input_feat_per_channel UpperCamelCase = input_channels UpperCamelCase = conv_channels UpperCamelCase = ctc_loss_reduction UpperCamelCase = ctc_zero_infinity # prevents config testing fail with exporting to json UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ' F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
3
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __snake_case ( _lowercase , _lowercase , unittest.TestCase): snake_case__ : Optional[Any] = StableDiffusionXLImgaImgPipeline snake_case__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} snake_case__ : int = PipelineTesterMixin.required_optional_params - {"latents"} snake_case__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case__ : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS snake_case__ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) _lowerCamelCase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=__lowerCAmelCase , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=8_0 , cross_attention_dim=6_4 , ) _lowerCamelCase : Dict = EulerDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) _lowerCamelCase : str = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) _lowerCamelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=3_2 , ) _lowerCamelCase : Dict = CLIPTextModel(__lowerCAmelCase ) _lowerCamelCase : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__lowerCAmelCase ) _lowerCamelCase : List[str] = CLIPTextModelWithProjection(__lowerCAmelCase ) _lowerCamelCase : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__lowerCAmelCase ) _lowerCamelCase : List[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any=0 ): """simple docstring""" _lowerCamelCase : Dict = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) _lowerCamelCase : str = image / 2 + 0.5 if str(__lowerCAmelCase ).startswith('''mps''' ): _lowerCamelCase : Any = torch.manual_seed(__lowerCAmelCase ) else: _lowerCamelCase : str = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.75, } return inputs def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : int = self.get_dummy_components() _lowerCamelCase : Any = StableDiffusionXLImgaImgPipeline(**__lowerCAmelCase ) _lowerCamelCase : List[Any] = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.get_dummy_inputs(__lowerCAmelCase ) _lowerCamelCase : List[Any] = sd_pipe(**__lowerCAmelCase ).images _lowerCamelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _lowerCamelCase : Any = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Dict = self.get_dummy_components() _lowerCamelCase : Dict = StableDiffusionXLImgaImgPipeline(**__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = sd_pipe.to(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) # forward without prompt embeds _lowerCamelCase : List[Any] = self.get_dummy_inputs(__lowerCAmelCase ) _lowerCamelCase : str = 3 * ['''this is a negative prompt'''] _lowerCamelCase : Dict = negative_prompt _lowerCamelCase : int = 3 * [inputs['''prompt''']] _lowerCamelCase : Dict = sd_pipe(**__lowerCAmelCase ) _lowerCamelCase : Tuple = output.images[0, -3:, -3:, -1] # forward with prompt embeds _lowerCamelCase : List[str] = self.get_dummy_inputs(__lowerCAmelCase ) _lowerCamelCase : str = 3 * ['''this is a negative prompt'''] _lowerCamelCase : int = 3 * [inputs.pop('''prompt''' )] ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Any = sd_pipe.encode_prompt(__lowerCAmelCase , negative_prompt=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = sd_pipe( **__lowerCAmelCase , prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , pooled_prompt_embeds=__lowerCAmelCase , negative_pooled_prompt_embeds=__lowerCAmelCase , ) _lowerCamelCase : str = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple="cpu" , __lowerCAmelCase : Tuple=torch.floataa , __lowerCAmelCase : Dict=0 ): """simple docstring""" _lowerCamelCase : Tuple = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = np.random.RandomState(__lowerCAmelCase ).standard_normal((1, 4, 6_4, 6_4) ) _lowerCamelCase : List[Any] = torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : List[str] = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : List[Any] = self.get_inputs(__lowerCAmelCase ) _lowerCamelCase : int = pipe(**__lowerCAmelCase ).images _lowerCamelCase : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Optional[int] = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
83
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase : Tuple = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase : Optional[int] = TaTokenizerFast lowerCAmelCase : Any = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase : Tuple = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
3
0
import re def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = re.compile( r'^(?:0|94|\+94|0{2}94)' r'7(0|1|2|4|5|6|7|8)' r'(-| |)' r'\d{7}$' ) return bool(re.search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": UpperCAmelCase = '''0094702343221''' print(is_sri_lankan_phone_number(phone))
84
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=False , A_=True , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , )-> Dict: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size if size is not None else {'height': 18, 'width': 20} UpperCamelCase = do_thumbnail UpperCamelCase = do_align_axis UpperCamelCase = do_pad UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase): lowerCAmelCase_ = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = DonutImageProcessingTester(self ) @property def UpperCAmelCase_ ( self )-> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'do_thumbnail' ) ) self.assertTrue(hasattr(A_ , 'do_align_long_axis' ) ) self.assertTrue(hasattr(A_ , 'do_pad' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' pass @is_flaky() def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
3
0
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class snake_case ( UpperCamelCase_ ): lowercase_ = (DPMSolverSDEScheduler,) lowercase_ = 10 def __lowercase( self : Any , **a_ : List[Any] )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = { 'num_train_timesteps': 1100, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**a_ ) return config def __lowercase( self : int )-> str: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=a_ ) def __lowercase( self : Any )-> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=a_ , beta_end=a_ ) def __lowercase( self : List[Any] )-> Tuple: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a_ ) def __lowercase( self : List[Any] )-> Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a_ ) def __lowercase( self : Union[str, Any] )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : str = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : Optional[Any] = scheduler_class(**a_ ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_model() SCREAMING_SNAKE_CASE__ : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE__ : Optional[int] = sample.to(a_ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE__ : Optional[Any] = scheduler.scale_model_input(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = model(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = scheduler.step(a_ , a_ , a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = output.prev_sample SCREAMING_SNAKE_CASE__ : Dict = torch.sum(torch.abs(a_ ) ) SCREAMING_SNAKE_CASE__ : Any = torch.mean(torch.abs(a_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def __lowercase( self : Optional[int] )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Any = self.get_scheduler_config(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE__ : List[Any] = scheduler_class(**a_ ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.dummy_model() SCREAMING_SNAKE_CASE__ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE__ : Optional[int] = sample.to(a_ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE__ : List[Any] = scheduler.scale_model_input(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Any = model(a_ , a_ ) SCREAMING_SNAKE_CASE__ : List[str] = scheduler.step(a_ , a_ , a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = output.prev_sample SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.sum(torch.abs(a_ ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.mean(torch.abs(a_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1e-3 def __lowercase( self : str )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : int = scheduler_class(**a_ ) scheduler.set_timesteps(self.num_inference_steps , device=a_ ) SCREAMING_SNAKE_CASE__ : str = self.dummy_model() SCREAMING_SNAKE_CASE__ : Dict = self.dummy_sample_deter.to(a_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: SCREAMING_SNAKE_CASE__ : Optional[int] = scheduler.scale_model_input(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Any = scheduler.step(a_ , a_ , a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = output.prev_sample SCREAMING_SNAKE_CASE__ : List[Any] = torch.sum(torch.abs(a_ ) ) SCREAMING_SNAKE_CASE__ : Any = torch.mean(torch.abs(a_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def __lowercase( self : str )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Any = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : Optional[Any] = scheduler_class(**a_ , use_karras_sigmas=a_ ) scheduler.set_timesteps(self.num_inference_steps , device=a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.dummy_model() SCREAMING_SNAKE_CASE__ : List[Any] = self.dummy_sample_deter.to(a_ ) * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE__ : Optional[int] = sample.to(a_ ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE__ : Tuple = scheduler.scale_model_input(a_ , a_ ) SCREAMING_SNAKE_CASE__ : str = model(a_ , a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = scheduler.step(a_ , a_ , a_ ) SCREAMING_SNAKE_CASE__ : Tuple = output.prev_sample SCREAMING_SNAKE_CASE__ : List[Any] = torch.sum(torch.abs(a_ ) ) SCREAMING_SNAKE_CASE__ : str = torch.mean(torch.abs(a_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2
85
'''simple docstring''' def A_( A : list[int]): UpperCamelCase = [] if len(A) == 1: return [nums.copy()] for _ in range(len(A)): UpperCamelCase = nums.pop(0) UpperCamelCase = permute(A) for perm in permutations: perm.append(A) result.extend(A) nums.append(A) return result def A_( A : str): def backtrack(A : str): if start == len(A) - 1: output.append(nums[:]) else: for i in range(A , len(A)): UpperCamelCase , UpperCamelCase = nums[i], nums[start] backtrack(start + 1) UpperCamelCase , UpperCamelCase = nums[i], nums[start] # backtrack UpperCamelCase = [] backtrack(0) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCAmelCase : Dict = permutea([1, 2, 3]) print(res) doctest.testmod()
3
0
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __a :List[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __a :Union[str, Any] = [0, 25, 50] __a :Any = [25, 50, 75] __a :Tuple = fuzz.membership.trimf(X, abca) __a :List[Any] = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __a :Union[str, Any] = np.ones(75) __a :Tuple = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __a :Optional[Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __a :Optional[int] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __a :List[str] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __a :List[Any] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __a :Union[str, Any] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __a :Any = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __a :Any = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __a :Optional[int] = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
86
'''simple docstring''' import colorsys from PIL import Image # type: ignore def A_( A : float , A : float , A : int): UpperCamelCase = x UpperCamelCase = y for step in range(A): # noqa: B007 UpperCamelCase = a * a - b * b + x UpperCamelCase = 2 * a * b + y UpperCamelCase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def A_( A : float): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def A_( A : float): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(A , 1 , 1)) def A_( A : int = 800 , A : int = 600 , A : float = -0.6 , A : float = 0 , A : float = 3.2 , A : int = 50 , A : bool = True , ): UpperCamelCase = Image.new('RGB' , (image_width, image_height)) UpperCamelCase = img.load() # loop through the image-coordinates for image_x in range(A): for image_y in range(A): # determine the figure-coordinates based on the image-coordinates UpperCamelCase = figure_width / image_width * image_height UpperCamelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCamelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCamelCase = get_distance(A , A , A) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCamelCase = get_color_coded_rgb(A) else: UpperCamelCase = get_black_and_white_rgb(A) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCAmelCase : Any = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
3
0
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _lowerCamelCase : Optional[Any] = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") _lowerCamelCase : Union[str, Any] = get_tests_dir("""fixtures/vocab.json""") _lowerCamelCase : List[Any] = get_tests_dir("""fixtures""") class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]: '''simple docstring''' A__ = 0 def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: '''simple docstring''' A__ = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''') self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: A__ = WavaVecaConfig() A__ = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''') # save in new folder model_config.save_pretrained(UpperCAmelCase__) processor.save_pretrained(UpperCAmelCase__) A__ = AutoProcessor.from_pretrained(UpperCAmelCase__) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , UpperCAmelCase__)) copyfile(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , '''vocab.json''')) A__ = AutoProcessor.from_pretrained(UpperCAmelCase__) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: A__ = WavaVecaFeatureExtractor() A__ = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''') A__ = WavaVecaProcessor(UpperCAmelCase__ , UpperCAmelCase__) # save in new folder processor.save_pretrained(UpperCAmelCase__) # drop `processor_class` in tokenizer with open(os.path.join(UpperCAmelCase__ , UpperCAmelCase__) , '''r''') as f: A__ = json.load(UpperCAmelCase__) config_dict.pop('''processor_class''') with open(os.path.join(UpperCAmelCase__ , UpperCAmelCase__) , '''w''') as f: f.write(json.dumps(UpperCAmelCase__)) A__ = AutoProcessor.from_pretrained(UpperCAmelCase__) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: A__ = WavaVecaFeatureExtractor() A__ = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''') A__ = WavaVecaProcessor(UpperCAmelCase__ , UpperCAmelCase__) # save in new folder processor.save_pretrained(UpperCAmelCase__) # drop `processor_class` in feature extractor with open(os.path.join(UpperCAmelCase__ , UpperCAmelCase__) , '''r''') as f: A__ = json.load(UpperCAmelCase__) config_dict.pop('''processor_class''') with open(os.path.join(UpperCAmelCase__ , UpperCAmelCase__) , '''w''') as f: f.write(json.dumps(UpperCAmelCase__)) A__ = AutoProcessor.from_pretrained(UpperCAmelCase__) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: A__ = WavaVecaConfig(processor_class='''Wav2Vec2Processor''') model_config.save_pretrained(UpperCAmelCase__) # copy relevant files copyfile(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , '''vocab.json''')) # create emtpy sample processor with open(os.path.join(UpperCAmelCase__ , UpperCAmelCase__) , '''w''') as f: f.write('''{}''') A__ = AutoProcessor.from_pretrained(UpperCAmelCase__) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' with self.assertRaises(UpperCAmelCase__): A__ = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''') # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase__): A__ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCAmelCase__) A__ = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCAmelCase__) self.assertTrue(processor.special_attribute_present) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''') A__ = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''') A__ = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''') # Test we can also load the slow version A__ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCAmelCase__ , use_fast=UpperCAmelCase__) A__ = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''') else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' try: AutoConfig.register('''custom''' , UpperCAmelCase__) AutoFeatureExtractor.register(UpperCAmelCase__ , UpperCAmelCase__) AutoTokenizer.register(UpperCAmelCase__ , slow_tokenizer_class=UpperCAmelCase__) AutoProcessor.register(UpperCAmelCase__ , UpperCAmelCase__) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase__): AutoProcessor.register(UpperCAmelCase__ , UpperCAmelCase__) # Now that the config is registered, it can be used as any other config with the auto-API A__ = CustomFeatureExtractor.from_pretrained(UpperCAmelCase__) with tempfile.TemporaryDirectory() as tmp_dir: A__ = os.path.join(UpperCAmelCase__ , '''vocab.txt''') with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens])) A__ = CustomTokenizer(UpperCAmelCase__) A__ = CustomProcessor(UpperCAmelCase__ , UpperCAmelCase__) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCAmelCase__) A__ = AutoProcessor.from_pretrained(UpperCAmelCase__) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Tuple: '''simple docstring''' class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = False class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = False class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''AutoFeatureExtractor''' UpperCAmelCase__ = '''AutoTokenizer''' UpperCAmelCase__ = False try: AutoConfig.register('''custom''' , UpperCAmelCase__) AutoFeatureExtractor.register(UpperCAmelCase__ , UpperCAmelCase__) AutoTokenizer.register(UpperCAmelCase__ , slow_tokenizer_class=UpperCAmelCase__) AutoProcessor.register(UpperCAmelCase__ , UpperCAmelCase__) # If remote code is not set, the default is to use local classes. A__ = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''') self.assertEqual(processor.__class__.__name__ , '''NewProcessor''') self.assertFalse(processor.special_attribute_present) self.assertFalse(processor.feature_extractor.special_attribute_present) self.assertFalse(processor.tokenizer.special_attribute_present) # If remote code is disabled, we load the local ones. A__ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCAmelCase__) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''') self.assertFalse(processor.special_attribute_present) self.assertFalse(processor.feature_extractor.special_attribute_present) self.assertFalse(processor.tokenizer.special_attribute_present) # If remote is enabled, we load from the Hub. A__ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCAmelCase__) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''') self.assertTrue(processor.special_attribute_present) self.assertTrue(processor.feature_extractor.special_attribute_present) self.assertTrue(processor.tokenizer.special_attribute_present) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Dict: '''simple docstring''' A__ = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''') self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''') def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' A__ = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''') self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''') @is_staging_test class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def SCREAMING_SNAKE_CASE ( cls : Any) ->List[Any]: '''simple docstring''' A__ = TOKEN HfFolder.save_token(UpperCAmelCase__) @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any]) ->Any: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-processor''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''') except HTTPError: pass def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ = WavaVecaProcessor.from_pretrained(UpperCAmelCase__) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCAmelCase__ , '''test-processor''') , push_to_hub=UpperCAmelCase__ , use_auth_token=self._token) A__ = WavaVecaProcessor.from_pretrained(f"""{USER}/test-processor""") for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCAmelCase__ , getattr(new_processor.feature_extractor , UpperCAmelCase__)) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab()) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str: '''simple docstring''' A__ = WavaVecaProcessor.from_pretrained(UpperCAmelCase__) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCAmelCase__ , '''test-processor-org''') , push_to_hub=UpperCAmelCase__ , use_auth_token=self._token , organization='''valid_org''' , ) A__ = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''') for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCAmelCase__ , getattr(new_processor.feature_extractor , UpperCAmelCase__)) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab()) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() A__ = CustomFeatureExtractor.from_pretrained(UpperCAmelCase__) with tempfile.TemporaryDirectory() as tmp_dir: A__ = os.path.join(UpperCAmelCase__ , '''vocab.txt''') with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens])) A__ = CustomTokenizer(UpperCAmelCase__) A__ = CustomProcessor(UpperCAmelCase__ , UpperCAmelCase__) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f"""{USER}/test-dynamic-processor""" , token=self._token) A__ = Repository(UpperCAmelCase__ , clone_from=f"""{USER}/test-dynamic-processor""" , token=self._token) processor.save_pretrained(UpperCAmelCase__) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCAmelCase__ , '''tokenizer_config.json''')) as f: A__ = json.load(UpperCAmelCase__) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase__ , '''custom_feature_extraction.py'''))) self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase__ , '''custom_tokenization.py'''))) self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase__ , '''custom_processing.py'''))) repo.push_to_hub() A__ = AutoProcessor.from_pretrained(f"""{USER}/test-dynamic-processor""" , trust_remote_code=UpperCAmelCase__) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''')
87
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase : Optional[Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
0
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class lowercase__ ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=30 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0.02 , ) -> Dict: _lowerCamelCase : int = parent _lowerCamelCase : List[Any] = batch_size _lowerCamelCase : Tuple = image_size _lowerCamelCase : Dict = patch_size _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : List[Any] = is_training _lowerCamelCase : Any = use_labels _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Any = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Any = hidden_act _lowerCamelCase : Optional[Any] = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : List[str] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCamelCase : Optional[Any] = (image_size // patch_size) ** 2 _lowerCamelCase : Any = num_patches + 1 def UpperCamelCase_ ( self) -> Dict: _lowerCamelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCamelCase : int = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, pixel_values def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> Optional[int]: _lowerCamelCase : Dict = FlaxViTModel(config=SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) _lowerCamelCase : Dict = (self.image_size, self.image_size) _lowerCamelCase : int = (self.patch_size, self.patch_size) _lowerCamelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size)) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> List[str]: _lowerCamelCase : str = self.type_sequence_label_size _lowerCamelCase : List[Any] = FlaxViTForImageClassification(config=SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images _lowerCamelCase : Dict = 1 _lowerCamelCase : int = FlaxViTForImageClassification(SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _lowerCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Union[str, Any]: _lowerCamelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : str = config_and_inputs _lowerCamelCase : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class lowercase__ ( A_ ,unittest.TestCase ): __UpperCAmelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCamelCase_ ( self) -> None: _lowerCamelCase : Dict = FlaxViTModelTester(self) _lowerCamelCase : Any = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37) def UpperCamelCase_ ( self) -> int: self.config_tester.run_common_tests() def UpperCamelCase_ ( self) -> List[str]: _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Any: _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Dict: _lowerCamelCase , _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : int = model_class(SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[Any] = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[int] = [*signature.parameters.keys()] _lowerCamelCase : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> List[str]: _lowerCamelCase , _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _lowerCamelCase : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE) @jax.jit def model_jitted(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE): return model(pixel_values=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) with self.subTest("""JIT Enabled"""): _lowerCamelCase : List[str] = model_jitted(**SCREAMING_SNAKE_CASE).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): _lowerCamelCase : List[Any] = model_jitted(**SCREAMING_SNAKE_CASE).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE) , len(SCREAMING_SNAKE_CASE)) for jitted_output, output in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): self.assertEqual(jitted_output.shape , output.shape) @slow def UpperCamelCase_ ( self) -> List[str]: for model_class_name in self.all_model_classes: _lowerCamelCase : Tuple = model_class_name.from_pretrained("""google/vit-base-patch16-224""") _lowerCamelCase : List[Any] = model(np.ones((1, 3, 224, 224))) self.assertIsNotNone(SCREAMING_SNAKE_CASE)
88
'''simple docstring''' lowerCAmelCase : Optional[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def A_( A : dict , A : str , A : Optional[Any]): UpperCamelCase = set() # keep track of all the paths to be checked UpperCamelCase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCamelCase = queue.pop(0) # get the last node from the path UpperCamelCase = path[-1] if node not in explored: UpperCamelCase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCamelCase = list(A) new_path.append(A) queue.append(A) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(A) # in case there's no path between the 2 nodes return [] def A_( A : dict , A : str , A : Tuple): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCamelCase = [start] UpperCamelCase = set(A) # Keep tab on distances from `start` node. UpperCamelCase = {start: 0, target: -1} while queue: UpperCamelCase = queue.pop(0) if node == target: UpperCamelCase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node]) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(A) queue.append(A) UpperCamelCase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
3
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html SCREAMING_SNAKE_CASE : List[str] = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , ) -> str: if attention_mask is None: _lowercase : Optional[int] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _lowercase : Optional[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _lowercase : Tuple = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowercase : Union[str, Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowercase : Tuple = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=7, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=99, lowerCamelCase=16, lowerCamelCase=2, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=32, lowerCamelCase=2, lowerCamelCase=1, lowerCamelCase=0, lowerCamelCase=0.0_2, ) -> Optional[int]: """simple docstring""" _lowercase : Optional[int] = parent _lowercase : Union[str, Any] = batch_size _lowercase : List[Any] = seq_length _lowercase : Optional[int] = is_training _lowercase : List[str] = use_labels _lowercase : List[str] = vocab_size _lowercase : Union[str, Any] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : str = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : List[Any] = hidden_dropout_prob _lowercase : Any = attention_probs_dropout_prob _lowercase : Optional[int] = max_position_embeddings _lowercase : Union[str, Any] = eos_token_id _lowercase : int = pad_token_id _lowercase : Tuple = bos_token_id _lowercase : Optional[int] = initializer_range def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Union[str, Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size), 3, self.vocab_size) _lowercase : str = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.intaa)), -1) _lowercase : Union[str, Any] = shift_tokens_right(lowerCamelCase, 1, 2) _lowercase : Optional[Any] = BlenderbotConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, initializer_range=self.initializer_range, use_cache=lowerCamelCase, ) _lowercase : Any = prepare_blenderbot_inputs_dict(lowerCamelCase, lowerCamelCase, lowerCamelCase) return config, inputs_dict def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase , _lowercase : Any = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[Any] = 20 _lowercase : Dict = model_class_name(lowerCamelCase) _lowercase : List[Any] = model.encode(inputs_dict['input_ids']) _lowercase , _lowercase : Optional[Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Dict = model.init_cache(decoder_input_ids.shape[0], lowerCamelCase, lowerCamelCase) _lowercase : int = jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype='i4') _lowercase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) _lowercase : Optional[Any] = model.decode( decoder_input_ids[:, :-1], lowerCamelCase, decoder_attention_mask=lowerCamelCase, past_key_values=lowerCamelCase, decoder_position_ids=lowerCamelCase, ) _lowercase : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='i4') _lowercase : Optional[int] = model.decode( decoder_input_ids[:, -1:], lowerCamelCase, decoder_attention_mask=lowerCamelCase, past_key_values=outputs_cache.past_key_values, decoder_position_ids=lowerCamelCase, ) _lowercase : int = model.decode(lowerCamelCase, lowerCamelCase) _lowercase : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3, msg=F'''Max diff is {diff}''') def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : str = 20 _lowercase : Tuple = model_class_name(lowerCamelCase) _lowercase : Any = model.encode(inputs_dict['input_ids']) _lowercase , _lowercase : List[Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Tuple = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ], axis=-1, ) _lowercase : Dict = model.init_cache(decoder_input_ids.shape[0], lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) _lowercase : List[Any] = model.decode( decoder_input_ids[:, :-1], lowerCamelCase, decoder_attention_mask=lowerCamelCase, past_key_values=lowerCamelCase, decoder_position_ids=lowerCamelCase, ) _lowercase : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='i4') _lowercase : List[str] = model.decode( decoder_input_ids[:, -1:], lowerCamelCase, past_key_values=outputs_cache.past_key_values, decoder_attention_mask=lowerCamelCase, decoder_position_ids=lowerCamelCase, ) _lowercase : Tuple = model.decode(lowerCamelCase, lowerCamelCase, decoder_attention_mask=lowerCamelCase) _lowercase : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3, msg=F'''Max diff is {diff}''') @require_flax class _lowerCamelCase( unittest.TestCase ): lowercase_ : Optional[int] = 99 def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Union[str, Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ], dtype=np.intaa, ) _lowercase : Optional[Any] = input_ids.shape[0] _lowercase : int = BlenderbotConfig( vocab_size=self.vocab_size, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) return config, input_ids, batch_size def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase , _lowercase , _lowercase : Any = self._get_config_and_data() _lowercase : Tuple = FlaxBlenderbotForConditionalGeneration(lowerCamelCase) _lowercase : List[str] = lm_model(input_ids=lowerCamelCase) _lowercase : Union[str, Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape, lowerCamelCase) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Dict = BlenderbotConfig( vocab_size=self.vocab_size, d_model=14, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=8, decoder_ffn_dim=8, max_position_embeddings=48, ) _lowercase : str = FlaxBlenderbotForConditionalGeneration(lowerCamelCase) _lowercase : List[str] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], dtype=np.intaa) _lowercase : Any = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], dtype=np.intaa) _lowercase : Tuple = lm_model(input_ids=lowerCamelCase, decoder_input_ids=lowerCamelCase) _lowercase : List[Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape, lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Any = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=np.intaa) _lowercase : Dict = shift_tokens_right(lowerCamelCase, 1, 2) _lowercase : str = np.equal(lowerCamelCase, 1).astype(np.floataa).sum() _lowercase : Union[str, Any] = np.equal(lowerCamelCase, 1).astype(np.floataa).sum() self.assertEqual(shifted.shape, input_ids.shape) self.assertEqual(lowerCamelCase, n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0], 2).all()) @require_flax class _lowerCamelCase( _a, unittest.TestCase, _a ): lowercase_ : Any = True lowercase_ : Optional[int] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase_ : Dict = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Optional[Any] = FlaxBlenderbotModelTester(self) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase , _lowercase : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase , _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase , _lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _lowercase : Optional[Any] = self._prepare_for_class(lowerCamelCase, lowerCamelCase) _lowercase : Any = model_class(lowerCamelCase) @jax.jit def encode_jitted(lowerCamelCase, lowerCamelCase=None, **lowerCamelCase): return model.encode(input_ids=lowerCamelCase, attention_mask=lowerCamelCase) with self.subTest('JIT Enabled'): _lowercase : List[str] = encode_jitted(**lowerCamelCase).to_tuple() with self.subTest('JIT Disabled'): with jax.disable_jit(): _lowercase : Union[str, Any] = encode_jitted(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase)) for jitted_output, output in zip(lowerCamelCase, lowerCamelCase): self.assertEqual(jitted_output.shape, output.shape) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase , _lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _lowercase : int = model_class(lowerCamelCase) _lowercase : Union[str, Any] = model.encode(inputs_dict['input_ids'], inputs_dict['attention_mask']) _lowercase : Optional[int] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(lowerCamelCase, lowerCamelCase, lowerCamelCase): return model.decode( decoder_input_ids=lowerCamelCase, decoder_attention_mask=lowerCamelCase, encoder_outputs=lowerCamelCase, ) with self.subTest('JIT Enabled'): _lowercase : Union[str, Any] = decode_jitted(**lowerCamelCase).to_tuple() with self.subTest('JIT Disabled'): with jax.disable_jit(): _lowercase : Optional[int] = decode_jitted(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase)) for jitted_output, output in zip(lowerCamelCase, lowerCamelCase): self.assertEqual(jitted_output.shape, output.shape) @slow def UpperCamelCase ( self) -> Tuple: """simple docstring""" for model_class_name in self.all_model_classes: _lowercase : Optional[Any] = model_class_name.from_pretrained('facebook/blenderbot-400M-distill') # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _lowercase : Any = np.ones((1, 1)) * model.config.eos_token_id _lowercase : Optional[Any] = model(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) @unittest.skipUnless(jax_device != 'cpu', '3B test too slow on CPU.') @slow def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Union[str, Any] = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} _lowercase : Any = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} _lowercase : Any = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B', from_pt=lowerCamelCase) _lowercase : Dict = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B') _lowercase : int = ['Sam'] _lowercase : str = tokenizer(lowerCamelCase, return_tensors='jax') _lowercase : Optional[Any] = model.generate(**lowerCamelCase, **lowerCamelCase) _lowercase : Any = 'Sam is a great name. It means "sun" in Gaelic.' _lowercase : Tuple = tokenizer.batch_decode(lowerCamelCase, **lowerCamelCase) assert generated_txt[0].strip() == tgt_text
89
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class SCREAMING_SNAKE_CASE__ : def __init__( self )-> Dict: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = '' UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = 256 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 def UpperCAmelCase_ ( self , A_ )-> str: '''simple docstring''' UpperCamelCase = cva.imread(A_ , 0 ) UpperCamelCase = copy.deepcopy(self.img ) UpperCamelCase , UpperCamelCase , UpperCamelCase = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) UpperCamelCase = np.sum(A_ ) for i in range(len(A_ ) ): UpperCamelCase = x[i] / self.k self.sk += prk UpperCamelCase = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase = int(last % last ) UpperCamelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(A_ ) UpperCamelCase = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase = self.img[j][i] if num != self.last_list[num]: UpperCamelCase = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') lowerCAmelCase : str = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
3
0
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=3 , lowerCamelCase_=32 , lowerCamelCase_=3 , lowerCamelCase_=10 , lowerCamelCase_=[10, 20, 30, 40] , lowerCamelCase_=[1, 1, 2, 1] , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_="relu" , lowerCamelCase_=3 , lowerCamelCase_=None , ) -> Any: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = embeddings_size lowerCAmelCase__ = hidden_sizes lowerCAmelCase__ = depths lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_act lowerCAmelCase__ = num_labels lowerCAmelCase__ = scope lowerCAmelCase__ = len(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = self.get_config() return config, pixel_values def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: lowerCAmelCase__ = FlaxRegNetModel(config=lowerCamelCase_ ) lowerCAmelCase__ = model(lowerCamelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> Any: lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = FlaxRegNetForImageClassification(config=lowerCamelCase_ ) lowerCAmelCase__ = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class a__ ( a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : Any = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowercase__ : List[Any] = False lowercase__ : Union[str, Any] = False lowercase__ : Optional[int] = False def __SCREAMING_SNAKE_CASE ( self ) -> None: lowerCAmelCase__ = FlaxRegNetModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: return def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: pass def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: def check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) lowerCAmelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase__ = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase__ = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = model_class(lowerCamelCase_ ) @jax.jit def model_jitted(lowerCamelCase_ , **lowerCamelCase_ ): return model(pixel_values=lowerCamelCase_ , **lowerCamelCase_ ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase__ = model_jitted(**lowerCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase__ = model_jitted(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) for jitted_output, output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def _snake_case ( ) -> Union[str, Any]: lowerCAmelCase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class a__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=lowerCamelCase_ , return_tensors='''np''' ) lowerCAmelCase__ = model(**lowerCamelCase_ ) # verify the logits lowerCAmelCase__ = (1, 10_00) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) lowerCAmelCase__ = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1e-4 ) )
90
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Tuple = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """unispeech-sat""" def __init__( self , A_=32 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.1 , A_=0.1 , A_=0.02 , A_=1e-5 , A_="group" , A_="gelu" , A_=(512, 512, 512, 512, 512, 512, 512) , A_=(5, 2, 2, 2, 2, 2, 2) , A_=(10, 3, 3, 3, 3, 2, 2) , A_=False , A_=128 , A_=16 , A_=False , A_=True , A_=0.05 , A_=10 , A_=2 , A_=0.0 , A_=10 , A_=0 , A_=320 , A_=2 , A_=0.1 , A_=100 , A_=256 , A_=256 , A_=0.1 , A_="mean" , A_=False , A_=False , A_=256 , A_=(512, 512, 512, 512, 1500) , A_=(5, 3, 3, 1, 1) , A_=(1, 2, 3, 1, 1) , A_=512 , A_=0 , A_=1 , A_=2 , A_=504 , **A_ , )-> Tuple: '''simple docstring''' super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) UpperCamelCase = hidden_size UpperCamelCase = feat_extract_norm UpperCamelCase = feat_extract_activation UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = conv_bias UpperCamelCase = num_conv_pos_embeddings UpperCamelCase = num_conv_pos_embedding_groups UpperCamelCase = len(self.conv_dim ) UpperCamelCase = num_hidden_layers UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = num_attention_heads UpperCamelCase = hidden_dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = feat_proj_dropout UpperCamelCase = final_dropout UpperCamelCase = layerdrop UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = vocab_size UpperCamelCase = num_clusters UpperCamelCase = do_stable_layer_norm UpperCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase = apply_spec_augment UpperCamelCase = mask_time_prob UpperCamelCase = mask_time_length UpperCamelCase = mask_time_min_masks UpperCamelCase = mask_feature_prob UpperCamelCase = mask_feature_length UpperCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCamelCase = num_codevectors_per_group UpperCamelCase = num_codevector_groups UpperCamelCase = contrastive_logits_temperature UpperCamelCase = feat_quantizer_dropout UpperCamelCase = num_negatives UpperCamelCase = codevector_dim UpperCamelCase = proj_codevector_dim UpperCamelCase = diversity_loss_weight # ctc loss UpperCamelCase = ctc_loss_reduction UpperCamelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = xvector_output_dim @property def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
3
0
"""simple docstring""" import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[str] = ConsistencyModelPipeline _lowerCamelCase: Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _lowerCamelCase: Any = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt _lowerCamelCase: Any = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' ,subfolder='test_unet' ,) return unet @property def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: A = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' ,subfolder='test_unet_class_cond' ,) return unet def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any]=False ) -> Tuple: if class_cond: A = self.dummy_cond_unet else: A = self.dummy_uncond_unet # Default to CM multistep sampler A = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_02 ,sigma_max=80.0 ,) A = { 'unet': unet, 'scheduler': scheduler, } return components def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Union[str, Any] ,A_ : Dict=0 ) -> int: if str(A_ ).startswith('mps' ): A = torch.manual_seed(A_ ) else: A = torch.Generator(device=A_ ).manual_seed(A_ ) A = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [22, 0], 'generator': generator, 'output_type': 'np', } return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = ConsistencyModelPipeline(**A_ ) A = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = pipe(**A_ ).images assert image.shape == (1, 32, 32, 3) A = image[0, -3:, -3:, -1] A = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components(class_cond=A_ ) A = ConsistencyModelPipeline(**A_ ) A = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = 0 A = pipe(**A_ ).images assert image.shape == (1, 32, 32, 3) A = image[0, -3:, -3:, -1] A = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = ConsistencyModelPipeline(**A_ ) A = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = 1 A = None A = pipe(**A_ ).images assert image.shape == (1, 32, 32, 3) A = image[0, -3:, -3:, -1] A = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components(class_cond=A_ ) A = ConsistencyModelPipeline(**A_ ) A = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = 1 A = None A = 0 A = pipe(**A_ ).images assert image.shape == (1, 32, 32, 3) A = image[0, -3:, -3:, -1] A = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Any=0 ,A_ : Any=False ,A_ : List[Any]="cpu" ,A_ : str=torch.floataa ,A_ : Any=(1, 3, 64, 64) ) -> Tuple: A = torch.manual_seed(A_ ) A = { 'num_inference_steps': None, 'timesteps': [22, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: A = self.get_fixed_latents(seed=A_ ,device=A_ ,dtype=A_ ,shape=A_ ) A = latents return inputs def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Dict=0 ,A_ : Any="cpu" ,A_ : List[Any]=torch.floataa ,A_ : List[str]=(1, 3, 64, 64) ) -> List[Any]: if type(A_ ) == str: A = torch.device(A_ ) A = torch.Generator(device=A_ ).manual_seed(A_ ) A = randn_tensor(A_ ,generator=A_ ,device=A_ ,dtype=A_ ) return latents def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: A = UNetaDModel.from_pretrained('diffusers/consistency_models' ,subfolder='diffusers_cd_imagenet64_l2' ) A = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_02 ,sigma_max=80.0 ,) A = ConsistencyModelPipeline(unet=A_ ,scheduler=A_ ) pipe.to(torch_device=A_ ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_inputs() A = pipe(**A_ ).images assert image.shape == (1, 64, 64, 3) A = image[0, -3:, -3:, -1] A = np.array([0.08_88, 0.08_81, 0.06_66, 0.04_79, 0.02_92, 0.01_95, 0.02_01, 0.01_63, 0.02_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = UNetaDModel.from_pretrained('diffusers/consistency_models' ,subfolder='diffusers_cd_imagenet64_l2' ) A = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_02 ,sigma_max=80.0 ,) A = ConsistencyModelPipeline(unet=A_ ,scheduler=A_ ) pipe.to(torch_device=A_ ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_inputs() A = 1 A = None A = pipe(**A_ ).images assert image.shape == (1, 64, 64, 3) A = image[0, -3:, -3:, -1] A = np.array([0.03_40, 0.01_52, 0.00_63, 0.02_67, 0.02_21, 0.01_07, 0.04_16, 0.01_86, 0.02_17] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: A = UNetaDModel.from_pretrained('diffusers/consistency_models' ,subfolder='diffusers_cd_imagenet64_l2' ) A = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_02 ,sigma_max=80.0 ,) A = ConsistencyModelPipeline(unet=A_ ,scheduler=A_ ) pipe.to(torch_device=A_ ,torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_inputs(get_fixed_latents=A_ ,device=A_ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=A_ ,enable_math=A_ ,enable_mem_efficient=A_ ): A = pipe(**A_ ).images assert image.shape == (1, 64, 64, 3) A = image[0, -3:, -3:, -1] A = np.array([0.18_75, 0.14_28, 0.12_89, 0.21_51, 0.20_92, 0.14_77, 0.18_77, 0.16_41, 0.13_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: A = UNetaDModel.from_pretrained('diffusers/consistency_models' ,subfolder='diffusers_cd_imagenet64_l2' ) A = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_02 ,sigma_max=80.0 ,) A = ConsistencyModelPipeline(unet=A_ ,scheduler=A_ ) pipe.to(torch_device=A_ ,torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_inputs(get_fixed_latents=A_ ,device=A_ ) A = 1 A = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=A_ ,enable_math=A_ ,enable_mem_efficient=A_ ): A = pipe(**A_ ).images assert image.shape == (1, 64, 64, 3) A = image[0, -3:, -3:, -1] A = np.array([0.16_63, 0.19_48, 0.22_75, 0.16_80, 0.12_04, 0.12_45, 0.18_58, 0.13_38, 0.20_95] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
