code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __lowercase = logging.get_logger(__name__) class lowerCamelCase_ ( snake_case_ ): '''simple docstring''' a__ : str = ["""input_features""", """attention_mask"""] def __init__( self , __lowercase=80 , __lowercase=16_000 , __lowercase=0.0 , __lowercase=10 , __lowercase=25 , __lowercase="hamming_window" , __lowercase=32_768.0 , __lowercase=0.97 , __lowercase=1.0 , __lowercase=True , __lowercase=True , __lowercase=False , **__lowercase , ) -> List[str]: super().__init__(feature_size=A_ , sampling_rate=A_ , padding_value=A_ , **A_) __UpperCamelCase :Tuple = feature_size __UpperCamelCase :Tuple = sampling_rate __UpperCamelCase :Dict = padding_value __UpperCamelCase :int = hop_length __UpperCamelCase :Union[str, Any] = win_length __UpperCamelCase :List[str] = frame_signal_scale __UpperCamelCase :Any = preemphasis_coeff __UpperCamelCase :Any = mel_floor __UpperCamelCase :Optional[int] = normalize_means __UpperCamelCase :List[Any] = normalize_vars __UpperCamelCase :Union[str, Any] = win_function __UpperCamelCase :List[str] = return_attention_mask __UpperCamelCase :Optional[int] = win_length * sampling_rate // 1_000 __UpperCamelCase :Dict = hop_length * sampling_rate // 1_000 __UpperCamelCase :str = optimal_fft_length(self.sample_size) __UpperCamelCase :Tuple = (self.n_fft // 2) + 1 def UpperCamelCase__ ( self , __lowercase) -> np.ndarray: if self.win_function == "hamming_window": __UpperCamelCase :int = window_function(window_length=self.sample_size , name=self.win_function , periodic=A_) else: __UpperCamelCase :Tuple = window_function(window_length=self.sample_size , name=self.win_function) __UpperCamelCase :int = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) __UpperCamelCase :str = spectrogram( one_waveform * self.frame_signal_scale , window=A_ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=A_ , preemphasis=self.preemphasis_coeff , mel_filters=A_ , mel_floor=self.mel_floor , log_mel='''log''' , ) return msfc_features.T def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> Dict: if self.normalize_means: __UpperCamelCase :List[Any] = x[:input_length].mean(axis=0) __UpperCamelCase :Optional[Any] = np.subtract(A_ , A_) if self.normalize_vars: __UpperCamelCase :Optional[Any] = x[:input_length].std(axis=0) __UpperCamelCase :str = np.divide(A_ , A_) if input_length < x.shape[0]: __UpperCamelCase :Tuple = padding_value # make sure array is in float32 __UpperCamelCase :List[Any] = x.astype(np.floataa) return x def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> List[np.ndarray]: __UpperCamelCase :List[str] = attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(A_ , A_ , self.padding_value) for x, n in zip(A_ , A_)] def __call__( self , __lowercase , __lowercase = False , __lowercase = None , __lowercase = False , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , **__lowercase , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""") else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''') __UpperCamelCase :List[Any] = isinstance(A_ , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""") __UpperCamelCase :Optional[Any] = is_batched_numpy or ( isinstance(A_ , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: __UpperCamelCase :List[Any] = [np.asarray(A_ , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(A_ , np.ndarray): __UpperCamelCase :Optional[int] = np.asarray(A_ , dtype=np.floataa) elif isinstance(A_ , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): __UpperCamelCase :Optional[int] = raw_speech.astype(np.floataa) # always return batch if not is_batched: __UpperCamelCase :Tuple = [raw_speech] # extract fbank features __UpperCamelCase :Tuple = [self._extract_mfsc_features(A_) for one_waveform in raw_speech] # convert into correct format for padding __UpperCamelCase :List[Any] = BatchFeature({'''input_features''': features}) __UpperCamelCase :Union[str, Any] = self.pad( A_ , padding=A_ , max_length=A_ , truncation=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , **A_ , ) # make sure list is in array format __UpperCamelCase :Tuple = padded_inputs.get('''input_features''') if isinstance(input_features[0] , A_): __UpperCamelCase :List[str] = [np.asarray(A_ , dtype=np.floataa) for feature in input_features] __UpperCamelCase :Union[str, Any] = padded_inputs.get('''attention_mask''') if attention_mask is not None: __UpperCamelCase :int = [np.asarray(A_ , dtype=np.intaa) for array in attention_mask] if self.normalize_means or self.normalize_vars: __UpperCamelCase :Dict = ( np.array(A_ , dtype=np.intaa) if self._get_padding_strategies(A_ , max_length=A_) is not PaddingStrategy.DO_NOT_PAD and padding else None ) __UpperCamelCase :Optional[int] = self.normalize( padded_inputs['''input_features'''] , attention_mask=A_) if return_tensors is not None: __UpperCamelCase :List[str] = padded_inputs.convert_to_tensors(A_) return padded_inputs
167
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Union[str, Any] = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
0
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self : Optional[int] , A_ : Optional[int] , A_ : Union[str, Any]=3 , A_ : Dict=3_2 , A_ : Tuple=3 , A_ : Union[str, Any]=1_0 , A_ : Optional[int]=[1_0, 2_0, 3_0, 4_0] , A_ : Tuple=[1, 1, 2, 1] , A_ : List[Any]=True , A_ : Any=True , A_ : List[str]="relu" , A_ : List[Any]=3 , A_ : List[str]=None , ): lowerCAmelCase_ : List[str] = parent lowerCAmelCase_ : int = batch_size lowerCAmelCase_ : List[Any] = image_size lowerCAmelCase_ : str = num_channels lowerCAmelCase_ : Any = embeddings_size lowerCAmelCase_ : Union[str, Any] = hidden_sizes lowerCAmelCase_ : List[Any] = depths lowerCAmelCase_ : Dict = is_training lowerCAmelCase_ : Tuple = use_labels lowerCAmelCase_ : str = hidden_act lowerCAmelCase_ : List[Any] = num_labels lowerCAmelCase_ : int = scope lowerCAmelCase_ : Union[str, Any] = len(A_) def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCAmelCase_ : List[str] = self.get_config() return config, pixel_values def UpperCAmelCase__ ( self : int): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase__ ( self : Union[str, Any] , A_ : Tuple , A_ : Union[str, Any]): lowerCAmelCase_ : Union[str, Any] = FlaxRegNetModel(config=A_) lowerCAmelCase_ : Dict = model(A_) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def UpperCAmelCase__ ( self : List[Any] , A_ : Optional[Any] , A_ : Any): lowerCAmelCase_ : List[Any] = self.num_labels lowerCAmelCase_ : str = FlaxRegNetForImageClassification(config=A_) lowerCAmelCase_ : List[str] = model(A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase__ ( self : Optional[int]): lowerCAmelCase_ : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = config_and_inputs lowerCAmelCase_ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __snake_case ( snake_case_ ,unittest.TestCase ): _a = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () _a = False _a = False _a = False def UpperCAmelCase__ ( self : Optional[Any]): lowerCAmelCase_ : Optional[Any] = FlaxRegNetModelTester(self) lowerCAmelCase_ : Optional[int] = ConfigTester(self , config_class=A_ , has_text_modality=A_) def UpperCAmelCase__ ( self : Dict): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self : Dict): return def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_) def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_) @unittest.skip(reason='''RegNet does not use inputs_embeds''') def UpperCAmelCase__ ( self : Union[str, Any]): pass @unittest.skip(reason='''RegNet does not support input and output embeddings''') def UpperCAmelCase__ ( self : List[str]): pass def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : int = model_class(A_) lowerCAmelCase_ : int = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase_ : Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A_) def UpperCAmelCase__ ( self : Tuple): def check_hidden_states_output(A_ : Optional[int] , A_ : str , A_ : Union[str, Any]): lowerCAmelCase_ : Tuple = model_class(A_) lowerCAmelCase_ : List[Any] = model(**self._prepare_for_class(A_ , A_)) lowerCAmelCase_ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase_ : Tuple = self.model_tester.num_stages self.assertEqual(len(A_) , expected_num_stages + 1) lowerCAmelCase_ , lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Any = True check_hidden_states_output(A_ , A_ , A_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ : Optional[int] = True check_hidden_states_output(A_ , A_ , A_) def UpperCAmelCase__ ( self : str): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCAmelCase_ : List[str] = self._prepare_for_class(A_ , A_) lowerCAmelCase_ : Any = model_class(A_) @jax.jit def model_jitted(A_ : List[Any] , **A_ : Any): return model(pixel_values=A_ , **A_) with self.subTest('''JIT Enabled'''): lowerCAmelCase_ : Dict = model_jitted(**A_).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): lowerCAmelCase_ : Any = model_jitted(**A_).to_tuple() self.assertEqual(len(A_) , len(A_)) for jitted_output, output in zip(A_ , A_): self.assertEqual(jitted_output.shape , output.shape) def UpperCamelCase( ): lowerCAmelCase_ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class __snake_case ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Dict): return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''') if is_vision_available() else None @slow def UpperCAmelCase__ ( self : Optional[Any]): lowerCAmelCase_ : List[str] = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''') lowerCAmelCase_ : str = self.default_image_processor lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Tuple = image_processor(images=A_ , return_tensors='''np''') lowerCAmelCase_ : Optional[Any] = model(**A_) # verify the logits lowerCAmelCase_ : int = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , A_) lowerCAmelCase_ : List[str] = jnp.array([-0.4180, -1.5051, -3.4836]) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , A_ , atol=1e-4))
171
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ = None , A_ = None , A_=None , A_=None )-> Optional[Any]: '''simple docstring''' if not conversation_id: UpperCamelCase = uuid.uuida() if past_user_inputs is None: UpperCamelCase = [] if generated_responses is None: UpperCamelCase = [] UpperCamelCase = conversation_id UpperCamelCase = past_user_inputs UpperCamelCase = generated_responses UpperCamelCase = text def __eq__( self , A_ )-> List[Any]: '''simple docstring''' if not isinstance(A_ , A_ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def UpperCAmelCase_ ( self , A_ , A_ = False )-> int: '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' F'''with: "{text}".''' ) UpperCamelCase = text else: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: UpperCamelCase = text def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) UpperCamelCase = None def UpperCAmelCase_ ( self , A_ )-> int: '''simple docstring''' self.generated_responses.append(A_ ) def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self )-> Any: '''simple docstring''' UpperCamelCase = F'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): UpperCamelCase = 'user' if is_user else 'bot' output += F'''{name} >> {text} \n''' return output @add_end_docstrings( snake_case_ , R""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , *A_ , **A_ )-> Any: '''simple docstring''' super().__init__(*A_ , **A_ ) if self.tokenizer.pad_token_id is None: UpperCamelCase = self.tokenizer.eos_token def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , **A_ )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = {} UpperCamelCase = {} UpperCamelCase = {} if min_length_for_response is not None: UpperCamelCase = min_length_for_response if minimum_tokens is not None: UpperCamelCase = minimum_tokens if "max_length" in generate_kwargs: UpperCamelCase = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: UpperCamelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(A_ ) return preprocess_params, forward_params, postprocess_params def __call__( self , A_ , A_=0 , **A_ )-> Any: '''simple docstring''' UpperCamelCase = super().__call__(A_ , num_workers=A_ , **A_ ) if isinstance(A_ , A_ ) and len(A_ ) == 1: return outputs[0] return outputs def UpperCAmelCase_ ( self , A_ , A_=32 )-> Dict[str, Any]: '''simple docstring''' if not isinstance(A_ , A_ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): UpperCamelCase = self.tokenizer._build_conversation_input_ids(A_ ) else: # If the tokenizer cannot handle conversations, we default to only the old version UpperCamelCase = self._legacy_parse_and_tokenize(A_ ) if self.framework == "pt": UpperCamelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": UpperCamelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def UpperCAmelCase_ ( self , A_ , A_=10 , **A_ )-> Optional[Any]: '''simple docstring''' UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) UpperCamelCase = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) UpperCamelCase = max_length - minimum_tokens UpperCamelCase = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: UpperCamelCase = model_inputs['attention_mask'][:, -trim:] UpperCamelCase = model_inputs.pop('conversation' ) UpperCamelCase = max_length UpperCamelCase = self.model.generate(**A_ , **A_ ) if self.model.config.is_encoder_decoder: UpperCamelCase = 1 else: UpperCamelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def UpperCAmelCase_ ( self , A_ , A_=True )-> Tuple: '''simple docstring''' UpperCamelCase = model_outputs['output_ids'] UpperCamelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , ) UpperCamelCase = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(A_ ) return conversation def UpperCAmelCase_ ( self , A_ )-> Dict: '''simple docstring''' UpperCamelCase = self.tokenizer.eos_token_id UpperCamelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) ) if len(A_ ) > self.tokenizer.model_max_length: UpperCamelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
3
0
import requests lowerCAmelCase__: List[str] = '' # <-- Put your OpenWeatherMap appid here! lowerCAmelCase__: Tuple = 'https://api.openweathermap.org/data/2.5/' def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE = "Chicago" , SCREAMING_SNAKE_CASE = APPID ) -> List[str]: return requests.get(URL_BASE + 'weather' , params=locals() ).json() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE = "Kolkata, India" , SCREAMING_SNAKE_CASE = APPID ) -> List[Any]: return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE = 55.68 , SCREAMING_SNAKE_CASE = 12.57 , SCREAMING_SNAKE_CASE = APPID ) -> Dict: return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: lowerCAmelCase__: Optional[int] = input("Enter a location:").strip() if location: pprint(current_weather(location)) else: break
345
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase : List[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase : List[Any] = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase : Tuple = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase : List[Any] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
3
0
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def __SCREAMING_SNAKE_CASE ( a__ : Features ) -> Optional[int]: __A : List[Any] = np.inf def set_batch_size(a__ : FeatureType ) -> None: nonlocal batch_size if isinstance(a__ ,a__ ): __A : List[Any] = min(a__ ,config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(a__ ,a__ ): __A : Union[str, Any] = min(a__ ,config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(a__ ,a__ ) and feature.dtype == "binary": __A : Tuple = min(a__ ,config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(a__ ,a__ ) return None if batch_size is np.inf else batch_size class lowerCamelCase_ ( snake_case_ ): def __init__( self : int , __A : Dict , __A : int = None , __A : List[Any] = None , __A : Optional[int] = None , __A : Optional[int] = False , __A : Optional[int] = False , __A : Tuple = None , **__A : Union[str, Any] , ): super().__init__( A_ , split=A_ , features=A_ , cache_dir=A_ , keep_in_memory=A_ , streaming=A_ , num_proc=A_ , **A_ , ) __A : Union[str, Any] = path_or_paths if isinstance(A_ , A_ ) else {self.split: path_or_paths} __A : List[Any] = _PACKAGED_DATASETS_MODULES["""parquet"""][1] __A : Dict = Parquet( cache_dir=A_ , data_files=A_ , features=A_ , hash=A_ , **A_ , ) def lowerCAmelCase_ ( self : str ): if self.streaming: __A : Dict = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __A : int = None __A : int = None __A : Tuple = None __A : List[Any] = None self.builder.download_and_prepare( download_config=A_ , download_mode=A_ , verification_mode=A_ , base_path=A_ , num_proc=self.num_proc , ) __A : int = self.builder.as_dataset( split=self.split , verification_mode=A_ , in_memory=self.keep_in_memory ) return dataset class lowerCamelCase_ : def __init__( self : str , __A : int , __A : Optional[int] , __A : Union[str, Any] = None , **__A : List[Any] , ): __A : Optional[Any] = dataset __A : str = path_or_buf __A : List[str] = batch_size or get_writer_batch_size(dataset.features ) __A : Dict = parquet_writer_kwargs def lowerCAmelCase_ ( self : List[str] ): __A : List[Any] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , """wb+""" ) as buffer: __A : List[str] = self._write(file_obj=A_ , batch_size=A_ , **self.parquet_writer_kwargs ) else: __A : Optional[int] = self._write(file_obj=self.path_or_buf , batch_size=A_ , **self.parquet_writer_kwargs ) return written def lowerCAmelCase_ ( self : Tuple , __A : List[str] , __A : Union[str, Any] , **__A : List[str] ): __A : str = 0 __A : Dict = parquet_writer_kwargs.pop("""path_or_buf""" , A_ ) __A : List[str] = self.dataset.features.arrow_schema __A : List[str] = pq.ParquetWriter(A_ , schema=A_ , **A_ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , A_ ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating parquet from Arrow format""" , ): __A : Optional[Any] = query_table( table=self.dataset._data , key=slice(A_ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(A_ ) written += batch.nbytes writer.close() return written
17
'''simple docstring''' import numpy as np def A_( A : str , A : Optional[Any] , A : Tuple , A : Optional[int] , A : str): UpperCamelCase = int(np.ceil((x_end - xa) / h)) UpperCamelCase = np.zeros((n + 1,)) UpperCamelCase = ya UpperCamelCase = xa for k in range(A): UpperCamelCase = f(A , y[k]) UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka) UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka) UpperCamelCase = f(x + h , y[k] + h * ka) UpperCamelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
3
0
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class a ( snake_case_ ): """simple docstring""" __lowerCAmelCase = ["""audio_values""", """audio_mask"""] def __init__( self , snake_case_=2048 , snake_case_=1 , snake_case_=[16, 16] , snake_case_=128 , snake_case_=4_4100 , snake_case_=86 , snake_case_=2048 , snake_case_=0.0 , **snake_case_ , ): '''simple docstring''' super().__init__( feature_size=A_ , sampling_rate=A_ , padding_value=A_ , **A_ , ) __UpperCAmelCase: Tuple = spectrogram_length __UpperCAmelCase: List[Any] = num_channels __UpperCAmelCase: Any = patch_size __UpperCAmelCase: Union[str, Any] = feature_size // self.patch_size[1] __UpperCAmelCase: Tuple = n_fft __UpperCAmelCase: Optional[Any] = sampling_rate // hop_length_to_sampling_rate __UpperCAmelCase: Tuple = sampling_rate __UpperCAmelCase: str = padding_value __UpperCAmelCase: List[str] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=A_ , min_frequency=0.0 , max_frequency=2_2050.0 , sampling_rate=A_ , norm="""slaney""" , mel_scale="""slaney""" , ).T def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: List[str] = spectrogram( A_ , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=8_0.0 , ) __UpperCAmelCase: Optional[Any] = log_spec[:, :-1] __UpperCAmelCase: Optional[int] = log_spec - 2_0.0 __UpperCAmelCase: Any = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , snake_case_ , snake_case_ = None , snake_case_ = True , snake_case_ = None , snake_case_ = False , snake_case_ = False , **snake_case_ , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __UpperCAmelCase: Tuple = isinstance(A_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) __UpperCAmelCase: Tuple = is_batched_numpy or ( isinstance(A_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCAmelCase: Union[str, Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A_ , np.ndarray ): __UpperCAmelCase: List[str] = np.asarray(A_ , dtype=np.floataa ) elif isinstance(A_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCAmelCase: Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCAmelCase: str = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __UpperCAmelCase: Dict = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , A_ ): __UpperCAmelCase: int = [np.asarray(A_ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __UpperCAmelCase: List[str] = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __UpperCAmelCase: Union[str, Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __UpperCAmelCase: int = np.array(A_ ).astype(np.floataa ) # convert into correct format for padding __UpperCAmelCase: List[str] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __UpperCAmelCase: Union[str, Any] = np.ones([len(A_ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __UpperCAmelCase: int = padded_audio_features * self.padding_value for i in range(len(A_ ) ): __UpperCAmelCase: List[Any] = audio_features[i] __UpperCAmelCase: List[str] = feature # return as BatchFeature if return_attention_mask: __UpperCAmelCase: Any = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: __UpperCAmelCase: List[str] = {"""audio_values""": padded_audio_features} __UpperCAmelCase: List[str] = BatchFeature(data=A_ , tensor_type=A_ ) return encoded_inputs
523
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True}) lowerCAmelCase_ = Features({"""text""": Value("""string""")}) lowerCAmelCase_ = Features({}) lowerCAmelCase_ = "text" @property def UpperCAmelCase_ ( self )-> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
3
0
from typing import List import numpy as np def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = {key: len(_A ) for key, value in gen_kwargs.items() if isinstance(_A , _A )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n" + "\n".join(f"\t- key {key} has length {length}" for key, length in lists_lengths.items() ) + "\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) snake_case_ = max(lists_lengths.values() , default=0 ) return max(1 , _A ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = [] for group_idx in range(_A ): snake_case_ = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break snake_case_ = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 snake_case_ = range(_A , start + num_shards_to_add ) shards_indices_per_group.append(_A ) return shards_indices_per_group def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = _number_of_shards_in_gen_kwargs(_A ) if num_shards == 1: return [dict(_A )] else: snake_case_ = _distribute_shards(num_shards=_A , max_num_jobs=_A ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(_A , _A ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(_A ) ) ] def lowerCamelCase__ ( _A ): '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , _A ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = {len(_A ) for value in gen_kwargs.values() if isinstance(_A , _A )} snake_case_ = {} for size in list_sizes: snake_case_ = list(range(_A ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes snake_case_ = dict(_A ) for key, value in shuffled_kwargs.items(): if isinstance(_A , _A ): snake_case_ = [value[i] for i in indices_per_size[len(_A )]] return shuffled_kwargs
376
'''simple docstring''' from __future__ import annotations lowerCAmelCase : Union[str, Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCAmelCase : List[str] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def A_( A : list[float]): UpperCamelCase = [] UpperCamelCase = len(A) for i in range(A): UpperCamelCase = -1 for j in range(i + 1 , A): if arr[i] < arr[j]: UpperCamelCase = arr[j] break result.append(A) return result def A_( A : list[float]): UpperCamelCase = [] for i, outer in enumerate(A): UpperCamelCase = -1 for inner in arr[i + 1 :]: if outer < inner: UpperCamelCase = inner break result.append(A) return result def A_( A : list[float]): UpperCamelCase = len(A) UpperCamelCase = [] UpperCamelCase = [-1] * arr_size for index in reversed(range(A)): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: UpperCamelCase = stack[-1] stack.append(arr[index]) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCAmelCase : Optional[Any] = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
3
0
'''simple docstring''' from __future__ import annotations A__ : List[str] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class snake_case__ : def __init__( self : List[Any] , __a : List[str] , __a : Any ) -> None: '''simple docstring''' __snake_case : List[Any] = graph # mapping node to its parent in resulting breadth first tree __snake_case : List[str] = {} __snake_case : Any = source_vertex def A_ ( self : Optional[Any] ) -> None: '''simple docstring''' __snake_case : Optional[Any] = {self.source_vertex} __snake_case : Dict = None __snake_case : Any = [self.source_vertex] # first in first out queue while queue: __snake_case : str = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(A_ ) __snake_case : Optional[int] = vertex queue.append(A_ ) def A_ ( self : Dict , __a : List[str] ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex __snake_case : List[str] = self.parent.get(A_ ) if target_vertex_parent is None: __snake_case : List[str] = ( f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(A_ ) return self.shortest_path(A_ ) + f'''->{target_vertex}''' if __name__ == "__main__": A__ : Any = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
286
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def A_( A : str): if not sentence: return "" UpperCamelCase = dict(zip(A , A)) return lower_to_upper.get(sentence[0] , sentence[0]) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
3
0
class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : str , __A : int ): snake_case__ : Tuple = arr.split("," ) def _lowercase ( self : Tuple ): snake_case__ : List[Any] = [int(self.array[0] )] * len(self.array ) snake_case__ : Any = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): snake_case__ : Union[str, Any] = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) snake_case__ : Any = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": __lowerCamelCase : List[str] = input("""please input some numbers:""") __lowerCamelCase : str = SubArray(whole_array) __lowerCamelCase : str = array.solve_sub_array() print(("""the results is:""", re))
297
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase : Dict = logging.get_logger(__name__) # General docstring lowerCAmelCase : str = 'RegNetConfig' # Base docstring lowerCAmelCase : str = 'facebook/regnet-y-040' lowerCAmelCase : Dict = [1, 10_88, 7, 7] # Image classification docstring lowerCAmelCase : Dict = 'facebook/regnet-y-040' lowerCAmelCase : int = 'tabby, tabby cat' lowerCAmelCase : int = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ = 3 , A_ = 1 , A_ = 1 , A_ = "relu" , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb UpperCamelCase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) UpperCamelCase = tf.keras.layers.ConvaD( filters=A_ , kernel_size=A_ , strides=A_ , padding='VALID' , groups=A_ , use_bias=A_ , name='convolution' , ) UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) UpperCamelCase = ACTaFN[activation] if activation is not None else tf.identity def UpperCAmelCase_ ( self , A_ )-> Any: '''simple docstring''' UpperCamelCase = self.convolution(self.padding(A_ ) ) UpperCamelCase = self.normalization(A_ ) UpperCamelCase = self.activation(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , **A_ )-> Optional[Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = config.num_channels UpperCamelCase = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = shape_list(A_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) UpperCamelCase = tf.transpose(A_ , perm=(0, 2, 3, 1) ) UpperCamelCase = self.embedder(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ = 2 , **A_ )-> List[Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = tf.keras.layers.ConvaD( filters=A_ , kernel_size=1 , strides=A_ , use_bias=A_ , name='convolution' ) UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) def UpperCAmelCase_ ( self , A_ , A_ = False )-> tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(A_ ) , training=A_ ) class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , **A_ )-> Optional[Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' ) UpperCamelCase = [ tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def UpperCAmelCase_ ( self , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.pooler(A_ ) for layer_module in self.attention: UpperCamelCase = layer_module(A_ ) UpperCamelCase = hidden_state * pooled return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Dict: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = in_channels != out_channels or stride != 1 UpperCamelCase = max(1 , out_channels // config.groups_width ) UpperCamelCase = ( TFRegNetShortCut(A_ , stride=A_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. UpperCamelCase = [ TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.2' ), ] UpperCamelCase = ACTaFN[config.hidden_act] def UpperCAmelCase_ ( self , A_ )-> Tuple: '''simple docstring''' UpperCamelCase = hidden_state for layer_module in self.layers: UpperCamelCase = layer_module(A_ ) UpperCamelCase = self.shortcut(A_ ) hidden_state += residual UpperCamelCase = self.activation(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Any: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = in_channels != out_channels or stride != 1 UpperCamelCase = max(1 , out_channels // config.groups_width ) UpperCamelCase = ( TFRegNetShortCut(A_ , stride=A_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) UpperCamelCase = [ TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(A_ , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.3' ), ] UpperCamelCase = ACTaFN[config.hidden_act] def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = hidden_state for layer_module in self.layers: UpperCamelCase = layer_module(A_ ) UpperCamelCase = self.shortcut(A_ ) hidden_state += residual UpperCamelCase = self.activation(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ , A_ = 2 , A_ = 2 , **A_ )-> Dict: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer UpperCamelCase = [ # downsampling is done in the first layer with stride of 2 layer(A_ , A_ , A_ , stride=A_ , name='layers.0' ), *[layer(A_ , A_ , A_ , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' for layer_module in self.layers: UpperCamelCase = layer_module(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , **A_ )-> str: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( A_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(A_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(A_ , A_ , A_ , depth=A_ , name=F'''stages.{i+1}''' ) ) def UpperCAmelCase_ ( self , A_ , A_ = False , A_ = True )-> TFBaseModelOutputWithNoAttention: '''simple docstring''' UpperCamelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCamelCase = hidden_states + (hidden_state,) UpperCamelCase = stage_module(A_ ) if output_hidden_states: UpperCamelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=A_ , hidden_states=A_ ) @keras_serializable class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): lowerCAmelCase_ = RegNetConfig def __init__( self , A_ , **A_ )-> Union[str, Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = config UpperCamelCase = TFRegNetEmbeddings(A_ , name='embedder' ) UpperCamelCase = TFRegNetEncoder(A_ , name='encoder' ) UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' ) @unpack_inputs def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_ = False , )-> TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.embedder(A_ , training=A_ ) UpperCamelCase = self.encoder( A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ ) UpperCamelCase = encoder_outputs[0] UpperCamelCase = self.pooler(A_ ) # Change to NCHW output format have uniformity in the modules UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) ) UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: UpperCamelCase = tuple([tf.transpose(A_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A_ , pooler_output=A_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = RegNetConfig lowerCAmelCase_ = """regnet""" lowerCAmelCase_ = """pixel_values""" @property def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} lowerCAmelCase : str = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase : List[str] = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ , *A_ , **A_ )-> List[Any]: '''simple docstring''' super().__init__(A_ , *A_ , **A_ ) UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_=False , )-> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.regnet( pixel_values=A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_): def __init__( self , A_ , *A_ , **A_ )-> str: '''simple docstring''' super().__init__(A_ , *A_ , **A_ ) UpperCamelCase = config.num_labels UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' ) # classification head UpperCamelCase = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase_ ( self , A_ = None , A_ = None , A_ = None , A_ = None , A_=False , )-> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.regnet( A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ ) UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase = self.classifier[0](A_ ) UpperCamelCase = self.classifier[1](A_ ) UpperCamelCase = None if labels is None else self.hf_compute_loss(labels=A_ , logits=A_ ) if not return_dict: UpperCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=A_ , logits=A_ , hidden_states=outputs.hidden_states )
3
0
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters a_ = logging.get_logger(__name__) def UpperCAmelCase_ ( __a : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[int]=None , __a : List[str]=None ): '''simple docstring''' if "." in tensor_name: _lowerCamelCase : List[str] = tensor_name.split('.' ) for split in splits[:-1]: _lowerCamelCase : List[str] = getattr(__a , __a ) if new_module is None: raise ValueError(f"{module} has no attribute {split}." ) _lowerCamelCase : Union[str, Any] = new_module _lowerCamelCase : Tuple = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}." ) _lowerCamelCase : Optional[int] = tensor_name in module._buffers _lowerCamelCase : Dict = getattr(__a , __a ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {device}." ) _lowerCamelCase : List[Any] = False _lowerCamelCase : Any = False if is_buffer or not is_bitsandbytes_available(): _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Union[str, Any] = False else: _lowerCamelCase : Tuple = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) _lowerCamelCase : Dict = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: _lowerCamelCase : str = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: _lowerCamelCase : List[str] = old_value.to(__a ) elif isinstance(__a , torch.Tensor ): _lowerCamelCase : Any = value.to('cpu' ) if value.dtype == torch.inta: _lowerCamelCase : Optional[int] = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: _lowerCamelCase : int = torch.tensor(__a , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , __a ) and fpaa_statistics is None: _lowerCamelCase : Any = new_value.T _lowerCamelCase : Optional[Any] = old_value.__dict__ if is_abit: _lowerCamelCase : Optional[int] = bnb.nn.IntaParams(__a , requires_grad=__a , **__a ).to(__a ) elif is_abit: _lowerCamelCase : Any = bnb.nn.Paramsabit(__a , requires_grad=__a , **__a ).to(__a ) _lowerCamelCase : Dict = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(__a ) ) else: if value is None: _lowerCamelCase : Optional[Any] = old_value.to(__a ) elif isinstance(__a , torch.Tensor ): _lowerCamelCase : Any = value.to(__a ) else: _lowerCamelCase : Union[str, Any] = torch.tensor(__a , device=__a ) if is_buffer: _lowerCamelCase : str = new_value else: _lowerCamelCase : Dict = nn.Parameter(__a , requires_grad=old_value.requires_grad ) _lowerCamelCase : int = new_value def UpperCAmelCase_ ( __a : Union[str, Any] , __a : str=None , __a : List[str]=None , __a : str=None , __a : Dict=False ): '''simple docstring''' for name, module in model.named_children(): if current_key_name is None: _lowerCamelCase : Tuple = [] current_key_name.append(__a ) if (isinstance(__a , nn.Linear ) or isinstance(__a , __a )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(__a ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(__a , __a ): _lowerCamelCase , _lowerCamelCase : str = module.weight.shape else: _lowerCamelCase : Optional[int] = module.in_features _lowerCamelCase : int = module.out_features if quantization_config.quantization_method() == "llm_int8": _lowerCamelCase : Union[str, Any] = bnb.nn.LinearabitLt( __a , __a , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) _lowerCamelCase : str = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: _lowerCamelCase : List[str] = bnb.nn.Linearabit( __a , __a , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) _lowerCamelCase : Dict = True # Store the module class in case we need to transpose the weight later _lowerCamelCase : str = type(__a ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(__a ) if len(list(module.children() ) ) > 0: _lowerCamelCase , _lowerCamelCase : Dict = _replace_with_bnb_linear( __a , __a , __a , __a , has_been_replaced=__a , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCAmelCase_ ( __a : Union[str, Any] , __a : List[Any]=None , __a : Optional[Any]=None , __a : str=None ): '''simple docstring''' _lowerCamelCase : Optional[Any] = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert _lowerCamelCase , _lowerCamelCase : List[str] = _replace_with_bnb_linear( __a , __a , __a , __a ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def UpperCAmelCase_ ( *__a : Tuple , **__a : Optional[int] ): '''simple docstring''' warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , __a , ) return replace_with_bnb_linear(*__a , **__a ) def UpperCAmelCase_ ( *__a : List[str] , **__a : Tuple ): '''simple docstring''' warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , __a , ) return set_module_quantized_tensor_to_device(*__a , **__a ) def UpperCAmelCase_ ( __a : int ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = deepcopy(__a ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() _lowerCamelCase : List[str] = find_tied_parameters(__a ) # For compatibility with Accelerate < 0.18 if isinstance(__a , __a ): _lowerCamelCase : List[str] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _lowerCamelCase : Tuple = sum(__a , [] ) _lowerCamelCase : Optional[Any] = len(__a ) > 0 # Check if it is a base model _lowerCamelCase : Optional[Any] = not hasattr(__a , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _lowerCamelCase : List[str] = list(model.named_children() ) _lowerCamelCase : List[Any] = [list_modules[-1][0]] # add last module together with tied weights _lowerCamelCase : Dict = set(__a ) - set(__a ) _lowerCamelCase : Dict = list(set(__a ) ) + list(__a ) # remove ".weight" from the keys _lowerCamelCase : List[Any] = ['.weight', '.bias'] _lowerCamelCase : Optional[int] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _lowerCamelCase : str = name.replace(__a , '' ) filtered_module_names.append(__a ) return filtered_module_names
437
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Optional[int] = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """perceiver""" def __init__( self , A_=256 , A_=1280 , A_=768 , A_=1 , A_=26 , A_=8 , A_=8 , A_=None , A_=None , A_="kv" , A_=1 , A_=1 , A_="gelu" , A_=0.1 , A_=0.02 , A_=1e-12 , A_=True , A_=262 , A_=2048 , A_=56 , A_=[368, 496] , A_=16 , A_=1920 , A_=16 , A_=[1, 16, 224, 224] , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = num_latents UpperCamelCase = d_latents UpperCamelCase = d_model UpperCamelCase = num_blocks UpperCamelCase = num_self_attends_per_block UpperCamelCase = num_self_attention_heads UpperCamelCase = num_cross_attention_heads UpperCamelCase = qk_channels UpperCamelCase = v_channels UpperCamelCase = cross_attention_shape_for_attention UpperCamelCase = self_attention_widening_factor UpperCamelCase = cross_attention_widening_factor UpperCamelCase = hidden_act UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = use_query_residual # masked language modeling attributes UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings # image classification attributes UpperCamelCase = image_size # flow attributes UpperCamelCase = train_size # multimodal autoencoding attributes UpperCamelCase = num_frames UpperCamelCase = audio_samples_per_frame UpperCamelCase = samples_per_patch UpperCamelCase = output_shape class SCREAMING_SNAKE_CASE__ ( snake_case_): @property def UpperCAmelCase_ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def UpperCAmelCase_ ( self )-> float: '''simple docstring''' return 1e-4 def UpperCAmelCase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = -1 , A_ = False , A_ = None , A_ = 3 , A_ = 40 , A_ = 40 , )-> Mapping[str, Any]: '''simple docstring''' if isinstance(A_ , A_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase = preprocessor.num_special_tokens_to_add(A_ ) UpperCamelCase = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase = [' '.join(['a'] ) * seq_length] * batch_size UpperCamelCase = dict(preprocessor(A_ , return_tensors=A_ ) ) UpperCamelCase = inputs.pop('input_ids' ) return inputs elif isinstance(A_ , A_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase = compute_effective_axis_dimension(A_ , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCamelCase = self._generate_dummy_images(A_ , A_ , A_ , A_ ) UpperCamelCase = dict(preprocessor(images=A_ , return_tensors=A_ ) ) UpperCamelCase = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
3