91
'''simple docstring''' import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ , A_=100 , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=4 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=None , A_=[0, 1, 2, 3] , )-> Any: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = 100 UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = scope UpperCamelCase = out_indices UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = num_patches + 1 def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> List[str]: '''simple docstring''' UpperCamelCase = BeitModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Any: '''simple docstring''' UpperCamelCase = BeitForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.type_sequence_label_size UpperCamelCase = BeitForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = BeitForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[Any]: '''simple docstring''' UpperCamelCase = self.num_labels UpperCamelCase = BeitForSemanticSegmentation(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase_ = ( { """feature-extraction""": BeitModel, """image-classification""": BeitForImageClassification, """image-segmentation""": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = BeitModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A_ ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' if not self.model_tester.is_training: return UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(A_ ), BeitForMaskedImageModeling]: continue UpperCamelCase = model_class(A_ ) model.to(A_ ) model.train() UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ ) UpperCamelCase = model(**A_ ).loss loss.backward() def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase = False UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(A_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCamelCase = model_class(A_ ) model.gradient_checkpointing_enable() model.to(A_ ) model.train() UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ ) UpperCamelCase = model(**A_ ).loss loss.backward() def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = _config_zero_init(A_ ) for model_class in self.all_model_classes: UpperCamelCase = model_class(config=A_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = BeitModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A_( ): UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @cached_property def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).pixel_values.to(A_ ) # prepare bool_masked_pos UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(pixel_values=A_ , bool_masked_pos=A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(A_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , A_ , atol=1e-2 ) ) @slow def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(A_ ) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) ) UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , A_ ) @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 21841) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(A_ ) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) ) UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , A_ ) @slow def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) UpperCamelCase = model.to(A_ ) UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ ) UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) UpperCamelCase = Image.open(ds[0]['file'] ) UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: UpperCamelCase = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] , device=A_ , ) else: UpperCamelCase = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] , device=A_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1e-4 ) ) @slow def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) UpperCamelCase = model.to(A_ ) UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ ) UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) UpperCamelCase = Image.open(ds[0]['file'] ) UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits.detach().cpu() UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ , target_sizes=[(500, 300)] ) UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , A_ ) UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ ) UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , A_ )
3
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = 'beit' def __init__( self : Union[str, Any] , UpperCAmelCase__ : Any=8192 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Union[str, Any]=12 , UpperCAmelCase__ : Optional[Any]=12 , UpperCAmelCase__ : str=3072 , UpperCAmelCase__ : Dict="gelu" , UpperCAmelCase__ : Dict=0.0 , UpperCAmelCase__ : Optional[Any]=0.0 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : str=1E-12 , UpperCAmelCase__ : str=224 , UpperCAmelCase__ : Optional[Any]=16 , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : Dict=False , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : int=False , UpperCAmelCase__ : int=False , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : List[Any]=[3, 5, 7, 11] , UpperCAmelCase__ : List[str]=[1, 2, 3, 6] , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Union[str, Any]=0.4 , UpperCAmelCase__ : List[Any]=256 , UpperCAmelCase__ : List[Any]=1 , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Optional[int]=255 , **UpperCAmelCase__ : Tuple , ): '''simple docstring''' super().__init__(**UpperCAmelCase__ ) lowercase : List[str] =vocab_size lowercase : str =hidden_size lowercase : Any =num_hidden_layers lowercase : List[str] =num_attention_heads lowercase : List[Any] =intermediate_size lowercase : Optional[int] =hidden_act lowercase : Optional[int] =hidden_dropout_prob lowercase : Any =attention_probs_dropout_prob lowercase : List[str] =initializer_range lowercase : int =layer_norm_eps lowercase : str =image_size lowercase : Union[str, Any] =patch_size lowercase : Tuple =num_channels lowercase : List[Any] =use_mask_token lowercase : Optional[int] =use_absolute_position_embeddings lowercase : Any =use_relative_position_bias lowercase : int =use_shared_relative_position_bias lowercase : str =layer_scale_init_value lowercase : int =drop_path_rate lowercase : Optional[int] =use_mean_pooling # decode head attributes (semantic segmentation) lowercase : Dict =out_indices lowercase : int =pool_scales # auxiliary head attributes (semantic segmentation) lowercase : Optional[Any] =use_auxiliary_head lowercase : Optional[int] =auxiliary_loss_weight lowercase : Optional[int] =auxiliary_channels lowercase : Any =auxiliary_num_convs lowercase : Tuple =auxiliary_concat_input lowercase : List[Any] =semantic_loss_ignore_index class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = version.parse('1.11' ) @property def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' return 1E-4
92
'''simple docstring''' import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase : Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( enum.Enum): lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 @add_end_docstrings(snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """generated""" def __init__( self , *A_ , **A_ )-> Optional[int]: '''simple docstring''' super().__init__(*A_ , **A_ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , **A_ , )-> Optional[Any]: '''simple docstring''' UpperCamelCase = {} if truncation is not None: UpperCamelCase = truncation UpperCamelCase = generate_kwargs UpperCamelCase = {} if return_tensors is not None and return_type is None: UpperCamelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: UpperCamelCase = return_type if clean_up_tokenization_spaces is not None: UpperCamelCase = clean_up_tokenization_spaces if stop_sequence is not None: UpperCamelCase = self.tokenizer.encode(A_ , add_special_tokens=A_ ) if len(A_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) UpperCamelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' return True def UpperCAmelCase_ ( self , *A_ , A_ )-> Any: '''simple docstring''' UpperCamelCase = self.model.config.prefix if self.model.config.prefix is not None else '' if isinstance(args[0] , A_ ): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' ) UpperCamelCase = ([prefix + arg for arg in args[0]],) UpperCamelCase = True elif isinstance(args[0] , A_ ): UpperCamelCase = (prefix + args[0],) UpperCamelCase = False else: raise ValueError( F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) UpperCamelCase = self.tokenizer(*A_ , padding=A_ , truncation=A_ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A_ , **A_ )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = super().__call__(*A_ , **A_ ) if ( isinstance(args[0] , A_ ) and all(isinstance(A_ , A_ ) for el in args[0] ) and all(len(A_ ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase_ ( self , A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , **A_ )-> Any: '''simple docstring''' UpperCamelCase = self._parse_and_tokenize(A_ , truncation=A_ , **A_ ) return inputs def UpperCAmelCase_ ( self , A_ , **A_ )-> int: '''simple docstring''' if self.framework == "pt": UpperCamelCase , UpperCamelCase = model_inputs['input_ids'].shape elif self.framework == "tf": UpperCamelCase , UpperCamelCase = tf.shape(model_inputs['input_ids'] ).numpy() UpperCamelCase = generate_kwargs.get('min_length' , self.model.config.min_length ) UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) self.check_inputs(A_ , generate_kwargs['min_length'] , generate_kwargs['max_length'] ) UpperCamelCase = self.model.generate(**A_ , **A_ ) UpperCamelCase = output_ids.shape[0] if self.framework == "pt": UpperCamelCase = output_ids.reshape(A_ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": UpperCamelCase = tf.reshape(A_ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase_ ( self , A_ , A_=ReturnType.TEXT , A_=False )-> Optional[Any]: '''simple docstring''' UpperCamelCase = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: UpperCamelCase = {F'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: UpperCamelCase = { F'''{self.return_name}_text''': self.tokenizer.decode( A_ , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , ) } records.append(A_ ) return records @add_end_docstrings(snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """summary""" def __call__( self , *A_ , **A_ )-> Optional[int]: '''simple docstring''' return super().__call__(*A_ , **A_ ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> bool: '''simple docstring''' if max_length < min_length: logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' 'a summarization task, where outputs shorter than the input are typically wanted, you might ' F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """translation""" def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> List[Any]: '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' ) return True def UpperCAmelCase_ ( self , *A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , A_=None , A_=None )-> Dict: '''simple docstring''' if getattr(self.tokenizer , '_build_translation_inputs' , A_ ): return self.tokenizer._build_translation_inputs( *A_ , return_tensors=self.framework , truncation=A_ , src_lang=A_ , tgt_lang=A_ ) else: return super()._parse_and_tokenize(*A_ , truncation=A_ ) def UpperCAmelCase_ ( self , A_=None , A_=None , **A_ )-> str: '''simple docstring''' UpperCamelCase , UpperCamelCase , UpperCamelCase = super()._sanitize_parameters(**A_ ) if src_lang is not None: UpperCamelCase = src_lang if tgt_lang is not None: UpperCamelCase = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. UpperCamelCase = kwargs.get('task' , self.task ) UpperCamelCase = task.split('_' ) if task and len(A_ ) == 4: # translation, XX, to YY UpperCamelCase = items[1] UpperCamelCase = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A_ , **A_ )-> Any: '''simple docstring''' return super().__call__(*A_ , **A_ )
3
0
"""simple docstring""" from math import factorial __A = {str(digit): factorial(digit) for digit in range(10)} def __A (_SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('Parameter number must be int' ) if number < 0: raise ValueError('Parameter number must be greater than or equal to 0' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(_SCREAMING_SNAKE_CASE ) ) def __A (_SCREAMING_SNAKE_CASE = 60 , _SCREAMING_SNAKE_CASE = 100_0000 ) ->int: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('Parameters chain_length and number_limit must be int' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( 'Parameters chain_length and number_limit must be greater than 0' ) # the counter for the chains with the exact desired length lowerCAmelCase__ :Union[str, Any] = 0 # the cached sizes of the previous chains lowerCAmelCase__ :dict[int, int] = {} for start_chain_element in range(1 , _SCREAMING_SNAKE_CASE ): # The temporary set will contain the elements of the chain lowerCAmelCase__ :Optional[Any] = set() lowerCAmelCase__ :Tuple = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowerCAmelCase__ :Dict = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(_SCREAMING_SNAKE_CASE ) chain_set_length += 1 lowerCAmelCase__ :int = digit_factorial_sum(_SCREAMING_SNAKE_CASE ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowerCAmelCase__ :Union[str, Any] = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution()}''')
93
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = 0 lowerCAmelCase_ = False lowerCAmelCase_ = 3.0 class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def UpperCAmelCase_ ( self )-> int: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=A_ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() UpperCamelCase = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , A_ ) @require_multi_gpu def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_ , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase : Tuple = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCAmelCase : List[str] = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCAmelCase : List[Any] = torch.nn.Linear(1_00, 2_00) lowerCAmelCase : int = accelerator.prepare(model) # Check the values changed in kwargs lowerCAmelCase : Dict = '' lowerCAmelCase : Dict = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
3
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
94
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_): @register_to_config def __init__( self , A_ , A_ = None , A_ = None )-> Tuple: '''simple docstring''' super().__init__() UpperCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCamelCase = torch.zeros(A_ , A_ ) else: UpperCamelCase = None UpperCamelCase = torch.nn.Parameter(A_ ) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , )-> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( vqvae=A_ , transformer=A_ , text_encoder=A_ , tokenizer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Tuple: '''simple docstring''' UpperCamelCase = len(A_ ) if isinstance(A_ , A_ ) else 1 # get prompt text embeddings UpperCamelCase = self.tokenizer( A_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) UpperCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate text embeddings for each generation per prompt UpperCamelCase = prompt_embeds.repeat_interleave(A_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(A_ , 1 , 1 ) else: UpperCamelCase = [''] * batch_size UpperCamelCase = text_input_ids.shape[-1] UpperCamelCase = self.tokenizer( A_ , padding='max_length' , max_length=A_ , truncation=A_ , return_tensors='pt' , ) UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase = negative_prompt_embeds.shape[1] UpperCamelCase = negative_prompt_embeds.repeat(1 , A_ , 1 ) UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , A_ , A_ = 100 , A_ = 5.0 , A_ = 1.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , A_ = None , A_ = 1 , )-> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(A_ , A_ ): UpperCamelCase = 1 elif isinstance(A_ , A_ ): UpperCamelCase = len(A_ ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(A_ )}''' ) UpperCamelCase = batch_size * num_images_per_prompt UpperCamelCase = guidance_scale > 1.0 UpperCamelCase = self._encode_prompt(A_ , A_ , A_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A_ , A_ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(A_ )}.''' ) # get the initial completely masked latents unless the user supplied it UpperCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCamelCase = self.transformer.num_vector_embeds - 1 UpperCamelCase = torch.full(A_ , A_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) UpperCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(A_ , device=self.device ) UpperCamelCase = self.scheduler.timesteps.to(self.device ) UpperCamelCase = latents for i, t in enumerate(self.progress_bar(A_ ) ): # expand the sample if we are doing classifier free guidance UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCamelCase = self.transformer(A_ , encoder_hidden_states=A_ , timestep=A_ ).sample if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase = model_output.chunk(2 ) UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(A_ , dim=1 , keepdim=A_ ) UpperCamelCase = self.truncate(A_ , A_ ) # remove `log(0)`'s (`-inf`s) UpperCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(A_ , timestep=A_ , sample=A_ , generator=A_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A_ , A_ , A_ ) UpperCamelCase = self.vqvae.config.vq_embed_dim UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCamelCase = self.vqvae.quantize.get_codebook_entry(A_ , shape=A_ ) UpperCamelCase = self.vqvae.decode(A_ , force_not_quantize=A_ ).sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ ) def UpperCAmelCase_ ( self , A_ , A_ )-> torch.FloatTensor: '''simple docstring''' UpperCamelCase , UpperCamelCase = torch.sort(A_ , 1 , descending=A_ ) UpperCamelCase = torch.exp(A_ ) UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , A_ ) UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) UpperCamelCase = keep_mask[:, :-1, :] UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) UpperCamelCase = log_p_x_0.clone() UpperCamelCase = -torch.inf # -inf = log(0) return rv
3
0
"""simple docstring""" def snake_case ( A__ ,A__ ): if not isinstance(A__ ,A__ ): raise ValueError("iterations must be defined as integers" ) if not isinstance(A__ ,A__ ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) UpperCAmelCase_ : Tuple = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(A__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
95
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Union[str, Any] = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
96
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ = None , A_ = None , A_=None , A_=None )-> Optional[Any]: '''simple docstring''' if not conversation_id: UpperCamelCase = uuid.uuida() if past_user_inputs is None: UpperCamelCase = [] if generated_responses is None: UpperCamelCase = [] UpperCamelCase = conversation_id UpperCamelCase = past_user_inputs UpperCamelCase = generated_responses UpperCamelCase = text def __eq__( self , A_ )-> List[Any]: '''simple docstring''' if not isinstance(A_ , A_ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def UpperCAmelCase_ ( self , A_ , A_ = False )-> int: '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' F'''with: "{text}".''' ) UpperCamelCase = text else: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: UpperCamelCase = text def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) UpperCamelCase = None def UpperCAmelCase_ ( self , A_ )-> int: '''simple docstring''' self.generated_responses.append(A_ ) def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self )-> Any: '''simple docstring''' UpperCamelCase = F'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): UpperCamelCase = 'user' if is_user else 'bot' output += F'''{name} >> {text} \n''' return output @add_end_docstrings( snake_case_ , R""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , *A_ , **A_ )-> Any: '''simple docstring''' super().__init__(*A_ , **A_ ) if self.tokenizer.pad_token_id is None: UpperCamelCase = self.tokenizer.eos_token def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , **A_ )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = {} UpperCamelCase = {} UpperCamelCase = {} if min_length_for_response is not None: UpperCamelCase = min_length_for_response if minimum_tokens is not None: UpperCamelCase = minimum_tokens if "max_length" in generate_kwargs: UpperCamelCase = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: UpperCamelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(A_ ) return preprocess_params, forward_params, postprocess_params def __call__( self , A_ , A_=0 , **A_ )-> Any: '''simple docstring''' UpperCamelCase = super().__call__(A_ , num_workers=A_ , **A_ ) if isinstance(A_ , A_ ) and len(A_ ) == 1: return outputs[0] return outputs def UpperCAmelCase_ ( self , A_ , A_=32 )-> Dict[str, Any]: '''simple docstring''' if not isinstance(A_ , A_ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): UpperCamelCase = self.tokenizer._build_conversation_input_ids(A_ ) else: # If the tokenizer cannot handle conversations, we default to only the old version UpperCamelCase = self._legacy_parse_and_tokenize(A_ ) if self.framework == "pt": UpperCamelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": UpperCamelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def UpperCAmelCase_ ( self , A_ , A_=10 , **A_ )-> Optional[Any]: '''simple docstring''' UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) UpperCamelCase = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) UpperCamelCase = max_length - minimum_tokens UpperCamelCase = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: UpperCamelCase = model_inputs['attention_mask'][:, -trim:] UpperCamelCase = model_inputs.pop('conversation' ) UpperCamelCase = max_length UpperCamelCase = self.model.generate(**A_ , **A_ ) if self.model.config.is_encoder_decoder: UpperCamelCase = 1 else: UpperCamelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def UpperCAmelCase_ ( self , A_ , A_=True )-> Tuple: '''simple docstring''' UpperCamelCase = model_outputs['output_ids'] UpperCamelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , ) UpperCamelCase = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(A_ ) return conversation def UpperCAmelCase_ ( self , A_ )-> Dict: '''simple docstring''' UpperCamelCase = self.tokenizer.eos_token_id UpperCamelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) ) if len(A_ ) > self.tokenizer.model_max_length: UpperCamelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
3
0
import numpy as np def a ( snake_case__: np.array ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
97
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase : List[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase : List[Any] = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase : Tuple = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase : List[Any] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
3
0
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='''session''' ) def a__ ( ) -> Any: """simple docstring""" _UpperCamelCase = 10 _UpperCamelCase = datasets.Features( { '''tokens''': datasets.Sequence(datasets.Value('''string''' ) ), '''labels''': datasets.Sequence(datasets.ClassLabel(names=['''negative''', '''positive'''] ) ), '''answers''': datasets.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), '''id''': datasets.Value('''int64''' ), } ) _UpperCamelCase = datasets.Dataset.from_dict( { '''tokens''': [['''foo'''] * 5] * n, '''labels''': [[1] * 5] * n, '''answers''': [{'''answer_start''': [97], '''text''': ['''1976''']}] * 10, '''id''': list(range(lowercase ) ), }, features=lowercase, ) return dataset @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Dict, lowercase : Any ) -> Dict: """simple docstring""" _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''file.arrow''' ) dataset.map(cache_file_name=lowercase ) return filename # FILE_CONTENT + files lowercase__ : List[Any] = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='''session''' ) def a__ ( lowercase : List[str] ) -> Dict: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.txt''' _UpperCamelCase = FILE_CONTENT with open(lowercase, '''w''' ) as f: f.write(lowercase ) return filename @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Union[str, Any] ) -> Dict: """simple docstring""" import bza _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.bz2''' _UpperCamelCase = bytes(lowercase, '''utf-8''' ) with bza.open(lowercase, '''wb''' ) as f: f.write(lowercase ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Dict ) -> Any: """simple docstring""" import gzip _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''file.txt.gz''' ) _UpperCamelCase = bytes(lowercase, '''utf-8''' ) with gzip.open(lowercase, '''wb''' ) as f: f.write(lowercase ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : List[Any] ) -> List[Any]: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.lz4''' _UpperCamelCase = bytes(lowercase, '''utf-8''' ) with lza.frame.open(lowercase, '''wb''' ) as f: f.write(lowercase ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : List[Any], lowercase : str ) -> Optional[int]: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.7z''' with pyazr.SevenZipFile(lowercase, '''w''' ) as archive: archive.write(lowercase, arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : int, lowercase : Tuple ) -> Dict: """simple docstring""" import tarfile _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.tar''' with tarfile.TarFile(lowercase, '''w''' ) as f: f.add(lowercase, arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : int ) -> Tuple: """simple docstring""" import lzma _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.xz''' _UpperCamelCase = bytes(lowercase, '''utf-8''' ) with lzma.open(lowercase, '''wb''' ) as f: f.write(lowercase ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Tuple, lowercase : List[Any] ) -> Dict: """simple docstring""" import zipfile _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zip''' with zipfile.ZipFile(lowercase, '''w''' ) as f: f.write(lowercase, arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Dict ) -> Optional[int]: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zst''' _UpperCamelCase = bytes(lowercase, '''utf-8''' ) with zstd.open(lowercase, '''wb''' ) as f: f.write(lowercase ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Optional[int] ) -> Dict: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.xml''' _UpperCamelCase = textwrap.dedent( '''\ <?xml version="1.0" encoding="UTF-8" ?> <tmx version="1.4"> <header segtype="sentence" srclang="ca" /> <body> <tu> <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv> <tuv xml:lang="en"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv> <tuv xml:lang="en"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv> <tuv xml:lang="en"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv> <tuv xml:lang="en"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv> <tuv xml:lang="en"><seg>Content 5</seg></tuv> </tu> </body> </tmx>''' ) with open(lowercase, '''w''' ) as f: f.write(lowercase ) return filename lowercase__ : Union[str, Any] = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] lowercase__ : str = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] lowercase__ : List[Any] = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } lowercase__ : Optional[int] = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] lowercase__ : List[str] = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='''session''' ) def a__ ( ) -> Optional[int]: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Optional[Any] ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = datasets.Dataset.from_dict(lowercase ) _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.arrow''' ) dataset.map(cache_file_name=lowercase ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Optional[int] ) -> List[str]: """simple docstring""" _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.sqlite''' ) with contextlib.closing(sqlitea.connect(lowercase ) ) as con: _UpperCamelCase = con.cursor() cur.execute('''CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)''' ) for item in DATA: cur.execute('''INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)''', tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.csv''' ) with open(lowercase, '''w''', newline='''''' ) as f: _UpperCamelCase = csv.DictWriter(lowercase, fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(lowercase ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.csv''' ) with open(lowercase, '''w''', newline='''''' ) as f: _UpperCamelCase = csv.DictWriter(lowercase, fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(lowercase ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Optional[int], lowercase : Any ) -> List[str]: """simple docstring""" import bza _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.bz2''' with open(lowercase, '''rb''' ) as f: _UpperCamelCase = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowercase, '''wb''' ) as f: f.write(lowercase ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Union[str, Any], lowercase : List[Any], lowercase : Tuple ) -> List[str]: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(lowercase, '''w''' ) as f: f.write(lowercase, arcname=os.path.basename(lowercase ) ) f.write(lowercase, arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Any, lowercase : int, lowercase : int ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(lowercase, '''w''' ) as f: f.write(lowercase, arcname=os.path.basename(csv_path.replace('''.csv''', '''.CSV''' ) ) ) f.write(lowercase, arcname=os.path.basename(csva_path.replace('''.csv''', '''.CSV''' ) ) ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Tuple, lowercase : Union[str, Any], lowercase : Any ) -> List[Any]: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.csv.zip''' with zipfile.ZipFile(lowercase, '''w''' ) as f: f.write(lowercase, arcname=os.path.join('''main_dir''', os.path.basename(lowercase ) ) ) f.write(lowercase, arcname=os.path.join('''main_dir''', os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Dict ) -> List[str]: """simple docstring""" _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.parquet''' ) _UpperCamelCase = pa.schema( { '''col_1''': pa.string(), '''col_2''': pa.intaa(), '''col_3''': pa.floataa(), } ) with open(lowercase, '''wb''' ) as f: _UpperCamelCase = pq.ParquetWriter(lowercase, schema=lowercase ) _UpperCamelCase = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase ) )] for k in DATA[0]}, schema=lowercase ) writer.write_table(lowercase ) writer.close() return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : List[Any] ) -> Any: """simple docstring""" _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) _UpperCamelCase = {'''data''': DATA} with open(lowercase, '''w''' ) as f: json.dump(lowercase, lowercase ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Union[str, Any] ) -> Dict: """simple docstring""" _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) _UpperCamelCase = {'''data''': DATA_DICT_OF_LISTS} with open(lowercase, '''w''' ) as f: json.dump(lowercase, lowercase ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Any ) -> str: """simple docstring""" _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl''' ) with open(lowercase, '''w''' ) as f: for item in DATA: f.write(json.dumps(lowercase ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.jsonl''' ) with open(lowercase, '''w''' ) as f: for item in DATA: f.write(json.dumps(lowercase ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Optional[Any] ) -> List[str]: """simple docstring""" _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_312.jsonl''' ) with open(lowercase, '''w''' ) as f: for item in DATA_312: f.write(json.dumps(lowercase ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : List[str] ) -> str: """simple docstring""" _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset-str.jsonl''' ) with open(lowercase, '''w''' ) as f: for item in DATA_STR: f.write(json.dumps(lowercase ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Tuple, lowercase : Union[str, Any] ) -> Dict: """simple docstring""" import gzip _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt.gz''' ) with open(lowercase, '''rb''' ) as orig_file: with gzip.open(lowercase, '''wb''' ) as zipped_file: zipped_file.writelines(lowercase ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Tuple, lowercase : Dict ) -> Union[str, Any]: """simple docstring""" import gzip _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.gz''' ) with open(lowercase, '''rb''' ) as orig_file: with gzip.open(lowercase, '''wb''' ) as zipped_file: zipped_file.writelines(lowercase ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : List[Any], lowercase : Dict, lowercase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.zip''' with zipfile.ZipFile(lowercase, '''w''' ) as f: f.write(lowercase, arcname=os.path.basename(lowercase ) ) f.write(lowercase, arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : int, lowercase : Union[str, Any], lowercase : List[str], lowercase : Optional[Any] ) -> int: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.zip''' with zipfile.ZipFile(lowercase, '''w''' ) as f: f.write(lowercase, arcname=os.path.join('''nested''', os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : str, lowercase : List[str], lowercase : Optional[Any] ) -> Optional[int]: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.jsonl.zip''' with zipfile.ZipFile(lowercase, '''w''' ) as f: f.write(lowercase, arcname=os.path.join('''main_dir''', os.path.basename(lowercase ) ) ) f.write(lowercase, arcname=os.path.join('''main_dir''', os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Tuple, lowercase : Optional[int], lowercase : List[str] ) -> Optional[int]: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.tar''' with tarfile.TarFile(lowercase, '''w''' ) as f: f.add(lowercase, arcname=os.path.basename(lowercase ) ) f.add(lowercase, arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Union[str, Any], lowercase : Tuple, lowercase : str, lowercase : Optional[Any] ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.tar''' with tarfile.TarFile(lowercase, '''w''' ) as f: f.add(lowercase, arcname=os.path.join('''nested''', os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : List[str] ) -> List[str]: """simple docstring""" _UpperCamelCase = ['''0''', '''1''', '''2''', '''3'''] _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt''' ) with open(lowercase, '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Optional[Any] ) -> Dict: """simple docstring""" _UpperCamelCase = ['''0''', '''1''', '''2''', '''3'''] _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.txt''' ) with open(lowercase, '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Optional[int] ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = ['''0''', '''1''', '''2''', '''3'''] _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.abc''' with open(lowercase, '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Optional[Any], lowercase : Any, lowercase : int ) -> Optional[int]: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.text.zip''' with zipfile.ZipFile(lowercase, '''w''' ) as f: f.write(lowercase, arcname=os.path.basename(lowercase ) ) f.write(lowercase, arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Tuple, lowercase : Any, lowercase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.text.zip''' with zipfile.ZipFile(lowercase, '''w''' ) as f: f.write(lowercase, arcname=os.path.join('''main_dir''', os.path.basename(lowercase ) ) ) f.write(lowercase, arcname=os.path.join('''main_dir''', os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Union[str, Any], lowercase : List[str], lowercase : Dict ) -> List[Any]: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.ext.zip''' with zipfile.ZipFile(lowercase, '''w''' ) as f: f.write(lowercase, arcname=os.path.basename('''unsupported.ext''' ) ) f.write(lowercase, arcname=os.path.basename('''unsupported_2.ext''' ) ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Tuple ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = '''\n'''.join(['''First''', '''Second\u2029with Unicode new line''', '''Third'''] ) _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_with_unicode_new_lines.txt''' ) with open(lowercase, '''w''', encoding='''utf-8''' ) as f: f.write(lowercase ) return path @pytest.fixture(scope='''session''' ) def a__ ( ) -> Optional[Any]: """simple docstring""" return os.path.join('''tests''', '''features''', '''data''', '''test_image_rgb.jpg''' ) @pytest.fixture(scope='''session''' ) def a__ ( ) -> Dict: """simple docstring""" return os.path.join('''tests''', '''features''', '''data''', '''test_audio_44100.wav''' ) @pytest.fixture(scope='''session''' ) def a__ ( lowercase : int, lowercase : List[Any] ) -> List[str]: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.img.zip''' with zipfile.ZipFile(lowercase, '''w''' ) as f: f.write(lowercase, arcname=os.path.basename(lowercase ) ) f.write(lowercase, arcname=os.path.basename(lowercase ).replace('''.jpg''', '''2.jpg''' ) ) return path @pytest.fixture(scope='''session''' ) def a__ ( lowercase : Union[str, Any] ) -> str: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data_dir''' ) (data_dir / "subdir").mkdir() with open(data_dir / '''subdir''' / '''train.txt''', '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''subdir''' / '''test.txt''', '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden file with open(data_dir / '''subdir''' / '''.test.txt''', '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '''.subdir''' / '''train.txt''', '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''.subdir''' / '''test.txt''', '''w''' ) as f: f.write('''bar\n''' * 10 ) return data_dir
98
'''simple docstring''' import numpy as np def A_( A : str , A : Optional[Any] , A : Tuple , A : Optional[int] , A : str): UpperCamelCase = int(np.ceil((x_end - xa) / h)) UpperCamelCase = np.zeros((n + 1,)) UpperCamelCase = ya UpperCamelCase = xa for k in range(A): UpperCamelCase = f(A , y[k]) UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka) UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka) UpperCamelCase = f(x + h , y[k] + h * ka) UpperCamelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
3
0
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class __UpperCAmelCase : """simple docstring""" def snake_case_ ( self , __A , __A , __A ): return None class __UpperCAmelCase : """simple docstring""" def snake_case_ ( self , __A , __A , __A , __A ): return None class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" _lowerCamelCase = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def snake_case_ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__A , """tf""" , 12 , **__A ) @require_torch @slow def snake_case_ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__A , """pt""" , 12 , **__A ) @require_torch @slow def snake_case_ ( self ): from transformers import BertModel __a = ["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""] with NamedTemporaryFile(mode="""w+t""" ) as vocab_file: vocab_file.write("""\n""".join(__A ) ) vocab_file.flush() __a = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: __a = BertModel(BertConfig(vocab_size=len(__A ) ) ) model.save_pretrained(__A ) self._test_export(__A , """pt""" , 12 , __A ) @require_tf @slow def snake_case_ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __a = self._test_export(__A , """tf""" , 12 , **__A ) __a = quantize(Path(__A ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__A ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) @require_torch @slow def snake_case_ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __a = self._test_export(__A , """pt""" , 12 , **__A ) __a = quantize(__A ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__A ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) def snake_case_ ( self , __A , __A , __A , __A=None , **__A ): try: # Compute path with TemporaryDirectory() as tempdir: __a = Path(__A ).joinpath("""model.onnx""" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__A , __A , __A , __A , __A , **__A ) return path except Exception as e: self.fail(__A ) @require_torch @require_tokenizers @slow def snake_case_ ( self ): from transformers import BertModel __a = BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) __a = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(__A , __A , """pt""" ) @require_tf @require_tokenizers @slow def snake_case_ ( self ): from transformers import TFBertModel __a = TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) __a = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(__A , __A , """tf""" ) def snake_case_ ( self , __A , __A , __A ): __a = FeatureExtractionPipeline(__A , __A ) __a = ["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""] __a , __a , __a , __a = infer_shapes(__A , __A ) # Assert all variables are present self.assertEqual(len(__A ) , len(__A ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __A ) self.assertSequenceEqual(variable_names[3:] , __A ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: """batch""", 1: """sequence"""} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["""output_0"""] , {0: """batch""", 1: """sequence"""} ) self.assertDictEqual(shapes["""output_1"""] , {0: """batch"""} ) def snake_case_ ( self ): __a = ["""input_ids""", """attention_mask""", """token_type_ids"""] __a = {"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]} __a , __a = ensure_valid_input(FuncContiguousArgs() , __A , __A ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__A ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__A ) , set(__A ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__A , (tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) __a , __a = ensure_valid_input(FuncNonContiguousArgs() , __A , __A ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__A ) , 1 ) self.assertEqual(len(__A ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["""input_ids"""] ) self.assertEqual(ordered_input_names[0] , """input_ids""" ) def snake_case_ ( self ): __a = generate_identified_filename(Path("""/home/something/my_fake_model.onnx""" ) , """-test""" ) self.assertEqual("""/home/something/my_fake_model-test.onnx""" , generated.as_posix() )
99
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True}) lowerCAmelCase_ = Features({"""text""": Value("""string""")}) lowerCAmelCase_ = Features({}) lowerCAmelCase_ = "text" @property def UpperCAmelCase_ ( self )-> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
3
0
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def lowercase_ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(A_ ): SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) SCREAMING_SNAKE_CASE__ = FlaxAutoModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def lowercase_ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(A_ ): SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) SCREAMING_SNAKE_CASE__ = FlaxAutoModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def lowercase_ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(A_ ) SCREAMING_SNAKE_CASE__ = FlaxBertModel.from_pretrained(A_ ) SCREAMING_SNAKE_CASE__ = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX ) @jax.jit def eval(**A_ ): return model(**A_ ) eval(**A_ ).block_until_ready() @slow def lowercase_ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(A_ ) SCREAMING_SNAKE_CASE__ = FlaxRobertaModel.from_pretrained(A_ ) SCREAMING_SNAKE_CASE__ = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX ) @jax.jit def eval(**A_ ): return model(**A_ ) eval(**A_ ).block_until_ready() def lowercase_ ( self ): '''simple docstring''' with self.assertRaisesRegex( A_ , '''bert-base is not a local folder and is not a valid model identifier''' ): SCREAMING_SNAKE_CASE__ = FlaxAutoModel.from_pretrained('''bert-base''' ) def lowercase_ ( self ): '''simple docstring''' with self.assertRaisesRegex( A_ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): SCREAMING_SNAKE_CASE__ = FlaxAutoModel.from_pretrained(A_ , revision='''aaaaaa''' ) def lowercase_ ( self ): '''simple docstring''' with self.assertRaisesRegex( A_ , '''hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack''' , ): SCREAMING_SNAKE_CASE__ = FlaxAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def lowercase_ ( self ): '''simple docstring''' with self.assertRaisesRegex(A_ , '''Use `from_pt=True` to load this model''' ): SCREAMING_SNAKE_CASE__ = FlaxAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' )