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( UpperCamelCase: str , UpperCamelCase: Optional[int] , UpperCamelCase: List[str] ): """simple docstring""" return params[F"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def _UpperCAmelCase ( UpperCamelCase: List[str] , UpperCamelCase: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: Union[str, Any]="attention" ): """simple docstring""" __lowerCAmelCase = __lowerCAmelCase = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] ) __lowerCAmelCase = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) __lowerCAmelCase = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] ) __lowerCAmelCase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) __lowerCAmelCase = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] ) __lowerCAmelCase = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) __lowerCAmelCase = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] ) __lowerCAmelCase = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def _UpperCAmelCase ( UpperCamelCase: List[Any] , UpperCamelCase: Dict , UpperCamelCase: str , UpperCamelCase: Optional[Any]=False ): """simple docstring""" if split_mlp_wi: __lowerCAmelCase = params[F"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] __lowerCAmelCase = params[F"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] __lowerCAmelCase = (wi_a, wi_a) else: __lowerCAmelCase = params[F"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] __lowerCAmelCase = params[F"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def _UpperCAmelCase ( UpperCamelCase: List[Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[int] ): """simple docstring""" return params[F"{prefix}/{prefix}/{layer_name}/scale"][:, i] def _UpperCAmelCase ( UpperCamelCase: dict , *, UpperCamelCase: int , UpperCamelCase: bool , UpperCamelCase: bool = False ): """simple docstring""" __lowerCAmelCase = traverse_util.flatten_dict(variables["target"] ) __lowerCAmelCase = {"/".join(UpperCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __lowerCAmelCase = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , UpperCamelCase ) __lowerCAmelCase = collections.OrderedDict() # Shared embeddings. __lowerCAmelCase = old["token_embedder/embedding"] # Encoder. for i in range(UpperCamelCase ): # Block i, layer 0 (Self Attention). __lowerCAmelCase = tax_layer_norm_lookup(UpperCamelCase , UpperCamelCase , "encoder" , "pre_attention_layer_norm" ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = tax_attention_lookup(UpperCamelCase , UpperCamelCase , "encoder" , "attention" ) __lowerCAmelCase = layer_norm __lowerCAmelCase = k.T __lowerCAmelCase = o.T __lowerCAmelCase = q.T __lowerCAmelCase = v.T # Block i, layer 1 (MLP). __lowerCAmelCase = tax_layer_norm_lookup(UpperCamelCase , UpperCamelCase , "encoder" , "pre_mlp_layer_norm" ) __lowerCAmelCase , __lowerCAmelCase = tax_mlp_lookup(UpperCamelCase , UpperCamelCase , "encoder" , UpperCamelCase ) __lowerCAmelCase = layer_norm if split_mlp_wi: __lowerCAmelCase = wi[0].T __lowerCAmelCase = wi[1].T else: __lowerCAmelCase = wi.T __lowerCAmelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer __lowerCAmelCase = tax_relpos_bias_lookup( UpperCamelCase , UpperCamelCase , "encoder" ).T __lowerCAmelCase = old["encoder/encoder_norm/scale"] if not scalable_attention: __lowerCAmelCase = tax_relpos_bias_lookup( UpperCamelCase , 0 , "encoder" ).T __lowerCAmelCase = tax_relpos_bias_lookup( UpperCamelCase , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(UpperCamelCase ): # Block i, layer 0 (Self Attention). __lowerCAmelCase = tax_layer_norm_lookup(UpperCamelCase , UpperCamelCase , "decoder" , "pre_self_attention_layer_norm" ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = tax_attention_lookup(UpperCamelCase , UpperCamelCase , "decoder" , "self_attention" ) __lowerCAmelCase = layer_norm __lowerCAmelCase = k.T __lowerCAmelCase = o.T __lowerCAmelCase = q.T __lowerCAmelCase = v.T # Block i, layer 1 (Cross Attention). __lowerCAmelCase = tax_layer_norm_lookup(UpperCamelCase , UpperCamelCase , "decoder" , "pre_cross_attention_layer_norm" ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = tax_attention_lookup(UpperCamelCase , UpperCamelCase , "decoder" , "encoder_decoder_attention" ) __lowerCAmelCase = layer_norm __lowerCAmelCase = k.T __lowerCAmelCase = o.T __lowerCAmelCase = q.T __lowerCAmelCase = v.T # Block i, layer 2 (MLP). __lowerCAmelCase = tax_layer_norm_lookup(UpperCamelCase , UpperCamelCase , "decoder" , "pre_mlp_layer_norm" ) __lowerCAmelCase , __lowerCAmelCase = tax_mlp_lookup(UpperCamelCase , UpperCamelCase , "decoder" , UpperCamelCase ) __lowerCAmelCase = layer_norm if split_mlp_wi: __lowerCAmelCase = wi[0].T __lowerCAmelCase = wi[1].T else: __lowerCAmelCase = wi.T __lowerCAmelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer __lowerCAmelCase = tax_relpos_bias_lookup(UpperCamelCase , UpperCamelCase , "decoder" ).T __lowerCAmelCase = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __lowerCAmelCase = old["decoder/logits_dense/kernel"].T return new def _UpperCAmelCase ( UpperCamelCase: Any , UpperCamelCase: bool ): """simple docstring""" __lowerCAmelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __lowerCAmelCase = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __lowerCAmelCase = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) __lowerCAmelCase = state_dict["shared.weight"] return state_dict def _UpperCAmelCase ( UpperCamelCase: List[str] , UpperCamelCase: Optional[Any] , UpperCamelCase: str , UpperCamelCase: int , UpperCamelCase: List[Any] ): """simple docstring""" __lowerCAmelCase = checkpoints.load_tax_checkpoint(UpperCamelCase ) __lowerCAmelCase = convert_tax_to_pytorch( UpperCamelCase , num_layers=config.num_layers , is_encoder_only=UpperCamelCase , scalable_attention=UpperCamelCase ) __lowerCAmelCase = make_state_dict(UpperCamelCase , UpperCamelCase ) model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) def _UpperCAmelCase ( UpperCamelCase: Optional[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[Any] , UpperCamelCase: bool = False , UpperCamelCase: bool = False , ): """simple docstring""" __lowerCAmelCase = MTaConfig.from_json_file(UpperCamelCase ) print(F"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __lowerCAmelCase = UMTaEncoderModel(UpperCamelCase ) else: __lowerCAmelCase = UMTaForConditionalGeneration(UpperCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(UpperCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(UpperCamelCase ) print("Done" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) parser.add_argument( "--scalable_attention", action="store_true", help="Whether the model uses scaled attention (umt5 model)", default=False, ) UpperCamelCase_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
611
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Dict = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """mctct""" def __init__( self , A_=8065 , A_=1536 , A_=36 , A_=6144 , A_=4 , A_=384 , A_=920 , A_=1e-5 , A_=0.3 , A_="relu" , A_=0.02 , A_=0.3 , A_=0.3 , A_=1 , A_=0 , A_=2 , A_=1 , A_=0.3 , A_=1 , A_=(7,) , A_=(3,) , A_=80 , A_=1 , A_=None , A_="sum" , A_=False , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = intermediate_size UpperCamelCase = num_attention_heads UpperCamelCase = attention_head_dim UpperCamelCase = max_position_embeddings UpperCamelCase = layer_norm_eps UpperCamelCase = layerdrop UpperCamelCase = hidden_act UpperCamelCase = initializer_range UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = pad_token_id UpperCamelCase = bos_token_id UpperCamelCase = eos_token_id UpperCamelCase = conv_glu_dim UpperCamelCase = conv_dropout UpperCamelCase = num_conv_layers UpperCamelCase = input_feat_per_channel UpperCamelCase = input_channels UpperCamelCase = conv_channels UpperCamelCase = ctc_loss_reduction UpperCamelCase = ctc_zero_infinity # prevents config testing fail with exporting to json UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ' F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
3
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
270
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase : Tuple = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase : Optional[int] = TaTokenizerFast lowerCAmelCase : Any = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase : Tuple = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
3
0
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class lowerCamelCase_ : '''simple docstring''' a__ : str = XGLMConfig a__ : Tuple = {} a__ : Union[str, Any] = """gelu""" def __init__( self , __lowercase , __lowercase=14 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=99 , __lowercase=32 , __lowercase=2 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=512 , __lowercase=0.02 , ) -> Tuple: __UpperCamelCase :Dict = parent __UpperCamelCase :List[Any] = batch_size __UpperCamelCase :Dict = seq_length __UpperCamelCase :Union[str, Any] = is_training __UpperCamelCase :int = use_input_mask __UpperCamelCase :Optional[int] = use_labels __UpperCamelCase :Optional[Any] = vocab_size __UpperCamelCase :str = d_model __UpperCamelCase :int = num_hidden_layers __UpperCamelCase :Optional[int] = num_attention_heads __UpperCamelCase :List[str] = ffn_dim __UpperCamelCase :List[str] = activation_function __UpperCamelCase :int = activation_dropout __UpperCamelCase :Any = attention_dropout __UpperCamelCase :int = max_position_embeddings __UpperCamelCase :Tuple = initializer_range __UpperCamelCase :Tuple = None __UpperCamelCase :Optional[int] = 0 __UpperCamelCase :Tuple = 2 __UpperCamelCase :List[Any] = 1 def UpperCamelCase__ ( self) -> Union[str, Any]: return XGLMConfig.from_pretrained('''facebook/xglm-564M''') def UpperCamelCase__ ( self) -> str: __UpperCamelCase :str = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) , clip_value_min=0 , clip_value_max=3) __UpperCamelCase :Any = None if self.use_input_mask: __UpperCamelCase :int = random_attention_mask([self.batch_size, self.seq_length]) __UpperCamelCase :Optional[int] = self.get_config() __UpperCamelCase :Optional[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2) return ( config, input_ids, input_mask, head_mask, ) def UpperCamelCase__ ( self) -> Optional[Any]: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=A_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=A_ , ) def UpperCamelCase__ ( self) -> str: __UpperCamelCase :int = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) :Union[str, Any] = config_and_inputs __UpperCamelCase :Any = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class lowerCamelCase_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' a__ : List[str] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () a__ : Union[str, Any] = (TFXGLMForCausalLM,) if is_tf_available() else () a__ : List[str] = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) a__ : List[Any] = False a__ : List[str] = False a__ : Any = False def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :int = TFXGLMModelTester(self) __UpperCamelCase :Any = ConfigTester(self , config_class=A_ , n_embd=37) def UpperCamelCase__ ( self) -> int: self.config_tester.run_common_tests() @slow def UpperCamelCase__ ( self) -> List[str]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase :Union[str, Any] = TFXGLMModel.from_pretrained(A_) self.assertIsNotNone(A_) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''') def UpperCamelCase__ ( self) -> Optional[Any]: super().test_resize_token_embeddings() @require_tf class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self , __lowercase=True) -> List[Any]: __UpperCamelCase :List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''') __UpperCamelCase :Dict = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase :Dict = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on __UpperCamelCase :Any = model.generate(A_ , do_sample=A_ , num_beams=1) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , A_) @slow def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Dict = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''') __UpperCamelCase :Tuple = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''') tf.random.set_seed(0) __UpperCamelCase :Optional[Any] = tokenizer('''Today is a nice day and''' , return_tensors='''tf''') __UpperCamelCase :List[Any] = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0'''): __UpperCamelCase :Optional[Any] = model.generate(A_ , do_sample=A_ , seed=[7, 0]) __UpperCamelCase :int = tokenizer.decode(output_ids[0] , skip_special_tokens=A_) __UpperCamelCase :Any = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(A_ , A_) @slow def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :Optional[Any] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''') __UpperCamelCase :Union[str, Any] = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''') __UpperCamelCase :Union[str, Any] = '''left''' # use different length sentences to test batching __UpperCamelCase :Tuple = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] __UpperCamelCase :Tuple = tokenizer(A_ , return_tensors='''tf''' , padding=A_) __UpperCamelCase :Dict = inputs['''input_ids'''] __UpperCamelCase :Union[str, Any] = model.generate(input_ids=A_ , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12) __UpperCamelCase :Any = tokenizer(sentences[0] , return_tensors='''tf''').input_ids __UpperCamelCase :int = model.generate(input_ids=A_ , max_new_tokens=12) __UpperCamelCase :List[Any] = tokenizer(sentences[1] , return_tensors='''tf''').input_ids __UpperCamelCase :Tuple = model.generate(input_ids=A_ , max_new_tokens=12) __UpperCamelCase :Optional[int] = tokenizer.batch_decode(A_ , skip_special_tokens=A_) __UpperCamelCase :Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=A_) __UpperCamelCase :Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=A_) __UpperCamelCase :str = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(A_ , A_) self.assertListEqual(A_ , [non_padded_sentence, padded_sentence])
167
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=False , A_=True , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , )-> Dict: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size if size is not None else {'height': 18, 'width': 20} UpperCamelCase = do_thumbnail UpperCamelCase = do_align_axis UpperCamelCase = do_pad UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase): lowerCAmelCase_ = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = DonutImageProcessingTester(self ) @property def UpperCAmelCase_ ( self )-> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'do_thumbnail' ) ) self.assertTrue(hasattr(A_ , 'do_align_long_axis' ) ) self.assertTrue(hasattr(A_ , 'do_pad' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' pass @is_flaky() def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
3
0
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __snake_case : def __init__( self : List[Any] , A_ : Dict , A_ : List[Any]=1_0_0 , A_ : Tuple=1_3 , A_ : Optional[int]=3_0 , A_ : str=2 , A_ : List[Any]=3 , A_ : str=True , A_ : Optional[Any]=True , A_ : int=3_2 , A_ : List[Any]=4 , A_ : Dict=4 , A_ : Optional[Any]=3_7 , A_ : str="gelu" , A_ : List[Any]=0.1 , A_ : Union[str, Any]=0.1 , A_ : Any=1_0 , A_ : Tuple=0.02 , A_ : Any=3 , A_ : List[str]=None , A_ : Tuple=[0, 1, 2, 3] , ): lowerCAmelCase_ : Optional[int] = parent lowerCAmelCase_ : Union[str, Any] = 1_0_0 lowerCAmelCase_ : List[str] = batch_size lowerCAmelCase_ : List[Any] = image_size lowerCAmelCase_ : List[Any] = patch_size lowerCAmelCase_ : int = num_channels lowerCAmelCase_ : Optional[Any] = is_training lowerCAmelCase_ : Optional[int] = use_labels lowerCAmelCase_ : Union[str, Any] = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : List[str] = num_attention_heads lowerCAmelCase_ : Tuple = intermediate_size lowerCAmelCase_ : Optional[Any] = hidden_act lowerCAmelCase_ : int = hidden_dropout_prob lowerCAmelCase_ : str = attention_probs_dropout_prob lowerCAmelCase_ : Union[str, Any] = type_sequence_label_size lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : Optional[int] = scope lowerCAmelCase_ : List[Any] = out_indices lowerCAmelCase_ : Optional[Any] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase_ : Dict = (image_size // patch_size) ** 2 lowerCAmelCase_ : Any = num_patches + 1 def UpperCAmelCase__ ( self : Optional[Any]): lowerCAmelCase_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCAmelCase_ : int = None lowerCAmelCase_ : Tuple = None if self.use_labels: lowerCAmelCase_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) lowerCAmelCase_ : str = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase__ ( self : Any): return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase__ ( self : Union[str, Any] , A_ : Any , A_ : Optional[int] , A_ : str , A_ : Tuple): lowerCAmelCase_ : Optional[int] = BeitModel(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : int = model(A_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self : Dict , A_ : Tuple , A_ : int , A_ : List[str] , A_ : Dict): lowerCAmelCase_ : Tuple = BeitForMaskedImageModeling(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : Optional[int] = model(A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size)) def UpperCAmelCase__ ( self : Optional[int] , A_ : Any , A_ : Tuple , A_ : int , A_ : Dict): lowerCAmelCase_ : List[str] = self.type_sequence_label_size lowerCAmelCase_ : List[str] = BeitForImageClassification(A_) model.to(A_) model.eval() lowerCAmelCase_ : int = model(A_ , labels=A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images lowerCAmelCase_ : Union[str, Any] = 1 lowerCAmelCase_ : str = BeitForImageClassification(A_) model.to(A_) model.eval() lowerCAmelCase_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) lowerCAmelCase_ : Dict = model(A_ , labels=A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCAmelCase__ ( self : int , A_ : List[str] , A_ : Optional[Any] , A_ : int , A_ : Union[str, Any]): lowerCAmelCase_ : Optional[Any] = self.num_labels lowerCAmelCase_ : Union[str, Any] = BeitForSemanticSegmentation(A_) model.to(A_) model.eval() lowerCAmelCase_ : str = model(A_) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)) lowerCAmelCase_ : Optional[int] = model(A_ , labels=A_) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)) def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = config_and_inputs lowerCAmelCase_ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __snake_case ( snake_case_ ,snake_case_ ,unittest.TestCase ): _a = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) _a = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) _a = False _a = False _a = False def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : Tuple = BeitModelTester(self) lowerCAmelCase_ : int = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=3_7) def UpperCAmelCase__ ( self : Union[str, Any]): self.config_tester.run_common_tests() @unittest.skip(reason='''BEiT does not use inputs_embeds''') def UpperCAmelCase__ ( self : Optional[int]): pass @require_torch_multi_gpu @unittest.skip(reason='''BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''') def UpperCAmelCase__ ( self : Dict): pass def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[int] = model_class(A_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) lowerCAmelCase_ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear)) def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : List[Any] = model_class(A_) lowerCAmelCase_ : Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A_) def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_) def UpperCAmelCase__ ( self : Optional[int]): lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_) def UpperCAmelCase__ ( self : Dict): lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_) def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A_) def UpperCAmelCase__ ( self : Union[str, Any]): if not self.model_tester.is_training: return lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : str = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(A_), BeitForMaskedImageModeling]: continue lowerCAmelCase_ : Optional[Any] = model_class(A_) model.to(A_) model.train() lowerCAmelCase_ : int = self._prepare_for_class(A_ , A_ , return_labels=A_) lowerCAmelCase_ : Tuple = model(**A_).loss loss.backward() def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ , lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowerCAmelCase_ : Tuple = False lowerCAmelCase_ : Union[str, Any] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(A_), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue lowerCAmelCase_ : str = model_class(A_) model.gradient_checkpointing_enable() model.to(A_) model.train() lowerCAmelCase_ : Any = self._prepare_for_class(A_ , A_ , return_labels=A_) lowerCAmelCase_ : Dict = model(**A_).loss loss.backward() def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Dict = _config_zero_init(A_) for model_class in self.all_model_classes: lowerCAmelCase_ : Union[str, Any] = model_class(config=A_) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def UpperCAmelCase__ ( self : Dict): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : List[str] = BeitModel.from_pretrained(A_) self.assertIsNotNone(A_) def UpperCamelCase( ): lowerCAmelCase_ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Tuple): return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''') if is_vision_available() else None @slow def UpperCAmelCase__ ( self : Optional[int]): lowerCAmelCase_ : List[Any] = BeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''').to(A_) lowerCAmelCase_ : Optional[Any] = self.default_image_processor lowerCAmelCase_ : Any = prepare_img() lowerCAmelCase_ : Any = image_processor(images=A_ , return_tensors='''pt''').pixel_values.to(A_) # prepare bool_masked_pos lowerCAmelCase_ : Optional[int] = torch.ones((1, 1_9_6) , dtype=torch.bool).to(A_) # forward pass with torch.no_grad(): lowerCAmelCase_ : List[str] = model(pixel_values=A_ , bool_masked_pos=A_) lowerCAmelCase_ : Union[str, Any] = outputs.logits # verify the logits lowerCAmelCase_ : str = torch.Size((1, 1_9_6, 8_1_9_2)) self.assertEqual(logits.shape , A_) lowerCAmelCase_ : Tuple = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]]).to(A_) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , A_ , atol=1e-2)) @slow def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : Optional[Any] = BeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''').to(A_) lowerCAmelCase_ : Dict = self.default_image_processor lowerCAmelCase_ : str = prepare_img() lowerCAmelCase_ : Dict = image_processor(images=A_ , return_tensors='''pt''').to(A_) # forward pass with torch.no_grad(): lowerCAmelCase_ : List[str] = model(**A_) lowerCAmelCase_ : Optional[int] = outputs.logits # verify the logits lowerCAmelCase_ : Union[str, Any] = torch.Size((1, 1_0_0_0)) self.assertEqual(logits.shape , A_) lowerCAmelCase_ : Optional[Any] = torch.tensor([-1.2385, -1.0987, -1.0108]).to(A_) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4)) lowerCAmelCase_ : Optional[Any] = 2_8_1 self.assertEqual(logits.argmax(-1).item() , A_) @slow def UpperCAmelCase__ ( self : Optional[Any]): lowerCAmelCase_ : Union[str, Any] = BeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''').to( A_) lowerCAmelCase_ : Tuple = self.default_image_processor lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Optional[int] = image_processor(images=A_ , return_tensors='''pt''').to(A_) # forward pass with torch.no_grad(): lowerCAmelCase_ : int = model(**A_) lowerCAmelCase_ : Dict = outputs.logits # verify the logits lowerCAmelCase_ : List[str] = torch.Size((1, 2_1_8_4_1)) self.assertEqual(logits.shape , A_) lowerCAmelCase_ : Tuple = torch.tensor([1.6881, -0.2787, 0.5901]).to(A_) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4)) lowerCAmelCase_ : Union[str, Any] = 2_3_9_6 self.assertEqual(logits.argmax(-1).item() , A_) @slow def UpperCAmelCase__ ( self : Optional[Any]): lowerCAmelCase_ : Any = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''') lowerCAmelCase_ : Optional[int] = model.to(A_) lowerCAmelCase_ : str = BeitImageProcessor(do_resize=A_ , size=6_4_0 , do_center_crop=A_) lowerCAmelCase_ : List[str] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''') lowerCAmelCase_ : Any = Image.open(ds[0]['''file''']) lowerCAmelCase_ : List[str] = image_processor(images=A_ , return_tensors='''pt''').to(A_) # forward pass with torch.no_grad(): lowerCAmelCase_ : Any = model(**A_) lowerCAmelCase_ : List[Any] = outputs.logits # verify the logits lowerCAmelCase_ : str = torch.Size((1, 1_5_0, 1_6_0, 1_6_0)) self.assertEqual(logits.shape , A_) lowerCAmelCase_ : Union[str, Any] = version.parse(PIL.__version__) < version.parse('''9.0.0''') if is_pillow_less_than_a: lowerCAmelCase_ : Optional[int] = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=A_ , ) else: lowerCAmelCase_ : Optional[int] = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=A_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1e-4)) @slow def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ : List[str] = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''') lowerCAmelCase_ : Optional[int] = model.to(A_) lowerCAmelCase_ : List[Any] = BeitImageProcessor(do_resize=A_ , size=6_4_0 , do_center_crop=A_) lowerCAmelCase_ : Optional[int] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''') lowerCAmelCase_ : Any = Image.open(ds[0]['''file''']) lowerCAmelCase_ : int = image_processor(images=A_ , return_tensors='''pt''').to(A_) # forward pass with torch.no_grad(): lowerCAmelCase_ : Tuple = model(**A_) lowerCAmelCase_ : str = outputs.logits.detach().cpu() lowerCAmelCase_ : List[str] = image_processor.post_process_semantic_segmentation(outputs=A_ , target_sizes=[(5_0_0, 3_0_0)]) lowerCAmelCase_ : Optional[Any] = torch.Size((5_0_0, 3_0_0)) self.assertEqual(segmentation[0].shape , A_) lowerCAmelCase_ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=A_) lowerCAmelCase_ : int = torch.Size((1_6_0, 1_6_0)) self.assertEqual(segmentation[0].shape , A_)
171
'''simple docstring''' def A_( A : list[int]): UpperCamelCase = [] if len(A) == 1: return [nums.copy()] for _ in range(len(A)): UpperCamelCase = nums.pop(0) UpperCamelCase = permute(A) for perm in permutations: perm.append(A) result.extend(A) nums.append(A) return result def A_( A : str): def backtrack(A : str): if start == len(A) - 1: output.append(nums[:]) else: for i in range(A , len(A)): UpperCamelCase , UpperCamelCase = nums[i], nums[start] backtrack(start + 1) UpperCamelCase , UpperCamelCase = nums[i], nums[start] # backtrack UpperCamelCase = [] backtrack(0) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCAmelCase : Dict = permutea([1, 2, 3]) print(res) doctest.testmod()
3
0
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__: Dict = logging.get_logger(__name__) lowerCAmelCase__: str = '▁' lowerCAmelCase__: List[str] = {'vocab_file': 'prophetnet.tokenizer'} lowerCAmelCase__: Any = { 'vocab_file': { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer' ), } } lowerCAmelCase__: Union[str, Any] = { 'microsoft/xprophetnet-large-wiki100-cased': {'do_lower_case': False}, } lowerCAmelCase__: Dict = { 'microsoft/xprophetnet-large-wiki100-cased': 512, } def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : Any = collections.OrderedDict() with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as reader: SCREAMING_SNAKE_CASE_ : str = reader.readlines() for index, token in enumerate(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = token.rstrip('\n' ) SCREAMING_SNAKE_CASE_ : Optional[int] = index return vocab class snake_case_ ( snake_case_ ): __lowerCamelCase : str = VOCAB_FILES_NAMES __lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : int = ['input_ids', 'attention_mask'] def __init__( self , __lowerCAmelCase , __lowerCAmelCase="[SEP]" , __lowerCAmelCase="[SEP]" , __lowerCAmelCase="[SEP]" , __lowerCAmelCase="[UNK]" , __lowerCAmelCase="[PAD]" , __lowerCAmelCase="[CLS]" , __lowerCAmelCase="[MASK]" , __lowerCAmelCase = None , **__lowerCAmelCase , ): SCREAMING_SNAKE_CASE_ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ , eos_token=A_ , sep_token=A_ , unk_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece' ) raise SCREAMING_SNAKE_CASE_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab SCREAMING_SNAKE_CASE_ : Dict = {'[PAD]': 0, '[CLS]': 1, '[SEP]': 2, '[UNK]': 3, '[MASK]': 4} for i in range(10 ): SCREAMING_SNAKE_CASE_ : Dict = F'[unused{i}]' SCREAMING_SNAKE_CASE_ : List[Any] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE_ : Union[str, Any] = 12 SCREAMING_SNAKE_CASE_ : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(A_ ) def __getstate__( self ): SCREAMING_SNAKE_CASE_ : Any = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Dict = None return state def __setstate__( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[str] = d try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece' ) raise # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ : List[str] = {} SCREAMING_SNAKE_CASE_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return ([0] * len(A_ )) + [1] return ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1] def __A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): SCREAMING_SNAKE_CASE_ : str = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __A ( self ): return len(self.sp_model ) + self.fairseq_offset def __A ( self ): SCREAMING_SNAKE_CASE_ : str = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __A ( self , __lowerCAmelCase ): return self.sp_model.encode(A_ , out_type=A_ ) def __A ( self , __lowerCAmelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE_ : Dict = self.sp_model.PieceToId(A_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __A ( self , __lowerCAmelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Dict = ''.join(A_ ).replace(A_ , ' ' ).strip() return out_string def __A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : str = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , 'wb' ) as fi: SCREAMING_SNAKE_CASE_ : List[Any] = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,) def __A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): if token_ids_a is None: return token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Dict = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
345
'''simple docstring''' import colorsys from PIL import Image # type: ignore def A_( A : float , A : float , A : int): UpperCamelCase = x UpperCamelCase = y for step in range(A): # noqa: B007 UpperCamelCase = a * a - b * b + x UpperCamelCase = 2 * a * b + y UpperCamelCase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def A_( A : float): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def A_( A : float): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(A , 1 , 1)) def A_( A : int = 800 , A : int = 600 , A : float = -0.6 , A : float = 0 , A : float = 3.2 , A : int = 50 , A : bool = True , ): UpperCamelCase = Image.new('RGB' , (image_width, image_height)) UpperCamelCase = img.load() # loop through the image-coordinates for image_x in range(A): for image_y in range(A): # determine the figure-coordinates based on the image-coordinates UpperCamelCase = figure_width / image_width * image_height UpperCamelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCamelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCamelCase = get_distance(A , A , A) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCamelCase = get_color_coded_rgb(A) else: UpperCamelCase = get_black_and_white_rgb(A) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCAmelCase : Any = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
3
0
import qiskit def __SCREAMING_SNAKE_CASE ( a__ : int = 2 ) -> Optional[int]: __A : str = qubits # Using Aer's simulator __A : List[Any] = qiskit.Aer.get_backend("""aer_simulator""" ) # Creating a Quantum Circuit acting on the q register __A : Tuple = qiskit.QuantumCircuit(a__ ,a__ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 ,a__ ): # Adding CX (CNOT) gate circuit.cx(i - 1 ,a__ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(a__ ) ) ,list(range(a__ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator __A : Tuple = qiskit.execute(a__ ,a__ ,shots=1000 ) return job.result().get_counts(a__ ) if __name__ == "__main__": print(f"""Total count for various states are: {quantum_entanglement(3)}""")
17
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase : Optional[Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
0
'''simple docstring''' from numpy import exp, pi, sqrt def UpperCamelCase__ ( _lowercase : Any , _lowercase : float = 0.0 , _lowercase : float = 1.0 ) -> Dict: return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
523
'''simple docstring''' lowerCAmelCase : Optional[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def A_( A : dict , A : str , A : Optional[Any]): UpperCamelCase = set() # keep track of all the paths to be checked UpperCamelCase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCamelCase = queue.pop(0) # get the last node from the path UpperCamelCase = path[-1] if node not in explored: UpperCamelCase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCamelCase = list(A) new_path.append(A) queue.append(A) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(A) # in case there's no path between the 2 nodes return [] def A_( A : dict , A : str , A : Tuple): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCamelCase = [start] UpperCamelCase = set(A) # Keep tab on distances from `start` node. UpperCamelCase = {start: 0, target: -1} while queue: UpperCamelCase = queue.pop(0) if node == target: UpperCamelCase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node]) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(A) queue.append(A) UpperCamelCase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
3
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , __lowercase : List[Any] , __lowercase : int=7 , __lowercase : Optional[int]=3 , __lowercase : str=30 , __lowercase : Union[str, Any]=4_00 , __lowercase : Any=True , __lowercase : Tuple=None , __lowercase : Tuple=True , __lowercase : Dict=[0.5, 0.5, 0.5] , __lowercase : List[Any]=[0.5, 0.5, 0.5] , __lowercase : Any=True , __lowercase : Optional[Any]=1 / 2_55 , __lowercase : Tuple=True , ): """simple docstring""" snake_case_ = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize snake_case_ = size snake_case_ = do_normalize snake_case_ = image_mean snake_case_ = image_std snake_case_ = do_rescale snake_case_ = rescale_factor snake_case_ = do_pad def snake_case__ ( self : str ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case__ ( self : Optional[Any] , __lowercase : Optional[int] , __lowercase : List[str]=False ): """simple docstring""" if not batched: snake_case_ = image_inputs[0] if isinstance(A_ , Image.Image ): snake_case_ , snake_case_ = image.size else: snake_case_ , snake_case_ = image.shape[1], image.shape[2] if w < h: snake_case_ = int(self.size["shortest_edge"] * h / w ) snake_case_ = self.size["shortest_edge"] elif w > h: snake_case_ = self.size["shortest_edge"] snake_case_ = int(self.size["shortest_edge"] * w / h ) else: snake_case_ = self.size["shortest_edge"] snake_case_ = self.size["shortest_edge"] else: snake_case_ = [] for image in image_inputs: snake_case_ , snake_case_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ = max(A_ , key=lambda __lowercase : item[0] )[0] snake_case_ = max(A_ , key=lambda __lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = DetaImageProcessor if is_vision_available() else None def snake_case__ ( self : List[str] ): """simple docstring""" snake_case_ = DetaImageProcessingTester(self ) @property def snake_case__ ( self : List[str] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : List[str] ): """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , "image_mean" ) ) self.assertTrue(hasattr(A_ , "image_std" ) ) self.assertTrue(hasattr(A_ , "do_normalize" ) ) self.assertTrue(hasattr(A_ , "do_resize" ) ) self.assertTrue(hasattr(A_ , "do_rescale" ) ) self.assertTrue(hasattr(A_ , "do_pad" ) ) self.assertTrue(hasattr(A_ , "size" ) ) def snake_case__ ( self : str ): """simple docstring""" snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} ) self.assertEqual(image_processor.do_pad , A_ ) def snake_case__ ( self : Any ): """simple docstring""" pass def snake_case__ ( self : Optional[int] ): """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) snake_case_ = image_processing(A_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self : Union[str, Any] ): """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ = image_processing(A_ , return_tensors="pt" ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self : int ): """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ = image_processing(A_ , return_tensors="pt" ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case_ = json.loads(f.read() ) snake_case_ = {"image_id": 3_97_69, "annotations": target} # encode them snake_case_ = DetaImageProcessor() snake_case_ = image_processing(images=A_ , annotations=A_ , return_tensors="pt" ) # verify pixel values snake_case_ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , A_ ) snake_case_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area snake_case_ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , A_ ) ) # verify boxes snake_case_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , A_ ) snake_case_ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , A_ , atol=1E-3 ) ) # verify image_id snake_case_ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , A_ ) ) # verify is_crowd snake_case_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , A_ ) ) # verify class_labels snake_case_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , A_ ) ) # verify orig_size snake_case_ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , A_ ) ) # verify size snake_case_ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , A_ ) ) @slow def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case_ = json.loads(f.read() ) snake_case_ = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} snake_case_ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case_ = DetaImageProcessor(format="coco_panoptic" ) snake_case_ = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors="pt" ) # verify pixel values snake_case_ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , A_ ) snake_case_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area snake_case_ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , A_ ) ) # verify boxes snake_case_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , A_ ) snake_case_ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , A_ , atol=1E-3 ) ) # verify image_id snake_case_ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , A_ ) ) # verify is_crowd snake_case_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , A_ ) ) # verify class_labels snake_case_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , A_ ) ) # verify masks snake_case_ = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , A_ ) # verify orig_size snake_case_ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , A_ ) ) # verify size snake_case_ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , A_ ) )
376
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class SCREAMING_SNAKE_CASE__ : def __init__( self )-> Dict: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = '' UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = 256 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 def UpperCAmelCase_ ( self , A_ )-> str: '''simple docstring''' UpperCamelCase = cva.imread(A_ , 0 ) UpperCamelCase = copy.deepcopy(self.img ) UpperCamelCase , UpperCamelCase , UpperCamelCase = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) UpperCamelCase = np.sum(A_ ) for i in range(len(A_ ) ): UpperCamelCase = x[i] / self.k self.sk += prk UpperCamelCase = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase = int(last % last ) UpperCamelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(A_ ) UpperCamelCase = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase = self.img[j][i] if num != self.last_list[num]: UpperCamelCase = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') lowerCAmelCase : str = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
3
0
'''simple docstring''' from __future__ import annotations import bisect def a_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ,_UpperCAmelCase : int = 0 ,_UpperCAmelCase : int = -1 ) -> Union[str, Any]: if hi < 0: __snake_case : str = len(_UpperCAmelCase ) while lo < hi: __snake_case : Optional[int] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __snake_case : Optional[Any] = mid + 1 else: __snake_case : List[Any] = mid return lo def a_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ,_UpperCAmelCase : int = 0 ,_UpperCAmelCase : int = -1 ) -> str: if hi < 0: __snake_case : Optional[Any] = len(_UpperCAmelCase ) while lo < hi: __snake_case : int = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __snake_case : Optional[int] = mid + 1 else: __snake_case : List[str] = mid return lo def a_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ,_UpperCAmelCase : int = 0 ,_UpperCAmelCase : int = -1 ) -> str: sorted_collection.insert(bisect_left(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) ,_UpperCAmelCase ) def a_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ,_UpperCAmelCase : int = 0 ,_UpperCAmelCase : int = -1 ) -> int: sorted_collection.insert(bisect_right(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) ,_UpperCAmelCase ) def a_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ) -> Dict: __snake_case : Dict = 0 __snake_case : Union[str, Any] = len(_UpperCAmelCase ) - 1 while left <= right: __snake_case : int = left + (right - left) // 2 __snake_case : int = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __snake_case : Optional[Any] = midpoint - 1 else: __snake_case : int = midpoint + 1 return None def a_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ) -> Dict: __snake_case : Union[str, Any] = bisect.bisect_left(_UpperCAmelCase ,_UpperCAmelCase ) if index != len(_UpperCAmelCase ) and sorted_collection[index] == item: return index return None def a_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ,_UpperCAmelCase : int ,_UpperCAmelCase : int ) -> Optional[int]: if right < left: return None __snake_case : str = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,midpoint - 1 ) else: return binary_search_by_recursion(_UpperCAmelCase ,_UpperCAmelCase ,midpoint + 1 ,_UpperCAmelCase ) if __name__ == "__main__": A__ : Tuple = input('''Enter numbers separated by comma:\n''').strip() A__ : int = sorted(int(item) for item in user_input.split(''',''')) A__ : Optional[Any] = int(input('''Enter a single number to be found in the list:\n''')) A__ : Any = binary_search(collection, target) if result is None: print(F"""{target} was not found in {collection}.""") else: print(F"""{target} was found at position {result} in {collection}.""")