100
'''simple docstring''' from __future__ import annotations lowerCAmelCase : Union[str, Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCAmelCase : List[str] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def A_( A : list[float]): UpperCamelCase = [] UpperCamelCase = len(A) for i in range(A): UpperCamelCase = -1 for j in range(i + 1 , A): if arr[i] < arr[j]: UpperCamelCase = arr[j] break result.append(A) return result def A_( A : list[float]): UpperCamelCase = [] for i, outer in enumerate(A): UpperCamelCase = -1 for inner in arr[i + 1 :]: if outer < inner: UpperCamelCase = inner break result.append(A) return result def A_( A : list[float]): UpperCamelCase = len(A) UpperCamelCase = [] UpperCamelCase = [-1] * arr_size for index in reversed(range(A)): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: UpperCamelCase = stack[-1] stack.append(arr[index]) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCAmelCase : Optional[Any] = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
3
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : List[Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ : Any = { 'do_resize': True, 'size': 2_0, 'do_center_crop': True, 'crop_size': 1_8, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], } SCREAMING_SNAKE_CASE_ : List[str] = os.path.join(self.tmpdirname , lowerCAmelCase__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self , **lowerCAmelCase__ ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def UpperCamelCase__ ( self , **lowerCAmelCase__ ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def UpperCamelCase__ ( self , **lowerCAmelCase__ ): """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] SCREAMING_SNAKE_CASE_ : str = [Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Dict = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[Any] = AlignProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Optional[int] = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = AlignProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : List[Any] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor(do_normalize=lowerCAmelCase__ , padding_value=1.0 ) SCREAMING_SNAKE_CASE_ : List[str] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowerCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : List[Any] = AlignProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Optional[int] = image_processor(lowerCAmelCase__ , return_tensors='np' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor(images=lowerCAmelCase__ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[Any] = AlignProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = 'lower newer' SCREAMING_SNAKE_CASE_ : Tuple = processor(text=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer(lowerCAmelCase__ , padding='max_length' , max_length=6_4 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Any = AlignProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = 'lower newer' SCREAMING_SNAKE_CASE_ : List[str] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : str = AlignProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor.batch_decode(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[int] = AlignProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = 'lower newer' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
101
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def A_( A : str): if not sentence: return "" UpperCamelCase = dict(zip(A , A)) return lower_to_upper.get(sentence[0] , sentence[0]) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
3
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __magic_name__ : Dict = { """configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Any = ["""VivitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : int = [ """VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """VivitModel""", """VivitPreTrainedModel""", """VivitForVideoClassification""", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __magic_name__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
102
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase : Dict = logging.get_logger(__name__) # General docstring lowerCAmelCase : str = 'RegNetConfig' # Base docstring lowerCAmelCase : str = 'facebook/regnet-y-040' lowerCAmelCase : Dict = [1, 10_88, 7, 7] # Image classification docstring lowerCAmelCase : Dict = 'facebook/regnet-y-040' lowerCAmelCase : int = 'tabby, tabby cat' lowerCAmelCase : int = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ = 3 , A_ = 1 , A_ = 1 , A_ = "relu" , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb UpperCamelCase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) UpperCamelCase = tf.keras.layers.ConvaD( filters=A_ , kernel_size=A_ , strides=A_ , padding='VALID' , groups=A_ , use_bias=A_ , name='convolution' , ) UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) UpperCamelCase = ACTaFN[activation] if activation is not None else tf.identity def UpperCAmelCase_ ( self , A_ )-> Any: '''simple docstring''' UpperCamelCase = self.convolution(self.padding(A_ ) ) UpperCamelCase = self.normalization(A_ ) UpperCamelCase = self.activation(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , **A_ )-> Optional[Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = config.num_channels UpperCamelCase = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = shape_list(A_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) UpperCamelCase = tf.transpose(A_ , perm=(0, 2, 3, 1) ) UpperCamelCase = self.embedder(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ = 2 , **A_ )-> List[Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = tf.keras.layers.ConvaD( filters=A_ , kernel_size=1 , strides=A_ , use_bias=A_ , name='convolution' ) UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) def UpperCAmelCase_ ( self , A_ , A_ = False )-> tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(A_ ) , training=A_ ) class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , **A_ )-> Optional[Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' ) UpperCamelCase = [ tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def UpperCAmelCase_ ( self , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.pooler(A_ ) for layer_module in self.attention: UpperCamelCase = layer_module(A_ ) UpperCamelCase = hidden_state * pooled return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Dict: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = in_channels != out_channels or stride != 1 UpperCamelCase = max(1 , out_channels // config.groups_width ) UpperCamelCase = ( TFRegNetShortCut(A_ , stride=A_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. UpperCamelCase = [ TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.2' ), ] UpperCamelCase = ACTaFN[config.hidden_act] def UpperCAmelCase_ ( self , A_ )-> Tuple: '''simple docstring''' UpperCamelCase = hidden_state for layer_module in self.layers: UpperCamelCase = layer_module(A_ ) UpperCamelCase = self.shortcut(A_ ) hidden_state += residual UpperCamelCase = self.activation(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Any: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = in_channels != out_channels or stride != 1 UpperCamelCase = max(1 , out_channels // config.groups_width ) UpperCamelCase = ( TFRegNetShortCut(A_ , stride=A_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) UpperCamelCase = [ TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(A_ , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.3' ), ] UpperCamelCase = ACTaFN[config.hidden_act] def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = hidden_state for layer_module in self.layers: UpperCamelCase = layer_module(A_ ) UpperCamelCase = self.shortcut(A_ ) hidden_state += residual UpperCamelCase = self.activation(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ , A_ = 2 , A_ = 2 , **A_ )-> Dict: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer UpperCamelCase = [ # downsampling is done in the first layer with stride of 2 layer(A_ , A_ , A_ , stride=A_ , name='layers.0' ), *[layer(A_ , A_ , A_ , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' for layer_module in self.layers: UpperCamelCase = layer_module(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , **A_ )-> str: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( A_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(A_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(A_ , A_ , A_ , depth=A_ , name=F'''stages.{i+1}''' ) ) def UpperCAmelCase_ ( self , A_ , A_ = False , A_ = True )-> TFBaseModelOutputWithNoAttention: '''simple docstring''' UpperCamelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCamelCase = hidden_states + (hidden_state,) UpperCamelCase = stage_module(A_ ) if output_hidden_states: UpperCamelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=A_ , hidden_states=A_ ) @keras_serializable class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): lowerCAmelCase_ = RegNetConfig def __init__( self , A_ , **A_ )-> Union[str, Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = config UpperCamelCase = TFRegNetEmbeddings(A_ , name='embedder' ) UpperCamelCase = TFRegNetEncoder(A_ , name='encoder' ) UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' ) @unpack_inputs def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_ = False , )-> TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.embedder(A_ , training=A_ ) UpperCamelCase = self.encoder( A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ ) UpperCamelCase = encoder_outputs[0] UpperCamelCase = self.pooler(A_ ) # Change to NCHW output format have uniformity in the modules UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) ) UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: UpperCamelCase = tuple([tf.transpose(A_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A_ , pooler_output=A_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = RegNetConfig lowerCAmelCase_ = """regnet""" lowerCAmelCase_ = """pixel_values""" @property def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} lowerCAmelCase : str = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase : List[str] = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ , *A_ , **A_ )-> List[Any]: '''simple docstring''' super().__init__(A_ , *A_ , **A_ ) UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_=False , )-> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.regnet( pixel_values=A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_): def __init__( self , A_ , *A_ , **A_ )-> str: '''simple docstring''' super().__init__(A_ , *A_ , **A_ ) UpperCamelCase = config.num_labels UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' ) # classification head UpperCamelCase = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase_ ( self , A_ = None , A_ = None , A_ = None , A_ = None , A_=False , )-> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.regnet( A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ ) UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase = self.classifier[0](A_ ) UpperCamelCase = self.classifier[1](A_ ) UpperCamelCase = None if labels is None else self.hf_compute_loss(labels=A_ , logits=A_ ) if not return_dict: UpperCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=A_ , logits=A_ , hidden_states=outputs.hidden_states )
3
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCAmelCase ( unittest.TestCase ): def __UpperCAmelCase ( self : Any ): """simple docstring""" # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. _snake_case = [[1, 2, 4], [1, 2, 3, 4]] _snake_case = DisjunctiveConstraint(__lowerCamelCase ) self.assertTrue(isinstance(dc.token_ids , __lowerCamelCase ) ) with self.assertRaises(__lowerCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__lowerCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). _snake_case = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__lowerCamelCase ): DisjunctiveConstraint(__lowerCamelCase ) # fails here def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = [[1, 2, 3], [1, 2, 4]] _snake_case = DisjunctiveConstraint(__lowerCamelCase ) _snake_case , _snake_case , _snake_case = dc.update(1 ) _snake_case = stepped is True and completed is False and reset is False self.assertTrue(__lowerCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _snake_case , _snake_case , _snake_case = dc.update(2 ) _snake_case = stepped is True and completed is False and reset is False self.assertTrue(__lowerCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _snake_case , _snake_case , _snake_case = dc.update(3 ) _snake_case = stepped is True and completed is True and reset is False self.assertTrue(__lowerCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] _snake_case = DisjunctiveConstraint(__lowerCamelCase ) _snake_case , _snake_case , _snake_case = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _snake_case , _snake_case , _snake_case = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _snake_case , _snake_case , _snake_case = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) _snake_case , _snake_case , _snake_case = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() _snake_case , _snake_case , _snake_case = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) _snake_case , _snake_case , _snake_case = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) _snake_case , _snake_case , _snake_case = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
103
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Optional[int] = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """perceiver""" def __init__( self , A_=256 , A_=1280 , A_=768 , A_=1 , A_=26 , A_=8 , A_=8 , A_=None , A_=None , A_="kv" , A_=1 , A_=1 , A_="gelu" , A_=0.1 , A_=0.02 , A_=1e-12 , A_=True , A_=262 , A_=2048 , A_=56 , A_=[368, 496] , A_=16 , A_=1920 , A_=16 , A_=[1, 16, 224, 224] , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = num_latents UpperCamelCase = d_latents UpperCamelCase = d_model UpperCamelCase = num_blocks UpperCamelCase = num_self_attends_per_block UpperCamelCase = num_self_attention_heads UpperCamelCase = num_cross_attention_heads UpperCamelCase = qk_channels UpperCamelCase = v_channels UpperCamelCase = cross_attention_shape_for_attention UpperCamelCase = self_attention_widening_factor UpperCamelCase = cross_attention_widening_factor UpperCamelCase = hidden_act UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = use_query_residual # masked language modeling attributes UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings # image classification attributes UpperCamelCase = image_size # flow attributes UpperCamelCase = train_size # multimodal autoencoding attributes UpperCamelCase = num_frames UpperCamelCase = audio_samples_per_frame UpperCamelCase = samples_per_patch UpperCamelCase = output_shape class SCREAMING_SNAKE_CASE__ ( snake_case_): @property def UpperCAmelCase_ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def UpperCAmelCase_ ( self )-> float: '''simple docstring''' return 1e-4 def UpperCAmelCase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = -1 , A_ = False , A_ = None , A_ = 3 , A_ = 40 , A_ = 40 , )-> Mapping[str, Any]: '''simple docstring''' if isinstance(A_ , A_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase = preprocessor.num_special_tokens_to_add(A_ ) UpperCamelCase = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase = [' '.join(['a'] ) * seq_length] * batch_size UpperCamelCase = dict(preprocessor(A_ , return_tensors=A_ ) ) UpperCamelCase = inputs.pop('input_ids' ) return inputs elif isinstance(A_ , A_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase = compute_effective_axis_dimension(A_ , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCamelCase = self._generate_dummy_images(A_ , A_ , A_ , A_ ) UpperCamelCase = dict(preprocessor(images=A_ , return_tensors=A_ ) ) UpperCamelCase = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
3
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
104
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Dict = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """mctct""" def __init__( self , A_=8065 , A_=1536 , A_=36 , A_=6144 , A_=4 , A_=384 , A_=920 , A_=1e-5 , A_=0.3 , A_="relu" , A_=0.02 , A_=0.3 , A_=0.3 , A_=1 , A_=0 , A_=2 , A_=1 , A_=0.3 , A_=1 , A_=(7,) , A_=(3,) , A_=80 , A_=1 , A_=None , A_="sum" , A_=False , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = intermediate_size UpperCamelCase = num_attention_heads UpperCamelCase = attention_head_dim UpperCamelCase = max_position_embeddings UpperCamelCase = layer_norm_eps UpperCamelCase = layerdrop UpperCamelCase = hidden_act UpperCamelCase = initializer_range UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = pad_token_id UpperCamelCase = bos_token_id UpperCamelCase = eos_token_id UpperCamelCase = conv_glu_dim UpperCamelCase = conv_dropout UpperCamelCase = num_conv_layers UpperCamelCase = input_feat_per_channel UpperCamelCase = input_channels UpperCamelCase = conv_channels UpperCamelCase = ctc_loss_reduction UpperCamelCase = ctc_zero_infinity # prevents config testing fail with exporting to json UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ' F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
3
0
import os import sys import unittest UpperCamelCase__ : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path UpperCamelCase__ : Tuple = os.path.join(git_repo_path, '''src''', '''transformers''') UpperCamelCase__ : List[Any] = ''' {0} = None ''' UpperCamelCase__ : str = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) ''' UpperCamelCase__ : List[Any] = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(snake_case__ ,'tokenizers' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(snake_case__ ,'tensorflow_text' ) SCREAMING_SNAKE_CASE_ : int = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(snake_case__ ,'sentencepiece_and_tokenizers' ) SCREAMING_SNAKE_CASE_ : str = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(snake_case__ ,'sentencepiece_and_tensorflow_text' ) SCREAMING_SNAKE_CASE_ : Tuple = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(snake_case__ ,'sentencepiece_and_tokenizers_and_vision' ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' ,snake_case__ ) self.assertIn('tensorflow_text' ,snake_case__ ) self.assertIn('sentencepiece_and_tokenizers' ,snake_case__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' ,objects['torch'] ) self.assertIn('TFBertModel' ,objects['tf'] ) self.assertIn('FlaxBertModel' ,objects['flax'] ) self.assertIn('BertModel' ,objects['torch'] ) self.assertIn('TFBertTokenizer' ,objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' ,objects['sentencepiece_and_tokenizers'] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = create_dummy_object('CONSTANT' ,'\'torch\'' ) self.assertEqual(snake_case__ ,'\nCONSTANT = None\n' ) SCREAMING_SNAKE_CASE_ : Dict = create_dummy_object('function' ,'\'torch\'' ) self.assertEqual( snake_case__ ,'\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) SCREAMING_SNAKE_CASE_ : List[str] = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' SCREAMING_SNAKE_CASE_ : Dict = create_dummy_object('FakeClass' ,'\'torch\'' ) self.assertEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' SCREAMING_SNAKE_CASE_ : Dict = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] ,snake_case__ )
105
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase : Tuple = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase : Optional[int] = TaTokenizerFast lowerCAmelCase : Any = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase : Tuple = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
3
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case :str =logging.get_logger(__name__) __snake_case :Tuple ={ 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase__ ( _lowerCamelCase ): A_ : Tuple = 'speech_to_text_2' A_ : Union[str, Any] = ['past_key_values'] A_ : Dict = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : int , __UpperCamelCase : Union[str, Any]=10_000 , __UpperCamelCase : List[Any]=6 , __UpperCamelCase : Any=2_048 , __UpperCamelCase : Optional[Any]=4 , __UpperCamelCase : Optional[Any]=0.0 , __UpperCamelCase : Any=True , __UpperCamelCase : List[str]="relu" , __UpperCamelCase : Optional[Any]=256 , __UpperCamelCase : Optional[Any]=0.1 , __UpperCamelCase : Dict=0.0 , __UpperCamelCase : int=0.0 , __UpperCamelCase : List[Any]=0.0_2 , __UpperCamelCase : List[Any]=2 , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[Any]=1 , __UpperCamelCase : List[str]=0 , __UpperCamelCase : Tuple=2 , __UpperCamelCase : Dict=1_024 , **__UpperCamelCase : Any , ) -> List[Any]: A = vocab_size A = d_model A = decoder_ffn_dim A = decoder_layers A = decoder_attention_heads A = dropout A = attention_dropout A = activation_dropout A = activation_function A = init_std A = decoder_layerdrop A = use_cache A = decoder_layers A = scale_embedding # scale factor will be sqrt(d_model) if True A = max_target_positions super().__init__( pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , decoder_start_token_id=__UpperCamelCase , **__UpperCamelCase , )
106
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=False , A_=True , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , )-> Dict: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size if size is not None else {'height': 18, 'width': 20} UpperCamelCase = do_thumbnail UpperCamelCase = do_align_axis UpperCamelCase = do_pad UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase): lowerCAmelCase_ = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = DonutImageProcessingTester(self ) @property def UpperCAmelCase_ ( self )-> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'do_thumbnail' ) ) self.assertTrue(hasattr(A_ , 'do_align_long_axis' ) ) self.assertTrue(hasattr(A_ , 'do_pad' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' pass @is_flaky() def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
3
0
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _UpperCAmelCase : Any = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' _UpperCAmelCase : str = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' _UpperCAmelCase : Union[str, Any] = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : List[Any] ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), id='references' ), } ), ) def __UpperCAmelCase ( self : Dict, UpperCamelCase__ : List[List[List[str]]], UpperCamelCase__ : List[List[str]], UpperCamelCase__ : int = 1, UpperCamelCase__ : int = 4, ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCamelCase__, hypotheses=UpperCamelCase__, min_len=UpperCamelCase__, max_len=UpperCamelCase__ ) }
107
'''simple docstring''' def A_( A : list[int]): UpperCamelCase = [] if len(A) == 1: return [nums.copy()] for _ in range(len(A)): UpperCamelCase = nums.pop(0) UpperCamelCase = permute(A) for perm in permutations: perm.append(A) result.extend(A) nums.append(A) return result def A_( A : str): def backtrack(A : str): if start == len(A) - 1: output.append(nums[:]) else: for i in range(A , len(A)): UpperCamelCase , UpperCamelCase = nums[i], nums[start] backtrack(start + 1) UpperCamelCase , UpperCamelCase = nums[i], nums[start] # backtrack UpperCamelCase = [] backtrack(0) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCAmelCase : Dict = permutea([1, 2, 3]) print(res) doctest.testmod()
3
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __a: Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = ['''pixel_values'''] def __init__( self : Any , lowerCamelCase : bool = True , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase : bool = True , lowerCamelCase : Union[int, float] = 1 / 255 , lowerCamelCase : bool = True , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : bool = True , **lowerCamelCase : List[Any] , ) -> None: """simple docstring""" super().__init__(**lowerCamelCase ) _UpperCAmelCase = size if size is not None else {"""height""": 384, """width""": 384} _UpperCAmelCase = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _UpperCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD _UpperCAmelCase = do_convert_rgb def lowerCamelCase ( self : Any , lowerCamelCase : np.ndarray , lowerCamelCase : Dict[str, int] , lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : str , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) _UpperCAmelCase = (size["""height"""], size["""width"""]) return resize(lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowerCamelCase ( self : Tuple , lowerCamelCase : np.ndarray , lowerCamelCase : Union[int, float] , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : Dict , ) -> Union[str, Any]: """simple docstring""" return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowerCamelCase ( self : Tuple , lowerCamelCase : np.ndarray , lowerCamelCase : Union[float, List[float]] , lowerCamelCase : Union[float, List[float]] , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : List[Any] , ) -> np.ndarray: """simple docstring""" return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowerCamelCase ( self : Dict , lowerCamelCase : ImageInput , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[Dict[str, int]] = None , lowerCamelCase : PILImageResampling = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[float] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , lowerCamelCase : bool = None , lowerCamelCase : ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase : List[str] , ) -> PIL.Image.Image: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) _UpperCAmelCase = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCAmelCase = [convert_to_rgb(lowerCamelCase ) for image in images] # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=lowerCamelCase , scale=lowerCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] _UpperCAmelCase = BatchFeature(data={"""pixel_values""": images} , tensor_type=lowerCamelCase ) return encoded_outputs
108
'''simple docstring''' import colorsys from PIL import Image # type: ignore def A_( A : float , A : float , A : int): UpperCamelCase = x UpperCamelCase = y for step in range(A): # noqa: B007 UpperCamelCase = a * a - b * b + x UpperCamelCase = 2 * a * b + y UpperCamelCase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def A_( A : float): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def A_( A : float): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(A , 1 , 1)) def A_( A : int = 800 , A : int = 600 , A : float = -0.6 , A : float = 0 , A : float = 3.2 , A : int = 50 , A : bool = True , ): UpperCamelCase = Image.new('RGB' , (image_width, image_height)) UpperCamelCase = img.load() # loop through the image-coordinates for image_x in range(A): for image_y in range(A): # determine the figure-coordinates based on the image-coordinates UpperCamelCase = figure_width / image_width * image_height UpperCamelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCamelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCamelCase = get_distance(A , A , A) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCamelCase = get_color_coded_rgb(A) else: UpperCamelCase = get_black_and_white_rgb(A) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCAmelCase : Any = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
3
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class __a ( _snake_case ): __UpperCamelCase : int = 'git_vision_model' def __init__( self : int ,lowerCamelCase : Optional[int]=768 ,lowerCamelCase : Dict=3072 ,lowerCamelCase : List[str]=12 ,lowerCamelCase : List[Any]=12 ,lowerCamelCase : int=3 ,lowerCamelCase : Tuple=224 ,lowerCamelCase : str=16 ,lowerCamelCase : int="quick_gelu" ,lowerCamelCase : List[Any]=1E-5 ,lowerCamelCase : Dict=0.0 ,lowerCamelCase : Union[str, Any]=0.02 ,**lowerCamelCase : Union[str, Any] ,): '''simple docstring''' super().__init__(**lowerCamelCase ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = hidden_act @classmethod def UpperCAmelCase__ ( cls : Optional[Any] ,lowerCamelCase : Union[str, os.PathLike] ,**lowerCamelCase : Tuple ): '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = cls.get_config_dict(lowerCamelCase ,**lowerCamelCase ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": __SCREAMING_SNAKE_CASE = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCamelCase ,**lowerCamelCase ) class __a ( _snake_case ): __UpperCamelCase : str = 'git' def __init__( self : Any ,lowerCamelCase : Optional[int]=None ,lowerCamelCase : List[str]=3_0522 ,lowerCamelCase : Any=768 ,lowerCamelCase : int=6 ,lowerCamelCase : Tuple=12 ,lowerCamelCase : List[Any]=3072 ,lowerCamelCase : int="gelu" ,lowerCamelCase : Optional[Any]=0.1 ,lowerCamelCase : Optional[int]=0.1 ,lowerCamelCase : int=1024 ,lowerCamelCase : str=0.02 ,lowerCamelCase : Union[str, Any]=1E-1_2 ,lowerCamelCase : Any=0 ,lowerCamelCase : str="absolute" ,lowerCamelCase : Dict=True ,lowerCamelCase : List[Any]=False ,lowerCamelCase : List[Any]=101 ,lowerCamelCase : Tuple=102 ,lowerCamelCase : List[str]=None ,**lowerCamelCase : Any ,): '''simple docstring''' super().__init__(bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,pad_token_id=lowerCamelCase ,**lowerCamelCase ) if vision_config is None: __SCREAMING_SNAKE_CASE = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) __SCREAMING_SNAKE_CASE = GitVisionConfig(**lowerCamelCase ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = tie_word_embeddings __SCREAMING_SNAKE_CASE = num_image_with_embedding __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = eos_token_id def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE = self.vision_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output
109
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase : Optional[Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
0
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a ( lowercase , lowercase , unittest.TestCase ): UpperCamelCase : Union[str, Any] = StableDiffusionDiffEditPipeline UpperCamelCase : Any = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""height""", """width""", """image"""} | {"""image_latents"""} UpperCamelCase : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"""image"""} | {"""image_latents"""} UpperCamelCase : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase : List[Any] = frozenset([] ) def __snake_case ( self ): torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , ) UpperCAmelCase__ : List[Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) UpperCAmelCase__ : List[Any] = DDIMInverseScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=UpperCamelCase_ , set_alpha_to_zero=UpperCamelCase_ , ) torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , ) UpperCAmelCase__ : str = CLIPTextModel(UpperCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCAmelCase__ : Optional[int] = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): UpperCAmelCase__ : Tuple = floats_tensor((1, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith('mps' ): UpperCAmelCase__ : Optional[int] = torch.manual_seed(UpperCamelCase_ ) else: UpperCAmelCase__ : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) UpperCAmelCase__ : Optional[int] = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): UpperCAmelCase__ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) UpperCAmelCase__ : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : List[Any] = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('RGB' ) if str(UpperCamelCase_ ).startswith('mps' ): UpperCAmelCase__ : Optional[int] = torch.manual_seed(UpperCamelCase_ ) else: UpperCAmelCase__ : Optional[Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) UpperCAmelCase__ : Dict = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): UpperCAmelCase__ : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) UpperCAmelCase__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : Optional[int] = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('RGB' ) if str(UpperCamelCase_ ).startswith('mps' ): UpperCAmelCase__ : Tuple = torch.manual_seed(UpperCamelCase_ ) else: UpperCAmelCase__ : Tuple = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) UpperCAmelCase__ : str = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def __snake_case ( self ): if not hasattr(self.pipeline_class , '_optional_components' ): return UpperCAmelCase__ : int = self.get_dummy_components() UpperCAmelCase__ : List[Any] = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCAmelCase__ : Dict = self.get_dummy_inputs(UpperCamelCase_ ) UpperCAmelCase__ : Optional[Any] = pipe(**UpperCamelCase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase_ ) UpperCAmelCase__ : str = self.pipeline_class.from_pretrained(UpperCamelCase_ ) pipe_loaded.to(UpperCamelCase_ ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase_ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCamelCase_ , UpperCamelCase_ ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) UpperCAmelCase__ : Optional[int] = self.get_dummy_inputs(UpperCamelCase_ ) UpperCAmelCase__ : Optional[Any] = pipe_loaded(**UpperCamelCase_ )[0] UpperCAmelCase__ : Tuple = np.abs(output - output_loaded ).max() self.assertLess(UpperCamelCase_ , 1E-4 ) def __snake_case ( self ): UpperCAmelCase__ : List[Any] = 'cpu' UpperCAmelCase__ : Optional[Any] = self.get_dummy_components() UpperCAmelCase__ : List[str] = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase__ : List[Any] = self.get_dummy_mask_inputs(UpperCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = pipe.generate_mask(**UpperCamelCase_ ) UpperCAmelCase__ : Any = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) UpperCAmelCase__ : str = np.array([0] * 9 ) UpperCAmelCase__ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def __snake_case ( self ): UpperCAmelCase__ : Tuple = 'cpu' UpperCAmelCase__ : List[str] = self.get_dummy_components() UpperCAmelCase__ : Optional[int] = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase__ : List[Any] = self.get_dummy_inversion_inputs(UpperCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = pipe.invert(**UpperCamelCase_ ).images UpperCAmelCase__ : List[str] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase__ : Optional[int] = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) UpperCAmelCase__ : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) def __snake_case ( self ): super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def __snake_case ( self ): UpperCAmelCase__ : Optional[Any] = 'cpu' UpperCAmelCase__ : int = self.get_dummy_components() UpperCAmelCase__ : List[Any] = {'beta_start': 0.00085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear'} UpperCAmelCase__ : List[str] = DPMSolverMultistepScheduler(**UpperCamelCase_ ) UpperCAmelCase__ : Tuple = DPMSolverMultistepInverseScheduler(**UpperCamelCase_ ) UpperCAmelCase__ : List[Any] = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase__ : Optional[Any] = self.get_dummy_inversion_inputs(UpperCamelCase_ ) UpperCAmelCase__ : Tuple = pipe.invert(**UpperCamelCase_ ).images UpperCAmelCase__ : Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase__ : Dict = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) UpperCAmelCase__ : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) @require_torch_gpu @slow class a ( unittest.TestCase ): def __snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def __snake_case ( cls ): UpperCAmelCase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) UpperCAmelCase__ : List[Any] = raw_image.convert('RGB' ).resize((768, 768) ) UpperCAmelCase__ : List[Any] = raw_image def __snake_case ( self ): UpperCAmelCase__ : int = torch.manual_seed(0 ) UpperCAmelCase__ : List[str] = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=UpperCamelCase_ , torch_dtype=torch.floataa ) UpperCAmelCase__ : Tuple = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase__ : Tuple = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase__ : List[str] = 'a bowl of fruit' UpperCAmelCase__ : Optional[Any] = 'a bowl of pears' UpperCAmelCase__ : Tuple = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase_ , target_prompt=UpperCamelCase_ , generator=UpperCamelCase_ , ) UpperCAmelCase__ : str = pipe.invert( prompt=UpperCamelCase_ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase_ ).latents UpperCAmelCase__ : Any = pipe( prompt=UpperCamelCase_ , mask_image=UpperCamelCase_ , image_latents=UpperCamelCase_ , generator=UpperCamelCase_ , negative_prompt=UpperCamelCase_ , inpaint_strength=0.7 , output_type='numpy' , ).images[0] UpperCAmelCase__ : List[str] = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def __snake_case ( self ): UpperCAmelCase__ : str = torch.manual_seed(0 ) UpperCAmelCase__ : Any = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=UpperCamelCase_ , torch_dtype=torch.floataa ) UpperCAmelCase__ : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase__ : List[Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase__ : List[str] = 'a bowl of fruit' UpperCAmelCase__ : Tuple = 'a bowl of pears' UpperCAmelCase__ : List[Any] = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase_ , target_prompt=UpperCamelCase_ , generator=UpperCamelCase_ , ) UpperCAmelCase__ : Tuple = pipe.invert( prompt=UpperCamelCase_ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase_ , num_inference_steps=25 , ).latents UpperCAmelCase__ : Any = pipe( prompt=UpperCamelCase_ , mask_image=UpperCamelCase_ , image_latents=UpperCamelCase_ , generator=UpperCamelCase_ , negative_prompt=UpperCamelCase_ , inpaint_strength=0.7 , num_inference_steps=25 , output_type='numpy' , ).images[0] UpperCAmelCase__ : Union[str, Any] = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
110
'''simple docstring''' lowerCAmelCase : Optional[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def A_( A : dict , A : str , A : Optional[Any]): UpperCamelCase = set() # keep track of all the paths to be checked UpperCamelCase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCamelCase = queue.pop(0) # get the last node from the path UpperCamelCase = path[-1] if node not in explored: UpperCamelCase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCamelCase = list(A) new_path.append(A) queue.append(A) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(A) # in case there's no path between the 2 nodes return [] def A_( A : dict , A : str , A : Tuple): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCamelCase = [start] UpperCamelCase = set(A) # Keep tab on distances from `start` node. UpperCamelCase = {start: 0, target: -1} while queue: UpperCamelCase = queue.pop(0) if node == target: UpperCamelCase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node]) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(A) queue.append(A) UpperCamelCase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
3
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ : Dict = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[Any] = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowercase__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
376
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class SCREAMING_SNAKE_CASE__ : def __init__( self )-> Dict: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = '' UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = 256 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 def UpperCAmelCase_ ( self , A_ )-> str: '''simple docstring''' UpperCamelCase = cva.imread(A_ , 0 ) UpperCamelCase = copy.deepcopy(self.img ) UpperCamelCase , UpperCamelCase , UpperCamelCase = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) UpperCamelCase = np.sum(A_ ) for i in range(len(A_ ) ): UpperCamelCase = x[i] / self.k self.sk += prk UpperCamelCase = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase = int(last % last ) UpperCamelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(A_ ) UpperCamelCase = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase = self.img[j][i] if num != self.last_list[num]: UpperCamelCase = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') lowerCAmelCase : str = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
3
0
'''simple docstring''' import re def a_ ( _UpperCAmelCase : str ) -> Optional[int]: if len(re.findall('[ATCG]' ,_UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' ,'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
286
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Tuple = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """unispeech-sat""" def __init__( self , A_=32 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.1 , A_=0.1 , A_=0.02 , A_=1e-5 , A_="group" , A_="gelu" , A_=(512, 512, 512, 512, 512, 512, 512) , A_=(5, 2, 2, 2, 2, 2, 2) , A_=(10, 3, 3, 3, 3, 2, 2) , A_=False , A_=128 , A_=16 , A_=False , A_=True , A_=0.05 , A_=10 , A_=2 , A_=0.0 , A_=10 , A_=0 , A_=320 , A_=2 , A_=0.1 , A_=100 , A_=256 , A_=256 , A_=0.1 , A_="mean" , A_=False , A_=False , A_=256 , A_=(512, 512, 512, 512, 1500) , A_=(5, 3, 3, 1, 1) , A_=(1, 2, 3, 1, 1) , A_=512 , A_=0 , A_=1 , A_=2 , A_=504 , **A_ , )-> Tuple: '''simple docstring''' super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) UpperCamelCase = hidden_size UpperCamelCase = feat_extract_norm UpperCamelCase = feat_extract_activation UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = conv_bias UpperCamelCase = num_conv_pos_embeddings UpperCamelCase = num_conv_pos_embedding_groups UpperCamelCase = len(self.conv_dim ) UpperCamelCase = num_hidden_layers UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = num_attention_heads UpperCamelCase = hidden_dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = feat_proj_dropout UpperCamelCase = final_dropout UpperCamelCase = layerdrop UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = vocab_size UpperCamelCase = num_clusters UpperCamelCase = do_stable_layer_norm UpperCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase = apply_spec_augment UpperCamelCase = mask_time_prob UpperCamelCase = mask_time_length UpperCamelCase = mask_time_min_masks UpperCamelCase = mask_feature_prob UpperCamelCase = mask_feature_length UpperCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCamelCase = num_codevectors_per_group UpperCamelCase = num_codevector_groups UpperCamelCase = contrastive_logits_temperature UpperCamelCase = feat_quantizer_dropout UpperCamelCase = num_negatives UpperCamelCase = codevector_dim UpperCamelCase = proj_codevector_dim UpperCamelCase = diversity_loss_weight # ctc loss UpperCamelCase = ctc_loss_reduction UpperCamelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = xvector_output_dim @property def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
3
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : Any = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[str] = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys __lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
297
'''simple docstring''' import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ , A_=100 , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=4 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=None , A_=[0, 1, 2, 3] , )-> Any: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = 100 UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = scope UpperCamelCase = out_indices UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = num_patches + 1 def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> List[str]: '''simple docstring''' UpperCamelCase = BeitModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Any: '''simple docstring''' UpperCamelCase = BeitForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.type_sequence_label_size UpperCamelCase = BeitForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = BeitForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[Any]: '''simple docstring''' UpperCamelCase = self.num_labels UpperCamelCase = BeitForSemanticSegmentation(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase_ = ( { """feature-extraction""": BeitModel, """image-classification""": BeitForImageClassification, """image-segmentation""": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = BeitModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A_ ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' if not self.model_tester.is_training: return UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(A_ ), BeitForMaskedImageModeling]: continue UpperCamelCase = model_class(A_ ) model.to(A_ ) model.train() UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ ) UpperCamelCase = model(**A_ ).loss loss.backward() def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase = False UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(A_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCamelCase = model_class(A_ ) model.gradient_checkpointing_enable() model.to(A_ ) model.train() UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ ) UpperCamelCase = model(**A_ ).loss loss.backward() def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = _config_zero_init(A_ ) for model_class in self.all_model_classes: UpperCamelCase = model_class(config=A_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = BeitModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A_( ): UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @cached_property def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).pixel_values.to(A_ ) # prepare bool_masked_pos UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(pixel_values=A_ , bool_masked_pos=A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(A_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , A_ , atol=1e-2 ) ) @slow def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(A_ ) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) ) UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , A_ ) @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 21841) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(A_ ) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) ) UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , A_ ) @slow def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) UpperCamelCase = model.to(A_ ) UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ ) UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) UpperCamelCase = Image.open(ds[0]['file'] ) UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: UpperCamelCase = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] , device=A_ , ) else: UpperCamelCase = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] , device=A_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1e-4 ) ) @slow def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) UpperCamelCase = model.to(A_ ) UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ ) UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) UpperCamelCase = Image.open(ds[0]['file'] ) UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits.detach().cpu() UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ , target_sizes=[(500, 300)] ) UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , A_ ) UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ ) UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , A_ )