286
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Tuple = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """unispeech-sat""" def __init__( self , A_=32 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.1 , A_=0.1 , A_=0.02 , A_=1e-5 , A_="group" , A_="gelu" , A_=(512, 512, 512, 512, 512, 512, 512) , A_=(5, 2, 2, 2, 2, 2, 2) , A_=(10, 3, 3, 3, 3, 2, 2) , A_=False , A_=128 , A_=16 , A_=False , A_=True , A_=0.05 , A_=10 , A_=2 , A_=0.0 , A_=10 , A_=0 , A_=320 , A_=2 , A_=0.1 , A_=100 , A_=256 , A_=256 , A_=0.1 , A_="mean" , A_=False , A_=False , A_=256 , A_=(512, 512, 512, 512, 1500) , A_=(5, 3, 3, 1, 1) , A_=(1, 2, 3, 1, 1) , A_=512 , A_=0 , A_=1 , A_=2 , A_=504 , **A_ , )-> Tuple: '''simple docstring''' super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) UpperCamelCase = hidden_size UpperCamelCase = feat_extract_norm UpperCamelCase = feat_extract_activation UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = conv_bias UpperCamelCase = num_conv_pos_embeddings UpperCamelCase = num_conv_pos_embedding_groups UpperCamelCase = len(self.conv_dim ) UpperCamelCase = num_hidden_layers UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = num_attention_heads UpperCamelCase = hidden_dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = feat_proj_dropout UpperCamelCase = final_dropout UpperCamelCase = layerdrop UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = vocab_size UpperCamelCase = num_clusters UpperCamelCase = do_stable_layer_norm UpperCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase = apply_spec_augment UpperCamelCase = mask_time_prob UpperCamelCase = mask_time_length UpperCamelCase = mask_time_min_masks UpperCamelCase = mask_feature_prob UpperCamelCase = mask_feature_length UpperCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCamelCase = num_codevectors_per_group UpperCamelCase = num_codevector_groups UpperCamelCase = contrastive_logits_temperature UpperCamelCase = feat_quantizer_dropout UpperCamelCase = num_negatives UpperCamelCase = codevector_dim UpperCamelCase = proj_codevector_dim UpperCamelCase = diversity_loss_weight # ctc loss UpperCamelCase = ctc_loss_reduction UpperCamelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = xvector_output_dim @property def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
3
0
import os def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): snake_case__ : Optional[int] = len(grid[0] ) snake_case__ : List[str] = len(snake_case_ ) snake_case__ : str = 0 snake_case__ : List[str] = 0 snake_case__ : Optional[int] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(snake_case_ ): for j in range(n_rows - 3 ): snake_case__ : Tuple = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] snake_case__ : Tuple = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: snake_case__ : Tuple = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: snake_case__ : int = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) snake_case__ : Optional[int] = max( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if max_product > largest: snake_case__ : str = max_product return largest def SCREAMING_SNAKE_CASE ( ): snake_case__ : int = [] with open(os.path.dirname(snake_case_ ) + "/grid.txt" ) as file: for line in file: grid.append(line.strip("\n" ).split(" " ) ) snake_case__ : List[Any] = [[int(snake_case_ ) for i in grid[j]] for j in range(len(snake_case_ ) )] return largest_product(snake_case_ ) if __name__ == "__main__": print(solution())
297
'''simple docstring''' import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ , A_=100 , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=4 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=None , A_=[0, 1, 2, 3] , )-> Any: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = 100 UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = scope UpperCamelCase = out_indices UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = num_patches + 1 def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> List[str]: '''simple docstring''' UpperCamelCase = BeitModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Any: '''simple docstring''' UpperCamelCase = BeitForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.type_sequence_label_size UpperCamelCase = BeitForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = BeitForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[Any]: '''simple docstring''' UpperCamelCase = self.num_labels UpperCamelCase = BeitForSemanticSegmentation(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase_ = ( { """feature-extraction""": BeitModel, """image-classification""": BeitForImageClassification, """image-segmentation""": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = BeitModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A_ ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' if not self.model_tester.is_training: return UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(A_ ), BeitForMaskedImageModeling]: continue UpperCamelCase = model_class(A_ ) model.to(A_ ) model.train() UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ ) UpperCamelCase = model(**A_ ).loss loss.backward() def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase = False UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(A_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCamelCase = model_class(A_ ) model.gradient_checkpointing_enable() model.to(A_ ) model.train() UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ ) UpperCamelCase = model(**A_ ).loss loss.backward() def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = _config_zero_init(A_ ) for model_class in self.all_model_classes: UpperCamelCase = model_class(config=A_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = BeitModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A_( ): UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @cached_property def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).pixel_values.to(A_ ) # prepare bool_masked_pos UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(pixel_values=A_ , bool_masked_pos=A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(A_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , A_ , atol=1e-2 ) ) @slow def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(A_ ) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) ) UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , A_ ) @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 21841) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(A_ ) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) ) UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , A_ ) @slow def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) UpperCamelCase = model.to(A_ ) UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ ) UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) UpperCamelCase = Image.open(ds[0]['file'] ) UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: UpperCamelCase = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] , device=A_ , ) else: UpperCamelCase = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] , device=A_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1e-4 ) ) @slow def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) UpperCamelCase = model.to(A_ ) UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ ) UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) UpperCamelCase = Image.open(ds[0]['file'] ) UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits.detach().cpu() UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ , target_sizes=[(500, 300)] ) UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , A_ ) UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ ) UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , A_ )
3
0
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class A_(snake_case_ ): """simple docstring""" def __init__( self , A , A = None , A = None , A = True , A = None , A = False , A = None , A = True , A = "arrow" , **A , ): super().__init__( split=A_ , features=A_ , cache_dir=A_ , keep_in_memory=A_ , streaming=A_ , **A_ , ) _lowerCamelCase : Union[str, Any] = load_from_cache_file _lowerCamelCase : Optional[Any] = file_format _lowerCamelCase : int = Spark( df=A_ , features=A_ , cache_dir=A_ , working_dir=A_ , **A_ , ) def _lowerCAmelCase ( self ): if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _lowerCamelCase : List[Any] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=A_ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
437
'''simple docstring''' import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase : Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( enum.Enum): lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 @add_end_docstrings(snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """generated""" def __init__( self , *A_ , **A_ )-> Optional[int]: '''simple docstring''' super().__init__(*A_ , **A_ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , **A_ , )-> Optional[Any]: '''simple docstring''' UpperCamelCase = {} if truncation is not None: UpperCamelCase = truncation UpperCamelCase = generate_kwargs UpperCamelCase = {} if return_tensors is not None and return_type is None: UpperCamelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: UpperCamelCase = return_type if clean_up_tokenization_spaces is not None: UpperCamelCase = clean_up_tokenization_spaces if stop_sequence is not None: UpperCamelCase = self.tokenizer.encode(A_ , add_special_tokens=A_ ) if len(A_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) UpperCamelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' return True def UpperCAmelCase_ ( self , *A_ , A_ )-> Any: '''simple docstring''' UpperCamelCase = self.model.config.prefix if self.model.config.prefix is not None else '' if isinstance(args[0] , A_ ): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' ) UpperCamelCase = ([prefix + arg for arg in args[0]],) UpperCamelCase = True elif isinstance(args[0] , A_ ): UpperCamelCase = (prefix + args[0],) UpperCamelCase = False else: raise ValueError( F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) UpperCamelCase = self.tokenizer(*A_ , padding=A_ , truncation=A_ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A_ , **A_ )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = super().__call__(*A_ , **A_ ) if ( isinstance(args[0] , A_ ) and all(isinstance(A_ , A_ ) for el in args[0] ) and all(len(A_ ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase_ ( self , A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , **A_ )-> Any: '''simple docstring''' UpperCamelCase = self._parse_and_tokenize(A_ , truncation=A_ , **A_ ) return inputs def UpperCAmelCase_ ( self , A_ , **A_ )-> int: '''simple docstring''' if self.framework == "pt": UpperCamelCase , UpperCamelCase = model_inputs['input_ids'].shape elif self.framework == "tf": UpperCamelCase , UpperCamelCase = tf.shape(model_inputs['input_ids'] ).numpy() UpperCamelCase = generate_kwargs.get('min_length' , self.model.config.min_length ) UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) self.check_inputs(A_ , generate_kwargs['min_length'] , generate_kwargs['max_length'] ) UpperCamelCase = self.model.generate(**A_ , **A_ ) UpperCamelCase = output_ids.shape[0] if self.framework == "pt": UpperCamelCase = output_ids.reshape(A_ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": UpperCamelCase = tf.reshape(A_ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase_ ( self , A_ , A_=ReturnType.TEXT , A_=False )-> Optional[Any]: '''simple docstring''' UpperCamelCase = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: UpperCamelCase = {F'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: UpperCamelCase = { F'''{self.return_name}_text''': self.tokenizer.decode( A_ , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , ) } records.append(A_ ) return records @add_end_docstrings(snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """summary""" def __call__( self , *A_ , **A_ )-> Optional[int]: '''simple docstring''' return super().__call__(*A_ , **A_ ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> bool: '''simple docstring''' if max_length < min_length: logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' 'a summarization task, where outputs shorter than the input are typically wanted, you might ' F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """translation""" def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> List[Any]: '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' ) return True def UpperCAmelCase_ ( self , *A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , A_=None , A_=None )-> Dict: '''simple docstring''' if getattr(self.tokenizer , '_build_translation_inputs' , A_ ): return self.tokenizer._build_translation_inputs( *A_ , return_tensors=self.framework , truncation=A_ , src_lang=A_ , tgt_lang=A_ ) else: return super()._parse_and_tokenize(*A_ , truncation=A_ ) def UpperCAmelCase_ ( self , A_=None , A_=None , **A_ )-> str: '''simple docstring''' UpperCamelCase , UpperCamelCase , UpperCamelCase = super()._sanitize_parameters(**A_ ) if src_lang is not None: UpperCamelCase = src_lang if tgt_lang is not None: UpperCamelCase = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. UpperCamelCase = kwargs.get('task' , self.task ) UpperCamelCase = task.split('_' ) if task and len(A_ ) == 4: # translation, XX, to YY UpperCamelCase = items[1] UpperCamelCase = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A_ , **A_ )-> Any: '''simple docstring''' return super().__call__(*A_ , **A_ )
3
0
def _UpperCAmelCase ( UpperCamelCase: int ): """simple docstring""" __lowerCAmelCase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
611
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = 0 lowerCAmelCase_ = False lowerCAmelCase_ = 3.0 class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def UpperCAmelCase_ ( self )-> int: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=A_ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() UpperCamelCase = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , A_ ) @require_multi_gpu def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_ , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase : Tuple = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCAmelCase : List[str] = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCAmelCase : List[Any] = torch.nn.Linear(1_00, 2_00) lowerCAmelCase : int = accelerator.prepare(model) # Check the values changed in kwargs lowerCAmelCase : Dict = '' lowerCAmelCase : Dict = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
3
0
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version A_ = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") A_ = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization A_ = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } A_ = sorted(arg_to_scheduler.keys()) A_ = '{' + ', '.join(arg_to_scheduler_choices) + '}' class lowercase_ ( pl.LightningModule ): def __init__( self : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str=None , __lowerCamelCase : Tuple="base" , __lowerCamelCase : Tuple=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : Union[str, Any] , ): super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(A_ ) snake_case__ : Optional[int] = 0 snake_case__ : List[Any] = Path(self.hparams.output_dir ) snake_case__ : int = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: snake_case__ : str = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=A_ , **A_ , ) else: snake_case__ : Any = config snake_case__ : str = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , A_ , A_ ): assert hasattr(self.config , A_ ), F"model config doesn\'t have a `{p}` attribute" setattr(self.config , A_ , getattr(self.hparams , A_ ) ) if tokenizer is None: snake_case__ : int = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=A_ , ) else: snake_case__ : Tuple = tokenizer snake_case__ : List[str] = MODEL_MODES[mode] if model is None: snake_case__ : List[str] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=A_ , ) else: snake_case__ : Union[str, Any] = model def _lowerCAmelCase ( self : str , *__lowerCamelCase : List[str] , **__lowerCamelCase : Optional[int] ): snake_case__ : str = self.model_type.from_pretrained(*A_ , **A_ ) def _lowerCAmelCase ( self : Optional[Any] ): snake_case__ : Optional[int] = arg_to_scheduler[self.hparams.lr_scheduler] snake_case__ : int = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) snake_case__ : int = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def _lowerCAmelCase ( self : Optional[int] ): snake_case__ : Any = self.model snake_case__ : Optional[Any] = ['bias', 'LayerNorm.weight'] snake_case__ : int = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: snake_case__ : List[str] = Adafactor( A_ , lr=self.hparams.learning_rate , scale_parameter=A_ , relative_step=A_ ) else: snake_case__ : List[Any] = AdamW( A_ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) snake_case__ : Optional[int] = optimizer snake_case__ : str = self.get_lr_scheduler() return [optimizer], [scheduler] def _lowerCAmelCase ( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple ): return self.validation_step(A_ , A_ ) def _lowerCAmelCase ( self : str , __lowerCamelCase : Optional[Any] ): return self.validation_end(A_ ) def _lowerCAmelCase ( self : Optional[int] ): snake_case__ : int = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores snake_case__ : List[str] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def _lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Optional[Any] ): if stage == "test": snake_case__ : Optional[Any] = len(self.test_dataloader().dataset ) else: snake_case__ : List[Any] = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=A_ ) snake_case__ : Optional[int] = len(self.train_dataloader().dataset ) def _lowerCAmelCase ( self : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Any = False ): raise NotImplementedError('You must implement this for your task' ) def _lowerCAmelCase ( self : List[str] ): return self.train_loader def _lowerCAmelCase ( self : Dict ): return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=A_ ) def _lowerCAmelCase ( self : Dict ): return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=A_ ) def _lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Dict ): return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( A_ , list(filter(A_ , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def _lowerCAmelCase ( self : Any , __lowerCamelCase : Dict ): snake_case__ : Any = self.output_dir.joinpath('best_tfmr' ) snake_case__ : Optional[int] = self.step_count self.model.save_pretrained(A_ ) self.tokenizer.save_pretrained(A_ ) @staticmethod def _lowerCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : Optional[int] ): parser.add_argument( '--model_name_or_path' , default=A_ , type=A_ , required=A_ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=A_ , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=A_ , type=A_ , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(A_ ).parent / 'test_run' / 'cache' ) , type=A_ , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=A_ , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=A_ , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=A_ , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=A_ , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=A_ , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=A_ , metavar=A_ , type=A_ , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=A_ , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=A_ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=A_ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=A_ , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=A_ ) parser.add_argument('--train_batch_size' , default=32 , type=A_ ) parser.add_argument('--eval_batch_size' , default=32 , type=A_ ) parser.add_argument('--adafactor' , action='store_true' ) class lowercase_ ( pl.Callback ): def _lowerCAmelCase ( self : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ): if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowercase_ ( pl.Callback ): def _lowerCAmelCase ( self : Any , __lowerCamelCase : int , __lowerCamelCase : List[str] ): for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(A_ ) class lowercase_ ( pl.Callback ): def _lowerCAmelCase ( self : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ): snake_case__ : Optional[Any] = trainer.lr_schedulers[0]['scheduler'] snake_case__ : int = {F"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(A_ ) def _lowerCAmelCase ( self : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any ): rank_zero_info('***** Validation results *****' ) snake_case__ : List[str] = trainer.callback_metrics # Log results for key in sorted(A_ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(A_ , str(metrics[key] ) ) ) def _lowerCAmelCase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] ): rank_zero_info('***** Test results *****' ) snake_case__ : Optional[Any] = trainer.callback_metrics # Log and save results to file snake_case__ : List[Any] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(A_ , 'w' ) as writer: for key in sorted(A_ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(A_ , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(A_ , str(metrics[key] ) ) ) def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir' , default=str(Path(__SCREAMING_SNAKE_CASE ).parent / 'test_run' / 'model_checkpoints' ) , type=__SCREAMING_SNAKE_CASE , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=__SCREAMING_SNAKE_CASE , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=__SCREAMING_SNAKE_CASE ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=__SCREAMING_SNAKE_CASE , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=__SCREAMING_SNAKE_CASE , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=__SCREAMING_SNAKE_CASE , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(__SCREAMING_SNAKE_CASE ).parent / 'test_run' / 'dummy-train-data' ) , type=__SCREAMING_SNAKE_CASE , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=[] , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ) -> Optional[Any]: pl.seed_everything(args.seed ) # init model snake_case__ : Optional[int] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) # add custom checkpoints if checkpoint_callback is None: snake_case__ : List[Any] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(__SCREAMING_SNAKE_CASE ) if logging_callback is None: snake_case__ : Optional[int] = LoggingCallback() snake_case__ : Union[str, Any] = {} if args.fpaa: snake_case__ : Any = 16 if args.gpus > 1: snake_case__ : Any = 'auto' snake_case__ : Optional[int] = 'ddp' snake_case__ : Any = args.accumulate_grad_batches snake_case__ : Any = None snake_case__ : Any = 'auto' snake_case__ : str = pl.Trainer.from_argparse_args( __SCREAMING_SNAKE_CASE , weights_summary=__SCREAMING_SNAKE_CASE , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=__SCREAMING_SNAKE_CASE , val_check_interval=1 , num_sanity_val_steps=2 , **__SCREAMING_SNAKE_CASE , ) if args.do_train: trainer.fit(__SCREAMING_SNAKE_CASE ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
270
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_): @register_to_config def __init__( self , A_ , A_ = None , A_ = None )-> Tuple: '''simple docstring''' super().__init__() UpperCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCamelCase = torch.zeros(A_ , A_ ) else: UpperCamelCase = None UpperCamelCase = torch.nn.Parameter(A_ ) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , )-> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( vqvae=A_ , transformer=A_ , text_encoder=A_ , tokenizer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Tuple: '''simple docstring''' UpperCamelCase = len(A_ ) if isinstance(A_ , A_ ) else 1 # get prompt text embeddings UpperCamelCase = self.tokenizer( A_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) UpperCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate text embeddings for each generation per prompt UpperCamelCase = prompt_embeds.repeat_interleave(A_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(A_ , 1 , 1 ) else: UpperCamelCase = [''] * batch_size UpperCamelCase = text_input_ids.shape[-1] UpperCamelCase = self.tokenizer( A_ , padding='max_length' , max_length=A_ , truncation=A_ , return_tensors='pt' , ) UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase = negative_prompt_embeds.shape[1] UpperCamelCase = negative_prompt_embeds.repeat(1 , A_ , 1 ) UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , A_ , A_ = 100 , A_ = 5.0 , A_ = 1.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , A_ = None , A_ = 1 , )-> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(A_ , A_ ): UpperCamelCase = 1 elif isinstance(A_ , A_ ): UpperCamelCase = len(A_ ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(A_ )}''' ) UpperCamelCase = batch_size * num_images_per_prompt UpperCamelCase = guidance_scale > 1.0 UpperCamelCase = self._encode_prompt(A_ , A_ , A_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A_ , A_ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(A_ )}.''' ) # get the initial completely masked latents unless the user supplied it UpperCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCamelCase = self.transformer.num_vector_embeds - 1 UpperCamelCase = torch.full(A_ , A_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) UpperCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(A_ , device=self.device ) UpperCamelCase = self.scheduler.timesteps.to(self.device ) UpperCamelCase = latents for i, t in enumerate(self.progress_bar(A_ ) ): # expand the sample if we are doing classifier free guidance UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCamelCase = self.transformer(A_ , encoder_hidden_states=A_ , timestep=A_ ).sample if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase = model_output.chunk(2 ) UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(A_ , dim=1 , keepdim=A_ ) UpperCamelCase = self.truncate(A_ , A_ ) # remove `log(0)`'s (`-inf`s) UpperCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(A_ , timestep=A_ , sample=A_ , generator=A_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A_ , A_ , A_ ) UpperCamelCase = self.vqvae.config.vq_embed_dim UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCamelCase = self.vqvae.quantize.get_codebook_entry(A_ , shape=A_ ) UpperCamelCase = self.vqvae.decode(A_ , force_not_quantize=A_ ).sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ ) def UpperCAmelCase_ ( self , A_ , A_ )-> torch.FloatTensor: '''simple docstring''' UpperCamelCase , UpperCamelCase = torch.sort(A_ , 1 , descending=A_ ) UpperCamelCase = torch.exp(A_ ) UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , A_ ) UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) UpperCamelCase = keep_mask[:, :-1, :] UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) UpperCamelCase = log_p_x_0.clone() UpperCamelCase = -torch.inf # -inf = log(0) return rv
3
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase_ ( snake_case_ ): '''simple docstring''' a__ : Any = ["""image_processor""", """tokenizer"""] a__ : Optional[int] = """ChineseCLIPImageProcessor""" a__ : int = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , __lowercase=None , __lowercase=None , **__lowercase) -> int: __UpperCamelCase :List[str] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , A_ , ) __UpperCamelCase :Optional[Any] = kwargs.pop('''feature_extractor''') __UpperCamelCase :Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(A_ , A_) __UpperCamelCase :List[Any] = self.image_processor def __call__( self , __lowercase=None , __lowercase=None , __lowercase=None , **__lowercase) -> List[Any]: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''') if text is not None: __UpperCamelCase :Optional[int] = self.tokenizer(A_ , return_tensors=A_ , **A_) if images is not None: __UpperCamelCase :Union[str, Any] = self.image_processor(A_ , return_tensors=A_ , **A_) if text is not None and images is not None: __UpperCamelCase :Optional[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A_) , tensor_type=A_) def UpperCamelCase__ ( self , *__lowercase , **__lowercase) -> Optional[Any]: return self.tokenizer.batch_decode(*A_ , **A_) def UpperCamelCase__ ( self , *__lowercase , **__lowercase) -> Tuple: return self.tokenizer.decode(*A_ , **A_) @property def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Any = self.tokenizer.model_input_names __UpperCamelCase :Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def UpperCamelCase__ ( self) -> List[str]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , A_ , ) return self.image_processor_class
167
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Union[str, Any] = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
0
A__ : List[Any] = range(2, 20 + 1) A__ : Union[str, Any] = [10**k for k in range(ks[-1] + 1)] A__ : dict[int, dict[int, list[list[int]]]] = {} def UpperCamelCase( __UpperCamelCase : Any ,__UpperCamelCase : Dict ,__UpperCamelCase : str ,__UpperCamelCase : str ): lowerCAmelCase_ : Dict = sum(a_i[j] for j in range(__UpperCamelCase ,len(__UpperCamelCase ) ) ) lowerCAmelCase_ : Union[str, Any] = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ) ,__UpperCamelCase ) ) ) lowerCAmelCase_ , lowerCAmelCase_ : Dict = 0, 0 lowerCAmelCase_ : Union[str, Any] = n - i lowerCAmelCase_ : List[Any] = memo.get(__UpperCamelCase ) if sub_memo is not None: lowerCAmelCase_ : str = sub_memo.get(__UpperCamelCase ) if jumps is not None and len(__UpperCamelCase ) > 0: # find and make the largest jump without going over lowerCAmelCase_ : str = -1 for _k in range(len(__UpperCamelCase ) - 1 ,-1 ,-1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowerCAmelCase_ : Optional[int] = _k break if max_jump >= 0: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = jumps[max_jump] # since the difference between jumps is cached, add c lowerCAmelCase_ : Tuple = diff + c for j in range(min(__UpperCamelCase ,len(__UpperCamelCase ) ) ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = divmod(__UpperCamelCase ,10 ) if new_c > 0: add(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) else: lowerCAmelCase_ : str = [] else: lowerCAmelCase_ : List[str] = {c: []} lowerCAmelCase_ : Any = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowerCAmelCase_ , lowerCAmelCase_ : Tuple = next_term(__UpperCamelCase ,k - 1 ,i + dn ,__UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowerCAmelCase_ , lowerCAmelCase_ : int = compute(__UpperCamelCase ,__UpperCamelCase ,i + dn ,__UpperCamelCase ) diff += _diff dn += terms_jumped lowerCAmelCase_ : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped lowerCAmelCase_ : Dict = 0 while j < len(__UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCamelCase ,(diff, dn, k) ) return (diff, dn) def UpperCamelCase( __UpperCamelCase : int ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : str ,__UpperCamelCase : List[str] ): if i >= n: return 0, i if k > len(__UpperCamelCase ): a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowerCAmelCase_ : int = i lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = 0, 0, 0 for j in range(len(__UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowerCAmelCase_ : Optional[int] = ds_c + ds_b diff += addend lowerCAmelCase_ : Optional[int] = 0 for j in range(__UpperCamelCase ): lowerCAmelCase_ : Union[str, Any] = a_i[j] + addend lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = divmod(__UpperCamelCase ,10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) return diff, i - start_i def UpperCamelCase( __UpperCamelCase : str ,__UpperCamelCase : Dict ,__UpperCamelCase : Tuple ): for j in range(__UpperCamelCase ,len(__UpperCamelCase ) ): lowerCAmelCase_ : Optional[Any] = digits[j] + addend if s >= 10: lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = divmod(__UpperCamelCase ,10 ) lowerCAmelCase_ : str = addend // 10 + quotient else: lowerCAmelCase_ : List[Any] = s lowerCAmelCase_ : Union[str, Any] = addend // 10 if addend == 0: break while addend > 0: lowerCAmelCase_ , lowerCAmelCase_ : int = divmod(__UpperCamelCase ,10 ) digits.append(__UpperCamelCase ) def UpperCamelCase( __UpperCamelCase : int = 10**15 ): lowerCAmelCase_ : Optional[int] = [1] lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : List[str] = 0 while True: lowerCAmelCase_ , lowerCAmelCase_ : str = next_term(__UpperCamelCase ,20 ,i + dn ,__UpperCamelCase ) dn += terms_jumped if dn == n - i: break lowerCAmelCase_ : str = 0 for j in range(len(__UpperCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'''{solution() = }''')
171
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ = None , A_ = None , A_=None , A_=None )-> Optional[Any]: '''simple docstring''' if not conversation_id: UpperCamelCase = uuid.uuida() if past_user_inputs is None: UpperCamelCase = [] if generated_responses is None: UpperCamelCase = [] UpperCamelCase = conversation_id UpperCamelCase = past_user_inputs UpperCamelCase = generated_responses UpperCamelCase = text def __eq__( self , A_ )-> List[Any]: '''simple docstring''' if not isinstance(A_ , A_ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def UpperCAmelCase_ ( self , A_ , A_ = False )-> int: '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' F'''with: "{text}".''' ) UpperCamelCase = text else: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: UpperCamelCase = text def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) UpperCamelCase = None def UpperCAmelCase_ ( self , A_ )-> int: '''simple docstring''' self.generated_responses.append(A_ ) def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self )-> Any: '''simple docstring''' UpperCamelCase = F'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): UpperCamelCase = 'user' if is_user else 'bot' output += F'''{name} >> {text} \n''' return output @add_end_docstrings( snake_case_ , R""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , *A_ , **A_ )-> Any: '''simple docstring''' super().__init__(*A_ , **A_ ) if self.tokenizer.pad_token_id is None: UpperCamelCase = self.tokenizer.eos_token def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , **A_ )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = {} UpperCamelCase = {} UpperCamelCase = {} if min_length_for_response is not None: UpperCamelCase = min_length_for_response if minimum_tokens is not None: UpperCamelCase = minimum_tokens if "max_length" in generate_kwargs: UpperCamelCase = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: UpperCamelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(A_ ) return preprocess_params, forward_params, postprocess_params def __call__( self , A_ , A_=0 , **A_ )-> Any: '''simple docstring''' UpperCamelCase = super().__call__(A_ , num_workers=A_ , **A_ ) if isinstance(A_ , A_ ) and len(A_ ) == 1: return outputs[0] return outputs def UpperCAmelCase_ ( self , A_ , A_=32 )-> Dict[str, Any]: '''simple docstring''' if not isinstance(A_ , A_ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): UpperCamelCase = self.tokenizer._build_conversation_input_ids(A_ ) else: # If the tokenizer cannot handle conversations, we default to only the old version UpperCamelCase = self._legacy_parse_and_tokenize(A_ ) if self.framework == "pt": UpperCamelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": UpperCamelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def UpperCAmelCase_ ( self , A_ , A_=10 , **A_ )-> Optional[Any]: '''simple docstring''' UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) UpperCamelCase = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) UpperCamelCase = max_length - minimum_tokens UpperCamelCase = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: UpperCamelCase = model_inputs['attention_mask'][:, -trim:] UpperCamelCase = model_inputs.pop('conversation' ) UpperCamelCase = max_length UpperCamelCase = self.model.generate(**A_ , **A_ ) if self.model.config.is_encoder_decoder: UpperCamelCase = 1 else: UpperCamelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def UpperCAmelCase_ ( self , A_ , A_=True )-> Tuple: '''simple docstring''' UpperCamelCase = model_outputs['output_ids'] UpperCamelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , ) UpperCamelCase = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(A_ ) return conversation def UpperCAmelCase_ ( self , A_ )-> Dict: '''simple docstring''' UpperCamelCase = self.tokenizer.eos_token_id UpperCamelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) ) if len(A_ ) > self.tokenizer.model_max_length: UpperCamelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
3
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__: Tuple = { 'configuration_blip_2': [ 'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Blip2Config', 'Blip2QFormerConfig', 'Blip2VisionConfig', ], 'processing_blip_2': ['Blip2Processor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__: int = [ 'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Blip2Model', 'Blip2QFormerModel', 'Blip2PreTrainedModel', 'Blip2ForConditionalGeneration', 'Blip2VisionModel', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowerCAmelCase__: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
345
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase : List[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase : List[Any] = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase : Tuple = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase : List[Any] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
3
0
import math import qiskit def __SCREAMING_SNAKE_CASE ( a__ : int = 1 ,a__ : int = 1 ,a__ : int = 1 ) -> Any: if ( isinstance(a__ ,a__ ) or isinstance(a__ ,a__ ) or isinstance(a__ ,a__ ) ): raise TypeError("""inputs must be integers.""" ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("""inputs must be positive.""" ) if ( (math.floor(a__ ) != input_a) or (math.floor(a__ ) != input_a) or (math.floor(a__ ) != carry_in) ): raise ValueError("""inputs must be exact integers.""" ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("""inputs must be less or equal to 2.""" ) # build registers __A : List[Any] = qiskit.QuantumRegister(4 ,"""qr""" ) __A : List[Any] = qiskit.ClassicalRegister(2 ,"""cr""" ) # list the entries __A : str = [input_a, input_a, carry_in] __A : Tuple = qiskit.QuantumCircuit(a__ ,a__ ) for i in range(0 ,3 ): if entry[i] == 2: quantum_circuit.h(a__ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(a__ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(a__ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 ,1 ,3 ) # ccx = toffoli gate quantum_circuit.cx(0 ,1 ) quantum_circuit.ccx(1 ,2 ,3 ) quantum_circuit.cx(1 ,2 ) quantum_circuit.cx(0 ,1 ) quantum_circuit.measure([2, 3] ,a__ ) # measure the last two qbits __A : Tuple = qiskit.Aer.get_backend("""aer_simulator""" ) __A : Any = qiskit.execute(a__ ,a__ ,shots=1000 ) return job.result().get_counts(a__ ) if __name__ == "__main__": print(f"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
17
'''simple docstring''' import numpy as np def A_( A : str , A : Optional[Any] , A : Tuple , A : Optional[int] , A : str): UpperCamelCase = int(np.ceil((x_end - xa) / h)) UpperCamelCase = np.zeros((n + 1,)) UpperCamelCase = ya UpperCamelCase = xa for k in range(A): UpperCamelCase = f(A , y[k]) UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka) UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka) UpperCamelCase = f(x + h , y[k] + h * ka) UpperCamelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
3
0
'''simple docstring''' from __future__ import annotations from typing import TypedDict class a ( snake_case_ ): """simple docstring""" __lowerCAmelCase = 4_2 __lowerCAmelCase = 4_2 def UpperCamelCase__ ( _lowercase : str ) -> Union[str, Any]: if not isinstance(_lowercase , _lowercase ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(_lowercase ) )] def UpperCamelCase__ ( _lowercase : str ) -> int: if not isinstance(_lowercase , _lowercase ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) __UpperCAmelCase: str = all_rotations(_lowercase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation __UpperCAmelCase: List[Any] = { """bwt_string""": """""".join([word[-1] for word in rotations] ), """idx_original_string""": rotations.index(_lowercase ), } return response def UpperCamelCase__ ( _lowercase : str , _lowercase : int ) -> List[str]: if not isinstance(_lowercase , _lowercase ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: __UpperCAmelCase: Union[str, Any] = int(_lowercase ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(_lowercase ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) __UpperCAmelCase: Optional[Any] = [""""""] * len(_lowercase ) for _ in range(len(_lowercase ) ): for i in range(len(_lowercase ) ): __UpperCAmelCase: Tuple = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 'Provide a string that I will generate its BWT transform: ' SCREAMING_SNAKE_CASE_ = input(entry_msg).strip() SCREAMING_SNAKE_CASE_ = bwt_transform(s) print( F"""Burrows Wheeler transform for string '{s}' results """ F"""in '{result["bwt_string"]}'""" ) SCREAMING_SNAKE_CASE_ = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( F"""Reversing Burrows Wheeler transform for entry '{result["bwt_string"]}' """ F"""we get original string '{original_string}'""" )
523
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True}) lowerCAmelCase_ = Features({"""text""": Value("""string""")}) lowerCAmelCase_ = Features({}) lowerCAmelCase_ = "text" @property def UpperCAmelCase_ ( self )-> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
3
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase__ : Any = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Union[str, Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys lowercase__ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
376
'''simple docstring''' from __future__ import annotations lowerCAmelCase : Union[str, Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCAmelCase : List[str] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def A_( A : list[float]): UpperCamelCase = [] UpperCamelCase = len(A) for i in range(A): UpperCamelCase = -1 for j in range(i + 1 , A): if arr[i] < arr[j]: UpperCamelCase = arr[j] break result.append(A) return result def A_( A : list[float]): UpperCamelCase = [] for i, outer in enumerate(A): UpperCamelCase = -1 for inner in arr[i + 1 :]: if outer < inner: UpperCamelCase = inner break result.append(A) return result def A_( A : list[float]): UpperCamelCase = len(A) UpperCamelCase = [] UpperCamelCase = [-1] * arr_size for index in reversed(range(A)): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: UpperCamelCase = stack[-1] stack.append(arr[index]) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCAmelCase : Optional[Any] = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
3
0
'''simple docstring''' from __future__ import annotations from collections import deque class snake_case__ : def __init__( self : Optional[int] , __a : List[Any] ) -> List[str]: '''simple docstring''' __snake_case : Tuple = [] self.adlist.append( {'value': '', 'next_states': [], 'fail_state': 0, 'output': []} ) for keyword in keywords: self.add_keyword(A_ ) self.set_fail_transitions() def A_ ( self : Dict , __a : Any , __a : Any ) -> int | None: '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def A_ ( self : str , __a : int ) -> None: '''simple docstring''' __snake_case : Union[str, Any] = 0 for character in keyword: __snake_case : int = self.find_next_state(A_ , A_ ) if next_state is None: self.adlist.append( { 'value': character, 'next_states': [], 'fail_state': 0, 'output': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) __snake_case : Optional[Any] = len(self.adlist ) - 1 else: __snake_case : Any = next_state self.adlist[current_state]["output"].append(A_ ) def A_ ( self : Any ) -> None: '''simple docstring''' __snake_case : Tuple = deque() for node in self.adlist[0]["next_states"]: q.append(A_ ) __snake_case : Optional[int] = 0 while q: __snake_case : Optional[Any] = q.popleft() for child in self.adlist[r]["next_states"]: q.append(A_ ) __snake_case : List[str] = self.adlist[r]['fail_state'] while ( self.find_next_state(A_ , self.adlist[child]['value'] ) is None and state != 0 ): __snake_case : Tuple = self.adlist[state]['fail_state'] __snake_case : Tuple = self.find_next_state( A_ , self.adlist[child]['value'] ) if self.adlist[child]["fail_state"] is None: __snake_case : Tuple = 0 __snake_case : Tuple = ( self.adlist[child]['output'] + self.adlist[self.adlist[child]['fail_state']]['output'] ) def A_ ( self : Optional[Any] , __a : int ) -> dict[str, list[int]]: '''simple docstring''' __snake_case : Any = {} # returns a dict with keywords and list of its occurrences __snake_case : Dict = 0 for i in range(len(A_ ) ): while ( self.find_next_state(A_ , string[i] ) is None and current_state != 0 ): __snake_case : Tuple = self.adlist[current_state]['fail_state'] __snake_case : str = self.find_next_state(A_ , string[i] ) if next_state is None: __snake_case : Union[str, Any] = 0 else: __snake_case : Tuple = next_state for key in self.adlist[current_state]["output"]: if key not in result: __snake_case : Any = [] result[key].append(i - len(A_ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
286
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def A_( A : str): if not sentence: return "" UpperCamelCase = dict(zip(A , A)) return lower_to_upper.get(sentence[0] , sentence[0]) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
3
0
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] ): snake_case__ : Optional[Any] = "" snake_case__ : Union[str, Any] = "" snake_case__ : List[Any] = [] snake_case__ : Any = 0 snake_case__ : Tuple = 2_5_6 snake_case__ : Optional[int] = 0 snake_case__ : Optional[Any] = 0 snake_case__ : Tuple = 0 snake_case__ : Dict = 0 def _lowercase ( self : Any , __A : Union[str, Any] ): snake_case__ : Union[str, Any] = cva.imread(A_ , 0 ) snake_case__ : List[Any] = copy.deepcopy(self.img ) snake_case__, snake_case__, snake_case__ : Union[str, Any] = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="x" ) snake_case__ : Optional[Any] = np.sum(A_ ) for i in range(len(A_ ) ): snake_case__ : List[Any] = x[i] / self.k self.sk += prk snake_case__ : List[str] = (self.L - 1) * self.sk if self.rem != 0: snake_case__ : Optional[Any] = int(last % last ) snake_case__ : Tuple = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(A_ ) snake_case__ : List[str] = int(np.ma.count(self.img ) / self.img[1].size ) snake_case__ : int = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): snake_case__ : List[Any] = self.img[j][i] if num != self.last_list[num]: snake_case__ : Union[str, Any] = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def _lowercase ( self : Optional[Any] ): plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def _lowercase ( self : Any ): cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": __lowerCamelCase : Union[str, Any] = os.path.join(os.path.basename(__file__), """image_data/input.jpg""") __lowerCamelCase : str = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
297
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase : Dict = logging.get_logger(__name__) # General docstring lowerCAmelCase : str = 'RegNetConfig' # Base docstring lowerCAmelCase : str = 'facebook/regnet-y-040' lowerCAmelCase : Dict = [1, 10_88, 7, 7] # Image classification docstring lowerCAmelCase : Dict = 'facebook/regnet-y-040' lowerCAmelCase : int = 'tabby, tabby cat' lowerCAmelCase : int = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ = 3 , A_ = 1 , A_ = 1 , A_ = "relu" , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb UpperCamelCase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) UpperCamelCase = tf.keras.layers.ConvaD( filters=A_ , kernel_size=A_ , strides=A_ , padding='VALID' , groups=A_ , use_bias=A_ , name='convolution' , ) UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) UpperCamelCase = ACTaFN[activation] if activation is not None else tf.identity def UpperCAmelCase_ ( self , A_ )-> Any: '''simple docstring''' UpperCamelCase = self.convolution(self.padding(A_ ) ) UpperCamelCase = self.normalization(A_ ) UpperCamelCase = self.activation(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , **A_ )-> Optional[Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = config.num_channels UpperCamelCase = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = shape_list(A_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) UpperCamelCase = tf.transpose(A_ , perm=(0, 2, 3, 1) ) UpperCamelCase = self.embedder(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ = 2 , **A_ )-> List[Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = tf.keras.layers.ConvaD( filters=A_ , kernel_size=1 , strides=A_ , use_bias=A_ , name='convolution' ) UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) def UpperCAmelCase_ ( self , A_ , A_ = False )-> tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(A_ ) , training=A_ ) class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , **A_ )-> Optional[Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' ) UpperCamelCase = [ tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def UpperCAmelCase_ ( self , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.pooler(A_ ) for layer_module in self.attention: UpperCamelCase = layer_module(A_ ) UpperCamelCase = hidden_state * pooled return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Dict: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = in_channels != out_channels or stride != 1 UpperCamelCase = max(1 , out_channels // config.groups_width ) UpperCamelCase = ( TFRegNetShortCut(A_ , stride=A_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. UpperCamelCase = [ TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.2' ), ] UpperCamelCase = ACTaFN[config.hidden_act] def UpperCAmelCase_ ( self , A_ )-> Tuple: '''simple docstring''' UpperCamelCase = hidden_state for layer_module in self.layers: UpperCamelCase = layer_module(A_ ) UpperCamelCase = self.shortcut(A_ ) hidden_state += residual UpperCamelCase = self.activation(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Any: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = in_channels != out_channels or stride != 1 UpperCamelCase = max(1 , out_channels // config.groups_width ) UpperCamelCase = ( TFRegNetShortCut(A_ , stride=A_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) UpperCamelCase = [ TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(A_ , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.3' ), ] UpperCamelCase = ACTaFN[config.hidden_act] def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = hidden_state for layer_module in self.layers: UpperCamelCase = layer_module(A_ ) UpperCamelCase = self.shortcut(A_ ) hidden_state += residual UpperCamelCase = self.activation(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ , A_ = 2 , A_ = 2 , **A_ )-> Dict: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer UpperCamelCase = [ # downsampling is done in the first layer with stride of 2 layer(A_ , A_ , A_ , stride=A_ , name='layers.0' ), *[layer(A_ , A_ , A_ , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' for layer_module in self.layers: UpperCamelCase = layer_module(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , **A_ )-> str: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( A_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(A_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(A_ , A_ , A_ , depth=A_ , name=F'''stages.{i+1}''' ) ) def UpperCAmelCase_ ( self , A_ , A_ = False , A_ = True )-> TFBaseModelOutputWithNoAttention: '''simple docstring''' UpperCamelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCamelCase = hidden_states + (hidden_state,) UpperCamelCase = stage_module(A_ ) if output_hidden_states: UpperCamelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=A_ , hidden_states=A_ ) @keras_serializable class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): lowerCAmelCase_ = RegNetConfig def __init__( self , A_ , **A_ )-> Union[str, Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = config UpperCamelCase = TFRegNetEmbeddings(A_ , name='embedder' ) UpperCamelCase = TFRegNetEncoder(A_ , name='encoder' ) UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' ) @unpack_inputs def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_ = False , )-> TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.embedder(A_ , training=A_ ) UpperCamelCase = self.encoder( A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ ) UpperCamelCase = encoder_outputs[0] UpperCamelCase = self.pooler(A_ ) # Change to NCHW output format have uniformity in the modules UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) ) UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: UpperCamelCase = tuple([tf.transpose(A_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A_ , pooler_output=A_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = RegNetConfig lowerCAmelCase_ = """regnet""" lowerCAmelCase_ = """pixel_values""" @property def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} lowerCAmelCase : str = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase : List[str] = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ , *A_ , **A_ )-> List[Any]: '''simple docstring''' super().__init__(A_ , *A_ , **A_ ) UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_=False , )-> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.regnet( pixel_values=A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_): def __init__( self , A_ , *A_ , **A_ )-> str: '''simple docstring''' super().__init__(A_ , *A_ , **A_ ) UpperCamelCase = config.num_labels UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' ) # classification head UpperCamelCase = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase_ ( self , A_ = None , A_ = None , A_ = None , A_ = None , A_=False , )-> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.regnet( A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ ) UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase = self.classifier[0](A_ ) UpperCamelCase = self.classifier[1](A_ ) UpperCamelCase = None if labels is None else self.hf_compute_loss(labels=A_ , logits=A_ ) if not return_dict: UpperCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=A_ , logits=A_ , hidden_states=outputs.hidden_states )
3
0
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_(snake_case_ , unittest.TestCase ): """simple docstring""" a_ : Any = None a_ : Dict = BloomTokenizerFast a_ : Dict = BloomTokenizerFast a_ : Optional[int] = True a_ : List[str] = False a_ : str = """tokenizer_file""" a_ : Union[str, Any] = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""} def _lowerCAmelCase ( self ): super().setUp() _lowerCamelCase : List[str] = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self , **A ): kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **A_ ) def _lowerCAmelCase ( self ): _lowerCamelCase : Union[str, Any] = self.get_rust_tokenizer() _lowerCamelCase : str = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] _lowerCamelCase : Optional[int] = [[2175, 2_3714, 7_3173, 14_4252, 2], [77, 13_2619, 3478, 368, 10_9586, 3_5433, 2]] _lowerCamelCase : List[str] = tokenizer.batch_encode_plus(A_ )['input_ids'] self.assertListEqual(A_ , A_ ) _lowerCamelCase : Tuple = tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ ) def _lowerCAmelCase ( self , A=6 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input _lowerCamelCase : Union[str, Any] = 'This is a simple input' _lowerCamelCase : Any = ['This is a simple input 1', 'This is a simple input 2'] _lowerCamelCase : List[str] = ('This is a simple input', 'This is a pair') _lowerCamelCase : Any = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(A_ , max_length=A_ ) tokenizer_r.encode_plus(A_ , max_length=A_ ) tokenizer_r.batch_encode_plus(A_ , max_length=A_ ) tokenizer_r.encode(A_ , max_length=A_ ) tokenizer_r.batch_encode_plus(A_ , max_length=A_ ) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding' ) _lowerCamelCase : List[Any] = None # Hotfixing padding = None self.assertRaises(A_ , tokenizer_r.encode , A_ , max_length=A_ , padding='max_length' ) # Simple input self.assertRaises(A_ , tokenizer_r.encode_plus , A_ , max_length=A_ , padding='max_length' ) # Simple input self.assertRaises( A_ , tokenizer_r.batch_encode_plus , A_ , max_length=A_ , padding='max_length' , ) # Pair input self.assertRaises(A_ , tokenizer_r.encode , A_ , max_length=A_ , padding='max_length' ) # Pair input self.assertRaises(A_ , tokenizer_r.encode_plus , A_ , max_length=A_ , padding='max_length' ) # Pair input self.assertRaises( A_ , tokenizer_r.batch_encode_plus , A_ , max_length=A_ , padding='max_length' , ) def _lowerCAmelCase ( self ): _lowerCamelCase : Tuple = self.get_rust_tokenizer() _lowerCamelCase : Any = load_dataset('xnli' , 'all_languages' , split='test' , streaming=A_ ) _lowerCamelCase : List[str] = next(iter(A_ ) )['premise'] # pick up one data _lowerCamelCase : Dict = list(sample_data.values() ) _lowerCamelCase : Optional[int] = list(map(tokenizer.encode , A_ ) ) _lowerCamelCase : int = [tokenizer.decode(A_ , clean_up_tokenization_spaces=A_ ) for x in output_tokens] self.assertListEqual(A_ , A_ ) def _lowerCAmelCase ( self ): self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
437
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Optional[int] = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """perceiver""" def __init__( self , A_=256 , A_=1280 , A_=768 , A_=1 , A_=26 , A_=8 , A_=8 , A_=None , A_=None , A_="kv" , A_=1 , A_=1 , A_="gelu" , A_=0.1 , A_=0.02 , A_=1e-12 , A_=True , A_=262 , A_=2048 , A_=56 , A_=[368, 496] , A_=16 , A_=1920 , A_=16 , A_=[1, 16, 224, 224] , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = num_latents UpperCamelCase = d_latents UpperCamelCase = d_model UpperCamelCase = num_blocks UpperCamelCase = num_self_attends_per_block UpperCamelCase = num_self_attention_heads UpperCamelCase = num_cross_attention_heads UpperCamelCase = qk_channels UpperCamelCase = v_channels UpperCamelCase = cross_attention_shape_for_attention UpperCamelCase = self_attention_widening_factor UpperCamelCase = cross_attention_widening_factor UpperCamelCase = hidden_act UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = use_query_residual # masked language modeling attributes UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings # image classification attributes UpperCamelCase = image_size # flow attributes UpperCamelCase = train_size # multimodal autoencoding attributes UpperCamelCase = num_frames UpperCamelCase = audio_samples_per_frame UpperCamelCase = samples_per_patch UpperCamelCase = output_shape class SCREAMING_SNAKE_CASE__ ( snake_case_): @property def UpperCAmelCase_ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def UpperCAmelCase_ ( self )-> float: '''simple docstring''' return 1e-4 def UpperCAmelCase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = -1 , A_ = False , A_ = None , A_ = 3 , A_ = 40 , A_ = 40 , )-> Mapping[str, Any]: '''simple docstring''' if isinstance(A_ , A_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase = preprocessor.num_special_tokens_to_add(A_ ) UpperCamelCase = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase = [' '.join(['a'] ) * seq_length] * batch_size UpperCamelCase = dict(preprocessor(A_ , return_tensors=A_ ) ) UpperCamelCase = inputs.pop('input_ids' ) return inputs elif isinstance(A_ , A_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase = compute_effective_axis_dimension(A_ , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCamelCase = self._generate_dummy_images(A_ , A_ , A_ , A_ ) UpperCamelCase = dict(preprocessor(images=A_ , return_tensors=A_ ) ) UpperCamelCase = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
3
0
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCamelCase_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def _UpperCAmelCase ( UpperCamelCase: Dict ): """simple docstring""" for pegasus_name, hf_name in PATTERNS: __lowerCAmelCase = k.replace(UpperCamelCase , UpperCamelCase ) return k def _UpperCAmelCase ( UpperCamelCase: dict , UpperCamelCase: dict ): """simple docstring""" __lowerCAmelCase = DEFAULTS.copy() cfg_kwargs.update(UpperCamelCase ) __lowerCAmelCase = PegasusConfig(**UpperCamelCase ) __lowerCAmelCase = PegasusForConditionalGeneration(UpperCamelCase ) __lowerCAmelCase = torch_model.model.state_dict() __lowerCAmelCase = {} for k, v in tf_weights.items(): __lowerCAmelCase = rename_state_dict_key(UpperCamelCase ) if new_k not in sd: raise ValueError(F"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: __lowerCAmelCase = v.T __lowerCAmelCase = torch.tensor(UpperCamelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected __lowerCAmelCase = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] ) __lowerCAmelCase = mapping["shared.weight"] __lowerCAmelCase = mapping["shared.weight"] __lowerCAmelCase = {k: torch.zeros_like(UpperCamelCase ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping} mapping.update(**UpperCamelCase ) __lowerCAmelCase , __lowerCAmelCase = torch_model.model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) __lowerCAmelCase = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], F"no matches found for the following torch keys {unexpected_missing}" assert extra == [], F"no matches found for the following tf keys {extra}" return torch_model def _UpperCAmelCase ( UpperCamelCase: Tuple="./ckpt/aeslc/model.ckpt-32000" ): """simple docstring""" __lowerCAmelCase = tf.train.list_variables(UpperCamelCase ) __lowerCAmelCase = {} __lowerCAmelCase = ["Adafactor", "global_step"] for name, shape in tqdm(UpperCamelCase , desc="converting tf checkpoint to dict" ): __lowerCAmelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCAmelCase = tf.train.load_variable(UpperCamelCase , UpperCamelCase ) __lowerCAmelCase = array return tf_weights def _UpperCAmelCase ( UpperCamelCase: str , UpperCamelCase: str ): """simple docstring""" __lowerCAmelCase = Path(UpperCamelCase ).parent.name __lowerCAmelCase = task_specific_params[F"summarization_{dataset}"]["max_position_embeddings"] __lowerCAmelCase = PegasusTokenizer.from_pretrained("sshleifer/pegasus" , model_max_length=UpperCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCamelCase ) # convert model __lowerCAmelCase = get_tf_weights_as_numpy(UpperCamelCase ) __lowerCAmelCase = task_specific_params[F"summarization_{dataset}"] if dataset == "large": __lowerCAmelCase = task_specific_params __lowerCAmelCase = convert_pegasus(UpperCamelCase , UpperCamelCase ) torch_model.save_pretrained(UpperCamelCase ) __lowerCAmelCase = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight" ) sd.pop("model.encoder.embed_positions.weight" ) torch.save(UpperCamelCase , Path(UpperCamelCase ) / "pytorch_model.bin" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCamelCase_ = parser.parse_args() if args.save_dir is None: UpperCamelCase_ = Path(args.tf_ckpt_path).parent.name UpperCamelCase_ = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
611
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Dict = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """mctct""" def __init__( self , A_=8065 , A_=1536 , A_=36 , A_=6144 , A_=4 , A_=384 , A_=920 , A_=1e-5 , A_=0.3 , A_="relu" , A_=0.02 , A_=0.3 , A_=0.3 , A_=1 , A_=0 , A_=2 , A_=1 , A_=0.3 , A_=1 , A_=(7,) , A_=(3,) , A_=80 , A_=1 , A_=None , A_="sum" , A_=False , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = intermediate_size UpperCamelCase = num_attention_heads UpperCamelCase = attention_head_dim UpperCamelCase = max_position_embeddings UpperCamelCase = layer_norm_eps UpperCamelCase = layerdrop UpperCamelCase = hidden_act UpperCamelCase = initializer_range UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = pad_token_id UpperCamelCase = bos_token_id UpperCamelCase = eos_token_id UpperCamelCase = conv_glu_dim UpperCamelCase = conv_dropout UpperCamelCase = num_conv_layers UpperCamelCase = input_feat_per_channel UpperCamelCase = input_channels UpperCamelCase = conv_channels UpperCamelCase = ctc_loss_reduction UpperCamelCase = ctc_zero_infinity # prevents config testing fail with exporting to json UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ' F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
3
0
'''simple docstring''' import os import pytest from attr import dataclass A_ = 'us-east-1' # defaults region @dataclass class lowercase_ : A_ = 4_2 A_ = "arn:aws:iam::558105141721:role/sagemaker_execution_role" A_ = { "task_name": "mnli", "per_device_train_batch_size": 1_6, "per_device_eval_batch_size": 1_6, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 5_0_0, "save_steps": 5_5_0_0, } A_ = {**hyperparameters, "max_steps": 1_0_0_0} @property def _lowerCAmelCase ( self : int ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _lowerCAmelCase ( self : Any ): return F"{self.framework}-transfromers-test" @property def _lowerCAmelCase ( self : int ): return F"./tests/sagemaker/scripts/{self.framework}" @property def _lowerCAmelCase ( self : Optional[int] ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ) -> Dict: snake_case__ : Tuple = SageMakerTestEnvironment(framework=request.cls.framework )
270
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase : Tuple = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase : Optional[int] = TaTokenizerFast lowerCAmelCase : Any = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase : Tuple = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
3
0
def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase :Union[str, Any] = f"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE ) if number < 0: return False __UpperCamelCase :Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
167
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=False , A_=True , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , )-> Dict: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size if size is not None else {'height': 18, 'width': 20} UpperCamelCase = do_thumbnail UpperCamelCase = do_align_axis UpperCamelCase = do_pad UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase): lowerCAmelCase_ = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = DonutImageProcessingTester(self ) @property def UpperCAmelCase_ ( self )-> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'do_thumbnail' ) ) self.assertTrue(hasattr(A_ , 'do_align_long_axis' ) ) self.assertTrue(hasattr(A_ , 'do_pad' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' pass @is_flaky() def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
3
0
def UpperCamelCase( __UpperCamelCase : list[int] ): lowerCAmelCase_ : List[str] = [] if len(__UpperCamelCase ) == 1: return [nums.copy()] for _ in range(len(__UpperCamelCase ) ): lowerCAmelCase_ : Optional[Any] = nums.pop(0 ) lowerCAmelCase_ : List[Any] = permute(__UpperCamelCase ) for perm in permutations: perm.append(__UpperCamelCase ) result.extend(__UpperCamelCase ) nums.append(__UpperCamelCase ) return result def UpperCamelCase( __UpperCamelCase : str ): def backtrack(__UpperCamelCase : str ): if start == len(__UpperCamelCase ) - 1: output.append(nums[:] ) else: for i in range(__UpperCamelCase ,len(__UpperCamelCase ) ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = nums[i], nums[start] backtrack(start + 1 ) lowerCAmelCase_ , lowerCAmelCase_ : str = nums[i], nums[start] # backtrack lowerCAmelCase_ : Optional[int] = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function A__ : Dict = permutea([1, 2, 3]) print(res) doctest.testmod()
171
'''simple docstring''' def A_( A : list[int]): UpperCamelCase = [] if len(A) == 1: return [nums.copy()] for _ in range(len(A)): UpperCamelCase = nums.pop(0) UpperCamelCase = permute(A) for perm in permutations: perm.append(A) result.extend(A) nums.append(A) return result def A_( A : str): def backtrack(A : str): if start == len(A) - 1: output.append(nums[:]) else: for i in range(A , len(A)): UpperCamelCase , UpperCamelCase = nums[i], nums[start] backtrack(start + 1) UpperCamelCase , UpperCamelCase = nums[i], nums[start] # backtrack UpperCamelCase = [] backtrack(0) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCAmelCase : Dict = permutea([1, 2, 3]) print(res) doctest.testmod()
3
0
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: stooge(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) - 1 ) return arr def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: SCREAMING_SNAKE_CASE_ : List[str] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , (h - t) ) # Recursively sort last 2/3 elements stooge(SCREAMING_SNAKE_CASE , i + t , (SCREAMING_SNAKE_CASE) ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , (h - t) ) if __name__ == "__main__": lowerCAmelCase__: Any = input("Enter numbers separated by a comma:\n").strip() lowerCAmelCase__: Optional[int] = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
345
'''simple docstring''' import colorsys from PIL import Image # type: ignore def A_( A : float , A : float , A : int): UpperCamelCase = x UpperCamelCase = y for step in range(A): # noqa: B007 UpperCamelCase = a * a - b * b + x UpperCamelCase = 2 * a * b + y UpperCamelCase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def A_( A : float): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def A_( A : float): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(A , 1 , 1)) def A_( A : int = 800 , A : int = 600 , A : float = -0.6 , A : float = 0 , A : float = 3.2 , A : int = 50 , A : bool = True , ): UpperCamelCase = Image.new('RGB' , (image_width, image_height)) UpperCamelCase = img.load() # loop through the image-coordinates for image_x in range(A): for image_y in range(A): # determine the figure-coordinates based on the image-coordinates UpperCamelCase = figure_width / image_width * image_height UpperCamelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCamelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCamelCase = get_distance(A , A , A) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCamelCase = get_color_coded_rgb(A) else: UpperCamelCase = get_black_and_white_rgb(A) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCAmelCase : Any = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
3
0
def __SCREAMING_SNAKE_CASE ( a__ : str ) -> int: __A : Optional[Any] = [0] * len(a__ ) for i in range(1 ,len(a__ ) ): # use last results for better performance - dynamic programming __A : Dict = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: __A : str = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 __A : Union[str, Any] = j return prefix_result def __SCREAMING_SNAKE_CASE ( a__ : str ) -> int: return max(prefix_function(a__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
17
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase : Optional[Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class a ( snake_case_ ): """simple docstring""" __lowerCAmelCase = """yolos""" def __init__( self , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.0_2 , snake_case_=1e-1_2 , snake_case_=[512, 864] , snake_case_=16 , snake_case_=3 , snake_case_=True , snake_case_=100 , snake_case_=True , snake_case_=False , snake_case_=1 , snake_case_=5 , snake_case_=2 , snake_case_=5 , snake_case_=2 , snake_case_=0.1 , **snake_case_ , ): '''simple docstring''' super().__init__(**A_ ) __UpperCAmelCase: List[str] = hidden_size __UpperCAmelCase: Tuple = num_hidden_layers __UpperCAmelCase: List[Any] = num_attention_heads __UpperCAmelCase: Optional[int] = intermediate_size __UpperCAmelCase: List[Any] = hidden_act __UpperCAmelCase: str = hidden_dropout_prob __UpperCAmelCase: List[Any] = attention_probs_dropout_prob __UpperCAmelCase: int = initializer_range __UpperCAmelCase: Optional[Any] = layer_norm_eps __UpperCAmelCase: int = image_size __UpperCAmelCase: str = patch_size __UpperCAmelCase: str = num_channels __UpperCAmelCase: List[str] = qkv_bias __UpperCAmelCase: Dict = num_detection_tokens __UpperCAmelCase: List[str] = use_mid_position_embeddings __UpperCAmelCase: Optional[Any] = auxiliary_loss # Hungarian matcher __UpperCAmelCase: str = class_cost __UpperCAmelCase: List[str] = bbox_cost __UpperCAmelCase: Tuple = giou_cost # Loss coefficients __UpperCAmelCase: Any = bbox_loss_coefficient __UpperCAmelCase: List[Any] = giou_loss_coefficient __UpperCAmelCase: Any = eos_coefficient class a ( snake_case_ ): """simple docstring""" __lowerCAmelCase = version.parse("""1.11""" ) @property def lowercase_ ( self ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowercase_ ( self ): '''simple docstring''' return 1e-4 @property def lowercase_ ( self ): '''simple docstring''' return 12
523
'''simple docstring''' lowerCAmelCase : Optional[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def A_( A : dict , A : str , A : Optional[Any]): UpperCamelCase = set() # keep track of all the paths to be checked UpperCamelCase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCamelCase = queue.pop(0) # get the last node from the path UpperCamelCase = path[-1] if node not in explored: UpperCamelCase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCamelCase = list(A) new_path.append(A) queue.append(A) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(A) # in case there's no path between the 2 nodes return [] def A_( A : dict , A : str , A : Tuple): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCamelCase = [start] UpperCamelCase = set(A) # Keep tab on distances from `start` node. UpperCamelCase = {start: 0, target: -1} while queue: UpperCamelCase = queue.pop(0) if node == target: UpperCamelCase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node]) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(A) queue.append(A) UpperCamelCase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
3
0
from typing import Any def lowerCamelCase__ ( _A ): '''simple docstring''' if not input_list: return [] snake_case_ = [input_list.count(_A ) for value in input_list] snake_case_ = max(_A ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(_A ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
376
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class SCREAMING_SNAKE_CASE__ : def __init__( self )-> Dict: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = '' UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = 256 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 def UpperCAmelCase_ ( self , A_ )-> str: '''simple docstring''' UpperCamelCase = cva.imread(A_ , 0 ) UpperCamelCase = copy.deepcopy(self.img ) UpperCamelCase , UpperCamelCase , UpperCamelCase = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) UpperCamelCase = np.sum(A_ ) for i in range(len(A_ ) ): UpperCamelCase = x[i] / self.k self.sk += prk UpperCamelCase = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase = int(last % last ) UpperCamelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(A_ ) UpperCamelCase = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase = self.img[j][i] if num != self.last_list[num]: UpperCamelCase = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') lowerCAmelCase : str = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
3
0
'''simple docstring''' def a_ ( _UpperCAmelCase : int ) -> Dict: __snake_case , __snake_case : Optional[int] = [], [] while len(_UpperCAmelCase ) > 1: __snake_case , __snake_case : Dict = min(_UpperCAmelCase ), max(_UpperCAmelCase ) start.append(_UpperCAmelCase ) end.append(_UpperCAmelCase ) collection.remove(_UpperCAmelCase ) collection.remove(_UpperCAmelCase ) end.reverse() return start + collection + end if __name__ == "__main__": A__ : Union[str, Any] = input('''Enter numbers separated by a comma:\n''').strip() A__ : Dict = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
286
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Tuple = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """unispeech-sat""" def __init__( self , A_=32 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.1 , A_=0.1 , A_=0.02 , A_=1e-5 , A_="group" , A_="gelu" , A_=(512, 512, 512, 512, 512, 512, 512) , A_=(5, 2, 2, 2, 2, 2, 2) , A_=(10, 3, 3, 3, 3, 2, 2) , A_=False , A_=128 , A_=16 , A_=False , A_=True , A_=0.05 , A_=10 , A_=2 , A_=0.0 , A_=10 , A_=0 , A_=320 , A_=2 , A_=0.1 , A_=100 , A_=256 , A_=256 , A_=0.1 , A_="mean" , A_=False , A_=False , A_=256 , A_=(512, 512, 512, 512, 1500) , A_=(5, 3, 3, 1, 1) , A_=(1, 2, 3, 1, 1) , A_=512 , A_=0 , A_=1 , A_=2 , A_=504 , **A_ , )-> Tuple: '''simple docstring''' super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) UpperCamelCase = hidden_size UpperCamelCase = feat_extract_norm UpperCamelCase = feat_extract_activation UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = conv_bias UpperCamelCase = num_conv_pos_embeddings UpperCamelCase = num_conv_pos_embedding_groups UpperCamelCase = len(self.conv_dim ) UpperCamelCase = num_hidden_layers UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = num_attention_heads UpperCamelCase = hidden_dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = feat_proj_dropout UpperCamelCase = final_dropout UpperCamelCase = layerdrop UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = vocab_size UpperCamelCase = num_clusters UpperCamelCase = do_stable_layer_norm UpperCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase = apply_spec_augment UpperCamelCase = mask_time_prob UpperCamelCase = mask_time_length UpperCamelCase = mask_time_min_masks UpperCamelCase = mask_feature_prob UpperCamelCase = mask_feature_length UpperCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCamelCase = num_codevectors_per_group UpperCamelCase = num_codevector_groups UpperCamelCase = contrastive_logits_temperature UpperCamelCase = feat_quantizer_dropout UpperCamelCase = num_negatives UpperCamelCase = codevector_dim UpperCamelCase = proj_codevector_dim UpperCamelCase = diversity_loss_weight # ctc loss UpperCamelCase = ctc_loss_reduction UpperCamelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = xvector_output_dim @property def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
3
0
import numpy as np __lowerCamelCase : Union[str, Any] = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Any ): snake_case__ : List[str] = np.array(A_ ) def _lowercase ( self : Any , __A : List[Any] ): snake_case__, snake_case__ : Any = np.where(letter == self.SQUARE ) snake_case__ : Tuple = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _lowercase ( self : Tuple , __A : Any , __A : Tuple ): snake_case__ : Optional[int] = self.SQUARE[indexa - 1, indexa - 1] return letter def _lowercase ( self : List[Any] , __A : Optional[int] ): snake_case__ : Optional[Any] = message.lower() snake_case__ : Any = message.replace(" " , "" ) snake_case__ : Dict = message.replace("j" , "i" ) snake_case__ : List[str] = np.empty((2, len(A_ )) ) for letter_index in range(len(A_ ) ): snake_case__ : int = self.letter_to_numbers(message[letter_index] ) snake_case__ : Tuple = numbers[0] snake_case__ : Optional[Any] = numbers[1] snake_case__ : Any = first_step.reshape(2 * len(A_ ) ) snake_case__ : List[Any] = "" for numbers_index in range(len(A_ ) ): snake_case__ : Dict = int(second_step[numbers_index * 2] ) snake_case__ : int = int(second_step[(numbers_index * 2) + 1] ) snake_case__ : List[Any] = self.numbers_to_letter(A_ , A_ ) snake_case__ : List[Any] = encoded_message + letter return encoded_message def _lowercase ( self : Tuple , __A : Dict ): snake_case__ : Any = message.lower() message.replace(" " , "" ) snake_case__ : Tuple = np.empty(2 * len(A_ ) ) for letter_index in range(len(A_ ) ): snake_case__ : List[Any] = self.letter_to_numbers(message[letter_index] ) snake_case__ : List[str] = numbers[0] snake_case__ : List[str] = numbers[1] snake_case__ : Optional[int] = first_step.reshape((2, len(A_ )) ) snake_case__ : Union[str, Any] = "" for numbers_index in range(len(A_ ) ): snake_case__ : Optional[Any] = int(second_step[0, numbers_index] ) snake_case__ : Tuple = int(second_step[1, numbers_index] ) snake_case__ : Dict = self.numbers_to_letter(A_ , A_ ) snake_case__ : Optional[Any] = decoded_message + letter return decoded_message