3
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a_ = { 'configuration_efficientformer': [ 'EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientFormerConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['EfficientFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientFormerForImageClassification', 'EfficientFormerForImageClassificationWithTeacher', 'EfficientFormerModel', 'EfficientFormerPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFEfficientFormerForImageClassification', 'TFEfficientFormerForImageClassificationWithTeacher', 'TFEfficientFormerModel', 'TFEfficientFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
437
'''simple docstring''' import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase : Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( enum.Enum): lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 @add_end_docstrings(snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """generated""" def __init__( self , *A_ , **A_ )-> Optional[int]: '''simple docstring''' super().__init__(*A_ , **A_ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , **A_ , )-> Optional[Any]: '''simple docstring''' UpperCamelCase = {} if truncation is not None: UpperCamelCase = truncation UpperCamelCase = generate_kwargs UpperCamelCase = {} if return_tensors is not None and return_type is None: UpperCamelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: UpperCamelCase = return_type if clean_up_tokenization_spaces is not None: UpperCamelCase = clean_up_tokenization_spaces if stop_sequence is not None: UpperCamelCase = self.tokenizer.encode(A_ , add_special_tokens=A_ ) if len(A_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) UpperCamelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' return True def UpperCAmelCase_ ( self , *A_ , A_ )-> Any: '''simple docstring''' UpperCamelCase = self.model.config.prefix if self.model.config.prefix is not None else '' if isinstance(args[0] , A_ ): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' ) UpperCamelCase = ([prefix + arg for arg in args[0]],) UpperCamelCase = True elif isinstance(args[0] , A_ ): UpperCamelCase = (prefix + args[0],) UpperCamelCase = False else: raise ValueError( F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) UpperCamelCase = self.tokenizer(*A_ , padding=A_ , truncation=A_ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A_ , **A_ )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = super().__call__(*A_ , **A_ ) if ( isinstance(args[0] , A_ ) and all(isinstance(A_ , A_ ) for el in args[0] ) and all(len(A_ ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase_ ( self , A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , **A_ )-> Any: '''simple docstring''' UpperCamelCase = self._parse_and_tokenize(A_ , truncation=A_ , **A_ ) return inputs def UpperCAmelCase_ ( self , A_ , **A_ )-> int: '''simple docstring''' if self.framework == "pt": UpperCamelCase , UpperCamelCase = model_inputs['input_ids'].shape elif self.framework == "tf": UpperCamelCase , UpperCamelCase = tf.shape(model_inputs['input_ids'] ).numpy() UpperCamelCase = generate_kwargs.get('min_length' , self.model.config.min_length ) UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) self.check_inputs(A_ , generate_kwargs['min_length'] , generate_kwargs['max_length'] ) UpperCamelCase = self.model.generate(**A_ , **A_ ) UpperCamelCase = output_ids.shape[0] if self.framework == "pt": UpperCamelCase = output_ids.reshape(A_ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": UpperCamelCase = tf.reshape(A_ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase_ ( self , A_ , A_=ReturnType.TEXT , A_=False )-> Optional[Any]: '''simple docstring''' UpperCamelCase = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: UpperCamelCase = {F'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: UpperCamelCase = { F'''{self.return_name}_text''': self.tokenizer.decode( A_ , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , ) } records.append(A_ ) return records @add_end_docstrings(snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """summary""" def __call__( self , *A_ , **A_ )-> Optional[int]: '''simple docstring''' return super().__call__(*A_ , **A_ ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> bool: '''simple docstring''' if max_length < min_length: logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' 'a summarization task, where outputs shorter than the input are typically wanted, you might ' F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """translation""" def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> List[Any]: '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' ) return True def UpperCAmelCase_ ( self , *A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , A_=None , A_=None )-> Dict: '''simple docstring''' if getattr(self.tokenizer , '_build_translation_inputs' , A_ ): return self.tokenizer._build_translation_inputs( *A_ , return_tensors=self.framework , truncation=A_ , src_lang=A_ , tgt_lang=A_ ) else: return super()._parse_and_tokenize(*A_ , truncation=A_ ) def UpperCAmelCase_ ( self , A_=None , A_=None , **A_ )-> str: '''simple docstring''' UpperCamelCase , UpperCamelCase , UpperCamelCase = super()._sanitize_parameters(**A_ ) if src_lang is not None: UpperCamelCase = src_lang if tgt_lang is not None: UpperCamelCase = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. UpperCamelCase = kwargs.get('task' , self.task ) UpperCamelCase = task.split('_' ) if task and len(A_ ) == 4: # translation, XX, to YY UpperCamelCase = items[1] UpperCamelCase = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A_ , **A_ )-> Any: '''simple docstring''' return super().__call__(*A_ , **A_ )
3
0
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(snake_case_ ) class a ( snake_case_ ): def __init__( self : Tuple , *snake_case__ : str , **snake_case__ : Dict ): """simple docstring""" super().__init__(*A_ , **A_ ) requires_backends(self , "vision" ) self.check_model_type(A_ ) def __call__( self : Optional[Any] , snake_case__ : str , **snake_case__ : Any ): """simple docstring""" return super().__call__(A_ , **A_ ) def UpperCAmelCase__ ( self : Union[str, Any] , **snake_case__ : int ): """simple docstring""" return {}, {}, {} def UpperCAmelCase__ ( self : Dict , snake_case__ : Tuple ): """simple docstring""" __lowerCAmelCase = load_image(A_ ) __lowerCAmelCase = image.size __lowerCAmelCase = self.image_processor(images=A_ , return_tensors=self.framework ) return model_inputs def UpperCAmelCase__ ( self : int , snake_case__ : List[Any] ): """simple docstring""" __lowerCAmelCase = self.model(**A_ ) return model_outputs def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : Optional[int] ): """simple docstring""" __lowerCAmelCase = model_outputs.predicted_depth __lowerCAmelCase = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="bicubic" , align_corners=A_ ) __lowerCAmelCase = prediction.squeeze().cpu().numpy() __lowerCAmelCase = (output * 255 / np.max(A_ )).astype("uint8" ) __lowerCAmelCase = Image.fromarray(A_ ) __lowerCAmelCase = {} __lowerCAmelCase = predicted_depth __lowerCAmelCase = depth return output_dict
611
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = 0 lowerCAmelCase_ = False lowerCAmelCase_ = 3.0 class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def UpperCAmelCase_ ( self )-> int: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=A_ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() UpperCamelCase = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , A_ ) @require_multi_gpu def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_ , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase : Tuple = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCAmelCase : List[str] = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCAmelCase : List[Any] = torch.nn.Linear(1_00, 2_00) lowerCAmelCase : int = accelerator.prepare(model) # Check the values changed in kwargs lowerCAmelCase : Dict = '' lowerCAmelCase : Dict = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
3
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: if b == 0: return (1, 0) ((snake_case__) , (snake_case__)) : Optional[int] = extended_euclid(__SCREAMING_SNAKE_CASE , a % b ) snake_case__ : Dict = a // b return (y, x - k * y) def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: ((snake_case__) , (snake_case__)) : List[str] = extended_euclid(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : str = na * na snake_case__ : List[Any] = ra * x * na + ra * y * na return (n % m + m) % m def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[str]: ((snake_case__) , (snake_case__)) : Union[str, Any] = extended_euclid(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if b < 0: snake_case__ : Optional[Any] = (b % n + n) % n return b def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: snake_case__ , snake_case__ : List[Any] = invert_modulo(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), invert_modulo(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Any = na * na snake_case__ : Dict = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
270
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_): @register_to_config def __init__( self , A_ , A_ = None , A_ = None )-> Tuple: '''simple docstring''' super().__init__() UpperCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCamelCase = torch.zeros(A_ , A_ ) else: UpperCamelCase = None UpperCamelCase = torch.nn.Parameter(A_ ) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , )-> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( vqvae=A_ , transformer=A_ , text_encoder=A_ , tokenizer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Tuple: '''simple docstring''' UpperCamelCase = len(A_ ) if isinstance(A_ , A_ ) else 1 # get prompt text embeddings UpperCamelCase = self.tokenizer( A_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) UpperCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate text embeddings for each generation per prompt UpperCamelCase = prompt_embeds.repeat_interleave(A_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(A_ , 1 , 1 ) else: UpperCamelCase = [''] * batch_size UpperCamelCase = text_input_ids.shape[-1] UpperCamelCase = self.tokenizer( A_ , padding='max_length' , max_length=A_ , truncation=A_ , return_tensors='pt' , ) UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase = negative_prompt_embeds.shape[1] UpperCamelCase = negative_prompt_embeds.repeat(1 , A_ , 1 ) UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , A_ , A_ = 100 , A_ = 5.0 , A_ = 1.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , A_ = None , A_ = 1 , )-> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(A_ , A_ ): UpperCamelCase = 1 elif isinstance(A_ , A_ ): UpperCamelCase = len(A_ ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(A_ )}''' ) UpperCamelCase = batch_size * num_images_per_prompt UpperCamelCase = guidance_scale > 1.0 UpperCamelCase = self._encode_prompt(A_ , A_ , A_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A_ , A_ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(A_ )}.''' ) # get the initial completely masked latents unless the user supplied it UpperCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCamelCase = self.transformer.num_vector_embeds - 1 UpperCamelCase = torch.full(A_ , A_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) UpperCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(A_ , device=self.device ) UpperCamelCase = self.scheduler.timesteps.to(self.device ) UpperCamelCase = latents for i, t in enumerate(self.progress_bar(A_ ) ): # expand the sample if we are doing classifier free guidance UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCamelCase = self.transformer(A_ , encoder_hidden_states=A_ , timestep=A_ ).sample if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase = model_output.chunk(2 ) UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(A_ , dim=1 , keepdim=A_ ) UpperCamelCase = self.truncate(A_ , A_ ) # remove `log(0)`'s (`-inf`s) UpperCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(A_ , timestep=A_ , sample=A_ , generator=A_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A_ , A_ , A_ ) UpperCamelCase = self.vqvae.config.vq_embed_dim UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCamelCase = self.vqvae.quantize.get_codebook_entry(A_ , shape=A_ ) UpperCamelCase = self.vqvae.decode(A_ , force_not_quantize=A_ ).sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ ) def UpperCAmelCase_ ( self , A_ , A_ )-> torch.FloatTensor: '''simple docstring''' UpperCamelCase , UpperCamelCase = torch.sort(A_ , 1 , descending=A_ ) UpperCamelCase = torch.exp(A_ ) UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , A_ ) UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) UpperCamelCase = keep_mask[:, :-1, :] UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) UpperCamelCase = log_p_x_0.clone() UpperCamelCase = -torch.inf # -inf = log(0) return rv
3
0
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class lowerCamelCase_ : '''simple docstring''' def __init__( self , __lowercase , __lowercase = 13 , __lowercase = 64 , __lowercase = 2 , __lowercase = 3 , __lowercase = 3 , __lowercase = True , __lowercase = True , __lowercase = 128 , __lowercase=[16, 32, 64, 128] , __lowercase = 7 , __lowercase = 4 , __lowercase = 37 , __lowercase = "gelu" , __lowercase = 0.1 , __lowercase = 0.1 , __lowercase = 10 , __lowercase = 0.02 , __lowercase = 2 , __lowercase = 1 , __lowercase = 128 , __lowercase = [2, 2, 2, 2] , __lowercase = 2 , __lowercase = 2 , ) -> int: __UpperCamelCase :int = parent __UpperCamelCase :Any = batch_size __UpperCamelCase :Union[str, Any] = image_size __UpperCamelCase :str = patch_size __UpperCamelCase :List[Any] = num_channels __UpperCamelCase :List[Any] = is_training __UpperCamelCase :Optional[Any] = use_labels __UpperCamelCase :Any = hidden_size __UpperCamelCase :Tuple = num_hidden_layers __UpperCamelCase :Dict = num_attention_heads __UpperCamelCase :List[Any] = intermediate_size __UpperCamelCase :int = hidden_act __UpperCamelCase :Any = hidden_dropout_prob __UpperCamelCase :Optional[Any] = attention_probs_dropout_prob __UpperCamelCase :Dict = type_sequence_label_size __UpperCamelCase :Dict = initializer_range __UpperCamelCase :List[str] = encoder_stride __UpperCamelCase :Any = num_attention_outputs __UpperCamelCase :str = embed_dim __UpperCamelCase :str = embed_dim + 1 __UpperCamelCase :Dict = resolution __UpperCamelCase :Optional[Any] = depths __UpperCamelCase :List[str] = hidden_sizes __UpperCamelCase :str = dim __UpperCamelCase :str = mlp_expansion_ratio def UpperCamelCase__ ( self) -> int: __UpperCamelCase :List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __UpperCamelCase :List[Any] = None if self.use_labels: __UpperCamelCase :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCamelCase :Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self) -> Optional[int]: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> int: __UpperCamelCase :Optional[Any] = TFEfficientFormerModel(config=A_) __UpperCamelCase :Any = model(A_ , training=A_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> Optional[Any]: __UpperCamelCase :Dict = self.type_sequence_label_size __UpperCamelCase :Optional[Any] = TFEfficientFormerForImageClassification(A_) __UpperCamelCase :Union[str, Any] = model(A_ , labels=A_ , training=A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images __UpperCamelCase :Optional[Any] = 1 __UpperCamelCase :Any = TFEfficientFormerForImageClassification(A_) __UpperCamelCase :List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __UpperCamelCase :Any = model(A_ , labels=A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :List[Any] = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Optional[Any] = config_and_inputs __UpperCamelCase :Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCamelCase_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' a__ : Any = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) a__ : Optional[int] = ( { """feature-extraction""": TFEfficientFormerModel, """image-classification""": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) a__ : Any = False a__ : Tuple = False a__ : List[Any] = False a__ : List[str] = False a__ : List[str] = False def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :Optional[Any] = TFEfficientFormerModelTester(self) __UpperCamelCase :Optional[int] = ConfigTester( self , config_class=A_ , has_text_modality=A_ , hidden_size=37) def UpperCamelCase__ ( self) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''') def UpperCamelCase__ ( self) -> List[Any]: pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''') def UpperCamelCase__ ( self) -> int: pass def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase , __UpperCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase :List[Any] = model_class(A_) __UpperCamelCase :Tuple = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase :List[str] = [*signature.parameters.keys()] __UpperCamelCase :Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A_) def UpperCamelCase__ ( self) -> Optional[int]: def check_hidden_states_output(__lowercase , __lowercase , __lowercase): __UpperCamelCase :Union[str, Any] = model_class(A_) __UpperCamelCase :Any = model(**self._prepare_for_class(A_ , A_) , training=A_) __UpperCamelCase :Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCamelCase :List[str] = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(A_) , A_) if hasattr(self.model_tester , '''encoder_seq_length'''): __UpperCamelCase :Union[str, Any] = self.model_tester.encoder_seq_length if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1: __UpperCamelCase :List[Any] = seq_length * self.model_tester.chunk_length else: __UpperCamelCase :List[Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __UpperCamelCase :Dict = outputs.decoder_hidden_states self.asseretIsInstance(A_ , (list, tuple)) self.assertEqual(len(A_) , A_) __UpperCamelCase :str = getattr(self.model_tester , '''seq_length''' , A_) __UpperCamelCase :int = getattr(self.model_tester , '''decoder_seq_length''' , A_) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) __UpperCamelCase , __UpperCamelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase :Optional[Any] = True check_hidden_states_output(A_ , A_ , A_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCamelCase :List[str] = True check_hidden_states_output(A_ , A_ , A_) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase=False) -> int: __UpperCamelCase :List[str] = super()._prepare_for_class(A_ , A_ , return_labels=A_) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''') def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_) def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_) @slow def UpperCamelCase__ ( self) -> Any: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase :Optional[int] = TFEfficientFormerModel.from_pretrained(A_) self.assertIsNotNone(A_) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase , __UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase :int = True __UpperCamelCase :List[Any] = getattr(self.model_tester , '''seq_length''' , A_) __UpperCamelCase :Optional[int] = getattr(self.model_tester , '''encoder_seq_length''' , A_) __UpperCamelCase :Optional[int] = getattr(self.model_tester , '''key_length''' , A_) __UpperCamelCase :Optional[int] = getattr(self.model_tester , '''chunk_length''' , A_) if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''): __UpperCamelCase :Dict = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __UpperCamelCase :List[Any] = True __UpperCamelCase :List[str] = False __UpperCamelCase :int = True __UpperCamelCase :List[str] = model_class(A_) __UpperCamelCase :Optional[Any] = model(**self._prepare_for_class(A_ , A_) , training=A_) __UpperCamelCase :str = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A_) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCamelCase :str = True __UpperCamelCase :str = model_class(A_) __UpperCamelCase :Union[str, Any] = model(**self._prepare_for_class(A_ , A_) , training=A_) __UpperCamelCase :Union[str, Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A_) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase , __UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __UpperCamelCase :List[str] = model_class(A_) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __UpperCamelCase :List[Any] = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=A_) for key, val in model.input_signature.items() if key in model.dummy_inputs } __UpperCamelCase :Optional[int] = model(A_) self.assertTrue(outputs_dict is not None) def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self) -> Optional[int]: return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''') if is_vision_available() else None ) @slow def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Optional[Any] = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''') __UpperCamelCase :Optional[Any] = self.default_image_processor __UpperCamelCase :Union[str, Any] = prepare_img() __UpperCamelCase :Any = image_processor(images=A_ , return_tensors='''tf''') # forward pass __UpperCamelCase :List[str] = model(**A_ , training=A_) # verify the logits __UpperCamelCase :str = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , A_) __UpperCamelCase :List[Any] = tf.constant([-0.05_55, 0.48_25, -0.08_52]) self.assertTrue(np.allclose(outputs.logits[0, :3] , A_ , atol=1E-4)) @slow def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Optional[int] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''') __UpperCamelCase :Optional[Any] = self.default_image_processor __UpperCamelCase :List[Any] = prepare_img() __UpperCamelCase :Optional[Any] = image_processor(images=A_ , return_tensors='''tf''') # forward pass __UpperCamelCase :int = model(**A_ , training=A_) # verify the logits __UpperCamelCase :Tuple = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , A_) __UpperCamelCase :Any = tf.constant([-0.13_12, 0.43_53, -1.04_99]) self.assertTrue(np.allclose(outputs.logits[0, :3] , A_ , atol=1E-4))
167
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Union[str, Any] = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
0
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() A__ : Any = logging.get_logger(__name__) A__ : Union[str, Any] = 'Hello world! cécé herlolip' def UpperCamelCase( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : bool ): lowerCAmelCase_ : List[str] = FairseqRobertaModel.from_pretrained(__UpperCamelCase ) roberta.eval() # disable dropout lowerCAmelCase_ : Any = roberta.model.encoder.sentence_encoder lowerCAmelCase_ : Union[str, Any] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1e-5 ,) if classification_head: lowerCAmelCase_ : Dict = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' ,__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = XLMRobertaXLForSequenceClassification(__UpperCamelCase ) if classification_head else XLMRobertaXLForMaskedLM(__UpperCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings lowerCAmelCase_ : str = roberta_sent_encoder.embed_tokens.weight lowerCAmelCase_ : str = roberta_sent_encoder.embed_positions.weight lowerCAmelCase_ : List[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. lowerCAmelCase_ : List[str] = roberta_sent_encoder.layer_norm.weight lowerCAmelCase_ : Union[str, Any] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCAmelCase_ : str = model.roberta.encoder.layer[i] lowerCAmelCase_ : Dict = roberta_sent_encoder.layers[i] lowerCAmelCase_ : Dict = layer.attention lowerCAmelCase_ : Optional[int] = roberta_layer.self_attn_layer_norm.weight lowerCAmelCase_ : List[Any] = roberta_layer.self_attn_layer_norm.bias # self attention lowerCAmelCase_ : Optional[Any] = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) lowerCAmelCase_ : Any = roberta_layer.self_attn.q_proj.weight lowerCAmelCase_ : List[Any] = roberta_layer.self_attn.q_proj.bias lowerCAmelCase_ : str = roberta_layer.self_attn.k_proj.weight lowerCAmelCase_ : Tuple = roberta_layer.self_attn.k_proj.bias lowerCAmelCase_ : int = roberta_layer.self_attn.v_proj.weight lowerCAmelCase_ : Any = roberta_layer.self_attn.v_proj.bias # self-attention output lowerCAmelCase_ : Optional[Any] = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape lowerCAmelCase_ : Optional[int] = roberta_layer.self_attn.out_proj.weight lowerCAmelCase_ : List[str] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm lowerCAmelCase_ : str = roberta_layer.final_layer_norm.weight lowerCAmelCase_ : Tuple = roberta_layer.final_layer_norm.bias # intermediate lowerCAmelCase_ : List[str] = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape lowerCAmelCase_ : int = roberta_layer.fca.weight lowerCAmelCase_ : int = roberta_layer.fca.bias # output lowerCAmelCase_ : str = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape lowerCAmelCase_ : str = roberta_layer.fca.weight lowerCAmelCase_ : Optional[int] = roberta_layer.fca.bias # end of layer if classification_head: lowerCAmelCase_ : str = roberta.model.classification_heads['''mnli'''].dense.weight lowerCAmelCase_ : List[Any] = roberta.model.classification_heads['''mnli'''].dense.bias lowerCAmelCase_ : str = roberta.model.classification_heads['''mnli'''].out_proj.weight lowerCAmelCase_ : Optional[Any] = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCAmelCase_ : Optional[int] = roberta.model.encoder.lm_head.dense.weight lowerCAmelCase_ : List[Any] = roberta.model.encoder.lm_head.dense.bias lowerCAmelCase_ : List[Any] = roberta.model.encoder.lm_head.layer_norm.weight lowerCAmelCase_ : List[Any] = roberta.model.encoder.lm_head.layer_norm.bias lowerCAmelCase_ : str = roberta.model.encoder.lm_head.weight lowerCAmelCase_ : Union[str, Any] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCAmelCase_ : Tuple = roberta.encode(__UpperCamelCase ).unsqueeze(0 ) # batch of size 1 lowerCAmelCase_ : Dict = model(__UpperCamelCase )[0] if classification_head: lowerCAmelCase_ : List[str] = roberta.model.classification_heads['''mnli'''](roberta.extract_features(__UpperCamelCase ) ) else: lowerCAmelCase_ : List[Any] = roberta.model(__UpperCamelCase )[0] print(our_output.shape ,their_output.shape ) lowerCAmelCase_ : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCAmelCase_ : List[Any] = torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) print('''Do both models output the same tensors?''' ,'''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(__UpperCamelCase ).mkdir(parents=__UpperCamelCase ,exist_ok=__UpperCamelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": A__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) A__ : List[str] = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
171
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ = None , A_ = None , A_=None , A_=None )-> Optional[Any]: '''simple docstring''' if not conversation_id: UpperCamelCase = uuid.uuida() if past_user_inputs is None: UpperCamelCase = [] if generated_responses is None: UpperCamelCase = [] UpperCamelCase = conversation_id UpperCamelCase = past_user_inputs UpperCamelCase = generated_responses UpperCamelCase = text def __eq__( self , A_ )-> List[Any]: '''simple docstring''' if not isinstance(A_ , A_ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def UpperCAmelCase_ ( self , A_ , A_ = False )-> int: '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' F'''with: "{text}".''' ) UpperCamelCase = text else: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: UpperCamelCase = text def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) UpperCamelCase = None def UpperCAmelCase_ ( self , A_ )-> int: '''simple docstring''' self.generated_responses.append(A_ ) def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self )-> Any: '''simple docstring''' UpperCamelCase = F'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): UpperCamelCase = 'user' if is_user else 'bot' output += F'''{name} >> {text} \n''' return output @add_end_docstrings( snake_case_ , R""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , *A_ , **A_ )-> Any: '''simple docstring''' super().__init__(*A_ , **A_ ) if self.tokenizer.pad_token_id is None: UpperCamelCase = self.tokenizer.eos_token def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , **A_ )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = {} UpperCamelCase = {} UpperCamelCase = {} if min_length_for_response is not None: UpperCamelCase = min_length_for_response if minimum_tokens is not None: UpperCamelCase = minimum_tokens if "max_length" in generate_kwargs: UpperCamelCase = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: UpperCamelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(A_ ) return preprocess_params, forward_params, postprocess_params def __call__( self , A_ , A_=0 , **A_ )-> Any: '''simple docstring''' UpperCamelCase = super().__call__(A_ , num_workers=A_ , **A_ ) if isinstance(A_ , A_ ) and len(A_ ) == 1: return outputs[0] return outputs def UpperCAmelCase_ ( self , A_ , A_=32 )-> Dict[str, Any]: '''simple docstring''' if not isinstance(A_ , A_ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): UpperCamelCase = self.tokenizer._build_conversation_input_ids(A_ ) else: # If the tokenizer cannot handle conversations, we default to only the old version UpperCamelCase = self._legacy_parse_and_tokenize(A_ ) if self.framework == "pt": UpperCamelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": UpperCamelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def UpperCAmelCase_ ( self , A_ , A_=10 , **A_ )-> Optional[Any]: '''simple docstring''' UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) UpperCamelCase = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) UpperCamelCase = max_length - minimum_tokens UpperCamelCase = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: UpperCamelCase = model_inputs['attention_mask'][:, -trim:] UpperCamelCase = model_inputs.pop('conversation' ) UpperCamelCase = max_length UpperCamelCase = self.model.generate(**A_ , **A_ ) if self.model.config.is_encoder_decoder: UpperCamelCase = 1 else: UpperCamelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def UpperCAmelCase_ ( self , A_ , A_=True )-> Tuple: '''simple docstring''' UpperCamelCase = model_outputs['output_ids'] UpperCamelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , ) UpperCamelCase = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(A_ ) return conversation def UpperCAmelCase_ ( self , A_ )-> Dict: '''simple docstring''' UpperCamelCase = self.tokenizer.eos_token_id UpperCamelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) ) if len(A_ ) > self.tokenizer.model_max_length: UpperCamelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
3
0
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> str: SCREAMING_SNAKE_CASE_ : Optional[Any] = [ 'decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = emb.weight.shape SCREAMING_SNAKE_CASE_ : Dict = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = emb.weight.data return lin_layer def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> List[Any]: SCREAMING_SNAKE_CASE_ : str = torch.load(SCREAMING_SNAKE_CASE , map_location='cpu' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Namespace(**checkpoint['cfg']['model'] ) SCREAMING_SNAKE_CASE_ : str = checkpoint['model'] remove_ignore_keys_(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = state_dict['decoder.embed_tokens.weight'].shape[0] SCREAMING_SNAKE_CASE_ : str = {key.replace('decoder' , 'model' ): val for key, val in state_dict.items()} SCREAMING_SNAKE_CASE_ : Tuple = XGLMConfig( vocab_size=SCREAMING_SNAKE_CASE , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='gelu' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) SCREAMING_SNAKE_CASE_ : str = XGLMForCausalLM(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) print(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": lowerCAmelCase__: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") lowerCAmelCase__: str = parser.parse_args() lowerCAmelCase__: Dict = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
345
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase : List[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase : List[Any] = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase : Tuple = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase : List[Any] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
3
0
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCamelCase_ : def __init__( self : List[str] , __A : List[Any] , __A : List[Any]=99 , __A : Any=13 , __A : int=16 , __A : Optional[int]=7 , __A : Optional[Any]=True , __A : int=True , __A : Any=True , __A : List[str]=False , __A : Any=True , __A : Any=2 , __A : Dict=32 , __A : Union[str, Any]=4 , __A : str=4 , __A : Tuple=30 , __A : Tuple=0 , __A : Any=1 , __A : Union[str, Any]=2 , __A : Optional[Any]=None , ): __A : Union[str, Any] = parent __A : Optional[Any] = batch_size __A : str = decoder_seq_length # For common tests __A : Union[str, Any] = self.decoder_seq_length __A : int = is_training __A : str = use_attention_mask __A : str = use_labels __A : Optional[int] = vocab_size __A : List[str] = d_model __A : List[Any] = d_model __A : List[str] = decoder_layers __A : List[str] = decoder_layers __A : str = decoder_ffn_dim __A : Dict = decoder_attention_heads __A : str = decoder_attention_heads __A : Union[str, Any] = eos_token_id __A : Optional[int] = bos_token_id __A : List[str] = pad_token_id __A : Union[str, Any] = decoder_start_token_id __A : List[str] = use_cache __A : List[str] = max_position_embeddings __A : Union[str, Any] = None __A : str = decoder_seq_length __A : Union[str, Any] = 2 __A : Tuple = 1 def lowerCAmelCase_ ( self : List[str] ): __A : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __A : Optional[int] = None if self.use_attention_mask: __A : Tuple = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) __A : Dict = None if self.use_labels: __A : Any = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __A : Dict = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowerCAmelCase_ ( self : Optional[Any] , __A : Union[str, Any] , __A : List[str] , __A : int , __A : List[str] , ): __A : str = True __A : Dict = TrOCRDecoder(config=A_ ).to(A_ ).eval() __A : str = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass __A : Any = model(A_ , use_cache=A_ ) __A : Dict = model(A_ ) __A : Optional[int] = model(A_ , use_cache=A_ ) self.parent.assertTrue(len(A_ ) == len(A_ ) ) self.parent.assertTrue(len(A_ ) == len(A_ ) + 1 ) __A : int = outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids __A : List[Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and __A : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) __A : str = model(A_ )["""last_hidden_state"""] __A : Tuple = model(A_ , past_key_values=A_ )["""last_hidden_state"""] # select random slice __A : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __A : List[Any] = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() __A : Optional[int] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(A_ , A_ , atol=1e-3 ) def lowerCAmelCase_ ( self : List[Any] ): __A : str = self.prepare_config_and_inputs() __A , __A , __A , __A : str = config_and_inputs __A : List[Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): _lowercase : str = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () _lowercase : Dict = (TrOCRForCausalLM,) if is_torch_available() else () _lowercase : Dict = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} _lowercase : str = True _lowercase : Union[str, Any] = False def lowerCAmelCase_ ( self : List[Any] ): __A : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=A_ ) __A : Optional[int] = ConfigTester(self , config_class=A_ ) def lowerCAmelCase_ ( self : Union[str, Any] ): pass def lowerCAmelCase_ ( self : List[str] ): pass def lowerCAmelCase_ ( self : Optional[Any] ): pass def lowerCAmelCase_ ( self : Optional[int] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : List[Any] ): __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*A_ ) def lowerCAmelCase_ ( self : List[Any] ): return @unittest.skip("""The model doesn\'t support left padding""" ) # and it's not used enough to be worth fixing :) def lowerCAmelCase_ ( self : Union[str, Any] ): pass
17
'''simple docstring''' import numpy as np def A_( A : str , A : Optional[Any] , A : Tuple , A : Optional[int] , A : str): UpperCamelCase = int(np.ceil((x_end - xa) / h)) UpperCamelCase = np.zeros((n + 1,)) UpperCamelCase = ya UpperCamelCase = xa for k in range(A): UpperCamelCase = f(A , y[k]) UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka) UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka) UpperCamelCase = f(x + h , y[k] + h * ka) UpperCamelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
3
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'facebook/deit-base-distilled-patch16-224': ( 'https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class a ( snake_case_ ): """simple docstring""" __lowerCAmelCase = """deit""" def __init__( self , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.0_2 , snake_case_=1e-1_2 , snake_case_=224 , snake_case_=16 , snake_case_=3 , snake_case_=True , snake_case_=16 , **snake_case_ , ): '''simple docstring''' super().__init__(**A_ ) __UpperCAmelCase: Tuple = hidden_size __UpperCAmelCase: Optional[Any] = num_hidden_layers __UpperCAmelCase: Dict = num_attention_heads __UpperCAmelCase: List[Any] = intermediate_size __UpperCAmelCase: List[Any] = hidden_act __UpperCAmelCase: Any = hidden_dropout_prob __UpperCAmelCase: Tuple = attention_probs_dropout_prob __UpperCAmelCase: Tuple = initializer_range __UpperCAmelCase: Optional[Any] = layer_norm_eps __UpperCAmelCase: Optional[Any] = image_size __UpperCAmelCase: str = patch_size __UpperCAmelCase: Optional[int] = num_channels __UpperCAmelCase: Dict = qkv_bias __UpperCAmelCase: Optional[Any] = encoder_stride class a ( snake_case_ ): """simple docstring""" __lowerCAmelCase = version.parse("""1.11""" ) @property def lowercase_ ( self ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowercase_ ( self ): '''simple docstring''' return 1e-4
523
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True}) lowerCAmelCase_ = Features({"""text""": Value("""string""")}) lowerCAmelCase_ = Features({}) lowerCAmelCase_ = "text" @property def UpperCAmelCase_ ( self )-> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
3
0
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' snake_case_ = BertConfig.from_json_file(_A ) print(f"Building PyTorch model from configuration: {config}" ) snake_case_ = BertForPreTraining(_A ) # Load weights from tf checkpoint load_tf_weights_in_bert(_A , _A , _A ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _A ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase__ : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
376
'''simple docstring''' from __future__ import annotations lowerCAmelCase : Union[str, Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCAmelCase : List[str] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def A_( A : list[float]): UpperCamelCase = [] UpperCamelCase = len(A) for i in range(A): UpperCamelCase = -1 for j in range(i + 1 , A): if arr[i] < arr[j]: UpperCamelCase = arr[j] break result.append(A) return result def A_( A : list[float]): UpperCamelCase = [] for i, outer in enumerate(A): UpperCamelCase = -1 for inner in arr[i + 1 :]: if outer < inner: UpperCamelCase = inner break result.append(A) return result def A_( A : list[float]): UpperCamelCase = len(A) UpperCamelCase = [] UpperCamelCase = [-1] * arr_size for index in reversed(range(A)): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: UpperCamelCase = stack[-1] stack.append(arr[index]) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCAmelCase : Optional[Any] = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
3
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class snake_case__ ( snake_case_ ): @staticmethod @abstractmethod def A_ ( __a : Optional[int] ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError() @abstractmethod def A_ ( self : int ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError()
286
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def A_( A : str): if not sentence: return "" UpperCamelCase = dict(zip(A , A)) return lower_to_upper.get(sentence[0] , sentence[0]) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
3
0
from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ ( snake_case_ ): """simple docstring""" a_ = ["image_processor", "feature_extractor"] a_ = "TvltImageProcessor" a_ = "TvltFeatureExtractor" def __init__( self : str , __A : List[Any] , __A : List[Any] ): super().__init__(image_processor=A_ , feature_extractor=A_ ) snake_case__ : int = image_processor snake_case__ : Dict = feature_extractor def __call__( self : List[Any] , __A : List[str]=None , __A : List[str]=None , __A : int=None , __A : List[str]=None , __A : Dict=False , __A : Optional[Any]=False , *__A : Union[str, Any] , **__A : Optional[Any] , ): if images is None and audio is None: raise ValueError("You need to specify either an `images` or `audio` input to process." ) snake_case__ : Optional[int] = None if images is not None: snake_case__ : Union[str, Any] = self.image_processor(A_ , mask_pixel=A_ , *A_ , **A_ ) if images_mixed is not None: snake_case__ : List[str] = self.image_processor(A_ , is_mixed=A_ , *A_ , **A_ ) if audio is not None: snake_case__ : Dict = self.feature_extractor( A_ , *A_ , sampling_rate=A_ , mask_audio=A_ , **A_ ) snake_case__ : Optional[Any] = {} if audio is not None: output_dict.update(A_ ) if images is not None: output_dict.update(A_ ) if images_mixed_dict is not None: output_dict.update(A_ ) return output_dict @property def _lowercase ( self : str ): snake_case__ : List[Any] = self.image_processor.model_input_names snake_case__ : Any = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
297
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase : Dict = logging.get_logger(__name__) # General docstring lowerCAmelCase : str = 'RegNetConfig' # Base docstring lowerCAmelCase : str = 'facebook/regnet-y-040' lowerCAmelCase : Dict = [1, 10_88, 7, 7] # Image classification docstring lowerCAmelCase : Dict = 'facebook/regnet-y-040' lowerCAmelCase : int = 'tabby, tabby cat' lowerCAmelCase : int = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ = 3 , A_ = 1 , A_ = 1 , A_ = "relu" , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb UpperCamelCase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) UpperCamelCase = tf.keras.layers.ConvaD( filters=A_ , kernel_size=A_ , strides=A_ , padding='VALID' , groups=A_ , use_bias=A_ , name='convolution' , ) UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) UpperCamelCase = ACTaFN[activation] if activation is not None else tf.identity def UpperCAmelCase_ ( self , A_ )-> Any: '''simple docstring''' UpperCamelCase = self.convolution(self.padding(A_ ) ) UpperCamelCase = self.normalization(A_ ) UpperCamelCase = self.activation(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , **A_ )-> Optional[Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = config.num_channels UpperCamelCase = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = shape_list(A_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) UpperCamelCase = tf.transpose(A_ , perm=(0, 2, 3, 1) ) UpperCamelCase = self.embedder(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ = 2 , **A_ )-> List[Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = tf.keras.layers.ConvaD( filters=A_ , kernel_size=1 , strides=A_ , use_bias=A_ , name='convolution' ) UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) def UpperCAmelCase_ ( self , A_ , A_ = False )-> tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(A_ ) , training=A_ ) class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , **A_ )-> Optional[Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' ) UpperCamelCase = [ tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def UpperCAmelCase_ ( self , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.pooler(A_ ) for layer_module in self.attention: UpperCamelCase = layer_module(A_ ) UpperCamelCase = hidden_state * pooled return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Dict: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = in_channels != out_channels or stride != 1 UpperCamelCase = max(1 , out_channels // config.groups_width ) UpperCamelCase = ( TFRegNetShortCut(A_ , stride=A_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. UpperCamelCase = [ TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.2' ), ] UpperCamelCase = ACTaFN[config.hidden_act] def UpperCAmelCase_ ( self , A_ )-> Tuple: '''simple docstring''' UpperCamelCase = hidden_state for layer_module in self.layers: UpperCamelCase = layer_module(A_ ) UpperCamelCase = self.shortcut(A_ ) hidden_state += residual UpperCamelCase = self.activation(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Any: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = in_channels != out_channels or stride != 1 UpperCamelCase = max(1 , out_channels // config.groups_width ) UpperCamelCase = ( TFRegNetShortCut(A_ , stride=A_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) UpperCamelCase = [ TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(A_ , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.3' ), ] UpperCamelCase = ACTaFN[config.hidden_act] def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = hidden_state for layer_module in self.layers: UpperCamelCase = layer_module(A_ ) UpperCamelCase = self.shortcut(A_ ) hidden_state += residual UpperCamelCase = self.activation(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ , A_ = 2 , A_ = 2 , **A_ )-> Dict: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer UpperCamelCase = [ # downsampling is done in the first layer with stride of 2 layer(A_ , A_ , A_ , stride=A_ , name='layers.0' ), *[layer(A_ , A_ , A_ , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' for layer_module in self.layers: UpperCamelCase = layer_module(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , **A_ )-> str: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( A_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(A_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(A_ , A_ , A_ , depth=A_ , name=F'''stages.{i+1}''' ) ) def UpperCAmelCase_ ( self , A_ , A_ = False , A_ = True )-> TFBaseModelOutputWithNoAttention: '''simple docstring''' UpperCamelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCamelCase = hidden_states + (hidden_state,) UpperCamelCase = stage_module(A_ ) if output_hidden_states: UpperCamelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=A_ , hidden_states=A_ ) @keras_serializable class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): lowerCAmelCase_ = RegNetConfig def __init__( self , A_ , **A_ )-> Union[str, Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = config UpperCamelCase = TFRegNetEmbeddings(A_ , name='embedder' ) UpperCamelCase = TFRegNetEncoder(A_ , name='encoder' ) UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' ) @unpack_inputs def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_ = False , )-> TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.embedder(A_ , training=A_ ) UpperCamelCase = self.encoder( A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ ) UpperCamelCase = encoder_outputs[0] UpperCamelCase = self.pooler(A_ ) # Change to NCHW output format have uniformity in the modules UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) ) UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: UpperCamelCase = tuple([tf.transpose(A_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A_ , pooler_output=A_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = RegNetConfig lowerCAmelCase_ = """regnet""" lowerCAmelCase_ = """pixel_values""" @property def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} lowerCAmelCase : str = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase : List[str] = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ , *A_ , **A_ )-> List[Any]: '''simple docstring''' super().__init__(A_ , *A_ , **A_ ) UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_=False , )-> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.regnet( pixel_values=A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_): def __init__( self , A_ , *A_ , **A_ )-> str: '''simple docstring''' super().__init__(A_ , *A_ , **A_ ) UpperCamelCase = config.num_labels UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' ) # classification head UpperCamelCase = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase_ ( self , A_ = None , A_ = None , A_ = None , A_ = None , A_=False , )-> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.regnet( A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ ) UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase = self.classifier[0](A_ ) UpperCamelCase = self.classifier[1](A_ ) UpperCamelCase = None if labels is None else self.hf_compute_loss(labels=A_ , logits=A_ ) if not return_dict: UpperCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=A_ , logits=A_ , hidden_states=outputs.hidden_states )