297
'''simple docstring''' import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ , A_=100 , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=4 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=None , A_=[0, 1, 2, 3] , )-> Any: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = 100 UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = scope UpperCamelCase = out_indices UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = num_patches + 1 def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> List[str]: '''simple docstring''' UpperCamelCase = BeitModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Any: '''simple docstring''' UpperCamelCase = BeitForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.type_sequence_label_size UpperCamelCase = BeitForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = BeitForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[Any]: '''simple docstring''' UpperCamelCase = self.num_labels UpperCamelCase = BeitForSemanticSegmentation(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase_ = ( { """feature-extraction""": BeitModel, """image-classification""": BeitForImageClassification, """image-segmentation""": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = BeitModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A_ ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' if not self.model_tester.is_training: return UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(A_ ), BeitForMaskedImageModeling]: continue UpperCamelCase = model_class(A_ ) model.to(A_ ) model.train() UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ ) UpperCamelCase = model(**A_ ).loss loss.backward() def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase = False UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(A_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCamelCase = model_class(A_ ) model.gradient_checkpointing_enable() model.to(A_ ) model.train() UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ ) UpperCamelCase = model(**A_ ).loss loss.backward() def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = _config_zero_init(A_ ) for model_class in self.all_model_classes: UpperCamelCase = model_class(config=A_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = BeitModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A_( ): UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @cached_property def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).pixel_values.to(A_ ) # prepare bool_masked_pos UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(pixel_values=A_ , bool_masked_pos=A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(A_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , A_ , atol=1e-2 ) ) @slow def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(A_ ) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) ) UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , A_ ) @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 21841) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(A_ ) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) ) UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , A_ ) @slow def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) UpperCamelCase = model.to(A_ ) UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ ) UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) UpperCamelCase = Image.open(ds[0]['file'] ) UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: UpperCamelCase = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] , device=A_ , ) else: UpperCamelCase = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] , device=A_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1e-4 ) ) @slow def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) UpperCamelCase = model.to(A_ ) UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ ) UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) UpperCamelCase = Image.open(ds[0]['file'] ) UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits.detach().cpu() UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ , target_sizes=[(500, 300)] ) UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , A_ ) UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ ) UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , A_ )
3
0
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
437
'''simple docstring''' import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase : Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( enum.Enum): lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 @add_end_docstrings(snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """generated""" def __init__( self , *A_ , **A_ )-> Optional[int]: '''simple docstring''' super().__init__(*A_ , **A_ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , **A_ , )-> Optional[Any]: '''simple docstring''' UpperCamelCase = {} if truncation is not None: UpperCamelCase = truncation UpperCamelCase = generate_kwargs UpperCamelCase = {} if return_tensors is not None and return_type is None: UpperCamelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: UpperCamelCase = return_type if clean_up_tokenization_spaces is not None: UpperCamelCase = clean_up_tokenization_spaces if stop_sequence is not None: UpperCamelCase = self.tokenizer.encode(A_ , add_special_tokens=A_ ) if len(A_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) UpperCamelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' return True def UpperCAmelCase_ ( self , *A_ , A_ )-> Any: '''simple docstring''' UpperCamelCase = self.model.config.prefix if self.model.config.prefix is not None else '' if isinstance(args[0] , A_ ): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' ) UpperCamelCase = ([prefix + arg for arg in args[0]],) UpperCamelCase = True elif isinstance(args[0] , A_ ): UpperCamelCase = (prefix + args[0],) UpperCamelCase = False else: raise ValueError( F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) UpperCamelCase = self.tokenizer(*A_ , padding=A_ , truncation=A_ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A_ , **A_ )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = super().__call__(*A_ , **A_ ) if ( isinstance(args[0] , A_ ) and all(isinstance(A_ , A_ ) for el in args[0] ) and all(len(A_ ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase_ ( self , A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , **A_ )-> Any: '''simple docstring''' UpperCamelCase = self._parse_and_tokenize(A_ , truncation=A_ , **A_ ) return inputs def UpperCAmelCase_ ( self , A_ , **A_ )-> int: '''simple docstring''' if self.framework == "pt": UpperCamelCase , UpperCamelCase = model_inputs['input_ids'].shape elif self.framework == "tf": UpperCamelCase , UpperCamelCase = tf.shape(model_inputs['input_ids'] ).numpy() UpperCamelCase = generate_kwargs.get('min_length' , self.model.config.min_length ) UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) self.check_inputs(A_ , generate_kwargs['min_length'] , generate_kwargs['max_length'] ) UpperCamelCase = self.model.generate(**A_ , **A_ ) UpperCamelCase = output_ids.shape[0] if self.framework == "pt": UpperCamelCase = output_ids.reshape(A_ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": UpperCamelCase = tf.reshape(A_ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase_ ( self , A_ , A_=ReturnType.TEXT , A_=False )-> Optional[Any]: '''simple docstring''' UpperCamelCase = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: UpperCamelCase = {F'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: UpperCamelCase = { F'''{self.return_name}_text''': self.tokenizer.decode( A_ , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , ) } records.append(A_ ) return records @add_end_docstrings(snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """summary""" def __call__( self , *A_ , **A_ )-> Optional[int]: '''simple docstring''' return super().__call__(*A_ , **A_ ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> bool: '''simple docstring''' if max_length < min_length: logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' 'a summarization task, where outputs shorter than the input are typically wanted, you might ' F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """translation""" def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> List[Any]: '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' ) return True def UpperCAmelCase_ ( self , *A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , A_=None , A_=None )-> Dict: '''simple docstring''' if getattr(self.tokenizer , '_build_translation_inputs' , A_ ): return self.tokenizer._build_translation_inputs( *A_ , return_tensors=self.framework , truncation=A_ , src_lang=A_ , tgt_lang=A_ ) else: return super()._parse_and_tokenize(*A_ , truncation=A_ ) def UpperCAmelCase_ ( self , A_=None , A_=None , **A_ )-> str: '''simple docstring''' UpperCamelCase , UpperCamelCase , UpperCamelCase = super()._sanitize_parameters(**A_ ) if src_lang is not None: UpperCamelCase = src_lang if tgt_lang is not None: UpperCamelCase = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. UpperCamelCase = kwargs.get('task' , self.task ) UpperCamelCase = task.split('_' ) if task and len(A_ ) == 4: # translation, XX, to YY UpperCamelCase = items[1] UpperCamelCase = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A_ , **A_ )-> Any: '''simple docstring''' return super().__call__(*A_ , **A_ )
3
0
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class a ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __lowerCAmelCase = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) __lowerCAmelCase = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) model.to(A_ ) from datasets import load_dataset __lowerCAmelCase = load_dataset("nielsr/rvlcdip-demo" ) __lowerCAmelCase = dataset["train"][0]["image"].convert("RGB" ) __lowerCAmelCase = image_processor(A_ , return_tensors="pt" ).to(A_ ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**A_ ) __lowerCAmelCase = outputs.logits __lowerCAmelCase = torch.Size((1, 16) ) self.assertEqual(logits.shape , A_ ) __lowerCAmelCase = torch.tensor( [-0.4_1_5_8, -0.4_0_9_2, -0.4_3_4_7] , device=A_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1E-4 ) )
611
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = 0 lowerCAmelCase_ = False lowerCAmelCase_ = 3.0 class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def UpperCAmelCase_ ( self )-> int: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=A_ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() UpperCamelCase = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , A_ ) @require_multi_gpu def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_ , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase : Tuple = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCAmelCase : List[str] = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCAmelCase : List[Any] = torch.nn.Linear(1_00, 2_00) lowerCAmelCase : int = accelerator.prepare(model) # Check the values changed in kwargs lowerCAmelCase : Dict = '' lowerCAmelCase : Dict = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
3
0
'''simple docstring''' def UpperCamelCase__ ( ) -> Dict: for n in range(1 , 100_0000 ): yield n * (n + 1) // 2 def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ) -> Any: snake_case__ : Union[str, Any] = 1 snake_case__ : List[str] = 2 while i * i <= n: snake_case__ : Optional[Any] = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def UpperCamelCase__ ( ) -> List[Any]: return next(i for i in triangle_number_generator() if count_divisors(__SCREAMING_SNAKE_CASE ) > 500 ) if __name__ == "__main__": print(solution())
270
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_): @register_to_config def __init__( self , A_ , A_ = None , A_ = None )-> Tuple: '''simple docstring''' super().__init__() UpperCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCamelCase = torch.zeros(A_ , A_ ) else: UpperCamelCase = None UpperCamelCase = torch.nn.Parameter(A_ ) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , )-> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( vqvae=A_ , transformer=A_ , text_encoder=A_ , tokenizer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Tuple: '''simple docstring''' UpperCamelCase = len(A_ ) if isinstance(A_ , A_ ) else 1 # get prompt text embeddings UpperCamelCase = self.tokenizer( A_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) UpperCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate text embeddings for each generation per prompt UpperCamelCase = prompt_embeds.repeat_interleave(A_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(A_ , 1 , 1 ) else: UpperCamelCase = [''] * batch_size UpperCamelCase = text_input_ids.shape[-1] UpperCamelCase = self.tokenizer( A_ , padding='max_length' , max_length=A_ , truncation=A_ , return_tensors='pt' , ) UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase = negative_prompt_embeds.shape[1] UpperCamelCase = negative_prompt_embeds.repeat(1 , A_ , 1 ) UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , A_ , A_ = 100 , A_ = 5.0 , A_ = 1.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , A_ = None , A_ = 1 , )-> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(A_ , A_ ): UpperCamelCase = 1 elif isinstance(A_ , A_ ): UpperCamelCase = len(A_ ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(A_ )}''' ) UpperCamelCase = batch_size * num_images_per_prompt UpperCamelCase = guidance_scale > 1.0 UpperCamelCase = self._encode_prompt(A_ , A_ , A_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A_ , A_ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(A_ )}.''' ) # get the initial completely masked latents unless the user supplied it UpperCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCamelCase = self.transformer.num_vector_embeds - 1 UpperCamelCase = torch.full(A_ , A_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) UpperCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(A_ , device=self.device ) UpperCamelCase = self.scheduler.timesteps.to(self.device ) UpperCamelCase = latents for i, t in enumerate(self.progress_bar(A_ ) ): # expand the sample if we are doing classifier free guidance UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCamelCase = self.transformer(A_ , encoder_hidden_states=A_ , timestep=A_ ).sample if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase = model_output.chunk(2 ) UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(A_ , dim=1 , keepdim=A_ ) UpperCamelCase = self.truncate(A_ , A_ ) # remove `log(0)`'s (`-inf`s) UpperCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(A_ , timestep=A_ , sample=A_ , generator=A_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A_ , A_ , A_ ) UpperCamelCase = self.vqvae.config.vq_embed_dim UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCamelCase = self.vqvae.quantize.get_codebook_entry(A_ , shape=A_ ) UpperCamelCase = self.vqvae.decode(A_ , force_not_quantize=A_ ).sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ ) def UpperCAmelCase_ ( self , A_ , A_ )-> torch.FloatTensor: '''simple docstring''' UpperCamelCase , UpperCamelCase = torch.sort(A_ , 1 , descending=A_ ) UpperCamelCase = torch.exp(A_ ) UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , A_ ) UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) UpperCamelCase = keep_mask[:, :-1, :] UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) UpperCamelCase = log_p_x_0.clone() UpperCamelCase = -torch.inf # -inf = log(0) return rv
3
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __lowercase = logging.get_logger(__name__) __lowercase = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class lowerCamelCase_ ( snake_case_ ): '''simple docstring''' a__ : Any = """imagegpt""" a__ : Dict = ["""past_key_values"""] a__ : Dict = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __lowercase=512 + 1 , __lowercase=32 * 32 , __lowercase=512 , __lowercase=24 , __lowercase=8 , __lowercase=None , __lowercase="quick_gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=1E-5 , __lowercase=0.02 , __lowercase=True , __lowercase=True , __lowercase=False , __lowercase=False , __lowercase=False , **__lowercase , ) -> str: __UpperCamelCase :List[str] = vocab_size __UpperCamelCase :Dict = n_positions __UpperCamelCase :Any = n_embd __UpperCamelCase :Tuple = n_layer __UpperCamelCase :Union[str, Any] = n_head __UpperCamelCase :List[str] = n_inner __UpperCamelCase :List[str] = activation_function __UpperCamelCase :Dict = resid_pdrop __UpperCamelCase :str = embd_pdrop __UpperCamelCase :Tuple = attn_pdrop __UpperCamelCase :Union[str, Any] = layer_norm_epsilon __UpperCamelCase :Union[str, Any] = initializer_range __UpperCamelCase :Any = scale_attn_weights __UpperCamelCase :Tuple = use_cache __UpperCamelCase :Any = scale_attn_by_inverse_layer_idx __UpperCamelCase :Tuple = reorder_and_upcast_attn __UpperCamelCase :Tuple = tie_word_embeddings super().__init__(tie_word_embeddings=A_ , **A_) class lowerCamelCase_ ( snake_case_ ): '''simple docstring''' @property def UpperCamelCase__ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ]) def UpperCamelCase__ ( self , __lowercase , __lowercase = 1 , __lowercase = -1 , __lowercase = False , __lowercase = None , __lowercase = 3 , __lowercase = 32 , __lowercase = 32 , ) -> Mapping[str, Any]: __UpperCamelCase :Dict = self._generate_dummy_images(A_ , A_ , A_ , A_) __UpperCamelCase :Union[str, Any] = dict(preprocessor(images=A_ , return_tensors=A_)) return inputs
167
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Union[str, Any] = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
0
A__ : Any = [ 'DownloadConfig', 'DownloadManager', 'DownloadMode', 'StreamingDownloadManager', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
171
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ = None , A_ = None , A_=None , A_=None )-> Optional[Any]: '''simple docstring''' if not conversation_id: UpperCamelCase = uuid.uuida() if past_user_inputs is None: UpperCamelCase = [] if generated_responses is None: UpperCamelCase = [] UpperCamelCase = conversation_id UpperCamelCase = past_user_inputs UpperCamelCase = generated_responses UpperCamelCase = text def __eq__( self , A_ )-> List[Any]: '''simple docstring''' if not isinstance(A_ , A_ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def UpperCAmelCase_ ( self , A_ , A_ = False )-> int: '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' F'''with: "{text}".''' ) UpperCamelCase = text else: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: UpperCamelCase = text def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) UpperCamelCase = None def UpperCAmelCase_ ( self , A_ )-> int: '''simple docstring''' self.generated_responses.append(A_ ) def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self )-> Any: '''simple docstring''' UpperCamelCase = F'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): UpperCamelCase = 'user' if is_user else 'bot' output += F'''{name} >> {text} \n''' return output @add_end_docstrings( snake_case_ , R""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , *A_ , **A_ )-> Any: '''simple docstring''' super().__init__(*A_ , **A_ ) if self.tokenizer.pad_token_id is None: UpperCamelCase = self.tokenizer.eos_token def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , **A_ )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = {} UpperCamelCase = {} UpperCamelCase = {} if min_length_for_response is not None: UpperCamelCase = min_length_for_response if minimum_tokens is not None: UpperCamelCase = minimum_tokens if "max_length" in generate_kwargs: UpperCamelCase = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: UpperCamelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(A_ ) return preprocess_params, forward_params, postprocess_params def __call__( self , A_ , A_=0 , **A_ )-> Any: '''simple docstring''' UpperCamelCase = super().__call__(A_ , num_workers=A_ , **A_ ) if isinstance(A_ , A_ ) and len(A_ ) == 1: return outputs[0] return outputs def UpperCAmelCase_ ( self , A_ , A_=32 )-> Dict[str, Any]: '''simple docstring''' if not isinstance(A_ , A_ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): UpperCamelCase = self.tokenizer._build_conversation_input_ids(A_ ) else: # If the tokenizer cannot handle conversations, we default to only the old version UpperCamelCase = self._legacy_parse_and_tokenize(A_ ) if self.framework == "pt": UpperCamelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": UpperCamelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def UpperCAmelCase_ ( self , A_ , A_=10 , **A_ )-> Optional[Any]: '''simple docstring''' UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) UpperCamelCase = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) UpperCamelCase = max_length - minimum_tokens UpperCamelCase = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: UpperCamelCase = model_inputs['attention_mask'][:, -trim:] UpperCamelCase = model_inputs.pop('conversation' ) UpperCamelCase = max_length UpperCamelCase = self.model.generate(**A_ , **A_ ) if self.model.config.is_encoder_decoder: UpperCamelCase = 1 else: UpperCamelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def UpperCAmelCase_ ( self , A_ , A_=True )-> Tuple: '''simple docstring''' UpperCamelCase = model_outputs['output_ids'] UpperCamelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , ) UpperCamelCase = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(A_ ) return conversation def UpperCAmelCase_ ( self , A_ )-> Dict: '''simple docstring''' UpperCamelCase = self.tokenizer.eos_token_id UpperCamelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) ) if len(A_ ) > self.tokenizer.model_max_length: UpperCamelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
3
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__: Any = logging.get_logger(__name__) lowerCAmelCase__: Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} lowerCAmelCase__: str = { 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } lowerCAmelCase__: int = { 'allenai/longformer-base-4096': 4096, 'allenai/longformer-large-4096': 4096, 'allenai/longformer-large-4096-finetuned-triviaqa': 4096, 'allenai/longformer-base-4096-extra.pos.embd.only': 4096, 'allenai/longformer-large-4096-extra.pos.embd.only': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : Optional[Any] = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = bs[:] SCREAMING_SNAKE_CASE_ : Tuple = 0 for b in range(2**8 ): if b not in bs: bs.append(SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_ : Tuple = [chr(SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> str: SCREAMING_SNAKE_CASE_ : List[Any] = set() SCREAMING_SNAKE_CASE_ : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_ : Tuple = char return pairs class snake_case_ ( snake_case_ ): __lowerCamelCase : str = VOCAB_FILES_NAMES __lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Any = ['input_ids', 'attention_mask'] def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="replace" , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<mask>" , __lowerCAmelCase=False , **__lowerCAmelCase , ): SCREAMING_SNAKE_CASE_ : str = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token SCREAMING_SNAKE_CASE_ : Any = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token SCREAMING_SNAKE_CASE_ : int = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token SCREAMING_SNAKE_CASE_ : List[str] = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token SCREAMING_SNAKE_CASE_ : Union[str, Any] = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : Union[str, Any] = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , ) with open(A_ , encoding='utf-8' ) as vocab_handle: SCREAMING_SNAKE_CASE_ : str = json.load(A_ ) SCREAMING_SNAKE_CASE_ : str = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_ : int = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_ : List[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_ : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: SCREAMING_SNAKE_CASE_ : Union[str, Any] = merges_handle.read().split('\n' )[1:-1] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE_ : Dict = dict(zip(A_ , range(len(A_ ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} SCREAMING_SNAKE_CASE_ : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def __A ( self ): return len(self.encoder ) def __A ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self , __lowerCAmelCase ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_ : Optional[Any] = tuple(A_ ) SCREAMING_SNAKE_CASE_ : Any = get_pairs(A_ ) if not pairs: return token while True: SCREAMING_SNAKE_CASE_ : List[Any] = min(A_ , key=lambda __lowerCAmelCase : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = bigram SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : Tuple = 0 while i < len(A_ ): try: SCREAMING_SNAKE_CASE_ : Union[str, Any] = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE_ : Tuple = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE_ : Optional[int] = tuple(A_ ) SCREAMING_SNAKE_CASE_ : Dict = new_word if len(A_ ) == 1: break else: SCREAMING_SNAKE_CASE_ : int = get_pairs(A_ ) SCREAMING_SNAKE_CASE_ : Tuple = ' '.join(A_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = word return word def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[Any] = [] for token in re.findall(self.pat , A_ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) ) return bpe_tokens def __A ( self , __lowerCAmelCase ): return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def __A ( self , __lowerCAmelCase ): return self.decoder.get(A_ ) def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[Any] = ''.join(A_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def __A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : int = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : List[str] = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) SCREAMING_SNAKE_CASE_ : Any = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) SCREAMING_SNAKE_CASE_ : Optional[int] = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file def __A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[str] = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __A ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def __A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): SCREAMING_SNAKE_CASE_ : Dict = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self , __lowerCAmelCase , __lowerCAmelCase=False , **__lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ' ' + text return (text, kwargs)
345
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase : List[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase : List[Any] = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase : Tuple = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase : List[Any] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
3
0
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCamelCase_ ( snake_case_ ): def lowerCAmelCase_ ( self : List[str] ): __A : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A_ , """width_multiplier""" ) ) class lowerCamelCase_ : def __init__( self : Optional[Any] , __A : Optional[int] , __A : Dict=13 , __A : Union[str, Any]=64 , __A : List[Any]=2 , __A : Union[str, Any]=3 , __A : Optional[Any]="swish" , __A : List[str]=3 , __A : List[Any]=32 , __A : Optional[int]=0.1 , __A : Union[str, Any]=0.0_2 , __A : Any=True , __A : Optional[int]=True , __A : Any=10 , __A : Optional[Any]=None , __A : Optional[int]=0.2_5 , __A : Tuple=0.0 , __A : List[str]=0.0 , ): __A : int = parent __A : Tuple = batch_size __A : Optional[int] = image_size __A : List[str] = patch_size __A : Dict = num_channels __A : int = make_divisible(512 * width_multiplier , divisor=8 ) __A : int = hidden_act __A : List[Any] = conv_kernel_size __A : int = output_stride __A : Dict = classifier_dropout_prob __A : Dict = use_labels __A : int = is_training __A : Union[str, Any] = num_labels __A : Any = initializer_range __A : List[Any] = scope __A : Any = width_multiplier __A : Any = ffn_dropout __A : List[Any] = attn_dropout def lowerCAmelCase_ ( self : Dict ): __A : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A : Optional[int] = None __A : Dict = None if self.use_labels: __A : int = ids_tensor([self.batch_size] , self.num_labels ) __A : int = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __A : str = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase_ ( self : List[Any] ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowerCAmelCase_ ( self : Optional[int] , __A : Any , __A : str , __A : int , __A : List[str] ): __A : Any = MobileViTVaModel(config=A_ ) model.to(A_ ) model.eval() __A : str = model(A_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase_ ( self : int , __A : int , __A : List[Any] , __A : str , __A : List[str] ): __A : Tuple = self.num_labels __A : Union[str, Any] = MobileViTVaForImageClassification(A_ ) model.to(A_ ) model.eval() __A : int = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : List[Any] , __A : Tuple , __A : Dict , __A : int , __A : Dict ): __A : Optional[int] = self.num_labels __A : List[Any] = MobileViTVaForSemanticSegmentation(A_ ) model.to(A_ ) model.eval() __A : Optional[Any] = model(A_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __A : Optional[int] = model(A_ , labels=A_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase_ ( self : str ): __A : List[Any] = self.prepare_config_and_inputs() __A , __A , __A , __A : int = config_and_inputs __A : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( snake_case_ , snake_case_ , unittest.TestCase ): _lowercase : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) _lowercase : List[str] = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) _lowercase : List[Any] = False _lowercase : Any = False _lowercase : List[Any] = False _lowercase : Any = False def lowerCAmelCase_ ( self : str ): __A : str = MobileViTVaModelTester(self ) __A : Tuple = MobileViTVaConfigTester(self , config_class=A_ , has_text_modality=A_ ) def lowerCAmelCase_ ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def lowerCAmelCase_ ( self : Dict ): pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def lowerCAmelCase_ ( self : Optional[Any] ): pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def lowerCAmelCase_ ( self : Tuple ): pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def lowerCAmelCase_ ( self : Union[str, Any] ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase_ ( self : Tuple ): pass def lowerCAmelCase_ ( self : str ): __A , __A : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Optional[int] = model_class(A_ ) __A : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : Tuple = [*signature.parameters.keys()] __A : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A_ ) def lowerCAmelCase_ ( self : List[Any] ): __A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def lowerCAmelCase_ ( self : Any ): def check_hidden_states_output(__A : Union[str, Any] , __A : Dict , __A : Dict ): __A : Any = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): __A : Any = model(**self._prepare_for_class(A_ , A_ ) ) __A : Tuple = outputs.hidden_states __A : List[str] = 5 self.assertEqual(len(A_ ) , A_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __A : str = 2 for i in range(len(A_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __A , __A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : str = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Dict = True check_hidden_states_output(A_ , A_ , A_ ) def lowerCAmelCase_ ( self : Union[str, Any] ): __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def lowerCAmelCase_ ( self : int ): __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A_ ) @slow def lowerCAmelCase_ ( self : List[Any] ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : Dict = MobileViTVaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: __A : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self : Union[str, Any] ): return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def lowerCAmelCase_ ( self : Tuple ): __A : Optional[int] = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( A_ ) __A : List[Any] = self.default_image_processor __A : Optional[int] = prepare_img() __A : str = image_processor(images=A_ , return_tensors="""pt""" ).to(A_ ) # forward pass with torch.no_grad(): __A : List[Any] = model(**A_ ) # verify the logits __A : int = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) __A : Tuple = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) ) @slow def lowerCAmelCase_ ( self : Dict ): __A : Dict = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __A : Union[str, Any] = model.to(A_ ) __A : List[Any] = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __A : Optional[Any] = prepare_img() __A : int = image_processor(images=A_ , return_tensors="""pt""" ).to(A_ ) # forward pass with torch.no_grad(): __A : Dict = model(**A_ ) __A : Optional[Any] = outputs.logits # verify the logits __A : Tuple = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , A_ ) __A : Any = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=A_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1e-4 ) ) @slow def lowerCAmelCase_ ( self : Union[str, Any] ): __A : str = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __A : Dict = model.to(A_ ) __A : Dict = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __A : str = prepare_img() __A : str = image_processor(images=A_ , return_tensors="""pt""" ).to(A_ ) # forward pass with torch.no_grad(): __A : List[Any] = model(**A_ ) __A : int = outputs.logits.detach().cpu() __A : Any = image_processor.post_process_semantic_segmentation(outputs=A_ , target_sizes=[(50, 60)] ) __A : Union[str, Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , A_ ) __A : List[Any] = image_processor.post_process_semantic_segmentation(outputs=A_ ) __A : Optional[Any] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , A_ )
17
'''simple docstring''' import numpy as np def A_( A : str , A : Optional[Any] , A : Tuple , A : Optional[int] , A : str): UpperCamelCase = int(np.ceil((x_end - xa) / h)) UpperCamelCase = np.zeros((n + 1,)) UpperCamelCase = ya UpperCamelCase = xa for k in range(A): UpperCamelCase = f(A , y[k]) UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka) UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka) UpperCamelCase = f(x + h , y[k] + h * ka) UpperCamelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
3
0