3
0
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class A_(snake_case_ ): """simple docstring""" def __init__( self , A=0.0_1 , A=1000 ): _lowerCamelCase : Optional[int] = p_stop _lowerCamelCase : List[Any] = max_length def __iter__( self ): _lowerCamelCase : Tuple = 0 _lowerCamelCase : List[str] = False while not stop and count < self.max_length: yield count count += 1 _lowerCamelCase : List[str] = random.random() < self.p_stop class A_(unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self , A , A , A=False , A=True ): _lowerCamelCase : Optional[Any] = [ BatchSamplerShard(A_ , 2 , A_ , split_batches=A_ , even_batches=A_ ) for i in range(2 ) ] _lowerCamelCase : int = [list(A_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A_ ) for shard in batch_sampler_shards] , [len(A_ ) for e in expected] ) self.assertListEqual(A_ , A_ ) def _lowerCAmelCase ( self ): _lowerCamelCase : Tuple = BatchSampler(range(24 ) , batch_size=3 , drop_last=A_ ) _lowerCamelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A_ , A_ ) _lowerCamelCase : Dict = BatchSampler(range(24 ) , batch_size=3 , drop_last=A_ ) # Expected shouldn't change self.check_batch_sampler_shards(A_ , A_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _lowerCamelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A_ ) _lowerCamelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A_ , A_ ) _lowerCamelCase : int = BatchSampler(range(21 ) , batch_size=3 , drop_last=A_ ) _lowerCamelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A_ , A_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _lowerCamelCase : Optional[int] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A_ ) _lowerCamelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A_ , A_ ) _lowerCamelCase : Optional[int] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A_ ) _lowerCamelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A_ , A_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _lowerCamelCase : Dict = BatchSampler(range(20 ) , batch_size=3 , drop_last=A_ ) _lowerCamelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A_ , A_ ) _lowerCamelCase : int = BatchSampler(range(20 ) , batch_size=3 , drop_last=A_ ) _lowerCamelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A_ , A_ ) # Check the shards when the dataset is very small. _lowerCamelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A_ ) _lowerCamelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A_ , A_ ) _lowerCamelCase : Tuple = BatchSampler(range(2 ) , batch_size=3 , drop_last=A_ ) _lowerCamelCase : str = [[], []] self.check_batch_sampler_shards(A_ , A_ ) def _lowerCAmelCase ( self ): _lowerCamelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A_ ) _lowerCamelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ ) _lowerCamelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A_ ) # Expected shouldn't change self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ ) # Check the shards when the dataset is not a round multiple of batch size. _lowerCamelCase : Optional[int] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A_ ) _lowerCamelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ ) _lowerCamelCase : int = BatchSampler(range(22 ) , batch_size=4 , drop_last=A_ ) _lowerCamelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _lowerCamelCase : List[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=A_ ) _lowerCamelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ ) _lowerCamelCase : Union[str, Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=A_ ) _lowerCamelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ ) # Check the shards when the dataset is very small. _lowerCamelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A_ ) _lowerCamelCase : str = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ ) _lowerCamelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A_ ) _lowerCamelCase : Dict = [[], []] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ ) def _lowerCAmelCase ( self ): _lowerCamelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A_ ) _lowerCamelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ ) _lowerCamelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A_ ) # Expected shouldn't change self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _lowerCamelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A_ ) _lowerCamelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ ) _lowerCamelCase : Any = BatchSampler(range(21 ) , batch_size=3 , drop_last=A_ ) _lowerCamelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _lowerCamelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A_ ) _lowerCamelCase : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ ) _lowerCamelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A_ ) _lowerCamelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _lowerCamelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A_ ) _lowerCamelCase : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ ) _lowerCamelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A_ ) _lowerCamelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ ) # Check the shards when the dataset is very small. _lowerCamelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A_ ) _lowerCamelCase : Optional[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ ) _lowerCamelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A_ ) _lowerCamelCase : Tuple = [[], []] self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ ) def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A_ ) _lowerCamelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ , even_batches=A_ ) _lowerCamelCase : Optional[int] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A_ ) # Expected shouldn't change self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ , even_batches=A_ ) # Check the shards when the dataset is not a round multiple of batch size. _lowerCamelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A_ ) _lowerCamelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ , even_batches=A_ ) _lowerCamelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A_ ) _lowerCamelCase : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ , even_batches=A_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _lowerCamelCase : Union[str, Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=A_ ) _lowerCamelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ , even_batches=A_ ) _lowerCamelCase : Union[str, Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=A_ ) _lowerCamelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ , even_batches=A_ ) # Check the shards when the dataset is very small. _lowerCamelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A_ ) _lowerCamelCase : Optional[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ , even_batches=A_ ) _lowerCamelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A_ ) _lowerCamelCase : Tuple = [[], []] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ , even_batches=A_ ) def _lowerCAmelCase ( self ): _lowerCamelCase : Tuple = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _lowerCamelCase : str = [BatchSamplerShard(A_ , 2 , A_ , even_batches=A_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowerCAmelCase ( self , A , A , A , A=False , A=2 , A=False ): random.seed(A_ ) _lowerCamelCase : Any = list(A_ ) _lowerCamelCase : Any = [ IterableDatasetShard( A_ , batch_size=A_ , drop_last=A_ , num_processes=A_ , process_index=A_ , split_batches=A_ , ) for i in range(A_ ) ] _lowerCamelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A_ ) iterable_dataset_lists.append(list(A_ ) ) _lowerCamelCase : Any = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _lowerCamelCase : Union[str, Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A_ ) , len(A_ ) ) self.assertTrue(len(A_ ) % shard_batch_size == 0 ) _lowerCamelCase : str = [] for idx in range(0 , len(A_ ) , A_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A_ ) < len(A_ ): reference += reference self.assertListEqual(A_ , reference[: len(A_ )] ) def _lowerCAmelCase ( self ): _lowerCamelCase : List[str] = 42 _lowerCamelCase : Union[str, Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A_ , A_ , batch_size=4 , drop_last=A_ , split_batches=A_ ) self.check_iterable_dataset_shards(A_ , A_ , batch_size=4 , drop_last=A_ , split_batches=A_ ) self.check_iterable_dataset_shards(A_ , A_ , batch_size=4 , drop_last=A_ , split_batches=A_ ) self.check_iterable_dataset_shards(A_ , A_ , batch_size=4 , drop_last=A_ , split_batches=A_ ) # Edge case with a very small dataset _lowerCamelCase : Optional[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A_ , A_ , batch_size=4 , drop_last=A_ , split_batches=A_ ) self.check_iterable_dataset_shards(A_ , A_ , batch_size=4 , drop_last=A_ , split_batches=A_ ) self.check_iterable_dataset_shards(A_ , A_ , batch_size=4 , drop_last=A_ , split_batches=A_ ) self.check_iterable_dataset_shards(A_ , A_ , batch_size=4 , drop_last=A_ , split_batches=A_ ) def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = BatchSampler(range(16 ) , batch_size=4 , drop_last=A_ ) _lowerCamelCase : Optional[Any] = SkipBatchSampler(A_ , 2 ) self.assertListEqual(list(A_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowerCAmelCase ( self ): _lowerCamelCase : str = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowerCAmelCase ( self ): _lowerCamelCase : Dict = DataLoader(list(range(16 ) ) , batch_size=4 ) _lowerCamelCase : Optional[int] = skip_first_batches(A_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowerCAmelCase ( self ): _lowerCamelCase : List[Any] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowerCAmelCase ( self ): Accelerator() _lowerCamelCase : Optional[Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
437
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Optional[int] = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """perceiver""" def __init__( self , A_=256 , A_=1280 , A_=768 , A_=1 , A_=26 , A_=8 , A_=8 , A_=None , A_=None , A_="kv" , A_=1 , A_=1 , A_="gelu" , A_=0.1 , A_=0.02 , A_=1e-12 , A_=True , A_=262 , A_=2048 , A_=56 , A_=[368, 496] , A_=16 , A_=1920 , A_=16 , A_=[1, 16, 224, 224] , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = num_latents UpperCamelCase = d_latents UpperCamelCase = d_model UpperCamelCase = num_blocks UpperCamelCase = num_self_attends_per_block UpperCamelCase = num_self_attention_heads UpperCamelCase = num_cross_attention_heads UpperCamelCase = qk_channels UpperCamelCase = v_channels UpperCamelCase = cross_attention_shape_for_attention UpperCamelCase = self_attention_widening_factor UpperCamelCase = cross_attention_widening_factor UpperCamelCase = hidden_act UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = use_query_residual # masked language modeling attributes UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings # image classification attributes UpperCamelCase = image_size # flow attributes UpperCamelCase = train_size # multimodal autoencoding attributes UpperCamelCase = num_frames UpperCamelCase = audio_samples_per_frame UpperCamelCase = samples_per_patch UpperCamelCase = output_shape class SCREAMING_SNAKE_CASE__ ( snake_case_): @property def UpperCAmelCase_ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def UpperCAmelCase_ ( self )-> float: '''simple docstring''' return 1e-4 def UpperCAmelCase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = -1 , A_ = False , A_ = None , A_ = 3 , A_ = 40 , A_ = 40 , )-> Mapping[str, Any]: '''simple docstring''' if isinstance(A_ , A_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase = preprocessor.num_special_tokens_to_add(A_ ) UpperCamelCase = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase = [' '.join(['a'] ) * seq_length] * batch_size UpperCamelCase = dict(preprocessor(A_ , return_tensors=A_ ) ) UpperCamelCase = inputs.pop('input_ids' ) return inputs elif isinstance(A_ , A_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase = compute_effective_axis_dimension(A_ , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCamelCase = self._generate_dummy_images(A_ , A_ , A_ , A_ ) UpperCamelCase = dict(preprocessor(images=A_ , return_tensors=A_ ) ) UpperCamelCase = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
3
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _UpperCAmelCase ( UpperCamelCase: Tuple ): """simple docstring""" __lowerCAmelCase = FileLock(str(tmpdir / "foo.lock" ) ) __lowerCAmelCase = FileLock(str(tmpdir / "foo.lock" ) ) __lowerCAmelCase = 0.01 with locka.acquire(): with pytest.raises(UpperCamelCase ): __lowerCAmelCase = time.time() locka.acquire(UpperCamelCase ) assert time.time() - _start > timeout def _UpperCAmelCase ( UpperCamelCase: List[Any] ): """simple docstring""" __lowerCAmelCase = "a" * 1_0_0_0 + ".lock" __lowerCAmelCase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(UpperCamelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 __lowerCAmelCase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCamelCase ): locka.acquire(0 )
611
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Dict = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """mctct""" def __init__( self , A_=8065 , A_=1536 , A_=36 , A_=6144 , A_=4 , A_=384 , A_=920 , A_=1e-5 , A_=0.3 , A_="relu" , A_=0.02 , A_=0.3 , A_=0.3 , A_=1 , A_=0 , A_=2 , A_=1 , A_=0.3 , A_=1 , A_=(7,) , A_=(3,) , A_=80 , A_=1 , A_=None , A_="sum" , A_=False , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = intermediate_size UpperCamelCase = num_attention_heads UpperCamelCase = attention_head_dim UpperCamelCase = max_position_embeddings UpperCamelCase = layer_norm_eps UpperCamelCase = layerdrop UpperCamelCase = hidden_act UpperCamelCase = initializer_range UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = pad_token_id UpperCamelCase = bos_token_id UpperCamelCase = eos_token_id UpperCamelCase = conv_glu_dim UpperCamelCase = conv_dropout UpperCamelCase = num_conv_layers UpperCamelCase = input_feat_per_channel UpperCamelCase = input_channels UpperCamelCase = conv_channels UpperCamelCase = ctc_loss_reduction UpperCamelCase = ctc_zero_infinity # prevents config testing fail with exporting to json UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ' F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
3
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowercase_ ( snake_case_ ): A_ = "unispeech-sat" def __init__( self : str , __lowerCamelCase : Union[str, Any]=32 , __lowerCamelCase : Tuple=768 , __lowerCamelCase : Tuple=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : str=3072 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Tuple=0.0 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[int]=0.0_2 , __lowerCamelCase : Optional[Any]=1E-5 , __lowerCamelCase : str="group" , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __lowerCamelCase : Dict=(5, 2, 2, 2, 2, 2, 2) , __lowerCamelCase : Dict=(10, 3, 3, 3, 3, 2, 2) , __lowerCamelCase : Any=False , __lowerCamelCase : List[str]=128 , __lowerCamelCase : Any=16 , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : int=True , __lowerCamelCase : List[Any]=0.0_5 , __lowerCamelCase : Dict=10 , __lowerCamelCase : str=2 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : List[str]=10 , __lowerCamelCase : Dict=0 , __lowerCamelCase : Any=320 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=100 , __lowerCamelCase : Tuple=256 , __lowerCamelCase : List[Any]=256 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Dict="mean" , __lowerCamelCase : Tuple=False , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Any=256 , __lowerCamelCase : Dict=(512, 512, 512, 512, 1500) , __lowerCamelCase : Optional[int]=(5, 3, 3, 1, 1) , __lowerCamelCase : int=(1, 2, 3, 1, 1) , __lowerCamelCase : Any=512 , __lowerCamelCase : Dict=0 , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : int=2 , __lowerCamelCase : str=504 , **__lowerCamelCase : Optional[Any] , ): super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) snake_case__ : Tuple = hidden_size snake_case__ : Dict = feat_extract_norm snake_case__ : List[str] = feat_extract_activation snake_case__ : Optional[Any] = list(A_ ) snake_case__ : Optional[int] = list(A_ ) snake_case__ : Optional[Any] = list(A_ ) snake_case__ : Dict = conv_bias snake_case__ : str = num_conv_pos_embeddings snake_case__ : Optional[Any] = num_conv_pos_embedding_groups snake_case__ : Any = len(self.conv_dim ) snake_case__ : Optional[int] = num_hidden_layers snake_case__ : List[str] = intermediate_size snake_case__ : Union[str, Any] = hidden_act snake_case__ : Any = num_attention_heads snake_case__ : Tuple = hidden_dropout snake_case__ : Any = attention_dropout snake_case__ : Optional[int] = activation_dropout snake_case__ : Tuple = feat_proj_dropout snake_case__ : Any = final_dropout snake_case__ : Tuple = layerdrop snake_case__ : Tuple = layer_norm_eps snake_case__ : str = initializer_range snake_case__ : List[Any] = vocab_size snake_case__ : Optional[Any] = num_clusters snake_case__ : int = do_stable_layer_norm snake_case__ : int = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case__ : Optional[Any] = apply_spec_augment snake_case__ : List[Any] = mask_time_prob snake_case__ : Optional[int] = mask_time_length snake_case__ : List[str] = mask_time_min_masks snake_case__ : Optional[int] = mask_feature_prob snake_case__ : Any = mask_feature_length snake_case__ : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations snake_case__ : List[str] = num_codevectors_per_group snake_case__ : Tuple = num_codevector_groups snake_case__ : List[str] = contrastive_logits_temperature snake_case__ : Any = feat_quantizer_dropout snake_case__ : Tuple = num_negatives snake_case__ : Optional[int] = codevector_dim snake_case__ : Tuple = proj_codevector_dim snake_case__ : Dict = diversity_loss_weight # ctc loss snake_case__ : int = ctc_loss_reduction snake_case__ : Tuple = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case__ : int = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case__ : Union[str, Any] = list(A_ ) snake_case__ : Union[str, Any] = list(A_ ) snake_case__ : int = list(A_ ) snake_case__ : List[Any] = xvector_output_dim @property def _lowerCAmelCase ( self : int ): return functools.reduce(operator.mul , self.conv_stride , 1 )
270
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase : Tuple = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase : Optional[int] = TaTokenizerFast lowerCAmelCase : Any = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase : Tuple = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
3
0
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' a__ : Union[str, Any] = RobertaTokenizer a__ : Optional[Any] = RobertaTokenizerFast a__ : List[str] = True a__ : Tuple = {"""cls_token""": """<s>"""} def UpperCamelCase__ ( self) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase :Optional[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCamelCase :int = dict(zip(A_ , range(len(A_)))) __UpperCamelCase :Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCamelCase :List[Any] = {'''unk_token''': '''<unk>'''} __UpperCamelCase :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) __UpperCamelCase :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(A_) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(A_)) def UpperCamelCase__ ( self , **__lowercase) -> str: kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A_) def UpperCamelCase__ ( self , **__lowercase) -> Union[str, Any]: kwargs.update(self.special_tokens_map) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **A_) def UpperCamelCase__ ( self , __lowercase) -> Union[str, Any]: __UpperCamelCase :Any = '''lower newer''' __UpperCamelCase :Dict = '''lower newer''' return input_text, output_text def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map) __UpperCamelCase :List[Any] = '''lower newer''' __UpperCamelCase :List[Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCamelCase :Union[str, Any] = tokenizer.tokenize(A_) # , add_prefix_space=True) self.assertListEqual(A_ , A_) __UpperCamelCase :Optional[Any] = tokens + [tokenizer.unk_token] __UpperCamelCase :List[str] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_) , A_) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :List[str] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=A_) , [0, 31_414, 232, 328, 2]) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=A_) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :List[str] = self.tokenizer_class.from_pretrained('''roberta-base''') __UpperCamelCase :str = tokenizer.encode('''sequence builders''' , add_special_tokens=A_) __UpperCamelCase :List[str] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=A_) __UpperCamelCase :List[str] = tokenizer.encode( '''sequence builders''' , add_special_tokens=A_ , add_prefix_space=A_) __UpperCamelCase :Dict = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=A_ , add_prefix_space=A_) __UpperCamelCase :List[str] = tokenizer.build_inputs_with_special_tokens(A_) __UpperCamelCase :Any = tokenizer.build_inputs_with_special_tokens(A_ , A_) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase__ ( self) -> str: __UpperCamelCase :str = self.get_tokenizer() __UpperCamelCase :Tuple = '''Encode this sequence.''' __UpperCamelCase :str = tokenizer.byte_encoder[''' '''.encode('''utf-8''')[0]] # Testing encoder arguments __UpperCamelCase :List[str] = tokenizer.encode(A_ , add_special_tokens=A_ , add_prefix_space=A_) __UpperCamelCase :Tuple = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertNotEqual(A_ , A_) __UpperCamelCase :int = tokenizer.encode(A_ , add_special_tokens=A_ , add_prefix_space=A_) __UpperCamelCase :Any = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertEqual(A_ , A_) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''}) __UpperCamelCase :int = tokenizer.encode(A_ , add_special_tokens=A_) __UpperCamelCase :Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1])[0] self.assertNotEqual(A_ , A_) # Testing spaces after special tokens __UpperCamelCase :Optional[Any] = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(A_ , lstrip=A_ , rstrip=A_)}) # mask token has a left space __UpperCamelCase :str = tokenizer.convert_tokens_to_ids(A_) __UpperCamelCase :int = '''Encode <mask> sequence''' __UpperCamelCase :Optional[int] = '''Encode <mask>sequence''' __UpperCamelCase :Any = tokenizer.encode(A_) __UpperCamelCase :List[str] = encoded.index(A_) __UpperCamelCase :Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertEqual(A_ , A_) __UpperCamelCase :int = tokenizer.encode(A_) __UpperCamelCase :Optional[Any] = encoded.index(A_) __UpperCamelCase :Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertNotEqual(A_ , A_) def UpperCamelCase__ ( self) -> Any: pass def UpperCamelCase__ ( self) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})"""): __UpperCamelCase :Optional[Any] = self.rust_tokenizer_class.from_pretrained(A_ , **A_) __UpperCamelCase :Union[str, Any] = self.tokenizer_class.from_pretrained(A_ , **A_) __UpperCamelCase :Optional[int] = '''A, <mask> AllenNLP sentence.''' __UpperCamelCase :int = tokenizer_r.encode_plus(A_ , add_special_tokens=A_ , return_token_type_ids=A_) __UpperCamelCase :Optional[Any] = tokenizer_p.encode_plus(A_ , add_special_tokens=A_ , return_token_type_ids=A_) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids''']) , sum(tokens_p['''token_type_ids'''])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask''']) / len(tokens_r['''attention_mask''']) , sum(tokens_p['''attention_mask''']) / len(tokens_p['''attention_mask''']) , ) __UpperCamelCase :List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids''']) __UpperCamelCase :Optional[int] = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids''']) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2]) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2]) self.assertSequenceEqual( A_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>''']) self.assertSequenceEqual( A_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>''']) def UpperCamelCase__ ( self) -> Optional[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2): __UpperCamelCase :Optional[Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_) __UpperCamelCase :Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__()) __UpperCamelCase :Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__()) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , A_) self.assertEqual(post_processor_state['''add_prefix_space'''] , A_) self.assertEqual(post_processor_state['''trim_offsets'''] , A_) def UpperCamelCase__ ( self) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})"""): __UpperCamelCase :Tuple = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __UpperCamelCase :Optional[Any] = f"""{text_of_1_token} {text_of_1_token}""" __UpperCamelCase :Optional[Any] = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_) __UpperCamelCase :Optional[int] = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_) self.assertEqual(encoding.offset_mapping[0] , (0, len(A_))) self.assertEqual( encoding.offset_mapping[1] , (len(A_) + 1, len(A_) + 1 + len(A_)) , ) __UpperCamelCase :int = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_) __UpperCamelCase :str = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_) self.assertEqual(encoding.offset_mapping[0] , (0, len(A_))) self.assertEqual( encoding.offset_mapping[1] , (len(A_) + 1, len(A_) + 1 + len(A_)) , ) __UpperCamelCase :int = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_) __UpperCamelCase :List[Any] = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_) self.assertEqual(encoding.offset_mapping[0] , (0, len(A_))) self.assertEqual( encoding.offset_mapping[1] , (len(A_), len(A_) + 1 + len(A_)) , ) __UpperCamelCase :str = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_) __UpperCamelCase :Tuple = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_) self.assertEqual(encoding.offset_mapping[0] , (0, len(A_))) self.assertEqual( encoding.offset_mapping[1] , (len(A_), len(A_) + 1 + len(A_)) , ) __UpperCamelCase :Union[str, Any] = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCamelCase :str = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_) __UpperCamelCase :str = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A_))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A_) + 1, 1 + len(A_) + 1 + len(A_)) , ) __UpperCamelCase :Optional[int] = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_) __UpperCamelCase :Optional[int] = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A_))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A_), 1 + len(A_) + 1 + len(A_)) , ) __UpperCamelCase :Union[str, Any] = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_) __UpperCamelCase :Tuple = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A_))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A_), 1 + len(A_) + 1 + len(A_)) , )
167
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=False , A_=True , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , )-> Dict: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size if size is not None else {'height': 18, 'width': 20} UpperCamelCase = do_thumbnail UpperCamelCase = do_align_axis UpperCamelCase = do_pad UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase): lowerCAmelCase_ = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = DonutImageProcessingTester(self ) @property def UpperCAmelCase_ ( self )-> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'do_thumbnail' ) ) self.assertTrue(hasattr(A_ , 'do_align_long_axis' ) ) self.assertTrue(hasattr(A_ , 'do_pad' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' pass @is_flaky() def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
3
0
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class __snake_case ( snake_case_ ): def __init__( self : List[str] , A_ : Tuple , A_ : Any , A_ : Optional[int]): lowerCAmelCase_ : List[str] = dataset lowerCAmelCase_ : Dict = process lowerCAmelCase_ : Any = params def __len__( self : Tuple): return len(self.dataset) def __getitem__( self : Union[str, Any] , A_ : Tuple): lowerCAmelCase_ : int = self.dataset[i] lowerCAmelCase_ : str = self.process(A_ , **self.params) return processed class __snake_case ( snake_case_ ): def __init__( self : Any , A_ : Optional[int] , A_ : Optional[int] , A_ : List[str] , A_ : Optional[int]=None): lowerCAmelCase_ : Optional[Any] = loader lowerCAmelCase_ : Optional[int] = infer lowerCAmelCase_ : Tuple = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether lowerCAmelCase_ : Dict = None lowerCAmelCase_ : Tuple = loader_batch_size # Internal bookkeeping lowerCAmelCase_ : int = None lowerCAmelCase_ : Tuple = None def __len__( self : Tuple): return len(self.loader) def __iter__( self : Any): lowerCAmelCase_ : List[str] = iter(self.loader) return self def UpperCAmelCase__ ( self : Union[str, Any]): if isinstance(self._loader_batch_data , torch.Tensor): # Batch data is simple tensor, just fetch the slice lowerCAmelCase_ : Union[str, Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) lowerCAmelCase_ : List[str] = {} for k, element in self._loader_batch_data.items(): if isinstance(A_ , A_): # Convert ModelOutput to tuple first lowerCAmelCase_ : Tuple = element.to_tuple() if isinstance(element[0] , torch.Tensor): lowerCAmelCase_ : Union[str, Any] = tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0] , np.ndarray): lowerCAmelCase_ : Dict = tuple(np.expand_dims(el[self._loader_batch_index] , 0) for el in element) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(A_ , A_): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor): lowerCAmelCase_ : List[Any] = tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0] , np.ndarray): lowerCAmelCase_ : int = tuple(np.expand_dims(el[self._loader_batch_index] , 0) for el in element) continue if element is None: # This can happen for optional data that get passed around lowerCAmelCase_ : Any = None elif isinstance(element[self._loader_batch_index] , torch.Tensor): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowerCAmelCase_ : List[str] = element[self._loader_batch_index].unsqueeze(0) elif isinstance(element[self._loader_batch_index] , np.ndarray): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowerCAmelCase_ : List[Any] = np.expand_dims(element[self._loader_batch_index] , 0) else: # This is typically a list, so no need to `unsqueeze`. lowerCAmelCase_ : Dict = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 lowerCAmelCase_ : Dict = self._loader_batch_data.__class__(A_) self._loader_batch_index += 1 return result def UpperCAmelCase__ ( self : List[str]): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch lowerCAmelCase_ : Tuple = next(self.iterator) lowerCAmelCase_ : Dict = self.infer(A_ , **self.params) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(A_ , torch.Tensor): lowerCAmelCase_ : Union[str, Any] = processed else: lowerCAmelCase_ : int = list(processed.keys())[0] lowerCAmelCase_ : Tuple = processed[key] if isinstance(A_ , A_): lowerCAmelCase_ : str = len(A_) else: lowerCAmelCase_ : Tuple = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowerCAmelCase_ : Tuple = observed_batch_size # Setting internal index to unwrap the batch lowerCAmelCase_ : Any = processed lowerCAmelCase_ : Union[str, Any] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class __snake_case ( snake_case_ ): def __init__( self : Dict , A_ : str , A_ : Any , A_ : List[Any] , A_ : Optional[int]=None): super().__init__(A_ , A_ , A_) def __iter__( self : str): lowerCAmelCase_ : int = iter(self.loader) lowerCAmelCase_ : List[str] = None return self def UpperCAmelCase__ ( self : Optional[Any]): if self.subiterator is None: lowerCAmelCase_ : List[str] = self.infer(next(self.iterator) , **self.params) try: # Try to return next item lowerCAmelCase_ : Tuple = next(self.subiterator) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators lowerCAmelCase_ : str = self.infer(next(self.iterator) , **self.params) lowerCAmelCase_ : List[Any] = next(self.subiterator) return processed class __snake_case ( snake_case_ ): def __iter__( self : int): lowerCAmelCase_ : List[str] = iter(self.loader) return self def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : Dict = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: lowerCAmelCase_ : List[Any] = self.loader_batch_item() lowerCAmelCase_ : Dict = item.pop('''is_last''') accumulator.append(A_) if is_last: return accumulator while not is_last: lowerCAmelCase_ : Union[str, Any] = self.infer(next(self.iterator) , **self.params) if self.loader_batch_size is not None: if isinstance(A_ , torch.Tensor): lowerCAmelCase_ : List[Any] = processed else: lowerCAmelCase_ : Tuple = list(processed.keys())[0] lowerCAmelCase_ : List[str] = processed[key] if isinstance(A_ , A_): lowerCAmelCase_ : Union[str, Any] = len(A_) else: lowerCAmelCase_ : Union[str, Any] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowerCAmelCase_ : Any = observed_batch_size lowerCAmelCase_ : Optional[int] = processed lowerCAmelCase_ : str = 0 while self._loader_batch_index < self.loader_batch_size: lowerCAmelCase_ : Optional[int] = self.loader_batch_item() lowerCAmelCase_ : List[Any] = item.pop('''is_last''') accumulator.append(A_) if is_last: return accumulator else: lowerCAmelCase_ : Optional[Any] = processed lowerCAmelCase_ : Optional[Any] = item.pop('''is_last''') accumulator.append(A_) return accumulator class __snake_case ( snake_case_ ): def __init__( self : int , A_ : str , A_ : Union[str, Any]): lowerCAmelCase_ : Optional[Any] = dataset lowerCAmelCase_ : int = key def __len__( self : Union[str, Any]): return len(self.dataset) def __getitem__( self : str , A_ : List[Any]): return self.dataset[i][self.key] class __snake_case ( snake_case_ ): def __init__( self : List[Any] , A_ : Any , A_ : List[str] , A_ : List[Any]): lowerCAmelCase_ : str = dataset lowerCAmelCase_ : Dict = keya lowerCAmelCase_ : int = keya def __len__( self : int): return len(self.dataset) def __getitem__( self : int , A_ : Tuple): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
171
'''simple docstring''' def A_( A : list[int]): UpperCamelCase = [] if len(A) == 1: return [nums.copy()] for _ in range(len(A)): UpperCamelCase = nums.pop(0) UpperCamelCase = permute(A) for perm in permutations: perm.append(A) result.extend(A) nums.append(A) return result def A_( A : str): def backtrack(A : str): if start == len(A) - 1: output.append(nums[:]) else: for i in range(A , len(A)): UpperCamelCase , UpperCamelCase = nums[i], nums[start] backtrack(start + 1) UpperCamelCase , UpperCamelCase = nums[i], nums[start] # backtrack UpperCamelCase = [] backtrack(0) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCAmelCase : Dict = permutea([1, 2, 3]) print(res) doctest.testmod()
3
0
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> List[str]: SCREAMING_SNAKE_CASE_ : Optional[int] = [] for data in source_data: for i, el in enumerate(SCREAMING_SNAKE_CASE ): if len(SCREAMING_SNAKE_CASE ) < i + 1: data_lists.append([] ) data_lists[i].append(float(SCREAMING_SNAKE_CASE ) ) return data_lists def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: SCREAMING_SNAKE_CASE_ : int = [] for dlist, weight in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = min(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = max(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: SCREAMING_SNAKE_CASE_ : List[str] = f'Invalid weight of {weight:f} provided' raise ValueError(SCREAMING_SNAKE_CASE ) score_lists.append(SCREAMING_SNAKE_CASE ) return score_lists def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Dict: SCREAMING_SNAKE_CASE_ : Any = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = final_scores[j] + ele return final_scores def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: SCREAMING_SNAKE_CASE_ : Any = get_data(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = calculate_each_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = generate_final_scores(SCREAMING_SNAKE_CASE ) # append scores to source data for i, ele in enumerate(SCREAMING_SNAKE_CASE ): source_data[i].append(SCREAMING_SNAKE_CASE ) return source_data
345
'''simple docstring''' import colorsys from PIL import Image # type: ignore def A_( A : float , A : float , A : int): UpperCamelCase = x UpperCamelCase = y for step in range(A): # noqa: B007 UpperCamelCase = a * a - b * b + x UpperCamelCase = 2 * a * b + y UpperCamelCase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def A_( A : float): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def A_( A : float): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(A , 1 , 1)) def A_( A : int = 800 , A : int = 600 , A : float = -0.6 , A : float = 0 , A : float = 3.2 , A : int = 50 , A : bool = True , ): UpperCamelCase = Image.new('RGB' , (image_width, image_height)) UpperCamelCase = img.load() # loop through the image-coordinates for image_x in range(A): for image_y in range(A): # determine the figure-coordinates based on the image-coordinates UpperCamelCase = figure_width / image_width * image_height UpperCamelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCamelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCamelCase = get_distance(A , A , A) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCamelCase = get_color_coded_rgb(A) else: UpperCamelCase = get_black_and_white_rgb(A) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCAmelCase : Any = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
3
0
def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int ) -> List[Any]: if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) __A : Optional[Any] = str(bin(a__ ) )[2:] # remove the leading "0b" __A : Dict = str(bin(a__ ) )[2:] # remove the leading "0b" __A : Dict = max(len(a__ ) ,len(a__ ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(a__ ) ,b_binary.zfill(a__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
17
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase : Optional[Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
523
'''simple docstring''' lowerCAmelCase : Optional[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def A_( A : dict , A : str , A : Optional[Any]): UpperCamelCase = set() # keep track of all the paths to be checked UpperCamelCase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCamelCase = queue.pop(0) # get the last node from the path UpperCamelCase = path[-1] if node not in explored: UpperCamelCase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCamelCase = list(A) new_path.append(A) queue.append(A) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(A) # in case there's no path between the 2 nodes return [] def A_( A : dict , A : str , A : Tuple): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCamelCase = [start] UpperCamelCase = set(A) # Keep tab on distances from `start` node. UpperCamelCase = {start: 0, target: -1} while queue: UpperCamelCase = queue.pop(0) if node == target: UpperCamelCase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node]) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(A) queue.append(A) UpperCamelCase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
3
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowercase__ : Optional[int] = None lowercase__ : str = logging.get_logger(__name__) lowercase__ : Tuple = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowercase__ : Any = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } lowercase__ : Union[str, Any] = { 'camembert-base': 512, } lowercase__ : Tuple = '▁' class UpperCAmelCase ( snake_case_ ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase_ = CamembertTokenizer def __init__( self : Tuple , __lowercase : Union[str, Any]=None , __lowercase : int=None , __lowercase : Union[str, Any]="<s>" , __lowercase : Tuple="</s>" , __lowercase : List[Any]="</s>" , __lowercase : Dict="<s>" , __lowercase : Optional[Any]="<unk>" , __lowercase : Dict="<pad>" , __lowercase : Union[str, Any]="<mask>" , __lowercase : List[str]=["<s>NOTUSED", "</s>NOTUSED"] , **__lowercase : str , ): """simple docstring""" snake_case_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( A_ , tokenizer_file=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , additional_special_tokens=A_ , **A_ , ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def snake_case__ ( self : Dict , __lowercase : Union[str, Any] , __lowercase : List[str] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__ ( self : List[str] , __lowercase : Tuple , __lowercase : Optional[int] = None ): """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case__ ( self : int , __lowercase : List[str] , __lowercase : Any = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(A_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return snake_case_ = os.path.join( A_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) return (out_vocab_file,)
376
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class SCREAMING_SNAKE_CASE__ : def __init__( self )-> Dict: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = '' UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = 256 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 def UpperCAmelCase_ ( self , A_ )-> str: '''simple docstring''' UpperCamelCase = cva.imread(A_ , 0 ) UpperCamelCase = copy.deepcopy(self.img ) UpperCamelCase , UpperCamelCase , UpperCamelCase = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) UpperCamelCase = np.sum(A_ ) for i in range(len(A_ ) ): UpperCamelCase = x[i] / self.k self.sk += prk UpperCamelCase = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase = int(last % last ) UpperCamelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(A_ ) UpperCamelCase = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase = self.img[j][i] if num != self.last_list[num]: UpperCamelCase = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') lowerCAmelCase : str = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
3
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : Union[str, Any] = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any] = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys A__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
286
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Tuple = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """unispeech-sat""" def __init__( self , A_=32 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.1 , A_=0.1 , A_=0.02 , A_=1e-5 , A_="group" , A_="gelu" , A_=(512, 512, 512, 512, 512, 512, 512) , A_=(5, 2, 2, 2, 2, 2, 2) , A_=(10, 3, 3, 3, 3, 2, 2) , A_=False , A_=128 , A_=16 , A_=False , A_=True , A_=0.05 , A_=10 , A_=2 , A_=0.0 , A_=10 , A_=0 , A_=320 , A_=2 , A_=0.1 , A_=100 , A_=256 , A_=256 , A_=0.1 , A_="mean" , A_=False , A_=False , A_=256 , A_=(512, 512, 512, 512, 1500) , A_=(5, 3, 3, 1, 1) , A_=(1, 2, 3, 1, 1) , A_=512 , A_=0 , A_=1 , A_=2 , A_=504 , **A_ , )-> Tuple: '''simple docstring''' super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) UpperCamelCase = hidden_size UpperCamelCase = feat_extract_norm UpperCamelCase = feat_extract_activation UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = conv_bias UpperCamelCase = num_conv_pos_embeddings UpperCamelCase = num_conv_pos_embedding_groups UpperCamelCase = len(self.conv_dim ) UpperCamelCase = num_hidden_layers UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = num_attention_heads UpperCamelCase = hidden_dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = feat_proj_dropout UpperCamelCase = final_dropout UpperCamelCase = layerdrop UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = vocab_size UpperCamelCase = num_clusters UpperCamelCase = do_stable_layer_norm UpperCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase = apply_spec_augment UpperCamelCase = mask_time_prob UpperCamelCase = mask_time_length UpperCamelCase = mask_time_min_masks UpperCamelCase = mask_feature_prob UpperCamelCase = mask_feature_length UpperCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCamelCase = num_codevectors_per_group UpperCamelCase = num_codevector_groups UpperCamelCase = contrastive_logits_temperature UpperCamelCase = feat_quantizer_dropout UpperCamelCase = num_negatives UpperCamelCase = codevector_dim UpperCamelCase = proj_codevector_dim UpperCamelCase = diversity_loss_weight # ctc loss UpperCamelCase = ctc_loss_reduction UpperCamelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = xvector_output_dim @property def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