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def UpperCamelCase__ ( _lowercase : Optional[Any]=3_2 , _lowercase : List[Any]=1_0 , _lowercase : Union[str, Any]=1_0_0 , _lowercase : List[str]=1_0_2_6 , _lowercase : List[Any]=True , _lowercase : Dict="data/tokenized_stories_train_wikitext103.jbl" , _lowercase : Dict="igf_context_pairs.jbl" , ) -> Optional[int]: set_seed(3 ) # generate train_data and objective_set __UpperCAmelCase, __UpperCAmelCase: Dict = generate_datasets( _lowercase , _lowercase , number=_lowercase , min_len=1_0_2_6 , trim=_lowercase ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? __UpperCAmelCase: Dict = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # load pretrained model __UpperCAmelCase: Any = load_gpta("""gpt2""" ).to(_lowercase ) print("""computing perplexity on objective set""" ) __UpperCAmelCase: Optional[int] = compute_perplexity(_lowercase , _lowercase , _lowercase ).item() print("""perplexity on objective set:""" , _lowercase ) # collect igf pairs and save to file demo.jbl collect_objective_set(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def UpperCamelCase__ ( _lowercase : Union[str, Any] , _lowercase : Any=1_5 , _lowercase : List[str]=1_2_8 , _lowercase : List[str]=1_0_0 , _lowercase : Tuple="igf_model.pt" , ) -> Optional[int]: set_seed(4_2 ) # Load pre-trained model __UpperCAmelCase: Tuple = GPTaLMHeadModel.from_pretrained("""gpt2""" ) # Initialize secondary learner to use embedding weights of model __UpperCAmelCase: List[Any] = SecondaryLearner(_lowercase ) # Train secondary learner __UpperCAmelCase: List[Any] = train_secondary_learner( _lowercase , _lowercase , max_epochs=_lowercase , batch_size=_lowercase , eval_freq=1_0_0 , igf_model_path=_lowercase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def UpperCamelCase__ ( _lowercase : Tuple , _lowercase : List[Any] , _lowercase : int , _lowercase : Optional[int]=3_2 , _lowercase : Any=1_0_0_0 , _lowercase : List[str]=1_6 , _lowercase : List[str]=1.0 , _lowercase : Union[str, Any]=recopy_gpta , _lowercase : Any=None , _lowercase : Dict=1_0 , _lowercase : Any="gpt2_finetuned.pt" , ) -> List[Any]: __UpperCAmelCase: Any = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) __UpperCAmelCase: List[Any] = RandomSampler(_lowercase ) __UpperCAmelCase: List[Any] = DataLoader(_lowercase , sampler=_lowercase ) __UpperCAmelCase: Dict = max_steps // (len(_lowercase )) + 1 __UpperCAmelCase: Optional[int] = 0 __UpperCAmelCase: Optional[int] = torch.zeros((1, context_len) , dtype=torch.long , device=_lowercase ) __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase: Tuple = recopy_model(_lowercase , _lowercase , _lowercase ) model.train() if secondary_learner is not None: secondary_learner.to(_lowercase ) secondary_learner.eval() __UpperCAmelCase: List[str] = [] __UpperCAmelCase: Any = 0 __UpperCAmelCase: Optional[Any] = [] __UpperCAmelCase: Tuple = [] # Compute the performance of the transformer model at the beginning __UpperCAmelCase: List[str] = compute_perplexity(_lowercase , _lowercase , _lowercase ) test_perps.append(_lowercase ) print("""Test perplexity, step""" , _lowercase , """:""" , _lowercase ) for epoch in range(int(_lowercase ) ): for step, example in enumerate(_lowercase ): torch.cuda.empty_cache() __UpperCAmelCase: Optional[Any] = random.randint(0 , example.size(2 ) - context_len - 1 ) __UpperCAmelCase: int = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() __UpperCAmelCase: Tuple = model(_lowercase , labels=_lowercase ) __UpperCAmelCase: Optional[Any] = True if secondary_learner is not None: __UpperCAmelCase: str = secondary_learner.forward( torch.tensor(_lowercase , dtype=torch.long , device=_lowercase ).unsqueeze(0 ) )[0].item() observed_qs.append(float(_lowercase ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 1_0: __UpperCAmelCase: Optional[int] = -1 if predicted_q < threshold: __UpperCAmelCase: List[Any] = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) __UpperCAmelCase: List[Any] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() __UpperCAmelCase: Optional[Any] = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: __UpperCAmelCase: Optional[Any] = compute_perplexity(_lowercase , _lowercase , _lowercase ) test_perps.append(_lowercase ) print("""Test perplexity, step""" , _lowercase , """:""" , _lowercase ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 6_0: break if max_steps > 0 and global_step > 6_0: break # save finetuned transformer model torch.save(model.state_dict() , _lowercase ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def UpperCamelCase__ ( ) -> Tuple: __UpperCAmelCase: Any = argparse.ArgumentParser(description="""Fine-tune a transformer model with IGF on a language modeling task""" ) # Required parameters parser.add_argument( """--data_dir""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""The input data dir. Should contain data files for WikiText.""" , ) parser.add_argument( """--model_name_or_path""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--data_file""" , type=_lowercase , default=_lowercase , help=( """A jbl file containing tokenized data which can be split as objective dataset, """ """train_dataset and test_dataset.""" ) , ) parser.add_argument( """--igf_data_file""" , type=_lowercase , default=_lowercase , help="""A jbl file containing the context and information gain pairs to train secondary learner.""" , ) parser.add_argument( """--output_dir""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""The output directory where the final fine-tuned model is stored.""" , ) parser.add_argument( """--tokenizer_name""" , default=_lowercase , type=_lowercase , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument("""--seed""" , type=_lowercase , default=_lowercase , help="""A seed for reproducible training.""" ) parser.add_argument( """--context_len""" , default=3_2 , type=_lowercase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--size_objective_set""" , default=1_0_0 , type=_lowercase , help="""number of articles that are long enough to be used as our objective set""" , ) parser.add_argument( """--eval_freq""" , default=1_0_0 , type=_lowercase , help="""secondary model evaluation is triggered at eval_freq""" ) parser.add_argument("""--max_steps""" , default=1_0_0_0 , type=_lowercase , help="""To calculate training epochs""" ) parser.add_argument( """--secondary_learner_batch_size""" , default=1_2_8 , type=_lowercase , help="""batch size of training data for secondary learner""" , ) parser.add_argument( """--batch_size""" , default=1_6 , type=_lowercase , help="""batch size of training data of language model(gpt2) """ ) parser.add_argument( """--eval_interval""" , default=1_0 , type=_lowercase , help=( """decay the selectivity of our secondary learner filter from""" """1 standard deviation above average to 1 below average after 10 batches""" ) , ) parser.add_argument( """--number""" , default=1_0_0 , type=_lowercase , help="""The number of examples split to be used as objective_set/test_data""" ) parser.add_argument( """--min_len""" , default=1_0_2_6 , type=_lowercase , help="""The minimum length of the article to be used as objective set""" ) parser.add_argument( """--secondary_learner_max_epochs""" , default=1_5 , type=_lowercase , help="""number of epochs to train secondary learner""" ) parser.add_argument("""--trim""" , default=_lowercase , type=_lowercase , help="""truncate the example if it exceeds context length""" ) parser.add_argument( """--threshold""" , default=1.0 , type=_lowercase , help=( """The threshold value used by secondary learner to filter the train_data and allow only""" """ informative data as input to the model""" ) , ) parser.add_argument("""--finetuned_model_name""" , default="""gpt2_finetuned.pt""" , type=_lowercase , help="""finetuned_model_name""" ) parser.add_argument( """--recopy_model""" , default=_lowercase , type=_lowercase , help="""Reset the model to the original pretrained GPT-2 weights after each iteration""" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=3_2 , max_steps=1_0 , size_objective_set=1_0_0 , min_len=1_0_2_6 , trim=_lowercase , data_file="""data/tokenized_stories_train_wikitext103.jbl""" , igf_data_file="""igf_context_pairs.jbl""" , ) # Load train data for secondary learner __UpperCAmelCase: str = joblib.load("""data/IGF_values.jbl""" ) # Train secondary learner __UpperCAmelCase: List[Any] = training_secondary_learner( _lowercase , secondary_learner_max_epochs=1_5 , secondary_learner_batch_size=1_2_8 , eval_freq=1_0_0 , igf_model_path="""igf_model.pt""" , ) # load pretrained gpt2 model __UpperCAmelCase: Tuple = GPTaLMHeadModel.from_pretrained("""gpt2""" ) set_seed(4_2 ) # Generate train and test data to train and evaluate gpt2 model __UpperCAmelCase, __UpperCAmelCase: Union[str, Any] = generate_datasets( context_len=3_2 , file="""data/tokenized_stories_train_wikitext103.jbl""" , number=1_0_0 , min_len=1_0_2_6 , trim=_lowercase ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _lowercase , _lowercase , _lowercase , context_len=3_2 , max_steps=1_0_0_0 , batch_size=1_6 , threshold=1.0 , recopy_model=_lowercase , secondary_learner=_lowercase , eval_interval=1_0 , finetuned_model_name="""gpt2_finetuned.pt""" , ) if __name__ == "__main__": main()
523
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True}) lowerCAmelCase_ = Features({"""text""": Value("""string""")}) lowerCAmelCase_ = Features({}) lowerCAmelCase_ = "text" @property def UpperCAmelCase_ ( self )-> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
3
0
from cva import destroyAllWindows, imread, imshow, waitKey def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ , snake_case_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(_A ): for j in range(_A ): snake_case_ = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image lowercase__ : int = imread("image_data/lena.jpg", 1) # convert to its negative lowercase__ : List[Any] = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
376
'''simple docstring''' from __future__ import annotations lowerCAmelCase : Union[str, Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCAmelCase : List[str] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def A_( A : list[float]): UpperCamelCase = [] UpperCamelCase = len(A) for i in range(A): UpperCamelCase = -1 for j in range(i + 1 , A): if arr[i] < arr[j]: UpperCamelCase = arr[j] break result.append(A) return result def A_( A : list[float]): UpperCamelCase = [] for i, outer in enumerate(A): UpperCamelCase = -1 for inner in arr[i + 1 :]: if outer < inner: UpperCamelCase = inner break result.append(A) return result def A_( A : list[float]): UpperCamelCase = len(A) UpperCamelCase = [] UpperCamelCase = [-1] * arr_size for index in reversed(range(A)): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: UpperCamelCase = stack[-1] stack.append(arr[index]) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCAmelCase : Optional[Any] = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
3
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Optional[int] = logging.get_logger(__name__) A__ : int = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class snake_case__ ( snake_case_ ): A__ = '''realm''' def __init__( self : int , __a : str=30522 , __a : List[str]=768 , __a : Optional[int]=128 , __a : Any=12 , __a : Optional[Any]=12 , __a : int=8 , __a : str=3072 , __a : List[Any]="gelu_new" , __a : Dict=0.1 , __a : Tuple=0.1 , __a : List[Any]=512 , __a : Any=2 , __a : List[str]=0.0_2 , __a : List[Any]=1e-12 , __a : Any=256 , __a : Tuple=10 , __a : List[str]=1e-3 , __a : Any=5 , __a : List[Any]=320 , __a : str=13353718 , __a : Dict=5000 , __a : Optional[Any]=1 , __a : List[str]=0 , __a : Any=2 , **__a : Optional[Any] , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) # Common config __snake_case : Tuple = vocab_size __snake_case : List[str] = max_position_embeddings __snake_case : int = hidden_size __snake_case : List[str] = retriever_proj_size __snake_case : str = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Union[str, Any] = num_candidates __snake_case : Optional[Any] = intermediate_size __snake_case : List[Any] = hidden_act __snake_case : str = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : int = initializer_range __snake_case : str = type_vocab_size __snake_case : Union[str, Any] = layer_norm_eps # Reader config __snake_case : Dict = span_hidden_size __snake_case : Optional[Any] = max_span_width __snake_case : Any = reader_layer_norm_eps __snake_case : Optional[Any] = reader_beam_size __snake_case : Optional[Any] = reader_seq_len # Retrieval config __snake_case : List[str] = num_block_records __snake_case : Union[str, Any] = searcher_beam_size
286
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def A_( A : str): if not sentence: return "" UpperCamelCase = dict(zip(A , A)) return lower_to_upper.get(sentence[0] , sentence[0]) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
3
0
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : List[Any] , __A : Tuple , __A : Union[str, Any] ): return f'''gaussian_noise_s={seed}_shape={'_'.join([str(A_ ) for s in shape] )}.npy''' def _lowercase ( self : List[Any] ): super().tearDown() gc.collect() def _lowercase ( self : int , __A : Dict=0 , __A : List[str]=(4, 4, 6_4, 6_4) , __A : List[str]=False ): snake_case__ : List[Any] = jnp.bfloataa if fpaa else jnp.floataa snake_case__ : str = jnp.array(load_hf_numpy(self.get_file_format(A_ , A_ ) ) , dtype=A_ ) return image def _lowercase ( self : Union[str, Any] , __A : str=False , __A : Dict="CompVis/stable-diffusion-v1-4" ): snake_case__ : Any = jnp.bfloataa if fpaa else jnp.floataa snake_case__ : int = "bf16" if fpaa else None snake_case__, snake_case__ : Optional[int] = FlaxUNetaDConditionModel.from_pretrained( A_ , subfolder="unet" , dtype=A_ , revision=A_ ) return model, params def _lowercase ( self : str , __A : str=0 , __A : Optional[int]=(4, 7_7, 7_6_8) , __A : Any=False ): snake_case__ : List[str] = jnp.bfloataa if fpaa else jnp.floataa snake_case__ : List[str] = jnp.array(load_hf_numpy(self.get_file_format(A_ , A_ ) ) , dtype=A_ ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [1_7, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1_0_0_0, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def _lowercase ( self : Tuple , __A : Union[str, Any] , __A : Dict , __A : List[str] ): snake_case__, snake_case__ : str = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4" , fpaa=A_ ) snake_case__ : Optional[int] = self.get_latents(A_ , fpaa=A_ ) snake_case__ : int = self.get_encoder_hidden_states(A_ , fpaa=A_ ) snake_case__ : List[Any] = model.apply( {"params": params} , A_ , jnp.array(A_ , dtype=jnp.intaa ) , encoder_hidden_states=A_ , ).sample assert sample.shape == latents.shape snake_case__ : Any = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case__ : List[Any] = jnp.array(A_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(A_ , A_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [1_7, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1_0_0_0, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def _lowercase ( self : Optional[Any] , __A : List[str] , __A : str , __A : Any ): snake_case__, snake_case__ : int = self.get_unet_model(model_id="stabilityai/stable-diffusion-2" , fpaa=A_ ) snake_case__ : List[Any] = self.get_latents(A_ , shape=(4, 4, 9_6, 9_6) , fpaa=A_ ) snake_case__ : str = self.get_encoder_hidden_states(A_ , shape=(4, 7_7, 1_0_2_4) , fpaa=A_ ) snake_case__ : Optional[int] = model.apply( {"params": params} , A_ , jnp.array(A_ , dtype=jnp.intaa ) , encoder_hidden_states=A_ , ).sample assert sample.shape == latents.shape snake_case__ : Tuple = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case__ : List[Any] = jnp.array(A_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(A_ , A_ , atol=1e-2 )
297
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase : Dict = logging.get_logger(__name__) # General docstring lowerCAmelCase : str = 'RegNetConfig' # Base docstring lowerCAmelCase : str = 'facebook/regnet-y-040' lowerCAmelCase : Dict = [1, 10_88, 7, 7] # Image classification docstring lowerCAmelCase : Dict = 'facebook/regnet-y-040' lowerCAmelCase : int = 'tabby, tabby cat' lowerCAmelCase : int = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ = 3 , A_ = 1 , A_ = 1 , A_ = "relu" , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb UpperCamelCase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) UpperCamelCase = tf.keras.layers.ConvaD( filters=A_ , kernel_size=A_ , strides=A_ , padding='VALID' , groups=A_ , use_bias=A_ , name='convolution' , ) UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) UpperCamelCase = ACTaFN[activation] if activation is not None else tf.identity def UpperCAmelCase_ ( self , A_ )-> Any: '''simple docstring''' UpperCamelCase = self.convolution(self.padding(A_ ) ) UpperCamelCase = self.normalization(A_ ) UpperCamelCase = self.activation(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , **A_ )-> Optional[Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = config.num_channels UpperCamelCase = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = shape_list(A_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) UpperCamelCase = tf.transpose(A_ , perm=(0, 2, 3, 1) ) UpperCamelCase = self.embedder(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ = 2 , **A_ )-> List[Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = tf.keras.layers.ConvaD( filters=A_ , kernel_size=1 , strides=A_ , use_bias=A_ , name='convolution' ) UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) def UpperCAmelCase_ ( self , A_ , A_ = False )-> tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(A_ ) , training=A_ ) class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , **A_ )-> Optional[Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' ) UpperCamelCase = [ tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def UpperCAmelCase_ ( self , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.pooler(A_ ) for layer_module in self.attention: UpperCamelCase = layer_module(A_ ) UpperCamelCase = hidden_state * pooled return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Dict: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = in_channels != out_channels or stride != 1 UpperCamelCase = max(1 , out_channels // config.groups_width ) UpperCamelCase = ( TFRegNetShortCut(A_ , stride=A_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. UpperCamelCase = [ TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.2' ), ] UpperCamelCase = ACTaFN[config.hidden_act] def UpperCAmelCase_ ( self , A_ )-> Tuple: '''simple docstring''' UpperCamelCase = hidden_state for layer_module in self.layers: UpperCamelCase = layer_module(A_ ) UpperCamelCase = self.shortcut(A_ ) hidden_state += residual UpperCamelCase = self.activation(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Any: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = in_channels != out_channels or stride != 1 UpperCamelCase = max(1 , out_channels // config.groups_width ) UpperCamelCase = ( TFRegNetShortCut(A_ , stride=A_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) UpperCamelCase = [ TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(A_ , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.3' ), ] UpperCamelCase = ACTaFN[config.hidden_act] def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = hidden_state for layer_module in self.layers: UpperCamelCase = layer_module(A_ ) UpperCamelCase = self.shortcut(A_ ) hidden_state += residual UpperCamelCase = self.activation(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ , A_ = 2 , A_ = 2 , **A_ )-> Dict: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer UpperCamelCase = [ # downsampling is done in the first layer with stride of 2 layer(A_ , A_ , A_ , stride=A_ , name='layers.0' ), *[layer(A_ , A_ , A_ , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' for layer_module in self.layers: UpperCamelCase = layer_module(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , **A_ )-> str: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( A_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(A_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(A_ , A_ , A_ , depth=A_ , name=F'''stages.{i+1}''' ) ) def UpperCAmelCase_ ( self , A_ , A_ = False , A_ = True )-> TFBaseModelOutputWithNoAttention: '''simple docstring''' UpperCamelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCamelCase = hidden_states + (hidden_state,) UpperCamelCase = stage_module(A_ ) if output_hidden_states: UpperCamelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=A_ , hidden_states=A_ ) @keras_serializable class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): lowerCAmelCase_ = RegNetConfig def __init__( self , A_ , **A_ )-> Union[str, Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = config UpperCamelCase = TFRegNetEmbeddings(A_ , name='embedder' ) UpperCamelCase = TFRegNetEncoder(A_ , name='encoder' ) UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' ) @unpack_inputs def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_ = False , )-> TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.embedder(A_ , training=A_ ) UpperCamelCase = self.encoder( A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ ) UpperCamelCase = encoder_outputs[0] UpperCamelCase = self.pooler(A_ ) # Change to NCHW output format have uniformity in the modules UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) ) UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: UpperCamelCase = tuple([tf.transpose(A_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A_ , pooler_output=A_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = RegNetConfig lowerCAmelCase_ = """regnet""" lowerCAmelCase_ = """pixel_values""" @property def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} lowerCAmelCase : str = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase : List[str] = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ , *A_ , **A_ )-> List[Any]: '''simple docstring''' super().__init__(A_ , *A_ , **A_ ) UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_=False , )-> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.regnet( pixel_values=A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_): def __init__( self , A_ , *A_ , **A_ )-> str: '''simple docstring''' super().__init__(A_ , *A_ , **A_ ) UpperCamelCase = config.num_labels UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' ) # classification head UpperCamelCase = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase_ ( self , A_ = None , A_ = None , A_ = None , A_ = None , A_=False , )-> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.regnet( A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ ) UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase = self.classifier[0](A_ ) UpperCamelCase = self.classifier[1](A_ ) UpperCamelCase = None if labels is None else self.hf_compute_loss(labels=A_ , logits=A_ ) if not return_dict: UpperCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=A_ , logits=A_ , hidden_states=outputs.hidden_states )
3
0
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class A_(snake_case_ , unittest.TestCase ): """simple docstring""" a_ : List[str] = DebertaVaTokenizer a_ : Dict = DebertaVaTokenizerFast a_ : Any = True a_ : Optional[Any] = True def _lowerCAmelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : List[Any] = DebertaVaTokenizer(A_ , unk_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self , A ): _lowerCamelCase : Optional[int] = 'this is a test' _lowerCamelCase : Dict = 'this is a test' return input_text, output_text def _lowerCAmelCase ( self ): _lowerCamelCase : Union[str, Any] = '<pad>' _lowerCamelCase : Any = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def _lowerCAmelCase ( self ): _lowerCamelCase : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '[PAD]' ) self.assertEqual(len(A_ ) , 3_0001 ) def _lowerCAmelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def _lowerCAmelCase ( self ): _lowerCamelCase : List[Any] = ' \tHeLLo!how \n Are yoU? ' _lowerCamelCase : List[str] = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on _lowerCamelCase : Optional[int] = DebertaVaTokenizer(A_ , do_lower_case=A_ ) _lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) _lowerCamelCase : Tuple = DebertaVaTokenizerFast(A_ , do_lower_case=A_ ) _lowerCamelCase : Any = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def _lowerCAmelCase ( self ): pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def _lowerCAmelCase ( self ): pass def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = 'I was born in 92000, and this is falsé.' _lowerCamelCase : int = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _lowerCamelCase : Optional[int] = DebertaVaTokenizer(A_ , split_by_punct=A_ ) _lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) _lowerCamelCase : List[str] = DebertaVaTokenizerFast(A_ , split_by_punct=A_ ) _lowerCamelCase : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) def _lowerCAmelCase ( self ): _lowerCamelCase : Dict = 'I was born in 92000, and this is falsé.' _lowerCamelCase : int = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _lowerCamelCase : Optional[int] = DebertaVaTokenizer(A_ , do_lower_case=A_ , split_by_punct=A_ ) _lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) _lowerCamelCase : List[str] = DebertaVaTokenizerFast(A_ , do_lower_case=A_ , split_by_punct=A_ ) _lowerCamelCase : str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) def _lowerCAmelCase ( self ): _lowerCamelCase : Dict = 'I was born in 92000, and this is falsé.' _lowerCamelCase : Optional[Any] = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on _lowerCamelCase : Dict = DebertaVaTokenizer(A_ , do_lower_case=A_ , split_by_punct=A_ ) _lowerCamelCase : List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) _lowerCamelCase : Union[str, Any] = DebertaVaTokenizerFast(A_ , do_lower_case=A_ , split_by_punct=A_ ) _lowerCamelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) def _lowerCAmelCase ( self ): _lowerCamelCase : List[str] = 'I was born in 92000, and this is falsé.' _lowerCamelCase : str = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _lowerCamelCase : str = DebertaVaTokenizer(A_ , do_lower_case=A_ , split_by_punct=A_ ) _lowerCamelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) _lowerCamelCase : Union[str, Any] = DebertaVaTokenizerFast(A_ , do_lower_case=A_ , split_by_punct=A_ ) _lowerCamelCase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[Any] = ' \tHeLLo!how \n Are yoU? ' _lowerCamelCase : int = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on _lowerCamelCase : int = DebertaVaTokenizer(A_ , do_lower_case=A_ , split_by_punct=A_ ) _lowerCamelCase : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) _lowerCamelCase : Union[str, Any] = DebertaVaTokenizerFast(A_ , do_lower_case=A_ , split_by_punct=A_ ) _lowerCamelCase : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) def _lowerCAmelCase ( self ): _lowerCamelCase : Any = self.get_tokenizer() _lowerCamelCase : Optional[int] = self.get_rust_tokenizer() _lowerCamelCase : Dict = 'I was born in 92000, and this is falsé.' _lowerCamelCase : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) _lowerCamelCase : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) _lowerCamelCase : Union[str, Any] = tokenizer.encode(A_ , add_special_tokens=A_ ) _lowerCamelCase : Optional[int] = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) _lowerCamelCase : List[Any] = self.get_rust_tokenizer() _lowerCamelCase : int = tokenizer.encode(A_ ) _lowerCamelCase : Optional[Any] = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = 'This is a test' _lowerCamelCase : Tuple = [13, 1, 4398, 25, 21, 1289] _lowerCamelCase : Optional[Any] = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] _lowerCamelCase : Optional[Any] = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] _lowerCamelCase : Dict = DebertaVaTokenizer(A_ , keep_accents=A_ ) _lowerCamelCase : Dict = DebertaVaTokenizerFast(A_ , keep_accents=A_ ) _lowerCamelCase : Dict = tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) _lowerCamelCase : List[str] = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) _lowerCamelCase : List[str] = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual(A_ , A_ ) _lowerCamelCase : Optional[Any] = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) _lowerCamelCase : Optional[Any] = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) _lowerCamelCase : List[Any] = rust_tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual(A_ , A_ ) # fmt: off _lowerCamelCase : Union[str, Any] = 'I was born in 92000, and this is falsé.' _lowerCamelCase : List[str] = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _lowerCamelCase : Tuple = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] _lowerCamelCase : Optional[int] = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on _lowerCamelCase : Union[str, Any] = tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) _lowerCamelCase : Optional[int] = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) _lowerCamelCase : int = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual(A_ , A_ ) _lowerCamelCase : Tuple = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) _lowerCamelCase : List[Any] = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) _lowerCamelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual(A_ , A_ ) def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[Any] = DebertaVaTokenizer(A_ ) _lowerCamelCase : Dict = tokenizer.encode('sequence builders' ) _lowerCamelCase : List[str] = tokenizer.encode('multi-sequence build' ) _lowerCamelCase : str = tokenizer.build_inputs_with_special_tokens(A_ ) _lowerCamelCase : int = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , A_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , A_ , ) @slow def _lowerCAmelCase ( self ): _lowerCamelCase : Dict = {'input_ids': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name='microsoft/deberta-v2-xlarge' , revision='ad6e42c1532ddf3a15c39246b63f5559d558b670' , )
437
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Optional[int] = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """perceiver""" def __init__( self , A_=256 , A_=1280 , A_=768 , A_=1 , A_=26 , A_=8 , A_=8 , A_=None , A_=None , A_="kv" , A_=1 , A_=1 , A_="gelu" , A_=0.1 , A_=0.02 , A_=1e-12 , A_=True , A_=262 , A_=2048 , A_=56 , A_=[368, 496] , A_=16 , A_=1920 , A_=16 , A_=[1, 16, 224, 224] , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = num_latents UpperCamelCase = d_latents UpperCamelCase = d_model UpperCamelCase = num_blocks UpperCamelCase = num_self_attends_per_block UpperCamelCase = num_self_attention_heads UpperCamelCase = num_cross_attention_heads UpperCamelCase = qk_channels UpperCamelCase = v_channels UpperCamelCase = cross_attention_shape_for_attention UpperCamelCase = self_attention_widening_factor UpperCamelCase = cross_attention_widening_factor UpperCamelCase = hidden_act UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = use_query_residual # masked language modeling attributes UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings # image classification attributes UpperCamelCase = image_size # flow attributes UpperCamelCase = train_size # multimodal autoencoding attributes UpperCamelCase = num_frames UpperCamelCase = audio_samples_per_frame UpperCamelCase = samples_per_patch UpperCamelCase = output_shape class SCREAMING_SNAKE_CASE__ ( snake_case_): @property def UpperCAmelCase_ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def UpperCAmelCase_ ( self )-> float: '''simple docstring''' return 1e-4 def UpperCAmelCase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = -1 , A_ = False , A_ = None , A_ = 3 , A_ = 40 , A_ = 40 , )-> Mapping[str, Any]: '''simple docstring''' if isinstance(A_ , A_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase = preprocessor.num_special_tokens_to_add(A_ ) UpperCamelCase = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase = [' '.join(['a'] ) * seq_length] * batch_size UpperCamelCase = dict(preprocessor(A_ , return_tensors=A_ ) ) UpperCamelCase = inputs.pop('input_ids' ) return inputs elif isinstance(A_ , A_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase = compute_effective_axis_dimension(A_ , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCamelCase = self._generate_dummy_images(A_ , A_ , A_ , A_ ) UpperCamelCase = dict(preprocessor(images=A_ , return_tensors=A_ ) ) UpperCamelCase = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
3
0
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging UpperCamelCase_ = logging.get_logger(__name__) def _UpperCAmelCase ( UpperCamelCase: str=None , UpperCamelCase: Union[str, Any]=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=UpperCamelCase ) @dataclass class a : lowercase_ : Optional[Any] = list_field( default=[] , metadata={ 'help': ( 'Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version' ' of all available models' ) } , ) lowercase_ : Dict = list_field( default=[8] , metadata={'help': 'List of batch sizes for which memory and time performance will be evaluated'} ) lowercase_ : str = list_field( default=[8, 32, 128, 512] , metadata={'help': 'List of sequence lengths for which memory and time performance will be evaluated'} , ) lowercase_ : int = field( default=snake_case_ , metadata={'help': 'Whether to benchmark inference of model. Inference can be disabled via --no-inference.'} , ) lowercase_ : str = field( default=snake_case_ , metadata={'help': 'Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'} , ) lowercase_ : Any = field( default=snake_case_ , metadata={'help': 'Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'} ) lowercase_ : Any = field(default=snake_case_ , metadata={'help': 'Use FP16 to accelerate inference.'} ) lowercase_ : Optional[Any] = field(default=snake_case_ , metadata={'help': 'Benchmark training of model'} ) lowercase_ : List[str] = field(default=snake_case_ , metadata={'help': 'Verbose memory tracing'} ) lowercase_ : Any = field( default=snake_case_ , metadata={'help': 'Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'} , ) lowercase_ : Optional[Any] = field( default=snake_case_ , metadata={ 'help': 'Whether to perform memory measurements. Memory measurements can be disabled via --no-memory' } , ) lowercase_ : int = field(default=snake_case_ , metadata={'help': 'Trace memory line by line'} ) lowercase_ : Any = field(default=snake_case_ , metadata={'help': 'Save result to a CSV file'} ) lowercase_ : Dict = field(default=snake_case_ , metadata={'help': 'Save all print statements in a log file'} ) lowercase_ : int = field(default=snake_case_ , metadata={'help': 'Whether to print environment information'} ) lowercase_ : Dict = field( default=snake_case_ , metadata={ 'help': ( 'Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use' ' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled' ' for debugging / testing and on TPU.' ) } , ) lowercase_ : Union[str, Any] = field( default=f'inference_time_{round(time() )}.csv' , metadata={'help': 'CSV filename used if saving time results to csv.'} , ) lowercase_ : Optional[Any] = field( default=f'inference_memory_{round(time() )}.csv' , metadata={'help': 'CSV filename used if saving memory results to csv.'} , ) lowercase_ : List[Any] = field( default=f'train_time_{round(time() )}.csv' , metadata={'help': 'CSV filename used if saving time results to csv for training.'} , ) lowercase_ : Optional[Any] = field( default=f'train_memory_{round(time() )}.csv' , metadata={'help': 'CSV filename used if saving memory results to csv for training.'} , ) lowercase_ : Dict = field( default=f'env_info_{round(time() )}.csv' , metadata={'help': 'CSV filename used if saving environment information.'} , ) lowercase_ : Tuple = field( default=f'log_{round(time() )}.csv' , metadata={'help': 'Log filename used if print statements are saved in log.'} , ) lowercase_ : List[Any] = field(default=3 , metadata={'help': 'Times an experiment will be run.'} ) lowercase_ : str = field( default=snake_case_ , metadata={ 'help': ( 'Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain' ' model weights.' ) } , ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" warnings.warn( F"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils" " are deprecated in general and it is advised to use external Benchmarking libraries " " to benchmark Transformer models." , A_ , ) def UpperCAmelCase__ ( self : str ): """simple docstring""" return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" if len(self.models ) <= 0: raise ValueError( "Please make sure you provide at least one model name / model identifier, *e.g.* `--models" " bert-base-cased` or `args.models = [\'bert-base-cased\']." ) return self.models @property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" if not self.multi_process: return False elif self.is_tpu: logger.info("Multiprocessing is currently not possible on TPU." ) return False else: return True
611
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Dict = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """mctct""" def __init__( self , A_=8065 , A_=1536 , A_=36 , A_=6144 , A_=4 , A_=384 , A_=920 , A_=1e-5 , A_=0.3 , A_="relu" , A_=0.02 , A_=0.3 , A_=0.3 , A_=1 , A_=0 , A_=2 , A_=1 , A_=0.3 , A_=1 , A_=(7,) , A_=(3,) , A_=80 , A_=1 , A_=None , A_="sum" , A_=False , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = intermediate_size UpperCamelCase = num_attention_heads UpperCamelCase = attention_head_dim UpperCamelCase = max_position_embeddings UpperCamelCase = layer_norm_eps UpperCamelCase = layerdrop UpperCamelCase = hidden_act UpperCamelCase = initializer_range UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = pad_token_id UpperCamelCase = bos_token_id UpperCamelCase = eos_token_id UpperCamelCase = conv_glu_dim UpperCamelCase = conv_dropout UpperCamelCase = num_conv_layers UpperCamelCase = input_feat_per_channel UpperCamelCase = input_channels UpperCamelCase = conv_channels UpperCamelCase = ctc_loss_reduction UpperCamelCase = ctc_zero_infinity # prevents config testing fail with exporting to json UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ' F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
3
0
'''simple docstring''' import os import sys import unittest A_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path A_ = os.path.join(git_repo_path, "src", "transformers") A_ = '\n{0} = None\n' A_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' A_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class lowercase_ ( unittest.TestCase ): def _lowerCAmelCase ( self : int ): snake_case__ : int = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(A_ ) snake_case__ : str = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(A_ , 'tokenizers' ) snake_case__ : int = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(A_ , 'tensorflow_text' ) snake_case__ : int = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(A_ , 'sentencepiece_and_tokenizers' ) snake_case__ : Any = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(A_ , 'sentencepiece_and_tensorflow_text' ) snake_case__ : Optional[Any] = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(A_ , 'sentencepiece_and_tokenizers_and_vision' ) def _lowerCAmelCase ( self : int ): snake_case__ : Union[str, Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , A_ ) self.assertIn('tensorflow_text' , A_ ) self.assertIn('sentencepiece_and_tokenizers' , A_ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def _lowerCAmelCase ( self : List[str] ): snake_case__ : Optional[Any] = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(A_ , '\nCONSTANT = None\n' ) snake_case__ : Optional[int] = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( A_ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) snake_case__ : int = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' snake_case__ : List[str] = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(A_ , A_ ) def _lowerCAmelCase ( self : List[str] ): snake_case__ : Any = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' snake_case__ : Any = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , A_ )
270
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase : Tuple = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase : Optional[int] = TaTokenizerFast lowerCAmelCase : Any = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase : Tuple = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
3
0
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging __lowercase = logging.get_logger(__name__) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' try: with open(SCREAMING_SNAKE_CASE , '''rb''' ) as flax_state_f: __UpperCamelCase :Union[str, Any] = from_bytes(SCREAMING_SNAKE_CASE , flax_state_f.read() ) except UnpicklingError as e: try: with open(SCREAMING_SNAKE_CASE ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights __UpperCamelCase :Any = flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE ) ).values() if any(SCREAMING_SNAKE_CASE ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) __UpperCamelCase :Any = jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE ) __UpperCamelCase :str = '''''' __UpperCamelCase :Any = flatten_dict(SCREAMING_SNAKE_CASE , sep='''.''' ) __UpperCamelCase :List[Any] = pt_model.state_dict() # keep track of unexpected & missing keys __UpperCamelCase :List[Any] = [] __UpperCamelCase :Dict = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __UpperCamelCase :Optional[Any] = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: __UpperCamelCase :Tuple = flax_key_tuple_array[:-1] + ['''weight'''] __UpperCamelCase :Any = jnp.transpose(SCREAMING_SNAKE_CASE , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": __UpperCamelCase :int = flax_key_tuple_array[:-1] + ['''weight'''] __UpperCamelCase :Any = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": __UpperCamelCase :int = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(SCREAMING_SNAKE_CASE ): __UpperCamelCase :int = ( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) __UpperCamelCase :List[Any] = '''.'''.join(SCREAMING_SNAKE_CASE ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict __UpperCamelCase :int = np.asarray(SCREAMING_SNAKE_CASE ) if not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) else flax_tensor __UpperCamelCase :int = torch.from_numpy(SCREAMING_SNAKE_CASE ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE ) # re-transform missing_keys to list __UpperCamelCase :Optional[int] = list(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) return pt_model
167
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=False , A_=True , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , )-> Dict: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size if size is not None else {'height': 18, 'width': 20} UpperCamelCase = do_thumbnail UpperCamelCase = do_align_axis UpperCamelCase = do_pad UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase): lowerCAmelCase_ = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = DonutImageProcessingTester(self ) @property def UpperCAmelCase_ ( self )-> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'do_thumbnail' ) ) self.assertTrue(hasattr(A_ , 'do_align_long_axis' ) ) self.assertTrue(hasattr(A_ , 'do_pad' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' pass @is_flaky() def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
3
0
from math import factorial def UpperCamelCase( __UpperCamelCase : int = 20 ): lowerCAmelCase_ : List[str] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... lowerCAmelCase_ : List[Any] = n // 2 return int(factorial(__UpperCamelCase ) / (factorial(__UpperCamelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: A__ : int = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number.''')