3
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : Tuple = logging.get_logger(__name__) __lowerCamelCase : List[Any] = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( snake_case_ ): """simple docstring""" a_ = "data2vec-text" def __init__( self : Optional[int] , __A : Dict=3_0_5_2_2 , __A : Any=7_6_8 , __A : Tuple=1_2 , __A : Optional[int]=1_2 , __A : Tuple=3_0_7_2 , __A : Optional[Any]="gelu" , __A : Dict=0.1 , __A : Tuple=0.1 , __A : Union[str, Any]=5_1_2 , __A : List[str]=2 , __A : Optional[Any]=0.0_2 , __A : Optional[int]=1e-1_2 , __A : Optional[Any]=1 , __A : str=0 , __A : Optional[int]=2 , __A : str="absolute" , __A : List[str]=True , __A : Union[str, Any]=None , **__A : int , ): super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) snake_case__ : List[Any] = vocab_size snake_case__ : Tuple = hidden_size snake_case__ : Dict = num_hidden_layers snake_case__ : Union[str, Any] = num_attention_heads snake_case__ : Optional[Any] = hidden_act snake_case__ : Union[str, Any] = intermediate_size snake_case__ : Tuple = hidden_dropout_prob snake_case__ : Optional[Any] = attention_probs_dropout_prob snake_case__ : Tuple = max_position_embeddings snake_case__ : str = type_vocab_size snake_case__ : str = initializer_range snake_case__ : Union[str, Any] = layer_norm_eps snake_case__ : Union[str, Any] = position_embedding_type snake_case__ : int = use_cache snake_case__ : List[str] = classifier_dropout class SCREAMING_SNAKE_CASE__ ( snake_case_ ): """simple docstring""" @property def _lowercase ( self : Optional[int] ): if self.task == "multiple-choice": snake_case__ : Dict = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case__ : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
297
'''simple docstring''' import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ , A_=100 , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=4 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=None , A_=[0, 1, 2, 3] , )-> Any: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = 100 UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = scope UpperCamelCase = out_indices UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = num_patches + 1 def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> List[str]: '''simple docstring''' UpperCamelCase = BeitModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Any: '''simple docstring''' UpperCamelCase = BeitForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.type_sequence_label_size UpperCamelCase = BeitForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = BeitForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[Any]: '''simple docstring''' UpperCamelCase = self.num_labels UpperCamelCase = BeitForSemanticSegmentation(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase_ = ( { """feature-extraction""": BeitModel, """image-classification""": BeitForImageClassification, """image-segmentation""": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = BeitModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A_ ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' if not self.model_tester.is_training: return UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(A_ ), BeitForMaskedImageModeling]: continue UpperCamelCase = model_class(A_ ) model.to(A_ ) model.train() UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ ) UpperCamelCase = model(**A_ ).loss loss.backward() def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase = False UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(A_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCamelCase = model_class(A_ ) model.gradient_checkpointing_enable() model.to(A_ ) model.train() UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ ) UpperCamelCase = model(**A_ ).loss loss.backward() def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = _config_zero_init(A_ ) for model_class in self.all_model_classes: UpperCamelCase = model_class(config=A_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = BeitModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A_( ): UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @cached_property def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).pixel_values.to(A_ ) # prepare bool_masked_pos UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(pixel_values=A_ , bool_masked_pos=A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(A_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , A_ , atol=1e-2 ) ) @slow def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(A_ ) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) ) UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , A_ ) @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 21841) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(A_ ) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) ) UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , A_ ) @slow def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) UpperCamelCase = model.to(A_ ) UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ ) UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) UpperCamelCase = Image.open(ds[0]['file'] ) UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: UpperCamelCase = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] , device=A_ , ) else: UpperCamelCase = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] , device=A_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1e-4 ) ) @slow def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) UpperCamelCase = model.to(A_ ) UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ ) UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) UpperCamelCase = Image.open(ds[0]['file'] ) UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits.detach().cpu() UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ , target_sizes=[(500, 300)] ) UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , A_ ) UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ ) UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , A_ )
3
0
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def UpperCAmelCase_ ( __a : Any , __a : List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = int(__a ) assert noofclusters < len(__a ) # Find out the dimensionality _lowerCamelCase : Tuple = len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCamelCase : Tuple = list(range(len(__a ) ) ) shuffle(__a ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCamelCase : Optional[int] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCamelCase : Optional[Any] = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCamelCase : Tuple = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(__a ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCamelCase : Any = tf.placeholder('float64' , [dim] ) _lowerCamelCase : str = [] for centroid in centroids: cent_assigns.append(tf.assign(__a , __a ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCamelCase : str = [tf.Variable(0 ) for i in range(len(__a ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCamelCase : Any = tf.placeholder('int32' ) _lowerCamelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(__a , __a ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCamelCase : Optional[int] = tf.placeholder('float' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCamelCase : Tuple = tf.reduce_mean(__a , 0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCamelCase : Any = tf.placeholder('float' , [dim] ) _lowerCamelCase : List[str] = tf.placeholder('float' , [dim] ) _lowerCamelCase : Optional[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(__a , __a ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCamelCase : Union[str, Any] = tf.placeholder('float' , [noofclusters] ) _lowerCamelCase : int = tf.argmin(__a , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCamelCase : int = tf.initialize_all_variables() # Initialize all variables sess.run(__a ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCamelCase : str = 1_00 for _ in range(__a ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(__a ) ): _lowerCamelCase : Optional[int] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCamelCase : Tuple = [ sess.run(__a , feed_dict={va: vect, va: sess.run(__a )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCamelCase : Tuple = sess.run( __a , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(__a ): # Collect all the vectors assigned to this cluster _lowerCamelCase : Tuple = [ vectors[i] for i in range(len(__a ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCamelCase : Optional[Any] = sess.run( __a , feed_dict={mean_input: array(__a )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCamelCase : int = sess.run(__a ) _lowerCamelCase : Optional[int] = sess.run(__a ) return centroids, assignments
437
'''simple docstring''' import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase : Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( enum.Enum): lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 @add_end_docstrings(snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """generated""" def __init__( self , *A_ , **A_ )-> Optional[int]: '''simple docstring''' super().__init__(*A_ , **A_ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , **A_ , )-> Optional[Any]: '''simple docstring''' UpperCamelCase = {} if truncation is not None: UpperCamelCase = truncation UpperCamelCase = generate_kwargs UpperCamelCase = {} if return_tensors is not None and return_type is None: UpperCamelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: UpperCamelCase = return_type if clean_up_tokenization_spaces is not None: UpperCamelCase = clean_up_tokenization_spaces if stop_sequence is not None: UpperCamelCase = self.tokenizer.encode(A_ , add_special_tokens=A_ ) if len(A_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) UpperCamelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' return True def UpperCAmelCase_ ( self , *A_ , A_ )-> Any: '''simple docstring''' UpperCamelCase = self.model.config.prefix if self.model.config.prefix is not None else '' if isinstance(args[0] , A_ ): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' ) UpperCamelCase = ([prefix + arg for arg in args[0]],) UpperCamelCase = True elif isinstance(args[0] , A_ ): UpperCamelCase = (prefix + args[0],) UpperCamelCase = False else: raise ValueError( F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) UpperCamelCase = self.tokenizer(*A_ , padding=A_ , truncation=A_ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A_ , **A_ )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = super().__call__(*A_ , **A_ ) if ( isinstance(args[0] , A_ ) and all(isinstance(A_ , A_ ) for el in args[0] ) and all(len(A_ ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase_ ( self , A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , **A_ )-> Any: '''simple docstring''' UpperCamelCase = self._parse_and_tokenize(A_ , truncation=A_ , **A_ ) return inputs def UpperCAmelCase_ ( self , A_ , **A_ )-> int: '''simple docstring''' if self.framework == "pt": UpperCamelCase , UpperCamelCase = model_inputs['input_ids'].shape elif self.framework == "tf": UpperCamelCase , UpperCamelCase = tf.shape(model_inputs['input_ids'] ).numpy() UpperCamelCase = generate_kwargs.get('min_length' , self.model.config.min_length ) UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) self.check_inputs(A_ , generate_kwargs['min_length'] , generate_kwargs['max_length'] ) UpperCamelCase = self.model.generate(**A_ , **A_ ) UpperCamelCase = output_ids.shape[0] if self.framework == "pt": UpperCamelCase = output_ids.reshape(A_ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": UpperCamelCase = tf.reshape(A_ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase_ ( self , A_ , A_=ReturnType.TEXT , A_=False )-> Optional[Any]: '''simple docstring''' UpperCamelCase = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: UpperCamelCase = {F'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: UpperCamelCase = { F'''{self.return_name}_text''': self.tokenizer.decode( A_ , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , ) } records.append(A_ ) return records @add_end_docstrings(snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """summary""" def __call__( self , *A_ , **A_ )-> Optional[int]: '''simple docstring''' return super().__call__(*A_ , **A_ ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> bool: '''simple docstring''' if max_length < min_length: logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' 'a summarization task, where outputs shorter than the input are typically wanted, you might ' F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """translation""" def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> List[Any]: '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' ) return True def UpperCAmelCase_ ( self , *A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , A_=None , A_=None )-> Dict: '''simple docstring''' if getattr(self.tokenizer , '_build_translation_inputs' , A_ ): return self.tokenizer._build_translation_inputs( *A_ , return_tensors=self.framework , truncation=A_ , src_lang=A_ , tgt_lang=A_ ) else: return super()._parse_and_tokenize(*A_ , truncation=A_ ) def UpperCAmelCase_ ( self , A_=None , A_=None , **A_ )-> str: '''simple docstring''' UpperCamelCase , UpperCamelCase , UpperCamelCase = super()._sanitize_parameters(**A_ ) if src_lang is not None: UpperCamelCase = src_lang if tgt_lang is not None: UpperCamelCase = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. UpperCamelCase = kwargs.get('task' , self.task ) UpperCamelCase = task.split('_' ) if task and len(A_ ) == 4: # translation, XX, to YY UpperCamelCase = items[1] UpperCamelCase = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A_ , **A_ )-> Any: '''simple docstring''' return super().__call__(*A_ , **A_ )
3
0
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) UpperCamelCase_ = _symbol_database.Default() UpperCamelCase_ = _descriptor_pool.Default().AddSerializedFile( b"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) UpperCamelCase_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: UpperCamelCase_ = None UpperCamelCase_ = B'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" UpperCamelCase_ = 4_5 UpperCamelCase_ = 1_5_8_1 UpperCamelCase_ = 1_5_1_7 UpperCamelCase_ = 1_5_7_0 UpperCamelCase_ = 1_5_8_4 UpperCamelCase_ = 1_7_9_3 UpperCamelCase_ = 1_7_9_5 UpperCamelCase_ = 1_9_1_6 UpperCamelCase_ = 1_8_6_4 UpperCamelCase_ = 1_9_0_5 UpperCamelCase_ = 1_9_1_9 UpperCamelCase_ = 2_4_2_9 UpperCamelCase_ = 2_2_0_8 UpperCamelCase_ = 2_4_1_8 UpperCamelCase_ = 2_3_2_3 UpperCamelCase_ = 2_4_0_7 # @@protoc_insertion_point(module_scope)
611
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = 0 lowerCAmelCase_ = False lowerCAmelCase_ = 3.0 class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def UpperCAmelCase_ ( self )-> int: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=A_ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() UpperCamelCase = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , A_ ) @require_multi_gpu def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_ , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase : Tuple = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCAmelCase : List[str] = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCAmelCase : List[Any] = torch.nn.Linear(1_00, 2_00) lowerCAmelCase : int = accelerator.prepare(model) # Check the values changed in kwargs lowerCAmelCase : Dict = '' lowerCAmelCase : Dict = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
3
0
'''simple docstring''' import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowercase_ ( unittest.TestCase ): def _lowerCAmelCase ( self : List[Any] ): snake_case__ : List[str] = mock.Mock() snake_case__ : int = 500 snake_case__ : int = {} snake_case__ : Tuple = HTTPError snake_case__ : List[str] = {} # Download this model to make sure it's in the cache. snake_case__ : Dict = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head: snake_case__ : Any = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _lowerCAmelCase ( self : Union[str, Any] ): snake_case__ : Optional[int] = mock.Mock() snake_case__ : Dict = 500 snake_case__ : int = {} snake_case__ : Union[str, Any] = HTTPError snake_case__ : Tuple = {} # Download this model to make sure it's in the cache. snake_case__ : str = GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head: snake_case__ : Any = GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def _lowerCAmelCase ( self : Tuple ): try: snake_case__ : Any = tempfile.mktemp() with open(A_ , 'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , A_ ) snake_case__ : Optional[int] = AlbertTokenizer.from_pretrained(A_ ) finally: os.remove(A_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , A_ ) snake_case__ : int = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def _lowerCAmelCase ( self : Any ): snake_case__ : List[str] = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class lowercase_ ( unittest.TestCase ): A_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def _lowerCAmelCase ( cls : int ): snake_case__ : Any = TOKEN HfFolder.save_token(A_ ) @classmethod def _lowerCAmelCase ( cls : Optional[Any] ): try: delete_repo(token=cls._token , repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def _lowerCAmelCase ( self : Dict ): with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : List[str] = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) snake_case__ : Union[str, Any] = BertTokenizer(A_ ) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token ) snake_case__ : Union[str, Any] = BertTokenizer.from_pretrained(F"{USER}/test-tokenizer" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(A_ , repo_id='test-tokenizer' , push_to_hub=A_ , use_auth_token=self._token ) snake_case__ : List[Any] = BertTokenizer.from_pretrained(F"{USER}/test-tokenizer" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def _lowerCAmelCase ( self : int ): with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : Dict = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) snake_case__ : Optional[int] = BertTokenizer(A_ ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token ) snake_case__ : int = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( A_ , repo_id='valid_org/test-tokenizer-org' , push_to_hub=A_ , use_auth_token=self._token ) snake_case__ : Dict = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def _lowerCAmelCase ( self : Any ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : List[str] = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) snake_case__ : List[Any] = CustomTokenizer(A_ ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) snake_case__ : Optional[int] = AutoTokenizer.from_pretrained(F"{USER}/test-dynamic-tokenizer" , trust_remote_code=A_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : List[str] = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) snake_case__ : Any = BertTokenizerFast.from_pretrained(A_ ) bert_tokenizer.save_pretrained(A_ ) snake_case__ : Dict = CustomTokenizerFast.from_pretrained(A_ ) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) snake_case__ : Any = AutoTokenizer.from_pretrained(F"{USER}/test-dynamic-tokenizer" , trust_remote_code=A_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' ) snake_case__ : Any = AutoTokenizer.from_pretrained( F"{USER}/test-dynamic-tokenizer" , use_fast=A_ , trust_remote_code=A_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) class lowercase_ ( unittest.TestCase ): def _lowerCAmelCase ( self : Optional[Any] ): snake_case__ : Optional[Any] = Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def _lowerCAmelCase ( self : str ): snake_case__ : Optional[Any] = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] ) def _lowerCAmelCase ( self : str ): snake_case__ : Dict = Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] ) def _lowerCAmelCase ( self : List[Any] ): snake_case__ : Dict = Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Optional[Any] ): snake_case__ : int = Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Union[str, Any] ): snake_case__ : List[Any] = Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] ) def _lowerCAmelCase ( self : Dict ): snake_case__ : Union[str, Any] = Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] ) def _lowerCAmelCase ( self : Optional[int] ): snake_case__ : Any = Trie() snake_case__ : Any = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(A_ , ['AB', 'C'] )
270
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_): @register_to_config def __init__( self , A_ , A_ = None , A_ = None )-> Tuple: '''simple docstring''' super().__init__() UpperCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCamelCase = torch.zeros(A_ , A_ ) else: UpperCamelCase = None UpperCamelCase = torch.nn.Parameter(A_ ) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , )-> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( vqvae=A_ , transformer=A_ , text_encoder=A_ , tokenizer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Tuple: '''simple docstring''' UpperCamelCase = len(A_ ) if isinstance(A_ , A_ ) else 1 # get prompt text embeddings UpperCamelCase = self.tokenizer( A_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) UpperCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate text embeddings for each generation per prompt UpperCamelCase = prompt_embeds.repeat_interleave(A_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(A_ , 1 , 1 ) else: UpperCamelCase = [''] * batch_size UpperCamelCase = text_input_ids.shape[-1] UpperCamelCase = self.tokenizer( A_ , padding='max_length' , max_length=A_ , truncation=A_ , return_tensors='pt' , ) UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase = negative_prompt_embeds.shape[1] UpperCamelCase = negative_prompt_embeds.repeat(1 , A_ , 1 ) UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , A_ , A_ = 100 , A_ = 5.0 , A_ = 1.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , A_ = None , A_ = 1 , )-> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(A_ , A_ ): UpperCamelCase = 1 elif isinstance(A_ , A_ ): UpperCamelCase = len(A_ ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(A_ )}''' ) UpperCamelCase = batch_size * num_images_per_prompt UpperCamelCase = guidance_scale > 1.0 UpperCamelCase = self._encode_prompt(A_ , A_ , A_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A_ , A_ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(A_ )}.''' ) # get the initial completely masked latents unless the user supplied it UpperCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCamelCase = self.transformer.num_vector_embeds - 1 UpperCamelCase = torch.full(A_ , A_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) UpperCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(A_ , device=self.device ) UpperCamelCase = self.scheduler.timesteps.to(self.device ) UpperCamelCase = latents for i, t in enumerate(self.progress_bar(A_ ) ): # expand the sample if we are doing classifier free guidance UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCamelCase = self.transformer(A_ , encoder_hidden_states=A_ , timestep=A_ ).sample if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase = model_output.chunk(2 ) UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(A_ , dim=1 , keepdim=A_ ) UpperCamelCase = self.truncate(A_ , A_ ) # remove `log(0)`'s (`-inf`s) UpperCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(A_ , timestep=A_ , sample=A_ , generator=A_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A_ , A_ , A_ ) UpperCamelCase = self.vqvae.config.vq_embed_dim UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCamelCase = self.vqvae.quantize.get_codebook_entry(A_ , shape=A_ ) UpperCamelCase = self.vqvae.decode(A_ , force_not_quantize=A_ ).sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ ) def UpperCAmelCase_ ( self , A_ , A_ )-> torch.FloatTensor: '''simple docstring''' UpperCamelCase , UpperCamelCase = torch.sort(A_ , 1 , descending=A_ ) UpperCamelCase = torch.exp(A_ ) UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , A_ ) UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) UpperCamelCase = keep_mask[:, :-1, :] UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) UpperCamelCase = log_p_x_0.clone() UpperCamelCase = -torch.inf # -inf = log(0) return rv
3
0
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[Any] = tmp_path / '''cache''' __UpperCamelCase :List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCamelCase :Optional[int] = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = tmp_path / '''cache''' __UpperCamelCase :int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase :Optional[Any] = features.copy() if features else default_expected_features __UpperCamelCase :List[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCamelCase :Any = ParquetDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[str] = tmp_path / '''cache''' __UpperCamelCase :int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase :Union[str, Any] = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , split=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase :Tuple = parquet_path elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase :Tuple = [parquet_path] __UpperCamelCase :Tuple = tmp_path / '''cache''' __UpperCamelCase :int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase :Tuple = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=("train",) ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for split in splits: __UpperCamelCase :Union[str, Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[Any] = tmp_path / '''cache''' __UpperCamelCase :Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCamelCase :Union[str, Any] = ParquetDatasetReader( {'''train''': parquet_path} , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :int = tmp_path / '''cache''' __UpperCamelCase :Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase :Optional[int] = features.copy() if features else default_expected_features __UpperCamelCase :int = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCamelCase :Optional[int] = ParquetDatasetReader({'''train''': parquet_path} , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if split: __UpperCamelCase :Tuple = {split: parquet_path} else: __UpperCamelCase :List[str] = '''train''' __UpperCamelCase :Tuple = {'''train''': parquet_path, '''test''': parquet_path} __UpperCamelCase :Any = tmp_path / '''cache''' __UpperCamelCase :List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase :List[str] = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[str] = ParquetDatasetWriter(SCREAMING_SNAKE_CASE , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 __UpperCamelCase :List[Any] = pq.ParquetFile(tmp_path / '''foo.parquet''' ) __UpperCamelCase :List[Any] = pf.read() assert dataset.data.table == output_table def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Tuple = str(shared_datadir / '''test_image_rgb.jpg''' ) __UpperCamelCase :Dict = {'''image''': [image_path]} __UpperCamelCase :List[Any] = Features({'''image''': Image()} ) __UpperCamelCase :Union[str, Any] = Dataset.from_dict(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = ParquetDatasetWriter(SCREAMING_SNAKE_CASE , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 __UpperCamelCase :Optional[Any] = Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) ) assert dataset.features == reloaded_dataset.features __UpperCamelCase :Optional[int] = ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ) , streaming=SCREAMING_SNAKE_CASE ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( '''feature, expected''' , [ (Features({'''foo''': Value('''int32''' )} ), None), (Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' assert get_writer_batch_size(SCREAMING_SNAKE_CASE ) == expected
167
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Union[str, Any] = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
0
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self : List[str] , A_ : List[Any] , A_ : List[str]=7 , A_ : Tuple=3 , A_ : Optional[Any]=1_8 , A_ : Optional[int]=3_0 , A_ : Optional[int]=4_0_0 , A_ : List[Any]=True , A_ : Dict=None , A_ : Union[str, Any]=True , A_ : Any=False , A_ : Dict=True , A_ : Optional[int]=True , A_ : Dict=[0.5, 0.5, 0.5] , A_ : Tuple=[0.5, 0.5, 0.5] , ): lowerCAmelCase_ : Optional[Any] = parent lowerCAmelCase_ : Union[str, Any] = batch_size lowerCAmelCase_ : Optional[Any] = num_channels lowerCAmelCase_ : Optional[int] = image_size lowerCAmelCase_ : Union[str, Any] = min_resolution lowerCAmelCase_ : Union[str, Any] = max_resolution lowerCAmelCase_ : Tuple = do_resize lowerCAmelCase_ : Any = size if size is not None else {'''height''': 1_8, '''width''': 2_0} lowerCAmelCase_ : Union[str, Any] = do_thumbnail lowerCAmelCase_ : Tuple = do_align_axis lowerCAmelCase_ : List[Any] = do_pad lowerCAmelCase_ : List[Any] = do_normalize lowerCAmelCase_ : Tuple = image_mean lowerCAmelCase_ : int = image_std def UpperCAmelCase__ ( self : List[Any]): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __snake_case ( snake_case_ ,unittest.TestCase ): _a = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : Union[str, Any] = DonutImageProcessingTester(self) @property def UpperCAmelCase__ ( self : int): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Optional[int]): lowerCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(A_ , '''do_resize''')) self.assertTrue(hasattr(A_ , '''size''')) self.assertTrue(hasattr(A_ , '''do_thumbnail''')) self.assertTrue(hasattr(A_ , '''do_align_long_axis''')) self.assertTrue(hasattr(A_ , '''do_pad''')) self.assertTrue(hasattr(A_ , '''do_normalize''')) self.assertTrue(hasattr(A_ , '''image_mean''')) self.assertTrue(hasattr(A_ , '''image_std''')) def UpperCAmelCase__ ( self : Optional[Any]): lowerCAmelCase_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 2_0}) lowerCAmelCase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) # Previous config had dimensions in (width, height) order lowerCAmelCase_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=(4_2, 8_4)) self.assertEqual(image_processor.size , {'''height''': 8_4, '''width''': 4_2}) def UpperCAmelCase__ ( self : Dict): pass @is_flaky() def UpperCAmelCase__ ( self : Dict): lowerCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCAmelCase_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_) for image in image_inputs: self.assertIsInstance(A_ , Image.Image) # Test not batched input lowerCAmelCase_ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched lowerCAmelCase_ : int = image_processing(A_ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Tuple = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCAmelCase_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray) # Test not batched input lowerCAmelCase_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched lowerCAmelCase_ : Any = image_processing(A_ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def UpperCAmelCase__ ( self : Optional[int]): lowerCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCAmelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor) # Test not batched input lowerCAmelCase_ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched lowerCAmelCase_ : Dict = image_processing(A_ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
171
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ = None , A_ = None , A_=None , A_=None )-> Optional[Any]: '''simple docstring''' if not conversation_id: UpperCamelCase = uuid.uuida() if past_user_inputs is None: UpperCamelCase = [] if generated_responses is None: UpperCamelCase = [] UpperCamelCase = conversation_id UpperCamelCase = past_user_inputs UpperCamelCase = generated_responses UpperCamelCase = text def __eq__( self , A_ )-> List[Any]: '''simple docstring''' if not isinstance(A_ , A_ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def UpperCAmelCase_ ( self , A_ , A_ = False )-> int: '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' F'''with: "{text}".''' ) UpperCamelCase = text else: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: UpperCamelCase = text def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) UpperCamelCase = None def UpperCAmelCase_ ( self , A_ )-> int: '''simple docstring''' self.generated_responses.append(A_ ) def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self )-> Any: '''simple docstring''' UpperCamelCase = F'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): UpperCamelCase = 'user' if is_user else 'bot' output += F'''{name} >> {text} \n''' return output @add_end_docstrings( snake_case_ , R""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , *A_ , **A_ )-> Any: '''simple docstring''' super().__init__(*A_ , **A_ ) if self.tokenizer.pad_token_id is None: UpperCamelCase = self.tokenizer.eos_token def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , **A_ )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = {} UpperCamelCase = {} UpperCamelCase = {} if min_length_for_response is not None: UpperCamelCase = min_length_for_response if minimum_tokens is not None: UpperCamelCase = minimum_tokens if "max_length" in generate_kwargs: UpperCamelCase = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: UpperCamelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(A_ ) return preprocess_params, forward_params, postprocess_params def __call__( self , A_ , A_=0 , **A_ )-> Any: '''simple docstring''' UpperCamelCase = super().__call__(A_ , num_workers=A_ , **A_ ) if isinstance(A_ , A_ ) and len(A_ ) == 1: return outputs[0] return outputs def UpperCAmelCase_ ( self , A_ , A_=32 )-> Dict[str, Any]: '''simple docstring''' if not isinstance(A_ , A_ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): UpperCamelCase = self.tokenizer._build_conversation_input_ids(A_ ) else: # If the tokenizer cannot handle conversations, we default to only the old version UpperCamelCase = self._legacy_parse_and_tokenize(A_ ) if self.framework == "pt": UpperCamelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": UpperCamelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def UpperCAmelCase_ ( self , A_ , A_=10 , **A_ )-> Optional[Any]: '''simple docstring''' UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) UpperCamelCase = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) UpperCamelCase = max_length - minimum_tokens UpperCamelCase = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: UpperCamelCase = model_inputs['attention_mask'][:, -trim:] UpperCamelCase = model_inputs.pop('conversation' ) UpperCamelCase = max_length UpperCamelCase = self.model.generate(**A_ , **A_ ) if self.model.config.is_encoder_decoder: UpperCamelCase = 1 else: UpperCamelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def UpperCAmelCase_ ( self , A_ , A_=True )-> Tuple: '''simple docstring''' UpperCamelCase = model_outputs['output_ids'] UpperCamelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , ) UpperCamelCase = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(A_ ) return conversation def UpperCAmelCase_ ( self , A_ )-> Dict: '''simple docstring''' UpperCamelCase = self.tokenizer.eos_token_id UpperCamelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) ) if len(A_ ) > self.tokenizer.model_max_length: UpperCamelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
3
0
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__: str = logging.get_logger(__name__) lowerCAmelCase__: Tuple = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase__: Dict = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } lowerCAmelCase__: Optional[int] = {'facebook/blenderbot_small-90M': 512} def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> List[str]: SCREAMING_SNAKE_CASE_ : Optional[int] = set() SCREAMING_SNAKE_CASE_ : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = char SCREAMING_SNAKE_CASE_ : int = set(SCREAMING_SNAKE_CASE ) return pairs class snake_case_ ( snake_case_ ): __lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES __lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : int = ['input_ids', 'attention_mask'] def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="__start__" , __lowerCAmelCase="__end__" , __lowerCAmelCase="__unk__" , __lowerCAmelCase="__null__" , **__lowerCAmelCase , ): super().__init__(unk_token=A_ , bos_token=A_ , eos_token=A_ , pad_token=A_ , **A_ ) with open(A_ , encoding='utf-8' ) as vocab_handle: SCREAMING_SNAKE_CASE_ : str = json.load(A_ ) SCREAMING_SNAKE_CASE_ : Tuple = {v: k for k, v in self.encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: SCREAMING_SNAKE_CASE_ : Any = merges_handle.read().split('\n' )[1:-1] SCREAMING_SNAKE_CASE_ : int = [tuple(merge.split() ) for merge in merges] SCREAMING_SNAKE_CASE_ : List[str] = dict(zip(A_ , range(len(A_ ) ) ) ) SCREAMING_SNAKE_CASE_ : str = {} @property def __A ( self ): return len(self.encoder ) def __A ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self , __lowerCAmelCase ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_ : str = re.sub('([.,!?()])' , r' \1' , A_ ) SCREAMING_SNAKE_CASE_ : int = re.sub('(\')' , r' \1 ' , A_ ) SCREAMING_SNAKE_CASE_ : str = re.sub(r'\s{2,}' , ' ' , A_ ) if "\n" in token: SCREAMING_SNAKE_CASE_ : Optional[Any] = token.replace('\n' , ' __newln__' ) SCREAMING_SNAKE_CASE_ : Any = token.split(' ' ) SCREAMING_SNAKE_CASE_ : Tuple = [] for token in tokens: if not len(A_ ): continue SCREAMING_SNAKE_CASE_ : List[str] = token.lower() SCREAMING_SNAKE_CASE_ : Any = tuple(A_ ) SCREAMING_SNAKE_CASE_ : int = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) SCREAMING_SNAKE_CASE_ : Dict = get_pairs(A_ ) if not pairs: words.append(A_ ) continue while True: SCREAMING_SNAKE_CASE_ : Tuple = min(A_ , key=lambda __lowerCAmelCase : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = bigram SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : List[str] = 0 while i < len(A_ ): try: SCREAMING_SNAKE_CASE_ : Union[str, Any] = word.index(A_ , A_ ) new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE_ : Dict = tuple(A_ ) SCREAMING_SNAKE_CASE_ : Any = new_word if len(A_ ) == 1: break else: SCREAMING_SNAKE_CASE_ : str = get_pairs(A_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = '@@ '.join(A_ ) SCREAMING_SNAKE_CASE_ : str = word[:-4] SCREAMING_SNAKE_CASE_ : List[Any] = word words.append(A_ ) return " ".join(A_ ) def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.findall(r'\S+\n?' , A_ ) for token in words: split_tokens.extend(list(self.bpe(A_ ).split(' ' ) ) ) return split_tokens def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] = token.lower() return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def __A ( self , __lowerCAmelCase ): return self.decoder.get(A_ , self.unk_token ) def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Tuple = ' '.join(A_ ).replace('@@ ' , '' ).strip() return out_string def __A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : Any = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : List[str] = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) SCREAMING_SNAKE_CASE_ : Optional[int] = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) SCREAMING_SNAKE_CASE_ : Tuple = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file
345
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase : List[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase : List[Any] = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase : Tuple = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase : List[Any] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
3
0
def __SCREAMING_SNAKE_CASE ( a__ : int ) -> str: __A : Optional[Any] = int(a__ ) if decimal in (0, 1): # Exit cases for the recursion return str(a__ ) __A , __A : Any = divmod(a__ ,2 ) return binary_recursive(a__ ) + str(a__ ) def __SCREAMING_SNAKE_CASE ( a__ : str ) -> Optional[int]: __A : str = str(a__ ).strip() if not number: raise ValueError("""No input value was provided""" ) __A : int = """-""" if number.startswith("""-""" ) else """""" __A : List[str] = number.lstrip("""-""" ) if not number.isnumeric(): raise ValueError("""Input value is not an integer""" ) return f"""{negative}0b{binary_recursive(int(a__ ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
17
'''simple docstring''' import numpy as np def A_( A : str , A : Optional[Any] , A : Tuple , A : Optional[int] , A : str): UpperCamelCase = int(np.ceil((x_end - xa) / h)) UpperCamelCase = np.zeros((n + 1,)) UpperCamelCase = ya UpperCamelCase = xa for k in range(A): UpperCamelCase = f(A , y[k]) UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka) UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka) UpperCamelCase = f(x + h , y[k] + h * ka) UpperCamelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
3
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k', 'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v', 'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q', 'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u', 'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v', 'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out', 'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos', 'self_attn.rotary_emb': 'encoder.embed_positions', 'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm', 'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1', 'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2', 'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv', 'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm', 'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm', 'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense', 'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense', 'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm', 'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense', 'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense', 'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } SCREAMING_SNAKE_CASE_ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def UpperCamelCase__ ( _lowercase : Union[str, Any] , _lowercase : List[str] , _lowercase : Dict , _lowercase : Tuple , _lowercase : Any ) -> List[str]: for attribute in key.split(""".""" ): __UpperCAmelCase: Optional[Any] = getattr(_lowercase , _lowercase ) if weight_type is not None: __UpperCAmelCase: str = getattr(_lowercase , _lowercase ).shape else: __UpperCAmelCase: int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __UpperCAmelCase: Union[str, Any] = value elif weight_type == "weight_g": __UpperCAmelCase: Optional[Any] = value elif weight_type == "weight_v": __UpperCAmelCase: List[Any] = value elif weight_type == "bias": __UpperCAmelCase: str = value elif weight_type == "running_mean": __UpperCAmelCase: List[str] = value elif weight_type == "running_var": __UpperCAmelCase: Any = value elif weight_type == "num_batches_tracked": __UpperCAmelCase: List[Any] = value elif weight_type == "inv_freq": __UpperCAmelCase: str = value else: __UpperCAmelCase: Optional[Any] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def UpperCamelCase__ ( _lowercase : int , _lowercase : Union[str, Any] , _lowercase : str ) -> List[Any]: __UpperCAmelCase: int = [] __UpperCAmelCase: str = fairseq_model.state_dict() __UpperCAmelCase: Dict = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __UpperCAmelCase: Any = False if "conv_layers" in name: load_conv_layer( _lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == """group""" , ) __UpperCAmelCase: Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): __UpperCAmelCase: Optional[int] = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __UpperCAmelCase: List[str] = True if "*" in mapped_key: __UpperCAmelCase: str = name.split(_lowercase )[0].split(""".""" )[-2] __UpperCAmelCase: Any = mapped_key.replace("""*""" , _lowercase ) if "pos_bias_u" in name: __UpperCAmelCase: Optional[Any] = None elif "pos_bias_v" in name: __UpperCAmelCase: List[Any] = None elif "weight_g" in name: __UpperCAmelCase: str = """weight_g""" elif "weight_v" in name: __UpperCAmelCase: List[str] = """weight_v""" elif "bias" in name: __UpperCAmelCase: List[Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCAmelCase: Optional[Any] = """weight""" elif "running_mean" in name: __UpperCAmelCase: Union[str, Any] = """running_mean""" elif "inv_freq" in name: __UpperCAmelCase: Optional[int] = """inv_freq""" elif "running_var" in name: __UpperCAmelCase: str = """running_var""" elif "num_batches_tracked" in name: __UpperCAmelCase: Dict = """num_batches_tracked""" else: __UpperCAmelCase: Optional[Any] = None set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) continue if not is_used: unused_weights.append(_lowercase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def UpperCamelCase__ ( _lowercase : str , _lowercase : int , _lowercase : int , _lowercase : List[str] , _lowercase : Tuple ) -> List[str]: __UpperCAmelCase: List[str] = full_name.split("""conv_layers.""" )[-1] __UpperCAmelCase: Dict = name.split(""".""" ) __UpperCAmelCase: Union[str, Any] = int(items[0] ) __UpperCAmelCase: List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __UpperCAmelCase: Dict = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __UpperCAmelCase: Optional[Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) __UpperCAmelCase: Dict = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) __UpperCAmelCase: str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowercase ) @torch.no_grad() def UpperCamelCase__ ( _lowercase : Dict , _lowercase : List[str] , _lowercase : Any=None , _lowercase : str=None , _lowercase : Optional[int]=True ) -> Tuple: if config_path is not None: __UpperCAmelCase: Optional[int] = WavaVecaConformerConfig.from_pretrained(_lowercase , hidden_act="""swish""" ) else: __UpperCAmelCase: Dict = WavaVecaConformerConfig() if "rope" in checkpoint_path: __UpperCAmelCase: Dict = """rotary""" if is_finetuned: if dict_path: __UpperCAmelCase: Dict = Dictionary.load(_lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCAmelCase: Optional[int] = target_dict.pad_index __UpperCAmelCase: Union[str, Any] = target_dict.bos_index __UpperCAmelCase: int = target_dict.eos_index __UpperCAmelCase: int = len(target_dict.symbols ) __UpperCAmelCase: Tuple = os.path.join(_lowercase , """vocab.json""" ) if not os.path.isdir(_lowercase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowercase ) ) return os.makedirs(_lowercase , exist_ok=_lowercase ) __UpperCAmelCase: Union[str, Any] = target_dict.indices # fairseq has the <pad> and <s> switched __UpperCAmelCase: Optional[Any] = 0 __UpperCAmelCase: List[Any] = 1 with open(_lowercase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(_lowercase , _lowercase ) __UpperCAmelCase: Tuple = WavaVecaCTCTokenizer( _lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowercase , ) __UpperCAmelCase: Any = True if config.feat_extract_norm == """layer""" else False __UpperCAmelCase: int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=_lowercase , return_attention_mask=_lowercase , ) __UpperCAmelCase: List[Any] = WavaVecaProcessor(feature_extractor=_lowercase , tokenizer=_lowercase ) processor.save_pretrained(_lowercase ) __UpperCAmelCase: List[Any] = WavaVecaConformerForCTC(_lowercase ) else: __UpperCAmelCase: Dict = WavaVecaConformerForPreTraining(_lowercase ) if is_finetuned: __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase: List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __UpperCAmelCase: Dict = argparse.Namespace(task="""audio_pretraining""" ) __UpperCAmelCase: Any = fairseq.tasks.setup_task(_lowercase ) __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase: str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowercase ) __UpperCAmelCase: Dict = model[0].eval() recursively_load_weights(_lowercase , _lowercase , not is_finetuned ) hf_wavavec.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