171
'''simple docstring''' def A_( A : list[int]): UpperCamelCase = [] if len(A) == 1: return [nums.copy()] for _ in range(len(A)): UpperCamelCase = nums.pop(0) UpperCamelCase = permute(A) for perm in permutations: perm.append(A) result.extend(A) nums.append(A) return result def A_( A : str): def backtrack(A : str): if start == len(A) - 1: output.append(nums[:]) else: for i in range(A , len(A)): UpperCamelCase , UpperCamelCase = nums[i], nums[start] backtrack(start + 1) UpperCamelCase , UpperCamelCase = nums[i], nums[start] # backtrack UpperCamelCase = [] backtrack(0) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCAmelCase : Dict = permutea([1, 2, 3]) print(res) doctest.testmod()
3
0
from string import ascii_lowercase, ascii_uppercase def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Optional[int]: if not sentence: return "" SCREAMING_SNAKE_CASE_ : Optional[int] = dict(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
345
'''simple docstring''' import colorsys from PIL import Image # type: ignore def A_( A : float , A : float , A : int): UpperCamelCase = x UpperCamelCase = y for step in range(A): # noqa: B007 UpperCamelCase = a * a - b * b + x UpperCamelCase = 2 * a * b + y UpperCamelCase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def A_( A : float): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def A_( A : float): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(A , 1 , 1)) def A_( A : int = 800 , A : int = 600 , A : float = -0.6 , A : float = 0 , A : float = 3.2 , A : int = 50 , A : bool = True , ): UpperCamelCase = Image.new('RGB' , (image_width, image_height)) UpperCamelCase = img.load() # loop through the image-coordinates for image_x in range(A): for image_y in range(A): # determine the figure-coordinates based on the image-coordinates UpperCamelCase = figure_width / image_width * image_height UpperCamelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCamelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCamelCase = get_distance(A , A , A) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCamelCase = get_color_coded_rgb(A) else: UpperCamelCase = get_black_and_white_rgb(A) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCAmelCase : Any = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
3
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCAmelCase_ : List[str] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase_ : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) UpperCAmelCase_ : str = transformers.models.auto.configuration_auto.CONFIG_MAPPING UpperCAmelCase_ : Any = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def __SCREAMING_SNAKE_CASE ( a__ : Optional[int] ,a__ : List[str] ,a__ : Tuple ,a__ : Tuple ) -> str: __A : int = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"""config.{attribute}""" in modeling_source or f"""getattr(config, \"{attribute}\"""" in modeling_source or f"""getattr(self.config, \"{attribute}\"""" in modeling_source ): __A : Tuple = True # Deal with multi-line cases elif ( re.search( rf"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" ,a__ ,) is not None ): __A : Union[str, Any] = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: __A : int = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files __A : Any = [ """bos_index""", """eos_index""", """pad_index""", """unk_index""", """mask_index""", """image_size""", """use_cache""", """out_features""", """out_indices""", ] __A : Tuple = ["""encoder_no_repeat_ngram_size"""] # Special cases to be allowed __A : int = True if not attribute_used: __A : Tuple = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: __A : Union[str, Any] = True elif attribute in ["tie_word_embeddings"] and default_value is False: __A : int = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: __A : Union[str, Any] = True elif attribute.endswith("""_token_id""" ): __A : Optional[Any] = True # configuration class specific cases if not case_allowed: __A : List[Any] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ ,[] ) __A : List[str] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def __SCREAMING_SNAKE_CASE ( a__ : Optional[Any] ) -> int: __A : Dict = dict(inspect.signature(config_class.__init__ ).parameters ) __A : List[Any] = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]] __A : List[str] = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass __A : Tuple = {} if len(config_class.attribute_map ) > 0: __A : Optional[int] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files __A : int = inspect.getsourcefile(a__ ) __A : List[str] = os.path.dirname(a__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. __A : Optional[Any] = [os.path.join(a__ ,a__ ) for fn in os.listdir(a__ ) if fn.startswith("""modeling_""" )] # Get the source code strings __A : Union[str, Any] = [] for path in modeling_paths: if os.path.isfile(a__ ): with open(a__ ) as fp: modeling_sources.append(fp.read() ) __A : Dict = [] for config_param, default_value in zip(a__ ,a__ ): # `attributes` here is all the variant names for `config_param` __A : Any = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(a__ ,a__ ,a__ ,a__ ): unused_attributes.append(attributes[0] ) return sorted(a__ ) def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: __A : List[str] = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) __A : Dict = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) ,lambda a__ : inspect.isclass(a__ ) and issubclass(a__ ,a__ ) and inspect.getmodule(a__ ) == inspect.getmodule(_config_class ) ,) ] for config_class in config_classes_in_module: __A : Any = check_config_attributes_being_used(a__ ) if len(a__ ) > 0: __A : int = unused_attributes if len(a__ ) > 0: __A : int = """The following configuration classes contain unused attributes in the corresponding modeling files:\n""" for name, attributes in configs_with_unused_attributes.items(): error += f"""{name}: {attributes}\n""" raise ValueError(a__ ) if __name__ == "__main__": check_config_attributes()
17
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase : Optional[Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
0
'''simple docstring''' from __future__ import annotations from typing import Generic, TypeVar SCREAMING_SNAKE_CASE_ = TypeVar('T') class a ( Generic[T] ): """simple docstring""" def __init__( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: int = data __UpperCAmelCase: Any = self __UpperCAmelCase: Dict = 0 class a ( Generic[T] ): """simple docstring""" def __init__( self ): '''simple docstring''' __UpperCAmelCase: List[Any] = {} def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = DisjointSetTreeNode(A_ ) def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[int] = self.map[data] if elem_ref != elem_ref.parent: __UpperCAmelCase: str = self.find_set(elem_ref.parent.data ) return elem_ref.parent def lowercase_ ( self , snake_case_ , snake_case_ ): '''simple docstring''' if nodea.rank > nodea.rank: __UpperCAmelCase: str = nodea else: __UpperCAmelCase: List[Any] = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def lowercase_ ( self , snake_case_ , snake_case_ ): '''simple docstring''' self.link(self.find_set(A_ ) , self.find_set(A_ ) ) class a ( Generic[T] ): """simple docstring""" def __init__( self ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = {} def lowercase_ ( self , snake_case_ ): '''simple docstring''' if node not in self.connections: __UpperCAmelCase: Tuple = {} def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' self.add_node(A_ ) self.add_node(A_ ) __UpperCAmelCase: Dict = weight __UpperCAmelCase: int = weight def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Any = [] __UpperCAmelCase: List[Any] = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda snake_case_ : x[2] ) # creating the disjoint set __UpperCAmelCase: int = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(A_ ) # MST generation __UpperCAmelCase: Dict = 0 __UpperCAmelCase: Union[str, Any] = 0 __UpperCAmelCase: Optional[Any] = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase: Union[str, Any] = edges[index] index += 1 __UpperCAmelCase: List[Any] = disjoint_set.find_set(A_ ) __UpperCAmelCase: List[str] = disjoint_set.find_set(A_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(A_ , A_ , A_ ) disjoint_set.union(A_ , A_ ) return graph
523
'''simple docstring''' lowerCAmelCase : Optional[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def A_( A : dict , A : str , A : Optional[Any]): UpperCamelCase = set() # keep track of all the paths to be checked UpperCamelCase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCamelCase = queue.pop(0) # get the last node from the path UpperCamelCase = path[-1] if node not in explored: UpperCamelCase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCamelCase = list(A) new_path.append(A) queue.append(A) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(A) # in case there's no path between the 2 nodes return [] def A_( A : dict , A : str , A : Tuple): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCamelCase = [start] UpperCamelCase = set(A) # Keep tab on distances from `start` node. UpperCamelCase = {start: 0, target: -1} while queue: UpperCamelCase = queue.pop(0) if node == target: UpperCamelCase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node]) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(A) queue.append(A) UpperCamelCase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
3
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __UpperCamelCase : Any = logging.get_logger(__name__) class a ( a__ ): snake_case__ = ['''input_features''', '''attention_mask'''] def __init__( self , _snake_case=80 , _snake_case=1_60_00 , _snake_case=80 , _snake_case=0.0 , _snake_case=True , _snake_case=True , _snake_case=True , **_snake_case , ): """simple docstring""" super().__init__(feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , **_snake_case ) lowerCAmelCase = num_mel_bins lowerCAmelCase = do_ceptral_normalize lowerCAmelCase = normalize_means lowerCAmelCase = normalize_vars lowerCAmelCase = True def UpperCamelCase__ ( self , _snake_case , ): """simple docstring""" lowerCAmelCase = waveform * (2**15) # Kaldi compliance: 16-bit signed integers lowerCAmelCase = torch.from_numpy(_snake_case ).unsqueeze(0 ) lowerCAmelCase = ta_kaldi.fbank(_snake_case , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def UpperCamelCase__ ( _snake_case , _snake_case , _snake_case = True , _snake_case = True , _snake_case = 0.0 , ): """simple docstring""" if normalize_means: lowerCAmelCase = x[:input_length].mean(axis=0 ) lowerCAmelCase = np.subtract(_snake_case , _snake_case ) if normalize_vars: lowerCAmelCase = x[:input_length].std(axis=0 ) lowerCAmelCase = np.divide(_snake_case , _snake_case ) if input_length < x.shape[0]: lowerCAmelCase = padding_value # make sure array is in float32 lowerCAmelCase = x.astype(np.floataa ) return x def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(_snake_case , _snake_case , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(_snake_case , _snake_case ) ] def __call__( self , _snake_case , _snake_case = False , _snake_case = None , _snake_case = False , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , **_snake_case , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowerCAmelCase = isinstance(_snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowerCAmelCase = is_batched_numpy or ( isinstance(_snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase = [np.asarray(_snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_snake_case , np.ndarray ): lowerCAmelCase = np.asarray(_snake_case , dtype=np.floataa ) elif isinstance(_snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase = [raw_speech] # extract fbank features lowerCAmelCase = [self._extract_fbank_features(_snake_case ) for waveform in raw_speech] # convert into correct format for padding lowerCAmelCase = BatchFeature({'input_features': features} ) lowerCAmelCase = self.pad( _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) # make sure list is in array format lowerCAmelCase = padded_inputs.get('input_features' ) if isinstance(input_features[0] , _snake_case ): lowerCAmelCase = [np.asarray(_snake_case , dtype=np.floataa ) for feature in input_features] lowerCAmelCase = padded_inputs.get('attention_mask' ) if attention_mask is not None: lowerCAmelCase = [np.asarray(_snake_case , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: lowerCAmelCase = ( np.array(_snake_case , dtype=np.intaa ) if self._get_padding_strategies(_snake_case , max_length=_snake_case ) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCAmelCase = self.normalize( padded_inputs['input_features'] , attention_mask=_snake_case ) if return_tensors is not None: lowerCAmelCase = padded_inputs.convert_to_tensors(_snake_case ) return padded_inputs
4
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class a ( a__ ): snake_case__ = 42 class a ( a__ , a__ ): @register_to_config def __init__( self , _snake_case = 3 , _snake_case = 3 , _snake_case = ("DownEncoderBlock2D",) , _snake_case = ("UpDecoderBlock2D",) , _snake_case = (64,) , _snake_case = 1 , _snake_case = "silu" , _snake_case = 3 , _snake_case = 32 , _snake_case = 2_56 , _snake_case = 32 , _snake_case = None , _snake_case = 0.18_215 , _snake_case = "group" , ): """simple docstring""" super().__init__() # pass init params to Encoder lowerCAmelCase = Encoder( in_channels=_snake_case , out_channels=_snake_case , down_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , double_z=_snake_case , ) lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 ) lowerCAmelCase = VectorQuantizer(_snake_case , _snake_case , beta=0.25 , remap=_snake_case , sane_index_shape=_snake_case ) lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 ) # pass init params to Decoder lowerCAmelCase = Decoder( in_channels=_snake_case , out_channels=_snake_case , up_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , norm_type=_snake_case , ) @apply_forward_hook def UpperCamelCase__ ( self , _snake_case , _snake_case = True ): """simple docstring""" lowerCAmelCase = self.encoder(_snake_case ) lowerCAmelCase = self.quant_conv(_snake_case ) if not return_dict: return (h,) return VQEncoderOutput(latents=_snake_case ) @apply_forward_hook def UpperCamelCase__ ( self , _snake_case , _snake_case = False , _snake_case = True ): """simple docstring""" if not force_not_quantize: lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = self.quantize(_snake_case ) else: lowerCAmelCase = h lowerCAmelCase = self.post_quant_conv(_snake_case ) lowerCAmelCase = self.decoder(_snake_case , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case = True ): """simple docstring""" lowerCAmelCase = sample lowerCAmelCase = self.encode(_snake_case ).latents lowerCAmelCase = self.decode(_snake_case ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_snake_case )
4
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCamelCase : List[str] = logging.get_logger(__name__) class a ( a__ ): snake_case__ = ['''pixel_values'''] def __init__( self , _snake_case = True , _snake_case = 32 , _snake_case=PILImageResampling.BILINEAR , _snake_case = True , **_snake_case , ): """simple docstring""" lowerCAmelCase = do_resize lowerCAmelCase = do_rescale lowerCAmelCase = size_divisor lowerCAmelCase = resample super().__init__(**_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case = None , **_snake_case ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = get_image_size(_snake_case ) # Rounds the height and width down to the closest multiple of size_divisor lowerCAmelCase = height // size_divisor * size_divisor lowerCAmelCase = width // size_divisor * size_divisor lowerCAmelCase = resize(_snake_case , (new_h, new_w) , resample=_snake_case , data_format=_snake_case , **_snake_case ) return image def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case ): """simple docstring""" return rescale(image=_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case=None , _snake_case = None , _snake_case = None , _snake_case = ChannelDimension.FIRST , **_snake_case , ): """simple docstring""" lowerCAmelCase = do_resize if do_resize is not None else self.do_resize lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase = size_divisor if size_divisor is not None else self.size_divisor lowerCAmelCase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) lowerCAmelCase = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. lowerCAmelCase = [to_numpy_array(_snake_case ) for img in images] if do_resize: lowerCAmelCase = [self.resize(_snake_case , size_divisor=_snake_case , resample=_snake_case ) for image in images] if do_rescale: lowerCAmelCase = [self.rescale(_snake_case , scale=1 / 2_55 ) for image in images] lowerCAmelCase = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=_snake_case , tensor_type=_snake_case )
4
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping __UpperCamelCase : Optional[Any] = tuple[int, int] class a : def __init__( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = vertices lowerCAmelCase = { (min(_snake_case ), max(_snake_case )): weight for edge, weight in edges.items() } def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase = weight def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Graph({min(self.vertices )} , {} ) lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase = edge lowerCAmelCase = weight subgraph.add_edge(_snake_case , _snake_case ) return subgraph def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "p107_network.txt" ): lowerCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) ) lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = {} lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 with open(_UpperCAmelCase ) as f: lowerCAmelCase = f.read().strip().split('\n' ) lowerCAmelCase = [line.split(',' ) for line in data] for edgea in range(1 , len(_UpperCAmelCase ) ): for edgea in range(_UpperCAmelCase ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase = Graph(set(range(len(_UpperCAmelCase ) ) ) , _UpperCAmelCase ) lowerCAmelCase = graph.prims_algorithm() lowerCAmelCase = sum(graph.edges.values() ) lowerCAmelCase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
4
1
"""simple docstring""" import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) __UpperCamelCase : Optional[int] = '''bert-base-cased''' __UpperCamelCase : List[Any] = '''fp16''' __UpperCamelCase : Any = '''bf16''' __UpperCamelCase : Dict = [FPaa, BFaa] @require_fsdp @require_cuda class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase = dict( ACCELERATE_USE_FSDP='true' , MASTER_ADDR='localhost' , MASTER_PORT='10999' , RANK='0' , LOCAL_RANK='0' , WORLD_SIZE='1' , ) def UpperCamelCase__ ( self ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(_snake_case ): lowerCAmelCase = self.dist_env.copy() lowerCAmelCase = F'{i + 1}' lowerCAmelCase = strategy with mockenv_context(**_snake_case ): lowerCAmelCase = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def UpperCamelCase__ ( self ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(_snake_case ): lowerCAmelCase = self.dist_env.copy() lowerCAmelCase = prefetch_policy with mockenv_context(**_snake_case ): lowerCAmelCase = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def UpperCamelCase__ ( self ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(_snake_case ): lowerCAmelCase = self.dist_env.copy() lowerCAmelCase = state_dict_type with mockenv_context(**_snake_case ): lowerCAmelCase = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = AutoModel.from_pretrained(_snake_case ) for policy in FSDP_AUTO_WRAP_POLICY: lowerCAmelCase = self.dist_env.copy() lowerCAmelCase = policy if policy == "TRANSFORMER_BASED_WRAP": lowerCAmelCase = 'BertLayer' elif policy == "SIZE_BASED_WRAP": lowerCAmelCase = '2000' with mockenv_context(**_snake_case ): lowerCAmelCase = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_snake_case ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) lowerCAmelCase = self.dist_env.copy() lowerCAmelCase = 'TRANSFORMER_BASED_WRAP' lowerCAmelCase = 'T5Layer' with mockenv_context(**_snake_case ): lowerCAmelCase = FullyShardedDataParallelPlugin() with self.assertRaises(_snake_case ) as cm: fsdp_plugin.set_auto_wrap_policy(_snake_case ) self.assertTrue('Could not find the transformer layer class to wrap in the model.' in str(cm.exception ) ) lowerCAmelCase = self.dist_env.copy() lowerCAmelCase = 'SIZE_BASED_WRAP' lowerCAmelCase = '0' with mockenv_context(**_snake_case ): lowerCAmelCase = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_snake_case ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def UpperCamelCase__ ( self ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: lowerCAmelCase = self.dist_env.copy() lowerCAmelCase = mp_dtype with mockenv_context(**_snake_case ): lowerCAmelCase = Accelerator() if mp_dtype == "fp16": lowerCAmelCase = torch.floataa elif mp_dtype == "bf16": lowerCAmelCase = torch.bfloataa lowerCAmelCase = MixedPrecision(param_dtype=_snake_case , reduce_dtype=_snake_case , buffer_dtype=_snake_case ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , _snake_case ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , _snake_case ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: lowerCAmelCase = self.dist_env.copy() lowerCAmelCase = str(_snake_case ).lower() with mockenv_context(**_snake_case ): lowerCAmelCase = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=_snake_case ) ) @require_fsdp @require_multi_gpu @slow class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase = 0.82 lowerCAmelCase = [ 'fsdp_shard_grad_op_transformer_based_wrap', 'fsdp_full_shard_transformer_based_wrap', ] lowerCAmelCase = { 'multi_gpu_fp16': 32_00, 'fsdp_shard_grad_op_transformer_based_wrap_fp16': 20_00, 'fsdp_full_shard_transformer_based_wrap_fp16': 19_00, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } lowerCAmelCase = 1_60 lowerCAmelCase = 1_60 lowerCAmelCase = inspect.getfile(accelerate.test_utils ) lowerCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps'] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = os.path.join(self.test_scripts_folder , 'test_performance.py' ) lowerCAmelCase = ['accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp'] for config in self.performance_configs: lowerCAmelCase = cmd.copy() for i, strategy in enumerate(_snake_case ): if strategy.lower() in config: cmd_config.append(F'--fsdp_sharding_strategy={i+1}' ) break if "fp32" in config: cmd_config.append('--mixed_precision=no' ) else: cmd_config.append('--mixed_precision=fp16' ) if "cpu_offload" in config: cmd_config.append('--fsdp_offload_params=True' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F'--fsdp_auto_wrap_policy={policy}' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000' ) cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', F'--performance_lower_bound={self.performance_lower_bound}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_snake_case , env=os.environ.copy() ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = os.path.join(self.test_scripts_folder , 'test_checkpointing.py' ) lowerCAmelCase = [ 'accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp', '--mixed_precision=fp16', '--fsdp_transformer_layer_cls_to_wrap=BertLayer', ] for i, strategy in enumerate(_snake_case ): lowerCAmelCase = cmd.copy() cmd_config.append(F'--fsdp_sharding_strategy={i+1}' ) if strategy != "FULL_SHARD": continue lowerCAmelCase = len(_snake_case ) for state_dict_type in FSDP_STATE_DICT_TYPE: lowerCAmelCase = cmd_config[:state_dict_config_index] cmd_config.append(F'--fsdp_state_dict_type={state_dict_type}' ) cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', '--partial_train_epoch=1', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_snake_case , env=os.environ.copy() ) lowerCAmelCase = cmd_config[:-1] lowerCAmelCase = os.path.join(self.tmpdir , 'epoch_0' ) cmd_config.extend( [ F'--resume_from_checkpoint={resume_from_checkpoint}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_snake_case , env=os.environ.copy() ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = os.path.join(self.test_scripts_folder , 'test_peak_memory_usage.py' ) lowerCAmelCase = [ 'accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): lowerCAmelCase = cmd.copy() if "fp16" in spec: cmd_config.extend(['--mixed_precision=fp16'] ) else: cmd_config.extend(['--mixed_precision=no'] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['--use_fsdp'] ) for i, strategy in enumerate(_snake_case ): if strategy.lower() in spec: cmd_config.append(F'--fsdp_sharding_strategy={i+1}' ) break if "cpu_offload" in spec: cmd_config.append('--fsdp_offload_params=True' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F'--fsdp_auto_wrap_policy={policy}' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000' ) cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', F'--peak_memory_upper_bound={peak_mem_upper_bound}', F'--n_train={self.n_train}', F'--n_val={self.n_val}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_snake_case , env=os.environ.copy() )
4
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCAmelCase )] ) lowerCAmelCase = np.array(_UpperCAmelCase ) lowerCAmelCase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCAmelCase ) ) , x.transpose() ) , _UpperCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = (1, 2, 1) lowerCAmelCase = (1, 1, 0, 7) lowerCAmelCase = SARIMAX( _UpperCAmelCase , exog=_UpperCAmelCase , order=_UpperCAmelCase , seasonal_order=_UpperCAmelCase ) lowerCAmelCase = model.fit(disp=_UpperCAmelCase , maxiter=600 , method='nm' ) lowerCAmelCase = model_fit.predict(1 , len(_UpperCAmelCase ) , exog=[test_match] ) return result[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = regressor.predict(_UpperCAmelCase ) return y_pred[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ): train_user.sort() lowerCAmelCase = np.percentile(_UpperCAmelCase , 25 ) lowerCAmelCase = np.percentile(_UpperCAmelCase , 75 ) lowerCAmelCase = qa - qa lowerCAmelCase = qa - (iqr * 0.1) return low_lim def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : float ): lowerCAmelCase = 0 lowerCAmelCase = 0 for i in list_vote: if i > actual_result: lowerCAmelCase = not_safe + 1 else: if abs(abs(_UpperCAmelCase ) - abs(_UpperCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __UpperCamelCase : Optional[Any] = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] __UpperCamelCase : Any = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) __UpperCamelCase : Dict = Normalizer().fit_transform(data_input_df.values) # split data __UpperCamelCase : Dict = normalize_df[:, 2].tolist() __UpperCamelCase : Union[str, Any] = normalize_df[:, 0].tolist() __UpperCamelCase : List[str] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __UpperCamelCase : Optional[int] = normalize_df[:, [1, 2]].tolist() __UpperCamelCase : Tuple = x[: len(x) - 1] __UpperCamelCase : Any = x[len(x) - 1 :] # for linear regression & sarimax __UpperCamelCase : str = total_date[: len(total_date) - 1] __UpperCamelCase : Union[str, Any] = total_user[: len(total_user) - 1] __UpperCamelCase : List[Any] = total_match[: len(total_match) - 1] __UpperCamelCase : Optional[Any] = total_date[len(total_date) - 1 :] __UpperCamelCase : str = total_user[len(total_user) - 1 :] __UpperCamelCase : str = total_match[len(total_match) - 1 :] # voting system with forecasting __UpperCamelCase : Any = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __UpperCamelCase : List[str] = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('''Today\'s data is {not_str}safe.''')
4
1
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCAmelCase )] ) lowerCAmelCase = np.array(_UpperCAmelCase ) lowerCAmelCase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCAmelCase ) ) , x.transpose() ) , _UpperCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = (1, 2, 1) lowerCAmelCase = (1, 1, 0, 7) lowerCAmelCase = SARIMAX( _UpperCAmelCase , exog=_UpperCAmelCase , order=_UpperCAmelCase , seasonal_order=_UpperCAmelCase ) lowerCAmelCase = model.fit(disp=_UpperCAmelCase , maxiter=600 , method='nm' ) lowerCAmelCase = model_fit.predict(1 , len(_UpperCAmelCase ) , exog=[test_match] ) return result[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = regressor.predict(_UpperCAmelCase ) return y_pred[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ): train_user.sort() lowerCAmelCase = np.percentile(_UpperCAmelCase , 25 ) lowerCAmelCase = np.percentile(_UpperCAmelCase , 75 ) lowerCAmelCase = qa - qa lowerCAmelCase = qa - (iqr * 0.1) return low_lim def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : float ): lowerCAmelCase = 0 lowerCAmelCase = 0 for i in list_vote: if i > actual_result: lowerCAmelCase = not_safe + 1 else: if abs(abs(_UpperCAmelCase ) - abs(_UpperCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __UpperCamelCase : Optional[Any] = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] __UpperCamelCase : Any = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) __UpperCamelCase : Dict = Normalizer().fit_transform(data_input_df.values) # split data __UpperCamelCase : Dict = normalize_df[:, 2].tolist() __UpperCamelCase : Union[str, Any] = normalize_df[:, 0].tolist() __UpperCamelCase : List[str] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __UpperCamelCase : Optional[int] = normalize_df[:, [1, 2]].tolist() __UpperCamelCase : Tuple = x[: len(x) - 1] __UpperCamelCase : Any = x[len(x) - 1 :] # for linear regression & sarimax __UpperCamelCase : str = total_date[: len(total_date) - 1] __UpperCamelCase : Union[str, Any] = total_user[: len(total_user) - 1] __UpperCamelCase : List[Any] = total_match[: len(total_match) - 1] __UpperCamelCase : Optional[Any] = total_date[len(total_date) - 1 :] __UpperCamelCase : str = total_user[len(total_user) - 1 :] __UpperCamelCase : str = total_match[len(total_match) - 1 :] # voting system with forecasting __UpperCamelCase : Any = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __UpperCamelCase : List[str] = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('''Today\'s data is {not_str}safe.''')