523
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True}) lowerCAmelCase_ = Features({"""text""": Value("""string""")}) lowerCAmelCase_ = Features({}) lowerCAmelCase_ = "text" @property def UpperCAmelCase_ ( self )-> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
3
0
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowercase__ : List[str] = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n' lowercase__ : Optional[Any] = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n' lowercase__ : Optional[int] = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCamelCase__ ( _A , _A ): '''simple docstring''' return float((preds == labels).mean() ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = simple_accuracy(_A , _A ) snake_case_ = float(fa_score(y_true=_A , y_pred=_A ) ) return { "accuracy": acc, "f1": fa, } def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = float(pearsonr(_A , _A )[0] ) snake_case_ = float(spearmanr(_A , _A )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def snake_case__ ( self : List[str] ): """simple docstring""" if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( "You should supply a configuration name selected in " "[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", " "\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "stsb" else "float32" ), "references": datasets.Value("int64" if self.config_name != "stsb" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def snake_case__ ( self : Dict , __lowercase : Union[str, Any] , __lowercase : Dict ): """simple docstring""" if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(A_ , A_ )} elif self.config_name == "stsb": return pearson_and_spearman(A_ , A_ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(A_ , A_ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(A_ , A_ )} else: raise KeyError( "You should supply a configuration name selected in " "[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", " "\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]" )
376
'''simple docstring''' from __future__ import annotations lowerCAmelCase : Union[str, Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCAmelCase : List[str] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def A_( A : list[float]): UpperCamelCase = [] UpperCamelCase = len(A) for i in range(A): UpperCamelCase = -1 for j in range(i + 1 , A): if arr[i] < arr[j]: UpperCamelCase = arr[j] break result.append(A) return result def A_( A : list[float]): UpperCamelCase = [] for i, outer in enumerate(A): UpperCamelCase = -1 for inner in arr[i + 1 :]: if outer < inner: UpperCamelCase = inner break result.append(A) return result def A_( A : list[float]): UpperCamelCase = len(A) UpperCamelCase = [] UpperCamelCase = [-1] * arr_size for index in reversed(range(A)): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: UpperCamelCase = stack[-1] stack.append(arr[index]) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCAmelCase : Optional[Any] = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
3
0
'''simple docstring''' import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput A__ : int = 'scheduler_config.json' class snake_case__ ( snake_case_ ): A__ = 1 A__ = 2 A__ = 3 A__ = 4 A__ = 5 @dataclass class snake_case__ ( snake_case_ ): A__ = 42 class snake_case__ : A__ = SCHEDULER_CONFIG_NAME A__ = ['''dtype'''] A__ = [] A__ = True @classmethod def A_ ( cls : Optional[int] , __a : Optional[Any] = None , __a : Tuple = None , __a : Optional[int]=False , **__a : List[Any] , ) -> Tuple: '''simple docstring''' __snake_case , __snake_case : int = cls.load_config( pretrained_model_name_or_path=A_ , subfolder=A_ , return_unused_kwargs=A_ , **A_ , ) __snake_case , __snake_case : int = cls.from_config(A_ , return_unused_kwargs=A_ , **A_ ) if hasattr(A_ , 'create_state' ) and getattr(A_ , 'has_state' , A_ ): __snake_case : List[str] = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def A_ ( self : Optional[Any] , __a : int , __a : Any = False , **__a : Optional[int] ) -> Any: '''simple docstring''' self.save_config(save_directory=A_ , push_to_hub=A_ , **A_ ) @property def A_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' return self._get_compatibles() @classmethod def A_ ( cls : List[str] ) -> Any: '''simple docstring''' __snake_case : str = list(set([cls.__name__] + cls._compatibles ) ) __snake_case : Tuple = importlib.import_module(__name__.split('.' )[0] ) __snake_case : Union[str, Any] = [ getattr(A_ , A_ ) for c in compatible_classes_str if hasattr(A_ , A_ ) ] return compatible_classes def a_ ( _UpperCAmelCase : jnp.ndarray ,_UpperCAmelCase : Tuple[int] ) -> int: assert len(_UpperCAmelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_UpperCAmelCase ) - x.ndim) ) ,_UpperCAmelCase ) def a_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int=0.9_9_9 ,_UpperCAmelCase : List[Any]=jnp.floataa ) -> Tuple: def alpha_bar(_UpperCAmelCase : Union[str, Any] ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 __snake_case : Optional[Any] = [] for i in range(_UpperCAmelCase ): __snake_case : Optional[Any] = i / num_diffusion_timesteps __snake_case : Optional[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_UpperCAmelCase ) / alpha_bar(_UpperCAmelCase ) ,_UpperCAmelCase ) ) return jnp.array(_UpperCAmelCase ,dtype=_UpperCAmelCase ) @flax.struct.dataclass class snake_case__ : A__ = 42 A__ = 42 A__ = 42 @classmethod def A_ ( cls : List[Any] , __a : List[Any] ) -> str: '''simple docstring''' __snake_case : Dict = scheduler.config if config.trained_betas is not None: __snake_case : Any = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __snake_case : Union[str, Any] = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __snake_case : int = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __snake_case : int = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) __snake_case : List[str] = 1.0 - betas __snake_case : Optional[Any] = jnp.cumprod(A_ , axis=0 ) return cls( alphas=A_ , betas=A_ , alphas_cumprod=A_ , ) def a_ ( _UpperCAmelCase : CommonSchedulerState ,_UpperCAmelCase : jnp.ndarray ,_UpperCAmelCase : jnp.ndarray ,_UpperCAmelCase : jnp.ndarray ) -> Optional[int]: __snake_case : Optional[int] = state.alphas_cumprod __snake_case : Any = alphas_cumprod[timesteps] ** 0.5 __snake_case : Tuple = sqrt_alpha_prod.flatten() __snake_case : Tuple = broadcast_to_shape_from_left(_UpperCAmelCase ,original_samples.shape ) __snake_case : Tuple = (1 - alphas_cumprod[timesteps]) ** 0.5 __snake_case : Optional[Any] = sqrt_one_minus_alpha_prod.flatten() __snake_case : Optional[Any] = broadcast_to_shape_from_left(_UpperCAmelCase ,original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def a_ ( _UpperCAmelCase : CommonSchedulerState ,_UpperCAmelCase : jnp.ndarray ,_UpperCAmelCase : jnp.ndarray ,_UpperCAmelCase : jnp.ndarray ) -> Any: __snake_case , __snake_case : int = get_sqrt_alpha_prod(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) __snake_case : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def a_ ( _UpperCAmelCase : CommonSchedulerState ,_UpperCAmelCase : jnp.ndarray ,_UpperCAmelCase : jnp.ndarray ,_UpperCAmelCase : jnp.ndarray ) -> int: __snake_case , __snake_case : int = get_sqrt_alpha_prod(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) __snake_case : List[Any] = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
286
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def A_( A : str): if not sentence: return "" UpperCamelCase = dict(zip(A , A)) return lower_to_upper.get(sentence[0] , sentence[0]) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
3
0
from abc import ABC, abstractmethod from typing import List, Optional class SCREAMING_SNAKE_CASE__ ( snake_case_ ): """simple docstring""" def __init__( self : List[Any] ): self.test() def _lowercase ( self : List[Any] ): snake_case__ : List[Any] = 0 snake_case__ : Union[str, Any] = False while not completed: if counter == 1: self.reset() snake_case__ : int = self.advance() if not self.does_advance(A_ ): raise Exception( "Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true." ) snake_case__, snake_case__, snake_case__ : List[Any] = self.update(A_ ) counter += 1 if counter > 1_0_0_0_0: raise Exception("update() does not fulfill the constraint." ) if self.remaining() != 0: raise Exception("Custom Constraint is not defined correctly." ) @abstractmethod def _lowercase ( self : str ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _lowercase ( self : int , __A : Dict ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _lowercase ( self : Union[str, Any] , __A : Any ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _lowercase ( self : Dict ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _lowercase ( self : Tuple ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _lowercase ( self : List[str] , __A : Optional[int]=False ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class SCREAMING_SNAKE_CASE__ ( snake_case_ ): """simple docstring""" def __init__( self : List[Any] , __A : Optional[int] ): super(A_ , self ).__init__() if not isinstance(A_ , A_ ) or len(A_ ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) snake_case__ : Union[str, Any] = token_ids snake_case__ : Optional[Any] = len(self.token_ids ) snake_case__ : str = -1 # the index of the currently fulfilled step snake_case__ : int = False def _lowercase ( self : int ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def _lowercase ( self : Optional[Any] , __A : str ): if not isinstance(A_ , A_ ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def _lowercase ( self : Tuple , __A : Dict ): if not isinstance(A_ , A_ ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}''' ) snake_case__ : List[str] = False snake_case__ : Dict = False snake_case__ : List[str] = False if self.does_advance(A_ ): self.fulfilled_idx += 1 snake_case__ : int = True if self.fulfilled_idx == (self.seqlen - 1): snake_case__ : Optional[int] = True snake_case__ : Any = completed else: # failed to make progress. snake_case__ : Any = True self.reset() return stepped, completed, reset def _lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = False snake_case__ : List[Any] = 0 def _lowercase ( self : List[str] ): return self.seqlen - (self.fulfilled_idx + 1) def _lowercase ( self : str , __A : Tuple=False ): snake_case__ : int = PhrasalConstraint(self.token_ids ) if stateful: snake_case__ : Dict = self.seqlen snake_case__ : Dict = self.fulfilled_idx snake_case__ : Tuple = self.completed return new_constraint class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : Union[str, Any] , __A : Dict=True ): snake_case__ : Optional[Any] = max([len(A_ ) for one in nested_token_ids] ) snake_case__ : int = {} for token_ids in nested_token_ids: snake_case__ : List[Any] = root for tidx, token_id in enumerate(A_ ): if token_id not in level: snake_case__ : int = {} snake_case__ : Optional[int] = level[token_id] if no_subsets and self.has_subsets(A_ , A_ ): raise ValueError( "Each list in `nested_token_ids` can\'t be a complete subset of another list, but is" f''' {nested_token_ids}.''' ) snake_case__ : Optional[Any] = root def _lowercase ( self : List[str] , __A : str ): snake_case__ : str = self.trie for current_token in current_seq: snake_case__ : Union[str, Any] = start[current_token] snake_case__ : Optional[int] = list(start.keys() ) return next_tokens def _lowercase ( self : List[Any] , __A : Optional[Any] ): snake_case__ : List[str] = self.next_tokens(A_ ) return len(A_ ) == 0 def _lowercase ( self : Optional[Any] , __A : Dict ): snake_case__ : Tuple = list(root.values() ) if len(A_ ) == 0: return 1 else: return sum([self.count_leaves(A_ ) for nn in next_nodes] ) def _lowercase ( self : Tuple , __A : str , __A : Dict ): snake_case__ : int = self.count_leaves(A_ ) return len(A_ ) != leaf_count class SCREAMING_SNAKE_CASE__ ( snake_case_ ): """simple docstring""" def __init__( self : Dict , __A : Tuple ): super(A_ , self ).__init__() if not isinstance(A_ , A_ ) or len(A_ ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(A_ , A_ ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) snake_case__ : Any = DisjunctiveTrie(A_ ) snake_case__ : Optional[Any] = nested_token_ids snake_case__ : Tuple = self.trie.max_height snake_case__ : Union[str, Any] = [] snake_case__ : int = False def _lowercase ( self : Union[str, Any] ): snake_case__ : Optional[int] = self.trie.next_tokens(self.current_seq ) if len(A_ ) == 0: return None else: return token_list def _lowercase ( self : Any , __A : List[Any] ): if not isinstance(A_ , A_ ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}''' ) snake_case__ : str = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def _lowercase ( self : List[str] , __A : List[str] ): if not isinstance(A_ , A_ ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}''' ) snake_case__ : Dict = False snake_case__ : Optional[Any] = False snake_case__ : Any = False if self.does_advance(A_ ): self.current_seq.append(A_ ) snake_case__ : Optional[Any] = True else: snake_case__ : Any = True self.reset() snake_case__ : str = self.trie.reached_leaf(self.current_seq ) snake_case__ : Dict = completed return stepped, completed, reset def _lowercase ( self : str ): snake_case__ : List[Any] = False snake_case__ : Optional[Any] = [] def _lowercase ( self : Any ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def _lowercase ( self : List[Any] , __A : Optional[int]=False ): snake_case__ : Tuple = DisjunctiveConstraint(self.token_ids ) if stateful: snake_case__ : Dict = self.seqlen snake_case__ : Tuple = self.current_seq snake_case__ : List[Any] = self.completed return new_constraint class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Optional[int] , __A : List[str] ): snake_case__ : List[str] = constraints # max # of steps required to fulfill a given constraint snake_case__ : Any = max([c.seqlen for c in constraints] ) snake_case__ : Optional[int] = len(A_ ) snake_case__ : Any = False self.init_state() def _lowercase ( self : Optional[int] ): snake_case__ : Optional[Any] = [] snake_case__ : Tuple = None snake_case__ : Any = [constraint.copy(stateful=A_ ) for constraint in self.constraints] def _lowercase ( self : Any ): snake_case__ : Dict = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def _lowercase ( self : Union[str, Any] ): snake_case__ : int = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" snake_case__ : int = constraint.advance() if isinstance(A_ , A_ ): token_list.append(A_ ) elif isinstance(A_ , A_ ): token_list.extend(A_ ) else: snake_case__ : List[str] = self.inprogress_constraint.advance() if isinstance(A_ , A_ ): token_list.append(A_ ) elif isinstance(A_ , A_ ): token_list.extend(A_ ) if len(A_ ) == 0: return None else: return token_list def _lowercase ( self : int , __A : List[Any] ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint snake_case__, snake_case__ : List[str] = self.add(A_ ) # the entire list of constraints are fulfilled if self.completed: break def _lowercase ( self : Any , __A : str ): if not isinstance(A_ , A_ ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) snake_case__, snake_case__ : int = False, False if self.completed: snake_case__ : List[str] = True snake_case__ : Any = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state snake_case__, snake_case__, snake_case__ : Optional[Any] = self.inprogress_constraint.update(A_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=A_ ) ) snake_case__ : List[str] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) snake_case__ : str = None if len(self.pending_constraints ) == 0: # we're done! snake_case__ : Any = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(A_ ): snake_case__, snake_case__, snake_case__ : List[Any] = pending_constraint.update(A_ ) if not stepped: raise Exception( "`constraint.update(token_id)` is not yielding incremental progress, " "even though `constraint.does_advance(token_id)` is true." ) if complete: self.complete_constraints.append(A_ ) snake_case__ : str = None if not complete and stepped: snake_case__ : Union[str, Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". snake_case__ : Optional[Any] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. snake_case__ : str = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def _lowercase ( self : int , __A : str=True ): snake_case__ : Optional[int] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: snake_case__ : int = [ constraint.copy(stateful=A_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: snake_case__ : Tuple = self.inprogress_constraint.copy(stateful=A_ ) snake_case__ : Tuple = [constraint.copy() for constraint in self.pending_constraints] return new_state
297
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase : Dict = logging.get_logger(__name__) # General docstring lowerCAmelCase : str = 'RegNetConfig' # Base docstring lowerCAmelCase : str = 'facebook/regnet-y-040' lowerCAmelCase : Dict = [1, 10_88, 7, 7] # Image classification docstring lowerCAmelCase : Dict = 'facebook/regnet-y-040' lowerCAmelCase : int = 'tabby, tabby cat' lowerCAmelCase : int = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ = 3 , A_ = 1 , A_ = 1 , A_ = "relu" , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb UpperCamelCase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) UpperCamelCase = tf.keras.layers.ConvaD( filters=A_ , kernel_size=A_ , strides=A_ , padding='VALID' , groups=A_ , use_bias=A_ , name='convolution' , ) UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) UpperCamelCase = ACTaFN[activation] if activation is not None else tf.identity def UpperCAmelCase_ ( self , A_ )-> Any: '''simple docstring''' UpperCamelCase = self.convolution(self.padding(A_ ) ) UpperCamelCase = self.normalization(A_ ) UpperCamelCase = self.activation(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , **A_ )-> Optional[Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = config.num_channels UpperCamelCase = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = shape_list(A_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) UpperCamelCase = tf.transpose(A_ , perm=(0, 2, 3, 1) ) UpperCamelCase = self.embedder(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ = 2 , **A_ )-> List[Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = tf.keras.layers.ConvaD( filters=A_ , kernel_size=1 , strides=A_ , use_bias=A_ , name='convolution' ) UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) def UpperCAmelCase_ ( self , A_ , A_ = False )-> tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(A_ ) , training=A_ ) class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , **A_ )-> Optional[Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' ) UpperCamelCase = [ tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def UpperCAmelCase_ ( self , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.pooler(A_ ) for layer_module in self.attention: UpperCamelCase = layer_module(A_ ) UpperCamelCase = hidden_state * pooled return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Dict: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = in_channels != out_channels or stride != 1 UpperCamelCase = max(1 , out_channels // config.groups_width ) UpperCamelCase = ( TFRegNetShortCut(A_ , stride=A_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. UpperCamelCase = [ TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.2' ), ] UpperCamelCase = ACTaFN[config.hidden_act] def UpperCAmelCase_ ( self , A_ )-> Tuple: '''simple docstring''' UpperCamelCase = hidden_state for layer_module in self.layers: UpperCamelCase = layer_module(A_ ) UpperCamelCase = self.shortcut(A_ ) hidden_state += residual UpperCamelCase = self.activation(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Any: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = in_channels != out_channels or stride != 1 UpperCamelCase = max(1 , out_channels // config.groups_width ) UpperCamelCase = ( TFRegNetShortCut(A_ , stride=A_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) UpperCamelCase = [ TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(A_ , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.3' ), ] UpperCamelCase = ACTaFN[config.hidden_act] def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = hidden_state for layer_module in self.layers: UpperCamelCase = layer_module(A_ ) UpperCamelCase = self.shortcut(A_ ) hidden_state += residual UpperCamelCase = self.activation(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ , A_ = 2 , A_ = 2 , **A_ )-> Dict: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer UpperCamelCase = [ # downsampling is done in the first layer with stride of 2 layer(A_ , A_ , A_ , stride=A_ , name='layers.0' ), *[layer(A_ , A_ , A_ , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' for layer_module in self.layers: UpperCamelCase = layer_module(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , **A_ )-> str: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( A_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(A_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(A_ , A_ , A_ , depth=A_ , name=F'''stages.{i+1}''' ) ) def UpperCAmelCase_ ( self , A_ , A_ = False , A_ = True )-> TFBaseModelOutputWithNoAttention: '''simple docstring''' UpperCamelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCamelCase = hidden_states + (hidden_state,) UpperCamelCase = stage_module(A_ ) if output_hidden_states: UpperCamelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=A_ , hidden_states=A_ ) @keras_serializable class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): lowerCAmelCase_ = RegNetConfig def __init__( self , A_ , **A_ )-> Union[str, Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = config UpperCamelCase = TFRegNetEmbeddings(A_ , name='embedder' ) UpperCamelCase = TFRegNetEncoder(A_ , name='encoder' ) UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' ) @unpack_inputs def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_ = False , )-> TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.embedder(A_ , training=A_ ) UpperCamelCase = self.encoder( A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ ) UpperCamelCase = encoder_outputs[0] UpperCamelCase = self.pooler(A_ ) # Change to NCHW output format have uniformity in the modules UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) ) UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: UpperCamelCase = tuple([tf.transpose(A_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A_ , pooler_output=A_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = RegNetConfig lowerCAmelCase_ = """regnet""" lowerCAmelCase_ = """pixel_values""" @property def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} lowerCAmelCase : str = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase : List[str] = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ , *A_ , **A_ )-> List[Any]: '''simple docstring''' super().__init__(A_ , *A_ , **A_ ) UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_=False , )-> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.regnet( pixel_values=A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_): def __init__( self , A_ , *A_ , **A_ )-> str: '''simple docstring''' super().__init__(A_ , *A_ , **A_ ) UpperCamelCase = config.num_labels UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' ) # classification head UpperCamelCase = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase_ ( self , A_ = None , A_ = None , A_ = None , A_ = None , A_=False , )-> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.regnet( A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ ) UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase = self.classifier[0](A_ ) UpperCamelCase = self.classifier[1](A_ ) UpperCamelCase = None if labels is None else self.hf_compute_loss(labels=A_ , logits=A_ ) if not return_dict: UpperCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=A_ , logits=A_ , hidden_states=outputs.hidden_states )
3
0
"""simple docstring""" from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput a_ = logging.get_logger(__name__) # pylint: disable=invalid-name class A_(snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self , A , A = None , A = None ): super().__init__() _lowerCamelCase : List[Any] = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _lowerCamelCase : int = torch.zeros(A_ , A_ ) else: _lowerCamelCase : int = None _lowerCamelCase : str = torch.nn.Parameter(A_ ) class A_(snake_case_ ): """simple docstring""" a_ : int = 42 a_ : str = 42 a_ : int = 42 a_ : int = 42 a_ : Optional[Any] = 42 a_ : int = 42 def __init__( self , A , A , A , A , A , A , ): super().__init__() self.register_modules( vqvae=A_ , transformer=A_ , text_encoder=A_ , tokenizer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , ) def _lowerCAmelCase ( self , A , A , A ): _lowerCamelCase : Any = len(A_ ) if isinstance(A_ , A_ ) else 1 # get prompt text embeddings _lowerCamelCase : Optional[int] = self.tokenizer( A_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) _lowerCamelCase : Any = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _lowerCamelCase : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) _lowerCamelCase : List[Any] = text_input_ids[:, : self.tokenizer.model_max_length] _lowerCamelCase : Dict = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _lowerCamelCase : Optional[int] = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate text embeddings for each generation per prompt _lowerCamelCase : List[str] = prompt_embeds.repeat_interleave(A_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _lowerCamelCase : Tuple = self.learned_classifier_free_sampling_embeddings.embeddings _lowerCamelCase : List[Any] = negative_prompt_embeds.unsqueeze(0 ).repeat(A_ , 1 , 1 ) else: _lowerCamelCase : Optional[Any] = [''] * batch_size _lowerCamelCase : Tuple = text_input_ids.shape[-1] _lowerCamelCase : int = self.tokenizer( A_ , padding='max_length' , max_length=A_ , truncation=A_ , return_tensors='pt' , ) _lowerCamelCase : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _lowerCamelCase : Tuple = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _lowerCamelCase : List[str] = negative_prompt_embeds.shape[1] _lowerCamelCase : Any = negative_prompt_embeds.repeat(1 , A_ , 1 ) _lowerCamelCase : Any = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase : Optional[int] = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , A , A = 100 , A = 5.0 , A = 1.0 , A = 1 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , ): if isinstance(A_ , A_ ): _lowerCamelCase : List[str] = 1 elif isinstance(A_ , A_ ): _lowerCamelCase : Union[str, Any] = len(A_ ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(A_ )}" ) _lowerCamelCase : Optional[Any] = batch_size * num_images_per_prompt _lowerCamelCase : List[str] = guidance_scale > 1.0 _lowerCamelCase : Tuple = self._encode_prompt(A_ , A_ , A_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A_ , A_ ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(A_ )}." ) # get the initial completely masked latents unless the user supplied it _lowerCamelCase : List[Any] = (batch_size, self.transformer.num_latent_pixels) if latents is None: _lowerCamelCase : Optional[int] = self.transformer.num_vector_embeds - 1 _lowerCamelCase : Dict = torch.full(A_ , A_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' F" {self.transformer.num_vector_embeds - 1} (inclusive)." ) _lowerCamelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(A_ , device=self.device ) _lowerCamelCase : Optional[int] = self.scheduler.timesteps.to(self.device ) _lowerCamelCase : Optional[Any] = latents for i, t in enumerate(self.progress_bar(A_ ) ): # expand the sample if we are doing classifier free guidance _lowerCamelCase : Dict = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _lowerCamelCase : Optional[Any] = self.transformer(A_ , encoder_hidden_states=A_ , timestep=A_ ).sample if do_classifier_free_guidance: _lowerCamelCase , _lowerCamelCase : List[Any] = model_output.chunk(2 ) _lowerCamelCase : List[Any] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(A_ , dim=1 , keepdim=A_ ) _lowerCamelCase : List[str] = self.truncate(A_ , A_ ) # remove `log(0)`'s (`-inf`s) _lowerCamelCase : List[Any] = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase : Union[str, Any] = self.scheduler.step(A_ , timestep=A_ , sample=A_ , generator=A_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A_ , A_ , A_ ) _lowerCamelCase : Union[str, Any] = self.vqvae.config.vq_embed_dim _lowerCamelCase : int = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _lowerCamelCase : List[str] = self.vqvae.quantize.get_codebook_entry(A_ , shape=A_ ) _lowerCamelCase : Optional[int] = self.vqvae.decode(A_ , force_not_quantize=A_ ).sample _lowerCamelCase : str = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCamelCase : List[str] = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ ) def _lowerCAmelCase ( self , A , A ): _lowerCamelCase , _lowerCamelCase : Any = torch.sort(A_ , 1 , descending=A_ ) _lowerCamelCase : List[Any] = torch.exp(A_ ) _lowerCamelCase : List[Any] = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _lowerCamelCase : Tuple = torch.full_like(keep_mask[:, 0:1, :] , A_ ) _lowerCamelCase : List[str] = torch.cat((all_true, keep_mask) , dim=1 ) _lowerCamelCase : Optional[Any] = keep_mask[:, :-1, :] _lowerCamelCase : Optional[Any] = keep_mask.gather(1 , indices.argsort(1 ) ) _lowerCamelCase : Dict = log_p_x_0.clone() _lowerCamelCase : Optional[int] = -torch.inf # -inf = log(0) return rv
437
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Optional[int] = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """perceiver""" def __init__( self , A_=256 , A_=1280 , A_=768 , A_=1 , A_=26 , A_=8 , A_=8 , A_=None , A_=None , A_="kv" , A_=1 , A_=1 , A_="gelu" , A_=0.1 , A_=0.02 , A_=1e-12 , A_=True , A_=262 , A_=2048 , A_=56 , A_=[368, 496] , A_=16 , A_=1920 , A_=16 , A_=[1, 16, 224, 224] , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = num_latents UpperCamelCase = d_latents UpperCamelCase = d_model UpperCamelCase = num_blocks UpperCamelCase = num_self_attends_per_block UpperCamelCase = num_self_attention_heads UpperCamelCase = num_cross_attention_heads UpperCamelCase = qk_channels UpperCamelCase = v_channels UpperCamelCase = cross_attention_shape_for_attention UpperCamelCase = self_attention_widening_factor UpperCamelCase = cross_attention_widening_factor UpperCamelCase = hidden_act UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = use_query_residual # masked language modeling attributes UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings # image classification attributes UpperCamelCase = image_size # flow attributes UpperCamelCase = train_size # multimodal autoencoding attributes UpperCamelCase = num_frames UpperCamelCase = audio_samples_per_frame UpperCamelCase = samples_per_patch UpperCamelCase = output_shape class SCREAMING_SNAKE_CASE__ ( snake_case_): @property def UpperCAmelCase_ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def UpperCAmelCase_ ( self )-> float: '''simple docstring''' return 1e-4 def UpperCAmelCase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = -1 , A_ = False , A_ = None , A_ = 3 , A_ = 40 , A_ = 40 , )-> Mapping[str, Any]: '''simple docstring''' if isinstance(A_ , A_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase = preprocessor.num_special_tokens_to_add(A_ ) UpperCamelCase = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase = [' '.join(['a'] ) * seq_length] * batch_size UpperCamelCase = dict(preprocessor(A_ , return_tensors=A_ ) ) UpperCamelCase = inputs.pop('input_ids' ) return inputs elif isinstance(A_ , A_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase = compute_effective_axis_dimension(A_ , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCamelCase = self._generate_dummy_images(A_ , A_ , A_ , A_ ) UpperCamelCase = dict(preprocessor(images=A_ , return_tensors=A_ ) ) UpperCamelCase = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
3
0
from string import ascii_uppercase UpperCamelCase_ = {char: i for i, char in enumerate(ascii_uppercase)} UpperCamelCase_ = dict(enumerate(ascii_uppercase)) def _UpperCAmelCase ( UpperCamelCase: str , UpperCamelCase: str ): """simple docstring""" __lowerCAmelCase = len(UpperCamelCase ) __lowerCAmelCase = 0 while True: if x == i: __lowerCAmelCase = 0 if len(UpperCamelCase ) == len(UpperCamelCase ): break key += key[i] i += 1 return key def _UpperCAmelCase ( UpperCamelCase: str , UpperCamelCase: str ): """simple docstring""" __lowerCAmelCase = "" __lowerCAmelCase = 0 for letter in message: if letter == " ": cipher_text += " " else: __lowerCAmelCase = (dicta[letter] - dicta[key_new[i]]) % 2_6 i += 1 cipher_text += dicta[x] return cipher_text def _UpperCAmelCase ( UpperCamelCase: str , UpperCamelCase: str ): """simple docstring""" __lowerCAmelCase = "" __lowerCAmelCase = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __lowerCAmelCase = (dicta[letter] + dicta[key_new[i]] + 2_6) % 2_6 i += 1 or_txt += dicta[x] return or_txt def _UpperCAmelCase ( ): """simple docstring""" __lowerCAmelCase = "THE GERMAN ATTACK" __lowerCAmelCase = "SECRET" __lowerCAmelCase = generate_key(UpperCamelCase , UpperCamelCase ) __lowerCAmelCase = cipher_text(UpperCamelCase , UpperCamelCase ) print(F"Encrypted Text = {s}" ) print(F"Original Text = {original_text(UpperCamelCase , UpperCamelCase )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
611
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Dict = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """mctct""" def __init__( self , A_=8065 , A_=1536 , A_=36 , A_=6144 , A_=4 , A_=384 , A_=920 , A_=1e-5 , A_=0.3 , A_="relu" , A_=0.02 , A_=0.3 , A_=0.3 , A_=1 , A_=0 , A_=2 , A_=1 , A_=0.3 , A_=1 , A_=(7,) , A_=(3,) , A_=80 , A_=1 , A_=None , A_="sum" , A_=False , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = intermediate_size UpperCamelCase = num_attention_heads UpperCamelCase = attention_head_dim UpperCamelCase = max_position_embeddings UpperCamelCase = layer_norm_eps UpperCamelCase = layerdrop UpperCamelCase = hidden_act UpperCamelCase = initializer_range UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = pad_token_id UpperCamelCase = bos_token_id UpperCamelCase = eos_token_id UpperCamelCase = conv_glu_dim UpperCamelCase = conv_dropout UpperCamelCase = num_conv_layers UpperCamelCase = input_feat_per_channel UpperCamelCase = input_channels UpperCamelCase = conv_channels UpperCamelCase = ctc_loss_reduction UpperCamelCase = ctc_zero_infinity # prevents config testing fail with exporting to json UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ' F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
3
0
'''simple docstring''' from collections.abc import Callable def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: snake_case__ : Union[str, Any] = a snake_case__ : Any = b if function(__SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(__SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(__SCREAMING_SNAKE_CASE ) * function(__SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: snake_case__ : Optional[int] = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(__SCREAMING_SNAKE_CASE ) == 0: return mid elif function(__SCREAMING_SNAKE_CASE ) * function(__SCREAMING_SNAKE_CASE ) < 0: snake_case__ : str = mid else: snake_case__ : int = mid snake_case__ : Tuple = start + (end - start) / 2.0 return mid def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ) -> List[str]: return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
270
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase : Tuple = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase : Optional[int] = TaTokenizerFast lowerCAmelCase : Any = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase : Tuple = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
3
0
import os __lowercase = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000} def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[Any] = 0 __UpperCamelCase :List[Any] = 0 while index < len(SCREAMING_SNAKE_CASE ) - 1: __UpperCamelCase :Optional[int] = SYMBOLS[numerals[index]] __UpperCamelCase :List[Any] = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[str] = '''''' __UpperCamelCase :List[Any] = num // 1_000 numerals += m_count * "M" num %= 1_000 __UpperCamelCase :Union[str, Any] = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 __UpperCamelCase :Tuple = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def lowerCamelCase ( SCREAMING_SNAKE_CASE = "/p089_roman.txt" ): '''simple docstring''' __UpperCamelCase :List[str] = 0 with open(os.path.dirname(SCREAMING_SNAKE_CASE ) + roman_numerals_filename ) as filea: __UpperCamelCase :str = filea.readlines() for line in lines: __UpperCamelCase :Optional[int] = line.strip() __UpperCamelCase :int = parse_roman_numerals(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = generate_roman_numerals(SCREAMING_SNAKE_CASE ) savings += len(SCREAMING_SNAKE_CASE ) - len(SCREAMING_SNAKE_CASE ) return savings if __name__ == "__main__": print(F'{solution() = }')
167
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=False , A_=True , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , )-> Dict: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size if size is not None else {'height': 18, 'width': 20} UpperCamelCase = do_thumbnail UpperCamelCase = do_align_axis UpperCamelCase = do_pad UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase): lowerCAmelCase_ = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = DonutImageProcessingTester(self ) @property def UpperCAmelCase_ ( self )-> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'do_thumbnail' ) ) self.assertTrue(hasattr(A_ , 'do_align_long_axis' ) ) self.assertTrue(hasattr(A_ , 'do_pad' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' pass @is_flaky() def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
3
0
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''' ,[None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''' ,['''default''', 0, 100 * 2**20, 900 * 2**20] ) def UpperCamelCase( __UpperCamelCase : str ,__UpperCamelCase : List[Any] ,__UpperCamelCase : Tuple ): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config ,'''IN_MEMORY_MAX_SIZE''' ,__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: lowerCAmelCase_ : Any = dataset_size < in_memory_max_size else: lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Any = is_small_dataset(__UpperCamelCase ) assert result == expected
171
'''simple docstring''' def A_( A : list[int]): UpperCamelCase = [] if len(A) == 1: return [nums.copy()] for _ in range(len(A)): UpperCamelCase = nums.pop(0) UpperCamelCase = permute(A) for perm in permutations: perm.append(A) result.extend(A) nums.append(A) return result def A_( A : str): def backtrack(A : str): if start == len(A) - 1: output.append(nums[:]) else: for i in range(A , len(A)): UpperCamelCase , UpperCamelCase = nums[i], nums[start] backtrack(start + 1) UpperCamelCase , UpperCamelCase = nums[i], nums[start] # backtrack UpperCamelCase = [] backtrack(0) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCAmelCase : Dict = permutea([1, 2, 3]) print(res) doctest.testmod()
3
0
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' for i in table: res += inp[i - 1] return res def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: return data[1:] + data[0] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: SCREAMING_SNAKE_CASE_ : Any = '' for i in range(len(SCREAMING_SNAKE_CASE ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: SCREAMING_SNAKE_CASE_ : str = int('0b' + data[0] + data[-1] , 2 ) SCREAMING_SNAKE_CASE_ : List[Any] = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : Any = message[:4] SCREAMING_SNAKE_CASE_ : Union[str, Any] = message[4:] SCREAMING_SNAKE_CASE_ : Optional[Any] = apply_table(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = xor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = apply_sbox(SCREAMING_SNAKE_CASE , temp[:4] ) # noqa: E741 SCREAMING_SNAKE_CASE_ : Any = apply_sbox(SCREAMING_SNAKE_CASE , temp[4:] ) SCREAMING_SNAKE_CASE_ : str = '0' * (2 - len(SCREAMING_SNAKE_CASE )) + l # noqa: E741 SCREAMING_SNAKE_CASE_ : Optional[int] = '0' * (2 - len(SCREAMING_SNAKE_CASE )) + r SCREAMING_SNAKE_CASE_ : Optional[int] = apply_table(l + r , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = xor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return temp + right if __name__ == "__main__": lowerCAmelCase__: Dict = input("Enter 10 bit key: ") lowerCAmelCase__: Tuple = input("Enter 8 bit message: ") lowerCAmelCase__: Any = [6, 3, 7, 4, 8, 5, 10, 9] lowerCAmelCase__: Any = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowerCAmelCase__: Optional[int] = [2, 4, 3, 1] lowerCAmelCase__: List[str] = [2, 6, 3, 1, 4, 8, 5, 7] lowerCAmelCase__: Tuple = [4, 1, 3, 5, 7, 2, 8, 6] lowerCAmelCase__: Union[str, Any] = [4, 1, 2, 3, 2, 3, 4, 1] lowerCAmelCase__: Tuple = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowerCAmelCase__: Tuple = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowerCAmelCase__: Optional[Any] = apply_table(key, paa_table) lowerCAmelCase__: int = temp[:5] lowerCAmelCase__: str = temp[5:] lowerCAmelCase__: List[Any] = left_shift(left) lowerCAmelCase__: List[str] = left_shift(right) lowerCAmelCase__: Tuple = apply_table(left + right, pa_table) lowerCAmelCase__: Optional[int] = left_shift(left) lowerCAmelCase__: List[str] = left_shift(right) lowerCAmelCase__: int = left_shift(left) lowerCAmelCase__: str = left_shift(right) lowerCAmelCase__: int = apply_table(left + right, pa_table) # encryption lowerCAmelCase__: Union[str, Any] = apply_table(message, IP) lowerCAmelCase__: Dict = function(expansion, sa, sa, keya, temp) lowerCAmelCase__: int = temp[4:] + temp[:4] lowerCAmelCase__: str = function(expansion, sa, sa, keya, temp) lowerCAmelCase__: Dict = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption lowerCAmelCase__: Tuple = apply_table(CT, IP) lowerCAmelCase__: Optional[int] = function(expansion, sa, sa, keya, temp) lowerCAmelCase__: List[Any] = temp[4:] + temp[:4] lowerCAmelCase__: Dict = function(expansion, sa, sa, keya, temp) lowerCAmelCase__: Dict = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
345
'''simple docstring''' import colorsys from PIL import Image # type: ignore def A_( A : float , A : float , A : int): UpperCamelCase = x UpperCamelCase = y for step in range(A): # noqa: B007 UpperCamelCase = a * a - b * b + x UpperCamelCase = 2 * a * b + y UpperCamelCase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def A_( A : float): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def A_( A : float): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(A , 1 , 1)) def A_( A : int = 800 , A : int = 600 , A : float = -0.6 , A : float = 0 , A : float = 3.2 , A : int = 50 , A : bool = True , ): UpperCamelCase = Image.new('RGB' , (image_width, image_height)) UpperCamelCase = img.load() # loop through the image-coordinates for image_x in range(A): for image_y in range(A): # determine the figure-coordinates based on the image-coordinates UpperCamelCase = figure_width / image_width * image_height UpperCamelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCamelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCamelCase = get_distance(A , A , A) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCamelCase = get_color_coded_rgb(A) else: UpperCamelCase = get_black_and_white_rgb(A) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCAmelCase : Any = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
3
0
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def __SCREAMING_SNAKE_CASE ( a__ : str ) -> List[str]: # picklable for multiprocessing return x.sum() def __SCREAMING_SNAKE_CASE ( a__ : Union[str, Any] ) -> Union[str, Any]: # picklable for multiprocessing return i + 1 @dataclass class lowerCamelCase_ : _lowercase : Optional[int] = 42 _lowercase : Union[str, Any] = 42 class lowerCamelCase_ ( snake_case_ ): def lowerCAmelCase_ ( self : List[Any] ): __A : int = {} __A : Union[str, Any] = [] __A : Optional[Any] = 1 __A : List[Any] = [1, 2] __A : Dict = {"""a""": 1, """b""": 2} __A : Dict = {"""a""": [1, 2], """b""": [3, 4]} __A : Optional[Any] = {"""a""": {"""1""": 1}, """b""": 2} __A : Optional[Any] = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} __A : Tuple = {} __A : Any = [] __A : Union[str, Any] = 2 __A : List[Any] = [2, 3] __A : Optional[Any] = {"""a""": 2, """b""": 3} __A : Dict = {"""a""": [2, 3], """b""": [4, 5]} __A : List[Any] = {"""a""": {"""1""": 2}, """b""": 3} __A : Union[str, Any] = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) __A : Dict = 2 self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) __A : Any = {"""a""": np.eye(2 ), """b""": np.zeros(3 ), """c""": np.ones(2 )} __A : Any = {"""a""": 2, """b""": 0, """c""": 2} __A : List[Any] = { """a""": np.eye(2 ).astype(A_ ), """b""": np.zeros(3 ).astype(A_ ), """c""": np.ones(2 ).astype(A_ ), } self.assertEqual(map_nested(A_ , A_ , map_numpy=A_ ) , A_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(A_ , A_ , map_numpy=A_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(A_ , A_ , map_numpy=A_ , num_proc=A_ ) , A_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(A_ , A_ , map_numpy=A_ , num_proc=A_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(A_ ): # can't pickle a local lambda map_nested(lambda __A : x + 1 , A_ , num_proc=A_ ) def lowerCAmelCase_ ( self : Tuple ): __A : Dict = {"""a""": 1, """b""": 2} __A : int = {"""a""": 3, """b""": 4} __A : int = {"""a""": 5, """b""": 6} __A : List[str] = sorted([("""a""", (1, 3, 5)), ("""b""", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(A_ , A_ , A_ ) ) , A_ ) def lowerCAmelCase_ ( self : str ): class lowerCamelCase_ : _lowercase : List[str] = '''bar''' __A : Union[str, Any] = Foo() self.assertEqual(foo.my_attr , """bar""" ) with temporary_assignment(A_ , """my_attr""" , """BAR""" ): self.assertEqual(foo.my_attr , """BAR""" ) self.assertEqual(foo.my_attr , """bar""" ) @pytest.mark.parametrize( """iterable_length, num_proc, expected_num_proc""" ,[ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] ,) def __SCREAMING_SNAKE_CASE ( a__ : Optional[Any] ,a__ : str ,a__ : Optional[Any] ) -> Dict: with patch("""datasets.utils.py_utils._single_map_nested""" ) as mock_single_map_nested, patch( """datasets.parallel.parallel.Pool""" ) as mock_multiprocessing_pool: __A : List[Any] = {f"""{i}""": i for i in range(a__ )} __A : List[Any] = map_nested(lambda a__ : x + 10 ,a__ ,num_proc=a__ ,parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class lowerCamelCase_ ( snake_case_ ): @require_tf def lowerCAmelCase_ ( self : Tuple ): import tensorflow as tf from tensorflow.keras import layers __A : str = layers.Dense(2 ) def gen_random_output(): __A : int = tf.random.uniform((1, 3) ) return model(A_ ).numpy() with temp_seed(42 , set_tensorflow=A_ ): __A : Optional[int] = gen_random_output() with temp_seed(42 , set_tensorflow=A_ ): __A : List[Any] = gen_random_output() __A : int = gen_random_output() np.testing.assert_equal(A_ , A_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def lowerCAmelCase_ ( self : List[Any] ): import torch def gen_random_output(): __A : Optional[int] = torch.nn.Linear(3 , 2 ) __A : List[str] = torch.rand(1 , 3 ) return model(A_ ).detach().numpy() with temp_seed(42 , set_pytorch=A_ ): __A : Union[str, Any] = gen_random_output() with temp_seed(42 , set_pytorch=A_ ): __A : Tuple = gen_random_output() __A : Union[str, Any] = gen_random_output() np.testing.assert_equal(A_ , A_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def lowerCAmelCase_ ( self : List[str] ): def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): __A : List[Any] = gen_random_output() with temp_seed(42 ): __A : List[Any] = gen_random_output() __A : Optional[Any] = gen_random_output() np.testing.assert_equal(A_ , A_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("""input_data""" ,[{}] ) def __SCREAMING_SNAKE_CASE ( a__ : Any ) -> Optional[Any]: __A : int = NestedDataStructure(a__ ).data assert output_data == input_data @pytest.mark.parametrize( """data, expected_output""" ,[ ({}, []), ([], []), ("""foo""", ["""foo"""]), (["""foo""", """bar"""], ["""foo""", """bar"""]), ([["""foo""", """bar"""]], ["""foo""", """bar"""]), ([[["""foo"""], ["""bar"""]]], ["""foo""", """bar"""]), ([[["""foo"""], """bar"""]], ["""foo""", """bar"""]), ({"""a""": 1, """b""": 2}, [1, 2]), ({"""a""": [1, 2], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[[3], [4]]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, [4]]}, [1, 2, 3, 4]), ({"""a""": {"""1""": 1}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": [2]}, [1, 2]), ] ,) def __SCREAMING_SNAKE_CASE ( a__ : Optional[Any] ,a__ : Optional[int] ) -> int: __A : Optional[int] = NestedDataStructure(a__ ).flatten() assert output == expected_output def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: __A : str = A(x=1 ,y="""foobar""" ) __A : Optional[Any] = {"""x""": 1, """y""": """foobar"""} assert asdict(a__ ) == expected_output __A : Tuple = {"""a""": {"""b""": A(x=10 ,y="""foo""" )}, """c""": [A(x=20 ,y="""bar""" )]} __A : List[str] = {"""a""": {"""b""": {"""x""": 10, """y""": """foo"""}}, """c""": [{"""x""": 20, """y""": """bar"""}]} assert asdict(a__ ) == expected_output with pytest.raises(a__ ): asdict([1, A(x=10 ,y="""foo""" )] ) def __SCREAMING_SNAKE_CASE ( a__ : str ) -> List[Any]: return text.split() def __SCREAMING_SNAKE_CASE ( a__ : Optional[int] ) -> Optional[Any]: yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def __SCREAMING_SNAKE_CASE ( ) -> List[str]: with Pool(2 ) as pool: __A : Any = list(iflatmap_unordered(a__ ,_split_text ,kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(a__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: __A : Optional[Any] = list(iflatmap_unordered(a__ ,_split_text ,kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(a__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: __A : Tuple = [] for yield_time, content in iflatmap_unordered( a__ ,_aseconds_generator_of_aitems_with_timing ,kwargs_iterable=[{"""content""": """a"""}, {"""content""": """b"""}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(a__ ) assert out.count("""a""" ) == 2 assert out.count("""b""" ) == 2 assert len(a__ ) == 4
17
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase : Optional[Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
0
'''simple docstring''' from __future__ import annotations import numpy as np def UpperCamelCase__ ( _lowercase : list[float] ) -> Optional[Any]: return np.maximum(0 , _lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
523
'''simple docstring''' lowerCAmelCase : Optional[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def A_( A : dict , A : str , A : Optional[Any]): UpperCamelCase = set() # keep track of all the paths to be checked UpperCamelCase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCamelCase = queue.pop(0) # get the last node from the path UpperCamelCase = path[-1] if node not in explored: UpperCamelCase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCamelCase = list(A) new_path.append(A) queue.append(A) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(A) # in case there's no path between the 2 nodes return [] def A_( A : dict , A : str , A : Tuple): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCamelCase = [start] UpperCamelCase = set(A) # Keep tab on distances from `start` node. UpperCamelCase = {start: 0, target: -1} while queue: UpperCamelCase = queue.pop(0) if node == target: UpperCamelCase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node]) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(A) queue.append(A) UpperCamelCase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
3
0
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowercase__ : Optional[Any] = logging.get_logger(__name__) class UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : Optional[Any]=None , __lowercase : Optional[Any]=None ): """simple docstring""" if not conversation_id: snake_case_ = uuid.uuida() if past_user_inputs is None: snake_case_ = [] if generated_responses is None: snake_case_ = [] snake_case_ = conversation_id snake_case_ = past_user_inputs snake_case_ = generated_responses snake_case_ = text def __eq__( self : Optional[int] , __lowercase : List[Any] ): """simple docstring""" if not isinstance(A_ , A_ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def snake_case__ ( self : Optional[Any] , __lowercase : int , __lowercase : Any = False ): """simple docstring""" if self.new_user_input: if overwrite: logger.warning( f"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " f"with: \"{text}\"." ) snake_case_ = text else: logger.warning( f"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " f"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: snake_case_ = text def snake_case__ ( self : Union[str, Any] ): """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) snake_case_ = None def snake_case__ ( self : Dict , __lowercase : Tuple ): """simple docstring""" self.generated_responses.append(A_ ) def snake_case__ ( self : Optional[int] ): """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Any ): """simple docstring""" snake_case_ = f"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): snake_case_ = "user" if is_user else "bot" output += f"{name} >> {text} \n" return output @add_end_docstrings( snake_case_ , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class UpperCAmelCase ( snake_case_ ): '''simple docstring''' def __init__( self : Optional[Any] , *__lowercase : List[str] , **__lowercase : str ): """simple docstring""" super().__init__(*A_ , **A_ ) if self.tokenizer.pad_token_id is None: snake_case_ = self.tokenizer.eos_token def snake_case__ ( self : List[Any] , __lowercase : int=None , __lowercase : List[str]=None , __lowercase : Dict=None , **__lowercase : List[str] ): """simple docstring""" snake_case_ = {} snake_case_ = {} snake_case_ = {} if min_length_for_response is not None: snake_case_ = min_length_for_response if minimum_tokens is not None: snake_case_ = minimum_tokens if "max_length" in generate_kwargs: snake_case_ = generate_kwargs["max_length"] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: snake_case_ = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(A_ ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[Any] , __lowercase : str , __lowercase : str=0 , **__lowercase : Union[str, Any] ): """simple docstring""" snake_case_ = super().__call__(A_ , num_workers=A_ , **A_ ) if isinstance(A_ , A_ ) and len(A_ ) == 1: return outputs[0] return outputs def snake_case__ ( self : Dict , __lowercase : int , __lowercase : Optional[Any]=32 ): """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError("ConversationalPipeline, expects Conversation as inputs" ) if conversation.new_user_input is None: raise ValueError( f"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " "Add user inputs with the conversation\'s `add_user_input` method" ) if hasattr(self.tokenizer , "_build_conversation_input_ids" ): snake_case_ = self.tokenizer._build_conversation_input_ids(A_ ) else: # If the tokenizer cannot handle conversations, we default to only the old version snake_case_ = self._legacy_parse_and_tokenize(A_ ) if self.framework == "pt": snake_case_ = torch.LongTensor([input_ids] ) elif self.framework == "tf": snake_case_ = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def snake_case__ ( self : Any , __lowercase : int , __lowercase : Tuple=10 , **__lowercase : List[Any] ): """simple docstring""" snake_case_ = generate_kwargs.get("max_length" , self.model.config.max_length ) snake_case_ = model_inputs["input_ids"].shape[1] if max_length - minimum_tokens < n: logger.warning(f"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) snake_case_ = max_length - minimum_tokens snake_case_ = model_inputs["input_ids"][:, -trim:] if "attention_mask" in model_inputs: snake_case_ = model_inputs["attention_mask"][:, -trim:] snake_case_ = model_inputs.pop("conversation" ) snake_case_ = max_length snake_case_ = self.model.generate(**A_ , **A_ ) if self.model.config.is_encoder_decoder: snake_case_ = 1 else: snake_case_ = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def snake_case__ ( self : Union[str, Any] , __lowercase : Tuple , __lowercase : Tuple=True ): """simple docstring""" snake_case_ = model_outputs["output_ids"] snake_case_ = self.tokenizer.decode( output_ids[0] , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , ) snake_case_ = model_outputs["conversation"] conversation.mark_processed() conversation.append_response(A_ ) return conversation def snake_case__ ( self : str , __lowercase : int ): """simple docstring""" snake_case_ = self.tokenizer.eos_token_id snake_case_ = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) ) if len(A_ ) > self.tokenizer.model_max_length: snake_case_ = input_ids[-self.tokenizer.model_max_length :] return input_ids
376
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class SCREAMING_SNAKE_CASE__ : def __init__( self )-> Dict: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = '' UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = 256 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 def UpperCAmelCase_ ( self , A_ )-> str: '''simple docstring''' UpperCamelCase = cva.imread(A_ , 0 ) UpperCamelCase = copy.deepcopy(self.img ) UpperCamelCase , UpperCamelCase , UpperCamelCase = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) UpperCamelCase = np.sum(A_ ) for i in range(len(A_ ) ): UpperCamelCase = x[i] / self.k self.sk += prk UpperCamelCase = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase = int(last % last ) UpperCamelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(A_ ) UpperCamelCase = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase = self.img[j][i] if num != self.last_list[num]: UpperCamelCase = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') lowerCAmelCase : str = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
3
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class snake_case__ : def __init__( self : Dict , __a : Dict , __a : Tuple=13 , __a : Optional[Any]=7 , __a : str=True , __a : Optional[Any]=True , __a : Optional[int]=False , __a : Optional[int]=True , __a : Tuple=99 , __a : str=32 , __a : Optional[int]=5 , __a : List[str]=4 , __a : Tuple=37 , __a : str="gelu" , __a : Tuple=0.1 , __a : Union[str, Any]=0.1 , __a : List[str]=512 , __a : List[Any]=16 , __a : Optional[int]=2 , __a : int=0.0_2 , __a : List[str]=3 , __a : List[str]=4 , __a : List[str]=None , ) -> Optional[Any]: '''simple docstring''' __snake_case : Optional[Any] = parent __snake_case : Dict = batch_size __snake_case : List[Any] = seq_length __snake_case : Dict = is_training __snake_case : List[Any] = use_input_mask __snake_case : Any = use_token_type_ids __snake_case : int = use_labels __snake_case : int = vocab_size __snake_case : Tuple = hidden_size __snake_case : int = num_hidden_layers __snake_case : Optional[int] = num_attention_heads __snake_case : Any = intermediate_size __snake_case : Dict = hidden_act __snake_case : Any = hidden_dropout_prob __snake_case : List[str] = attention_probs_dropout_prob __snake_case : Any = max_position_embeddings __snake_case : Dict = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : Optional[int] = initializer_range __snake_case : Any = num_labels __snake_case : Any = num_choices __snake_case : Dict = scope def A_ ( self : Union[str, Any] ) -> int: '''simple docstring''' __snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any = None if self.use_input_mask: __snake_case : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Optional[Any] = None if self.use_token_type_ids: __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Tuple = None __snake_case : Optional[int] = None __snake_case : Optional[Any] = None if self.use_labels: __snake_case : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Dict = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self : int ) -> Dict: '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , use_stable_embedding=A_ , ) def A_ ( self : Any , __a : Any , __a : List[Any] , __a : Union[str, Any] , __a : str , __a : Optional[Any] , __a : str , __a : Union[str, Any] ) -> str: '''simple docstring''' __snake_case : Dict = OpenLlamaModel(config=A_ ) model.to(A_ ) model.eval() __snake_case : Union[str, Any] = model(A_ , attention_mask=A_ ) __snake_case : Union[str, Any] = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : Union[str, Any] , __a : int , __a : List[str] , __a : Tuple , __a : Any , __a : List[Any] , __a : List[Any] , __a : List[Any] , __a : str , __a : List[Any] , ) -> Tuple: '''simple docstring''' __snake_case : List[str] = True __snake_case : Tuple = OpenLlamaModel(A_ ) model.to(A_ ) model.eval() __snake_case : Tuple = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , ) __snake_case : str = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , ) __snake_case : Optional[int] = model(A_ , attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : Any , __a : str , __a : Optional[int] , __a : Tuple , __a : Tuple , __a : Optional[int] , __a : Optional[Any] , __a : List[Any] , __a : str , __a : str , ) -> str: '''simple docstring''' __snake_case : List[Any] = OpenLlamaForCausalLM(config=A_ ) model.to(A_ ) model.eval() __snake_case : int = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : str , __a : Union[str, Any] , __a : int , __a : int , __a : int , __a : str , __a : Tuple , __a : int , __a : str , __a : int , ) -> Any: '''simple docstring''' __snake_case : Union[str, Any] = True __snake_case : List[str] = True __snake_case : Any = OpenLlamaForCausalLM(config=A_ ) model.to(A_ ) model.eval() # first forward pass __snake_case : List[str] = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , use_cache=A_ , ) __snake_case : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case : str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __snake_case : int = torch.cat([input_ids, next_tokens] , dim=-1 ) __snake_case : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __snake_case : Dict = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , output_hidden_states=A_ , )['hidden_states'][0] __snake_case : Optional[int] = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , past_key_values=A_ , output_hidden_states=A_ , )['hidden_states'][0] # select random slice __snake_case : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __snake_case : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1e-3 ) ) def A_ ( self : Any ) -> Optional[int]: '''simple docstring''' __snake_case : Union[str, Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[str] = config_and_inputs __snake_case : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class snake_case__ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): A__ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) A__ = (OpenLlamaForCausalLM,) if is_torch_available() else () A__ = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) A__ = False A__ = False def A_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' __snake_case : Union[str, Any] = OpenLlamaModelTester(self ) __snake_case : int = ConfigTester(self , config_class=A_ , hidden_size=37 ) def A_ ( self : List[Any] ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def A_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def A_ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Dict = type self.model_tester.create_and_check_model(*A_ ) def A_ ( self : Dict ) -> Tuple: '''simple docstring''' __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Tuple = 3 __snake_case : int = input_dict['input_ids'] __snake_case : int = input_ids.ne(1 ).to(A_ ) __snake_case : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __snake_case : str = OpenLlamaForSequenceClassification(A_ ) model.to(A_ ) model.eval() __snake_case : str = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[int] = 3 __snake_case : Optional[Any] = 'single_label_classification' __snake_case : Dict = input_dict['input_ids'] __snake_case : Optional[Any] = input_ids.ne(1 ).to(A_ ) __snake_case : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __snake_case : Any = OpenLlamaForSequenceClassification(A_ ) model.to(A_ ) model.eval() __snake_case : Optional[int] = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[int] = 3 __snake_case : Tuple = 'multi_label_classification' __snake_case : Optional[int] = input_dict['input_ids'] __snake_case : str = input_ids.ne(1 ).to(A_ ) __snake_case : Dict = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __snake_case : Dict = OpenLlamaForSequenceClassification(A_ ) model.to(A_ ) model.eval() __snake_case : Union[str, Any] = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def A_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def A_ ( self : Optional[int] , __a : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[int] = ids_tensor([1, 10] , config.vocab_size ) __snake_case : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __snake_case : Optional[Any] = OpenLlamaModel(A_ ) original_model.to(A_ ) original_model.eval() __snake_case : List[str] = original_model(A_ ).last_hidden_state __snake_case : Union[str, Any] = original_model(A_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __snake_case : Any = {'type': scaling_type, 'factor': 1_0.0} __snake_case : Any = OpenLlamaModel(A_ ) scaled_model.to(A_ ) scaled_model.eval() __snake_case : Dict = scaled_model(A_ ).last_hidden_state __snake_case : Union[str, Any] = scaled_model(A_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A_ , A_ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A_ , A_ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A_ , A_ , atol=1e-5 ) )
286
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Tuple = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """unispeech-sat""" def __init__( self , A_=32 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.1 , A_=0.1 , A_=0.02 , A_=1e-5 , A_="group" , A_="gelu" , A_=(512, 512, 512, 512, 512, 512, 512) , A_=(5, 2, 2, 2, 2, 2, 2) , A_=(10, 3, 3, 3, 3, 2, 2) , A_=False , A_=128 , A_=16 , A_=False , A_=True , A_=0.05 , A_=10 , A_=2 , A_=0.0 , A_=10 , A_=0 , A_=320 , A_=2 , A_=0.1 , A_=100 , A_=256 , A_=256 , A_=0.1 , A_="mean" , A_=False , A_=False , A_=256 , A_=(512, 512, 512, 512, 1500) , A_=(5, 3, 3, 1, 1) , A_=(1, 2, 3, 1, 1) , A_=512 , A_=0 , A_=1 , A_=2 , A_=504 , **A_ , )-> Tuple: '''simple docstring''' super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) UpperCamelCase = hidden_size UpperCamelCase = feat_extract_norm UpperCamelCase = feat_extract_activation UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = conv_bias UpperCamelCase = num_conv_pos_embeddings UpperCamelCase = num_conv_pos_embedding_groups UpperCamelCase = len(self.conv_dim ) UpperCamelCase = num_hidden_layers UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = num_attention_heads UpperCamelCase = hidden_dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = feat_proj_dropout UpperCamelCase = final_dropout UpperCamelCase = layerdrop UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = vocab_size UpperCamelCase = num_clusters UpperCamelCase = do_stable_layer_norm UpperCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase = apply_spec_augment UpperCamelCase = mask_time_prob UpperCamelCase = mask_time_length UpperCamelCase = mask_time_min_masks UpperCamelCase = mask_feature_prob UpperCamelCase = mask_feature_length UpperCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCamelCase = num_codevectors_per_group UpperCamelCase = num_codevector_groups UpperCamelCase = contrastive_logits_temperature UpperCamelCase = feat_quantizer_dropout UpperCamelCase = num_negatives UpperCamelCase = codevector_dim UpperCamelCase = proj_codevector_dim UpperCamelCase = diversity_loss_weight # ctc loss UpperCamelCase = ctc_loss_reduction UpperCamelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = xvector_output_dim @property def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
3
0
import logging import os import threading import time try: import warnings except ImportError: __lowerCamelCase : str = None try: import msvcrt except ImportError: __lowerCamelCase : Optional[Any] = None try: import fcntl except ImportError: __lowerCamelCase : Any = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: __lowerCamelCase : Optional[Any] = OSError # Data # ------------------------------------------------ __lowerCamelCase : List[str] = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] __lowerCamelCase : Dict = '3.0.12' __lowerCamelCase : Optional[int] = None def SCREAMING_SNAKE_CASE ( ): global _logger snake_case__ : Tuple = _logger or logging.getLogger(__name__ ) return _logger class SCREAMING_SNAKE_CASE__ ( snake_case_ ): """simple docstring""" def __init__( self : Tuple , __A : Union[str, Any] ): snake_case__ : Optional[Any] = lock_file return None def __str__( self : int ): snake_case__ : List[str] = f'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : Optional[Any] ): snake_case__ : Optional[Any] = lock return None def __enter__( self : Optional[int] ): return self.lock def __exit__( self : Optional[int] , __A : List[Any] , __A : int , __A : int ): self.lock.release() return None class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Tuple , __A : List[Any] , __A : List[str]=-1 , __A : Optional[int]=None ): snake_case__ : Union[str, Any] = max_filename_length if max_filename_length is not None else 2_5_5 # Hash the filename if it's too long snake_case__ : Optional[int] = self.hash_filename_if_too_long(A_ , A_ ) # The path to the lock file. snake_case__ : Optional[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. snake_case__ : Optional[Any] = None # The default timeout value. snake_case__ : int = timeout # We use this lock primarily for the lock counter. snake_case__ : Any = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. snake_case__ : Any = 0 return None @property def _lowercase ( self : Optional[Any] ): return self._lock_file @property def _lowercase ( self : int ): return self._timeout @timeout.setter def _lowercase ( self : Dict , __A : List[Any] ): snake_case__ : str = float(A_ ) return None def _lowercase ( self : List[Any] ): raise NotImplementedError() def _lowercase ( self : Optional[Any] ): raise NotImplementedError() @property def _lowercase ( self : str ): return self._lock_file_fd is not None def _lowercase ( self : List[Any] , __A : int=None , __A : Union[str, Any]=0.0_5 ): if timeout is None: snake_case__ : str = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 snake_case__ : Optional[int] = id(self ) snake_case__ : List[Any] = self._lock_file snake_case__ : Dict = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'''Attempting to acquire lock {lock_id} on {lock_filename}''' ) self._acquire() if self.is_locked: logger().debug(f'''Lock {lock_id} acquired on {lock_filename}''' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'''Timeout on acquiring lock {lock_id} on {lock_filename}''' ) raise Timeout(self._lock_file ) else: logger().debug( f'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' ) time.sleep(A_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: snake_case__ : Dict = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def _lowercase ( self : Dict , __A : Union[str, Any]=False ): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: snake_case__ : Tuple = id(self ) snake_case__ : Tuple = self._lock_file logger().debug(f'''Attempting to release lock {lock_id} on {lock_filename}''' ) self._release() snake_case__ : Optional[Any] = 0 logger().debug(f'''Lock {lock_id} released on {lock_filename}''' ) return None def __enter__( self : Any ): self.acquire() return self def __exit__( self : str , __A : Any , __A : List[str] , __A : List[Any] ): self.release() return None def __del__( self : str ): self.release(force=A_ ) return None def _lowercase ( self : Optional[int] , __A : Optional[Any] , __A : Tuple ): snake_case__ : Dict = os.path.basename(A_ ) if len(A_ ) > max_length and max_length > 0: snake_case__ : Any = os.path.dirname(A_ ) snake_case__ : str = str(hash(A_ ) ) snake_case__ : Optional[Any] = filename[: max_length - len(A_ ) - 8] + "..." + hashed_filename + ".lock" return os.path.join(A_ , A_ ) else: return path class SCREAMING_SNAKE_CASE__ ( snake_case_ ): """simple docstring""" def __init__( self : Dict , __A : Optional[int] , __A : str=-1 , __A : Union[str, Any]=None ): from .file_utils import relative_to_absolute_path super().__init__(A_ , timeout=A_ , max_filename_length=A_ ) snake_case__ : str = "\\\\?\\" + relative_to_absolute_path(self.lock_file ) def _lowercase ( self : Optional[Any] ): snake_case__ : Dict = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: snake_case__ : str = os.open(self._lock_file , A_ ) except OSError: pass else: try: msvcrt.locking(A_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(A_ ) else: snake_case__ : int = fd return None def _lowercase ( self : List[str] ): snake_case__ : str = self._lock_file_fd snake_case__ : Union[str, Any] = None msvcrt.locking(A_ , msvcrt.LK_UNLCK , 1 ) os.close(A_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class SCREAMING_SNAKE_CASE__ ( snake_case_ ): """simple docstring""" def __init__( self : str , __A : List[Any] , __A : List[str]=-1 , __A : Optional[Any]=None ): snake_case__ : Dict = os.statvfs(os.path.dirname(A_ ) ).f_namemax super().__init__(A_ , timeout=A_ , max_filename_length=A_ ) def _lowercase ( self : Union[str, Any] ): snake_case__ : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC snake_case__ : Any = os.open(self._lock_file , A_ ) try: fcntl.flock(A_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(A_ ) else: snake_case__ : Tuple = fd return None def _lowercase ( self : Dict ): snake_case__ : Optional[int] = self._lock_file_fd snake_case__ : List[str] = None fcntl.flock(A_ , fcntl.LOCK_UN ) os.close(A_ ) return None class SCREAMING_SNAKE_CASE__ ( snake_case_ ): """simple docstring""" def _lowercase ( self : List[Any] ): snake_case__ : Union[str, Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: snake_case__ : Dict = os.open(self._lock_file , A_ ) except OSError: pass else: snake_case__ : int = fd return None def _lowercase ( self : Any ): os.close(self._lock_file_fd ) snake_case__ : List[str] = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None __lowerCamelCase : List[str] = None if msvcrt: __lowerCamelCase : Union[str, Any] = WindowsFileLock elif fcntl: __lowerCamelCase : Any = UnixFileLock else: __lowerCamelCase : Dict = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
297
'''simple docstring''' import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ , A_=100 , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=4 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=None , A_=[0, 1, 2, 3] , )-> Any: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = 100 UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = scope UpperCamelCase = out_indices UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = num_patches + 1 def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> List[str]: '''simple docstring''' UpperCamelCase = BeitModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Any: '''simple docstring''' UpperCamelCase = BeitForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.type_sequence_label_size UpperCamelCase = BeitForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = BeitForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[Any]: '''simple docstring''' UpperCamelCase = self.num_labels UpperCamelCase = BeitForSemanticSegmentation(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase_ = ( { """feature-extraction""": BeitModel, """image-classification""": BeitForImageClassification, """image-segmentation""": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = BeitModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A_ ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' if not self.model_tester.is_training: return UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(A_ ), BeitForMaskedImageModeling]: continue UpperCamelCase = model_class(A_ ) model.to(A_ ) model.train() UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ ) UpperCamelCase = model(**A_ ).loss loss.backward() def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase = False UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(A_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCamelCase = model_class(A_ ) model.gradient_checkpointing_enable() model.to(A_ ) model.train() UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ ) UpperCamelCase = model(**A_ ).loss loss.backward() def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = _config_zero_init(A_ ) for model_class in self.all_model_classes: UpperCamelCase = model_class(config=A_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = BeitModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A_( ): UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @cached_property def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).pixel_values.to(A_ ) # prepare bool_masked_pos UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(pixel_values=A_ , bool_masked_pos=A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(A_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , A_ , atol=1e-2 ) ) @slow def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(A_ ) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) ) UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , A_ ) @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 21841) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(A_ ) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) ) UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , A_ ) @slow def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) UpperCamelCase = model.to(A_ ) UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ ) UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) UpperCamelCase = Image.open(ds[0]['file'] ) UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: UpperCamelCase = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] , device=A_ , ) else: UpperCamelCase = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] , device=A_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1e-4 ) ) @slow def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) UpperCamelCase = model.to(A_ ) UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ ) UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) UpperCamelCase = Image.open(ds[0]['file'] ) UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits.detach().cpu() UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ , target_sizes=[(500, 300)] ) UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , A_ ) UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ ) UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , A_ )
3
0
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class A_(snake_case_ ): """simple docstring""" a_ : Dict = """efficientformer""" def __init__( self , A = [3, 2, 6, 4] , A = [48, 96, 224, 448] , A = [True, True, True, True] , A = 448 , A = 32 , A = 4 , A = 7 , A = 5 , A = 8 , A = 4 , A = 0.0 , A = 16 , A = 3 , A = 3 , A = 3 , A = 2 , A = 1 , A = 0.0 , A = 1 , A = True , A = True , A = 1E-5 , A = "gelu" , A = 0.0_2 , A = 1E-12 , A = 224 , A = 1E-05 , **A , ): super().__init__(**A_ ) _lowerCamelCase : Dict = hidden_act _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : str = hidden_sizes _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : int = patch_size _lowerCamelCase : int = num_channels _lowerCamelCase : Dict = depths _lowerCamelCase : Optional[int] = mlp_expansion_ratio _lowerCamelCase : str = downsamples _lowerCamelCase : Optional[Any] = dim _lowerCamelCase : List[str] = key_dim _lowerCamelCase : Optional[int] = attention_ratio _lowerCamelCase : List[str] = resolution _lowerCamelCase : str = pool_size _lowerCamelCase : int = downsample_patch_size _lowerCamelCase : int = downsample_stride _lowerCamelCase : Dict = downsample_pad _lowerCamelCase : Dict = drop_path_rate _lowerCamelCase : Any = num_metaad_blocks _lowerCamelCase : Tuple = distillation _lowerCamelCase : List[Any] = use_layer_scale _lowerCamelCase : Optional[Any] = layer_scale_init_value _lowerCamelCase : List[Any] = image_size _lowerCamelCase : List[str] = batch_norm_eps
437
'''simple docstring''' import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase : Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( enum.Enum): lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 @add_end_docstrings(snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """generated""" def __init__( self , *A_ , **A_ )-> Optional[int]: '''simple docstring''' super().__init__(*A_ , **A_ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , **A_ , )-> Optional[Any]: '''simple docstring''' UpperCamelCase = {} if truncation is not None: UpperCamelCase = truncation UpperCamelCase = generate_kwargs UpperCamelCase = {} if return_tensors is not None and return_type is None: UpperCamelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: UpperCamelCase = return_type if clean_up_tokenization_spaces is not None: UpperCamelCase = clean_up_tokenization_spaces if stop_sequence is not None: UpperCamelCase = self.tokenizer.encode(A_ , add_special_tokens=A_ ) if len(A_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) UpperCamelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' return True def UpperCAmelCase_ ( self , *A_ , A_ )-> Any: '''simple docstring''' UpperCamelCase = self.model.config.prefix if self.model.config.prefix is not None else '' if isinstance(args[0] , A_ ): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' ) UpperCamelCase = ([prefix + arg for arg in args[0]],) UpperCamelCase = True elif isinstance(args[0] , A_ ): UpperCamelCase = (prefix + args[0],) UpperCamelCase = False else: raise ValueError( F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) UpperCamelCase = self.tokenizer(*A_ , padding=A_ , truncation=A_ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A_ , **A_ )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = super().__call__(*A_ , **A_ ) if ( isinstance(args[0] , A_ ) and all(isinstance(A_ , A_ ) for el in args[0] ) and all(len(A_ ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase_ ( self , A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , **A_ )-> Any: '''simple docstring''' UpperCamelCase = self._parse_and_tokenize(A_ , truncation=A_ , **A_ ) return inputs def UpperCAmelCase_ ( self , A_ , **A_ )-> int: '''simple docstring''' if self.framework == "pt": UpperCamelCase , UpperCamelCase = model_inputs['input_ids'].shape elif self.framework == "tf": UpperCamelCase , UpperCamelCase = tf.shape(model_inputs['input_ids'] ).numpy() UpperCamelCase = generate_kwargs.get('min_length' , self.model.config.min_length ) UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) self.check_inputs(A_ , generate_kwargs['min_length'] , generate_kwargs['max_length'] ) UpperCamelCase = self.model.generate(**A_ , **A_ ) UpperCamelCase = output_ids.shape[0] if self.framework == "pt": UpperCamelCase = output_ids.reshape(A_ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": UpperCamelCase = tf.reshape(A_ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase_ ( self , A_ , A_=ReturnType.TEXT , A_=False )-> Optional[Any]: '''simple docstring''' UpperCamelCase = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: UpperCamelCase = {F'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: UpperCamelCase = { F'''{self.return_name}_text''': self.tokenizer.decode( A_ , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , ) } records.append(A_ ) return records @add_end_docstrings(snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """summary""" def __call__( self , *A_ , **A_ )-> Optional[int]: '''simple docstring''' return super().__call__(*A_ , **A_ ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> bool: '''simple docstring''' if max_length < min_length: logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' 'a summarization task, where outputs shorter than the input are typically wanted, you might ' F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """translation""" def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> List[Any]: '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' ) return True def UpperCAmelCase_ ( self , *A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , A_=None , A_=None )-> Dict: '''simple docstring''' if getattr(self.tokenizer , '_build_translation_inputs' , A_ ): return self.tokenizer._build_translation_inputs( *A_ , return_tensors=self.framework , truncation=A_ , src_lang=A_ , tgt_lang=A_ ) else: return super()._parse_and_tokenize(*A_ , truncation=A_ ) def UpperCAmelCase_ ( self , A_=None , A_=None , **A_ )-> str: '''simple docstring''' UpperCamelCase , UpperCamelCase , UpperCamelCase = super()._sanitize_parameters(**A_ ) if src_lang is not None: UpperCamelCase = src_lang if tgt_lang is not None: UpperCamelCase = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. UpperCamelCase = kwargs.get('task' , self.task ) UpperCamelCase = task.split('_' ) if task and len(A_ ) == 4: # translation, XX, to YY UpperCamelCase = items[1] UpperCamelCase = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A_ , **A_ )-> Any: '''simple docstring''' return super().__call__(*A_ , **A_ )
3
0
from PIL import Image def _UpperCAmelCase ( UpperCamelCase: Image , UpperCamelCase: float ): """simple docstring""" def brightness(UpperCamelCase: int ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError("level must be between -255.0 (black) and 255.0 (white)" ) return img.point(UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 UpperCamelCase_ = change_brightness(img, 1_0_0) brigt_img.save("image_data/lena_brightness.png", format="png")
611
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = 0 lowerCAmelCase_ = False lowerCAmelCase_ = 3.0 class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def UpperCAmelCase_ ( self )-> int: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=A_ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() UpperCamelCase = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , A_ ) @require_multi_gpu def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_ , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase : Tuple = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCAmelCase : List[str] = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCAmelCase : List[Any] = torch.nn.Linear(1_00, 2_00) lowerCAmelCase : int = accelerator.prepare(model) # Check the values changed in kwargs lowerCAmelCase : Dict = '' lowerCAmelCase : Dict = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
3
0
'''simple docstring''' A_ = { "joule": 1.0, "kilojoule": 1000, "megajoule": 1000000, "gigajoule": 1000000000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 3600000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 4186800.00, "electronvolt": 1.602_176_634E-19, "britishthermalunit_it": 1055.05585, "footpound": 1.35_58_18, } def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Any: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: snake_case__ : int = ( f"Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n" f"Valid values are: {', '.join(__SCREAMING_SNAKE_CASE )}" ) raise ValueError(__SCREAMING_SNAKE_CASE ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
270
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_): @register_to_config def __init__( self , A_ , A_ = None , A_ = None )-> Tuple: '''simple docstring''' super().__init__() UpperCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCamelCase = torch.zeros(A_ , A_ ) else: UpperCamelCase = None UpperCamelCase = torch.nn.Parameter(A_ ) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , )-> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( vqvae=A_ , transformer=A_ , text_encoder=A_ , tokenizer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Tuple: '''simple docstring''' UpperCamelCase = len(A_ ) if isinstance(A_ , A_ ) else 1 # get prompt text embeddings UpperCamelCase = self.tokenizer( A_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) UpperCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate text embeddings for each generation per prompt UpperCamelCase = prompt_embeds.repeat_interleave(A_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(A_ , 1 , 1 ) else: UpperCamelCase = [''] * batch_size UpperCamelCase = text_input_ids.shape[-1] UpperCamelCase = self.tokenizer( A_ , padding='max_length' , max_length=A_ , truncation=A_ , return_tensors='pt' , ) UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase = negative_prompt_embeds.shape[1] UpperCamelCase = negative_prompt_embeds.repeat(1 , A_ , 1 ) UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , A_ , A_ = 100 , A_ = 5.0 , A_ = 1.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , A_ = None , A_ = 1 , )-> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(A_ , A_ ): UpperCamelCase = 1 elif isinstance(A_ , A_ ): UpperCamelCase = len(A_ ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(A_ )}''' ) UpperCamelCase = batch_size * num_images_per_prompt UpperCamelCase = guidance_scale > 1.0 UpperCamelCase = self._encode_prompt(A_ , A_ , A_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A_ , A_ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(A_ )}.''' ) # get the initial completely masked latents unless the user supplied it UpperCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCamelCase = self.transformer.num_vector_embeds - 1 UpperCamelCase = torch.full(A_ , A_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) UpperCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(A_ , device=self.device ) UpperCamelCase = self.scheduler.timesteps.to(self.device ) UpperCamelCase = latents for i, t in enumerate(self.progress_bar(A_ ) ): # expand the sample if we are doing classifier free guidance UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCamelCase = self.transformer(A_ , encoder_hidden_states=A_ , timestep=A_ ).sample if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase = model_output.chunk(2 ) UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(A_ , dim=1 , keepdim=A_ ) UpperCamelCase = self.truncate(A_ , A_ ) # remove `log(0)`'s (`-inf`s) UpperCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(A_ , timestep=A_ , sample=A_ , generator=A_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A_ , A_ , A_ ) UpperCamelCase = self.vqvae.config.vq_embed_dim UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCamelCase = self.vqvae.quantize.get_codebook_entry(A_ , shape=A_ ) UpperCamelCase = self.vqvae.decode(A_ , force_not_quantize=A_ ).sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ ) def UpperCAmelCase_ ( self , A_ , A_ )-> torch.FloatTensor: '''simple docstring''' UpperCamelCase , UpperCamelCase = torch.sort(A_ , 1 , descending=A_ ) UpperCamelCase = torch.exp(A_ ) UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , A_ ) UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) UpperCamelCase = keep_mask[:, :-1, :] UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) UpperCamelCase = log_p_x_0.clone() UpperCamelCase = -torch.inf # -inf = log(0) return rv
3
0