4
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=_UpperCAmelCase , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=_UpperCAmelCase , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=_UpperCAmelCase , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=_UpperCAmelCase , default=0 , help='cuda_id.' , ) lowerCAmelCase = parser.parse_args() return args def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ): if not len(_UpperCAmelCase ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) lowerCAmelCase ,lowerCAmelCase = imgs[0].size lowerCAmelCase = Image.new('RGB' , size=(cols * w, rows * h) ) lowerCAmelCase ,lowerCAmelCase = grid.size for i, img in enumerate(_UpperCAmelCase ): grid.paste(_UpperCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]="robotic cat with wings" , _UpperCAmelCase : Optional[int]=7.5 , _UpperCAmelCase : Dict=50 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=42 , ): lowerCAmelCase = torch.Generator(pipeline.device ).manual_seed(_UpperCAmelCase ) lowerCAmelCase = pipeline( _UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , ).images lowerCAmelCase = int(math.sqrt(_UpperCAmelCase ) ) lowerCAmelCase = image_grid(_UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __UpperCamelCase : Optional[Any] = parse_args() # Load models and create wrapper for stable diffusion __UpperCamelCase : List[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') __UpperCamelCase : str = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') __UpperCamelCase : Optional[int] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') __UpperCamelCase : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') __UpperCamelCase : Tuple = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __UpperCamelCase : Union[str, Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): __UpperCamelCase : Dict = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: __UpperCamelCase : Dict = unet.to(torch.device('''cuda''', args.cuda_id)) __UpperCamelCase : Optional[Any] = pipeline.to(unet.device) __UpperCamelCase ,__UpperCamelCase : List[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) __UpperCamelCase : int = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
4
1
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : str = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} __UpperCamelCase : str = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } __UpperCamelCase : Optional[Any] = { '''abeja/gpt-neox-japanese-2.7b''': 2048, } def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Any ): with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: lowerCAmelCase = json.loads(f.read() ) lowerCAmelCase = collections.OrderedDict() lowerCAmelCase = collections.OrderedDict() lowerCAmelCase = collections.OrderedDict() with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: lowerCAmelCase = f.readlines() lowerCAmelCase = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(_UpperCAmelCase ): lowerCAmelCase = b lowerCAmelCase = idx for wd in b: lowerCAmelCase = idx return vocab, raw_vocab, ids_to_tokens, emoji class a ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ['''input_ids''', '''attention_mask'''] def __init__( self , _snake_case , _snake_case , _snake_case="<|endoftext|>" , _snake_case="<|endoftext|>" , _snake_case="<|startoftext|>" , _snake_case="<|endoftext|>" , _snake_case=False , **_snake_case , ): """simple docstring""" super().__init__( unk_token=_snake_case , pad_token=_snake_case , bos_token=_snake_case , eos_token=_snake_case , do_clean_text=_snake_case , **_snake_case , ) if not os.path.isfile(_snake_case ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(_snake_case ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) lowerCAmelCase = do_clean_text lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = load_vocab_and_emoji(_snake_case , _snake_case ) lowerCAmelCase = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.raw_vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.subword_tokenizer.tokenize(_snake_case , clean=self.do_clean_text ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.subword_tokenizer.convert_id_to_token(_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = ''.join(_snake_case ).strip() return out_string def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_snake_case , add_special_tokens=_snake_case ) + [self.eos_token_id] ) if len(_snake_case ) > self.model_max_length: lowerCAmelCase = input_ids[-self.model_max_length :] return input_ids def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = 0 if os.path.isdir(_snake_case ): lowerCAmelCase = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: lowerCAmelCase = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(_snake_case , 'w' , encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) lowerCAmelCase = token_index writer.write(','.join(_snake_case ) + '\n' ) index += 1 with open(_snake_case , 'w' , encoding='utf-8' ) as writer: json.dump(self.emoji , _snake_case ) return vocab_file, emoji_file class a ( a__ ): def __init__( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = vocab # same as swe lowerCAmelCase = ids_to_tokens # same as bpe lowerCAmelCase = emoji lowerCAmelCase = np.max([len(_snake_case ) for w in self.vocab.keys()] ) lowerCAmelCase = re.compile(r'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) lowerCAmelCase = re.compile(r'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) lowerCAmelCase = re.compile(r'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) lowerCAmelCase = re.compile( r'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) lowerCAmelCase = re.compile( r'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) lowerCAmelCase = re.compile( r'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) lowerCAmelCase = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' lowerCAmelCase = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' lowerCAmelCase = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self ): """simple docstring""" return len(self.ids_to_tokens ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.content_repattera.sub('<URL>' , _snake_case ) lowerCAmelCase = self.content_repattera.sub('<EMAIL>' , _snake_case ) lowerCAmelCase = self.content_repattera.sub('<TEL>' , _snake_case ) lowerCAmelCase = self.content_repattera.sub('<DATE>' , _snake_case ) lowerCAmelCase = self.content_repattera.sub('<DATE>' , _snake_case ) lowerCAmelCase = self.content_repattera.sub('<PRICE>' , _snake_case ) lowerCAmelCase = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: lowerCAmelCase = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' ) return content def UpperCamelCase__ ( self , _snake_case , _snake_case=False ): """simple docstring""" lowerCAmelCase = text.replace(' ' , '<SP>' ) lowerCAmelCase = text.replace(' ' , '<SP>' ) lowerCAmelCase = text.replace('\r\n' , '<BR>' ) lowerCAmelCase = text.replace('\n' , '<BR>' ) lowerCAmelCase = text.replace('\r' , '<BR>' ) lowerCAmelCase = text.replace('\t' , '<TAB>' ) lowerCAmelCase = text.replace('—' , 'ー' ) lowerCAmelCase = text.replace('−' , 'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: lowerCAmelCase = text.replace(_snake_case , _snake_case ) if clean: lowerCAmelCase = self.clean_text(_snake_case ) def check_simbol(_snake_case ): lowerCAmelCase = x.encode() if len(_snake_case ) == 1 and len(_snake_case ) == 2: lowerCAmelCase = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc_2a1 and c <= 0xc_2bf) or (c >= 0xc_780 and c <= 0xc_783) or (c >= 0xc_ab9 and c <= 0xc_bbf) or (c >= 0xc_c80 and c <= 0xc_da2) ): return True return False def checkuae(_snake_case ): lowerCAmelCase = x.encode() if len(_snake_case ) == 1 and len(_snake_case ) == 3: lowerCAmelCase = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe28_080 and c <= 0xe2b_07f: return True return False lowerCAmelCase = 0 lowerCAmelCase = [] while pos < len(_snake_case ): lowerCAmelCase = min(len(_snake_case ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 lowerCAmelCase = [] # (token_id, token, pos) for e in range(_snake_case , _snake_case , -1 ): lowerCAmelCase = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_snake_case ) > 2: lowerCAmelCase = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_snake_case ) > 0: # the smallest token_id is adopted lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = sorted(_snake_case , key=lambda _snake_case : x[0] )[0] result.append(_snake_case ) lowerCAmelCase = e else: lowerCAmelCase = pos + 1 lowerCAmelCase = text[pos:end] if check_simbol(_snake_case ): result.append('<KIGOU>' ) elif checkuae(_snake_case ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) lowerCAmelCase = end return result def UpperCamelCase__ ( self , _snake_case , _snake_case="\n" ): """simple docstring""" lowerCAmelCase = [] lowerCAmelCase = [] lowerCAmelCase = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_snake_case ) > 0: words.append(bytearray(_snake_case ).decode('utf-8' , errors='replace' ) ) lowerCAmelCase = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(_snake_case ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(_snake_case ) if len(_snake_case ) > 0: words.append(bytearray(_snake_case ).decode('utf-8' , errors='replace' ) ) lowerCAmelCase = ''.join(_snake_case ) return text
4
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : List[int] ): lowerCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ), F'{len(_UpperCAmelCase )} != {len(_UpperCAmelCase )}' dest_layers.load_state_dict(layers_to_copy.state_dict() ) __UpperCamelCase : Optional[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } __UpperCamelCase : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ): try: lowerCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first' F' {n_student}' ) return list(range(_UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ): if n_student > n_teacher: raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' ) elif n_teacher == n_student: return list(range(_UpperCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, PreTrainedModel] , _UpperCAmelCase : Union[str, Path] = "student" , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ): lowerCAmelCase = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(_UpperCAmelCase , _UpperCAmelCase ): AutoTokenizer.from_pretrained(_UpperCAmelCase ).save_pretrained(_UpperCAmelCase ) # purely for convenience lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).eval() else: assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), F'teacher must be a model or string got type {type(_UpperCAmelCase )}' lowerCAmelCase = teacher.config.to_diff_dict() try: lowerCAmelCase ,lowerCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: lowerCAmelCase = teacher_e if d is None: lowerCAmelCase = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): lowerCAmelCase ,lowerCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: lowerCAmelCase ,lowerCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: lowerCAmelCase = teacher_e if d is None: lowerCAmelCase = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(_UpperCAmelCase ) # Copy weights lowerCAmelCase = teacher.config_class(**_UpperCAmelCase ) lowerCAmelCase = AutoModelForSeqaSeqLM.from_config(_UpperCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. lowerCAmelCase = student.load_state_dict(teacher.state_dict() , strict=_UpperCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save lowerCAmelCase ,lowerCAmelCase = list(range(_UpperCAmelCase ) ), list(range(_UpperCAmelCase ) ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to' F' {save_path}' ) student.save_pretrained(_UpperCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase ) if d_layers_to_copy is None: lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase ) try: if hasattr( _UpperCAmelCase , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _UpperCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _UpperCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _UpperCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _UpperCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , _UpperCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , _UpperCAmelCase ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' ) lowerCAmelCase = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(_UpperCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
4
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCamelCase : Tuple = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Dict = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
1
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __UpperCamelCase : str = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=_UpperCAmelCase , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=_UpperCAmelCase , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=_UpperCAmelCase , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=_UpperCAmelCase , default='data/dump' , help='The dump file prefix.' ) lowerCAmelCase = parser.parse_args() logger.info(F'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": lowerCAmelCase = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `[CLS]` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCAmelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `<s>` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": lowerCAmelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` lowerCAmelCase = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(F'Loading text from {args.file_path}' ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: lowerCAmelCase = fp.readlines() logger.info('Start encoding' ) logger.info(F'{len(_UpperCAmelCase )} examples to process.' ) lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 1_0000 lowerCAmelCase = time.time() for text in data: lowerCAmelCase = F'{bos} {text.strip()} {sep}' lowerCAmelCase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) rslt.append(_UpperCAmelCase ) iter += 1 if iter % interval == 0: lowerCAmelCase = time.time() logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) lowerCAmelCase = time.time() logger.info('Finished binarization' ) logger.info(F'{len(_UpperCAmelCase )} examples processed.' ) lowerCAmelCase = F'{args.dump_file}.{args.tokenizer_name}.pickle' lowerCAmelCase = tokenizer.vocab_size if vocab_size < (1 << 16): lowerCAmelCase = [np.uintaa(_UpperCAmelCase ) for d in rslt] else: lowerCAmelCase = [np.intaa(_UpperCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'Dump to {dp_file}' ) with open(_UpperCAmelCase , 'wb' ) as handle: pickle.dump(rslt_ , _UpperCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
4
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ): lowerCAmelCase = 0.00 lowerCAmelCase = 0 for resistor in resistors: if resistor <= 0: lowerCAmelCase = F'Resistor at index {index} has a negative or zero value!' raise ValueError(_UpperCAmelCase ) first_sum += 1 / float(_UpperCAmelCase ) index += 1 return 1 / first_sum def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ): lowerCAmelCase = 0.00 lowerCAmelCase = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowerCAmelCase = F'Resistor at index {index} has a negative value!' raise ValueError(_UpperCAmelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
4
1
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ): lowerCAmelCase = args.pruning_method lowerCAmelCase = args.threshold lowerCAmelCase = args.model_name_or_path.rstrip('/' ) lowerCAmelCase = args.target_model_path print(F'Load fine-pruned model from {model_name_or_path}' ) lowerCAmelCase = torch.load(os.path.join(_UpperCAmelCase , 'pytorch_model.bin' ) ) lowerCAmelCase = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowerCAmelCase = tensor print(F'Copied layer {name}' ) elif "classifier" in name or "qa_output" in name: lowerCAmelCase = tensor print(F'Copied layer {name}' ) elif "bias" in name: lowerCAmelCase = tensor print(F'Copied layer {name}' ) else: if pruning_method == "magnitude": lowerCAmelCase = MagnitudeBinarizer.apply(inputs=_UpperCAmelCase , threshold=_UpperCAmelCase ) lowerCAmelCase = tensor * mask print(F'Pruned layer {name}' ) elif pruning_method == "topK": if "mask_scores" in name: continue lowerCAmelCase = name[:-6] lowerCAmelCase = model[F'{prefix_}mask_scores'] lowerCAmelCase = TopKBinarizer.apply(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = tensor * mask print(F'Pruned layer {name}' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowerCAmelCase = name[:-6] lowerCAmelCase = model[F'{prefix_}mask_scores'] lowerCAmelCase = ThresholdBinarizer.apply(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = tensor * mask print(F'Pruned layer {name}' ) elif pruning_method == "l0": if "mask_scores" in name: continue lowerCAmelCase = name[:-6] lowerCAmelCase = model[F'{prefix_}mask_scores'] lowerCAmelCase ,lowerCAmelCase = -0.1, 1.1 lowerCAmelCase = torch.sigmoid(_UpperCAmelCase ) lowerCAmelCase = s * (r - l) + l lowerCAmelCase = s_bar.clamp(min=0.0 , max=1.0 ) lowerCAmelCase = tensor * mask print(F'Pruned layer {name}' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: lowerCAmelCase = os.path.join( os.path.dirname(_UpperCAmelCase ) , F'bertarized_{os.path.basename(_UpperCAmelCase )}' ) if not os.path.isdir(_UpperCAmelCase ): shutil.copytree(_UpperCAmelCase , _UpperCAmelCase ) print(F'\nCreated folder {target_model_path}' ) torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) __UpperCamelCase : List[Any] = parser.parse_args() main(args)
4
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''', # See all GLPN models at https://huggingface.co/models?filter=glpn } class a ( a__ ): snake_case__ = '''glpn''' def __init__( self , _snake_case=3 , _snake_case=4 , _snake_case=[2, 2, 2, 2] , _snake_case=[8, 4, 2, 1] , _snake_case=[32, 64, 1_60, 2_56] , _snake_case=[7, 3, 3, 3] , _snake_case=[4, 2, 2, 2] , _snake_case=[1, 2, 5, 8] , _snake_case=[4, 4, 4, 4] , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=0.1 , _snake_case=1E-6 , _snake_case=64 , _snake_case=10 , _snake_case=-1 , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = num_channels lowerCAmelCase = num_encoder_blocks lowerCAmelCase = depths lowerCAmelCase = sr_ratios lowerCAmelCase = hidden_sizes lowerCAmelCase = patch_sizes lowerCAmelCase = strides lowerCAmelCase = mlp_ratios lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = drop_path_rate lowerCAmelCase = layer_norm_eps lowerCAmelCase = decoder_hidden_size lowerCAmelCase = max_depth lowerCAmelCase = head_in_index
4
1
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class a ( a__ , a__ ): @register_to_config def __init__( self , _snake_case = 1_28 , _snake_case = 2_56 , _snake_case = 2_000.0 , _snake_case = 7_68 , _snake_case = 12 , _snake_case = 12 , _snake_case = 64 , _snake_case = 20_48 , _snake_case = 0.1 , ): """simple docstring""" super().__init__() lowerCAmelCase = nn.Sequential( nn.Linear(_snake_case , d_model * 4 , bias=_snake_case ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=_snake_case ) , nn.SiLU() , ) lowerCAmelCase = nn.Embedding(_snake_case , _snake_case ) lowerCAmelCase = False lowerCAmelCase = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) lowerCAmelCase = nn.Dropout(p=_snake_case ) lowerCAmelCase = nn.ModuleList() for lyr_num in range(_snake_case ): # FiLM conditional T5 decoder lowerCAmelCase = DecoderLayer(d_model=_snake_case , d_kv=_snake_case , num_heads=_snake_case , d_ff=_snake_case , dropout_rate=_snake_case ) self.decoders.append(_snake_case ) lowerCAmelCase = TaLayerNorm(_snake_case ) lowerCAmelCase = nn.Dropout(p=_snake_case ) lowerCAmelCase = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. lowerCAmelCase = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) lowerCAmelCase = self.conditioning_emb(_snake_case ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) lowerCAmelCase = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. lowerCAmelCase = torch.broadcast_to( torch.arange(_snake_case , device=decoder_input_tokens.device ) , (batch, seq_length) , ) lowerCAmelCase = self.position_encoding(_snake_case ) lowerCAmelCase = self.continuous_inputs_projection(_snake_case ) inputs += position_encodings lowerCAmelCase = self.dropout(_snake_case ) # decoder: No padding present. lowerCAmelCase = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. lowerCAmelCase = [(x, self.encoder_decoder_mask(_snake_case , _snake_case )) for x, y in encodings_and_masks] # cross attend style: concat encodings lowerCAmelCase = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) lowerCAmelCase = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: lowerCAmelCase = lyr( _snake_case , conditioning_emb=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , )[0] lowerCAmelCase = self.decoder_norm(_snake_case ) lowerCAmelCase = self.post_dropout(_snake_case ) lowerCAmelCase = self.spec_out(_snake_case ) return spec_out class a ( nn.Module ): def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=1E-6 ): """simple docstring""" super().__init__() lowerCAmelCase = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_snake_case , d_kv=_snake_case , num_heads=_snake_case , dropout_rate=_snake_case ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_snake_case , d_kv=_snake_case , num_heads=_snake_case , dropout_rate=_snake_case , layer_norm_epsilon=_snake_case , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_snake_case , d_ff=_snake_case , dropout_rate=_snake_case , layer_norm_epsilon=_snake_case ) ) def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , ): """simple docstring""" lowerCAmelCase = self.layer[0]( _snake_case , conditioning_emb=_snake_case , attention_mask=_snake_case , ) if encoder_hidden_states is not None: lowerCAmelCase = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) lowerCAmelCase = self.layer[1]( _snake_case , key_value_states=_snake_case , attention_mask=_snake_case , ) # Apply Film Conditional Feed Forward layer lowerCAmelCase = self.layer[-1](_snake_case , _snake_case ) return (hidden_states,) class a ( nn.Module ): def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" super().__init__() lowerCAmelCase = TaLayerNorm(_snake_case ) lowerCAmelCase = TaFiLMLayer(in_features=d_model * 4 , out_features=_snake_case ) lowerCAmelCase = Attention(query_dim=_snake_case , heads=_snake_case , dim_head=_snake_case , out_bias=_snake_case , scale_qk=_snake_case ) lowerCAmelCase = nn.Dropout(_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case=None , ): """simple docstring""" lowerCAmelCase = self.layer_norm(_snake_case ) if conditioning_emb is not None: lowerCAmelCase = self.FiLMLayer(_snake_case , _snake_case ) # Self-attention block lowerCAmelCase = self.attention(_snake_case ) lowerCAmelCase = hidden_states + self.dropout(_snake_case ) return hidden_states class a ( nn.Module ): def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" super().__init__() lowerCAmelCase = Attention(query_dim=_snake_case , heads=_snake_case , dim_head=_snake_case , out_bias=_snake_case , scale_qk=_snake_case ) lowerCAmelCase = TaLayerNorm(_snake_case , eps=_snake_case ) lowerCAmelCase = nn.Dropout(_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case=None , ): """simple docstring""" lowerCAmelCase = self.layer_norm(_snake_case ) lowerCAmelCase = self.attention( _snake_case , encoder_hidden_states=_snake_case , attention_mask=attention_mask.squeeze(1 ) , ) lowerCAmelCase = hidden_states + self.dropout(_snake_case ) return layer_output class a ( nn.Module ): def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" super().__init__() lowerCAmelCase = TaDenseGatedActDense(d_model=_snake_case , d_ff=_snake_case , dropout_rate=_snake_case ) lowerCAmelCase = TaFiLMLayer(in_features=d_model * 4 , out_features=_snake_case ) lowerCAmelCase = TaLayerNorm(_snake_case , eps=_snake_case ) lowerCAmelCase = nn.Dropout(_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" lowerCAmelCase = self.layer_norm(_snake_case ) if conditioning_emb is not None: lowerCAmelCase = self.film(_snake_case , _snake_case ) lowerCAmelCase = self.DenseReluDense(_snake_case ) lowerCAmelCase = hidden_states + self.dropout(_snake_case ) return hidden_states class a ( nn.Module ): def __init__( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" super().__init__() lowerCAmelCase = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) lowerCAmelCase = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) lowerCAmelCase = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) lowerCAmelCase = nn.Dropout(_snake_case ) lowerCAmelCase = NewGELUActivation() def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.act(self.wi_a(_snake_case ) ) lowerCAmelCase = self.wi_a(_snake_case ) lowerCAmelCase = hidden_gelu * hidden_linear lowerCAmelCase = self.dropout(_snake_case ) lowerCAmelCase = self.wo(_snake_case ) return hidden_states class a ( nn.Module ): def __init__( self , _snake_case , _snake_case=1E-6 ): """simple docstring""" super().__init__() lowerCAmelCase = nn.Parameter(torch.ones(_snake_case ) ) lowerCAmelCase = eps def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=_snake_case ) lowerCAmelCase = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: lowerCAmelCase = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class a ( nn.Module ): def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(_snake_case , 3.0 )) )) class a ( nn.Module ): def __init__( self , _snake_case , _snake_case ): """simple docstring""" super().__init__() lowerCAmelCase = nn.Linear(_snake_case , out_features * 2 , bias=_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.scale_bias(_snake_case ) lowerCAmelCase ,lowerCAmelCase = torch.chunk(_snake_case , 2 , -1 ) lowerCAmelCase = x * (1 + scale) + shift return x
4
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , _snake_case=10_00 , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = range_bbox def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase = bbox[i, j, 3] lowerCAmelCase = bbox[i, j, 1] lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase = bbox[i, j, 2] lowerCAmelCase = bbox[i, j, 0] lowerCAmelCase = t lowerCAmelCase = tf.convert_to_tensor(_snake_case ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForMaskedLM(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForSequenceClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForTokenClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = True snake_case__ = 1_0 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFLayoutLMModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def _SCREAMING_SNAKE_CASE (): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off lowerCAmelCase = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowerCAmelCase = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the sequence output on [0, :3, :3] lowerCAmelCase = tf.convert_to_tensor( [[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _snake_case , atol=1E-3 ) ) # test the pooled output on [1, :3] lowerCAmelCase = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _snake_case , atol=1E-3 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar lowerCAmelCase = outputs.loss lowerCAmelCase = (2,) self.assertEqual(loss.shape , _snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = (2, 2) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the shape of the logits lowerCAmelCase = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _snake_case ) self.assertEqual(outputs.end_logits.shape , _snake_case )
4
1
"""simple docstring""" import math def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : int ): lowerCAmelCase = len(_UpperCAmelCase ) lowerCAmelCase = int(math.floor(math.sqrt(_UpperCAmelCase ) ) ) lowerCAmelCase = 0 while arr[min(_UpperCAmelCase , _UpperCAmelCase ) - 1] < x: lowerCAmelCase = step step += int(math.floor(math.sqrt(_UpperCAmelCase ) ) ) if prev >= n: return -1 while arr[prev] < x: lowerCAmelCase = prev + 1 if prev == min(_UpperCAmelCase , _UpperCAmelCase ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": __UpperCamelCase : str = input('''Enter numbers separated by a comma:\n''').strip() __UpperCamelCase : Any = [int(item) for item in user_input.split(''',''')] __UpperCamelCase : Dict = int(input('''Enter the number to be searched:\n''')) __UpperCamelCase : List[str] = jump_search(arr, x) if res == -1: print('''Number not found!''') else: print(f'''Number {x} is at index {res}''')
4
"""simple docstring""" import argparse import os import re import packaging.version __UpperCamelCase : Union[str, Any] = '''examples/''' __UpperCamelCase : str = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __UpperCamelCase : List[str] = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } __UpperCamelCase : Optional[int] = '''README.md''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ): with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.read() lowerCAmelCase ,lowerCAmelCase = REPLACE_PATTERNS[pattern] lowerCAmelCase = replace.replace('VERSION' , _UpperCAmelCase ) lowerCAmelCase = re_pattern.sub(_UpperCAmelCase , _UpperCAmelCase ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ): for folder, directories, fnames in os.walk(_UpperCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , pattern='examples' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not patch: update_version_in_examples(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = '🤗 Transformers currently provides the following architectures' lowerCAmelCase = '1. Want to contribute a new model?' with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.readlines() # Find the start of the list. lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): lowerCAmelCase = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): with open(REPLACE_FILES['init'] , 'r' ) as f: lowerCAmelCase = f.read() lowerCAmelCase = REPLACE_PATTERNS['init'][0].search(_UpperCAmelCase ).groups()[0] return packaging.version.parse(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple=False ): lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: lowerCAmelCase = default_version.base_version elif patch: lowerCAmelCase = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: lowerCAmelCase = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. lowerCAmelCase = input(F'Which version are you releasing? [{default_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = default_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase , patch=_UpperCAmelCase ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = get_version() lowerCAmelCase = F'{current_version.major}.{current_version.minor + 1}.0.dev0' lowerCAmelCase = current_version.base_version # Check with the user we got that right. lowerCAmelCase = input(F'Which version are we developing now? [{dev_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = dev_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __UpperCamelCase : Optional[int] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
4
1
"""simple docstring""" import operator as op def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ): lowerCAmelCase = [] lowerCAmelCase = lambda _UpperCAmelCase , _UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation lowerCAmelCase = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(_UpperCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(_UpperCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(_UpperCAmelCase ) , sep=' | ' ) else: lowerCAmelCase = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(_UpperCAmelCase ) , sep=' | ' ) lowerCAmelCase = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(_UpperCAmelCase ) , sep=' | ' ) stack.append( str(opr[x](int(_UpperCAmelCase ) , int(_UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(_UpperCAmelCase ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": __UpperCamelCase : Any = input('''\n\nEnter a Postfix Equation (space separated) = ''').split(''' ''') print('''\n\tResult = ''', solve(Postfix))
4
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __UpperCamelCase : Optional[int] = pytest.mark.integration @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_snake_case ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() lowerCAmelCase = dset.map( lambda _snake_case , _snake_case : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_snake_case , keep_in_memory=_snake_case ) lowerCAmelCase = dset.add_faiss_index('vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_snake_case , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch lowerCAmelCase = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCAmelCase = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_snake_case ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertRaises(_snake_case , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCAmelCase = np.eye(5 , dtype=np.floataa )[::-1] lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) self.assertRaises(_snake_case , index.search_batch , queries[0] ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCAmelCase = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_snake_case ): lowerCAmelCase = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = faiss.IndexFlat(5 ) lowerCAmelCase = FaissIndex(custom_index=_snake_case ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: index.save(tmp_file.name ) lowerCAmelCase = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ): import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCAmelCase = 'index.faiss' lowerCAmelCase = F'mock://{index_name}' index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = Elasticsearch() lowerCAmelCase = {'acknowledged': True} lowerCAmelCase = ElasticSearchIndex(es_client=_snake_case ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case ) # batched queries with timeout lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case , request_timeout=30 ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case )
4
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) lowerCAmelCase = AutoTokenizer.from_pretrained('xlm-roberta-base' ) lowerCAmelCase = 'The dog is cute and lives in the garden house' lowerCAmelCase = jnp.array([tokenizer.encode(_snake_case )] ) lowerCAmelCase = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = jnp.array( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) lowerCAmelCase = model(_snake_case )['last_hidden_state'] self.assertEqual(output.shape , _snake_case ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , _snake_case , atol=1E-3 ) )
4
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a ( a__ , a__ , unittest.TestCase ): snake_case__ = IFInpaintingPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_dummy_components() def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
4
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''', # See all GLPN models at https://huggingface.co/models?filter=glpn } class a ( a__ ): snake_case__ = '''glpn''' def __init__( self , _snake_case=3 , _snake_case=4 , _snake_case=[2, 2, 2, 2] , _snake_case=[8, 4, 2, 1] , _snake_case=[32, 64, 1_60, 2_56] , _snake_case=[7, 3, 3, 3] , _snake_case=[4, 2, 2, 2] , _snake_case=[1, 2, 5, 8] , _snake_case=[4, 4, 4, 4] , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=0.1 , _snake_case=1E-6 , _snake_case=64 , _snake_case=10 , _snake_case=-1 , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = num_channels lowerCAmelCase = num_encoder_blocks lowerCAmelCase = depths lowerCAmelCase = sr_ratios lowerCAmelCase = hidden_sizes lowerCAmelCase = patch_sizes lowerCAmelCase = strides lowerCAmelCase = mlp_ratios lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = drop_path_rate lowerCAmelCase = layer_norm_eps lowerCAmelCase = decoder_hidden_size lowerCAmelCase = max_depth lowerCAmelCase = head_in_index
4
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = self.vocab_size - 1 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , head_mask=_snake_case ) lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTLMHeadModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTDoubleHeadsModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = OpenAIGPTForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case__ = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=False ): """simple docstring""" lowerCAmelCase = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_snake_case , ) lowerCAmelCase = inputs_dict['labels'] lowerCAmelCase = inputs_dict['labels'] lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_snake_case , ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_snake_case ) return inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenAIGPTModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , n_embd=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = OpenAIGPTModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_torch class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(_snake_case ) lowerCAmelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=_snake_case ) # the president is lowerCAmelCase = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCAmelCase = model.generate(_snake_case , do_sample=_snake_case ) self.assertListEqual(output_ids[0].tolist() , _snake_case )
4
1
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES __UpperCamelCase : Optional[Any] = '''tiny-wmt19-en-ru''' # Build # borrowed from a test __UpperCamelCase : str = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __UpperCamelCase : Dict = dict(zip(vocab, range(len(vocab)))) __UpperCamelCase : Union[str, Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase : Any = Path(tmpdirname) __UpperCamelCase : Optional[int] = build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] __UpperCamelCase : Tuple = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] __UpperCamelCase : List[Any] = build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) __UpperCamelCase : Dict = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) __UpperCamelCase : List[Any] = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) __UpperCamelCase : Optional[int] = FSMTForConditionalGeneration(config) print(f'''num of params {tiny_model.num_parameters()}''') # Test __UpperCamelCase : Union[str, Any] = tokenizer(['''Making tiny model'''], return_tensors='''pt''') __UpperCamelCase : Dict = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
4
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __UpperCamelCase : str = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=_UpperCAmelCase , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=_UpperCAmelCase , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=_UpperCAmelCase , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=_UpperCAmelCase , default='data/dump' , help='The dump file prefix.' ) lowerCAmelCase = parser.parse_args() logger.info(F'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": lowerCAmelCase = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `[CLS]` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCAmelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `<s>` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": lowerCAmelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` lowerCAmelCase = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(F'Loading text from {args.file_path}' ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: lowerCAmelCase = fp.readlines() logger.info('Start encoding' ) logger.info(F'{len(_UpperCAmelCase )} examples to process.' ) lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 1_0000 lowerCAmelCase = time.time() for text in data: lowerCAmelCase = F'{bos} {text.strip()} {sep}' lowerCAmelCase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) rslt.append(_UpperCAmelCase ) iter += 1 if iter % interval == 0: lowerCAmelCase = time.time() logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) lowerCAmelCase = time.time() logger.info('Finished binarization' ) logger.info(F'{len(_UpperCAmelCase )} examples processed.' ) lowerCAmelCase = F'{args.dump_file}.{args.tokenizer_name}.pickle' lowerCAmelCase = tokenizer.vocab_size if vocab_size < (1 << 16): lowerCAmelCase = [np.uintaa(_UpperCAmelCase ) for d in rslt] else: lowerCAmelCase = [np.intaa(_UpperCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'Dump to {dp_file}' ) with open(_UpperCAmelCase , 'wb' ) as handle: pickle.dump(rslt_ , _UpperCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
4
1
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __UpperCamelCase : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCamelCase : Tuple = ''' Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)["depth"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline("depth-estimation") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to("cuda") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> img = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/cat.png" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda") >>> prompt = "A robot, 4k photo" >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature" >>> generator = torch.Generator(device="cuda").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save("robot_cat.png") ``` ''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any=8 ): lowerCAmelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowerCAmelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class a ( a__ ): def __init__( self , _snake_case , _snake_case , _snake_case , ): """simple docstring""" super().__init__() self.register_modules( unet=_snake_case , scheduler=_snake_case , movq=_snake_case , ) lowerCAmelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" if latents is None: lowerCAmelCase = randn_tensor(_snake_case , generator=_snake_case , device=_snake_case , dtype=_snake_case ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowerCAmelCase = latents.to(_snake_case ) lowerCAmelCase = latents * scheduler.init_noise_sigma return latents def UpperCamelCase__ ( self , _snake_case=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowerCAmelCase = torch.device(F'cuda:{gpu_id}' ) lowerCAmelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_snake_case , _snake_case ) def UpperCamelCase__ ( self , _snake_case=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowerCAmelCase = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_snake_case ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCAmelCase = None for cpu_offloaded_model in [self.unet, self.movq]: lowerCAmelCase ,lowerCAmelCase = cpu_offload_with_hook(_snake_case , _snake_case , prev_module_hook=_snake_case ) # We'll offload the last model manually. lowerCAmelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__ ( self ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_snake_case , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_snake_case ) def __call__( self , _snake_case , _snake_case , _snake_case , _snake_case = 5_12 , _snake_case = 5_12 , _snake_case = 1_00 , _snake_case = 4.0 , _snake_case = 1 , _snake_case = None , _snake_case = None , _snake_case = "pil" , _snake_case = True , ): """simple docstring""" lowerCAmelCase = self._execution_device lowerCAmelCase = guidance_scale > 1.0 if isinstance(_snake_case , _snake_case ): lowerCAmelCase = torch.cat(_snake_case , dim=0 ) if isinstance(_snake_case , _snake_case ): lowerCAmelCase = torch.cat(_snake_case , dim=0 ) if isinstance(_snake_case , _snake_case ): lowerCAmelCase = torch.cat(_snake_case , dim=0 ) lowerCAmelCase = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: lowerCAmelCase = image_embeds.repeat_interleave(_snake_case , dim=0 ) lowerCAmelCase = negative_image_embeds.repeat_interleave(_snake_case , dim=0 ) lowerCAmelCase = hint.repeat_interleave(_snake_case , dim=0 ) lowerCAmelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_snake_case ) lowerCAmelCase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=_snake_case ) self.scheduler.set_timesteps(_snake_case , device=_snake_case ) lowerCAmelCase = self.scheduler.timesteps lowerCAmelCase = self.movq.config.latent_channels lowerCAmelCase ,lowerCAmelCase = downscale_height_and_width(_snake_case , _snake_case , self.movq_scale_factor ) # create initial latent lowerCAmelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _snake_case , _snake_case , _snake_case , self.scheduler , ) for i, t in enumerate(self.progress_bar(_snake_case ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase = {'image_embeds': image_embeds, 'hint': hint} lowerCAmelCase = self.unet( sample=_snake_case , timestep=_snake_case , encoder_hidden_states=_snake_case , added_cond_kwargs=_snake_case , return_dict=_snake_case , )[0] if do_classifier_free_guidance: lowerCAmelCase ,lowerCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) lowerCAmelCase ,lowerCAmelCase = noise_pred.chunk(2 ) lowerCAmelCase ,lowerCAmelCase = variance_pred.chunk(2 ) lowerCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCAmelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCAmelCase ,lowerCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase = self.scheduler.step( _snake_case , _snake_case , _snake_case , generator=_snake_case , )[0] # post-processing lowerCAmelCase = self.movq.decode(_snake_case , force_not_quantize=_snake_case )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: lowerCAmelCase = image * 0.5 + 0.5 lowerCAmelCase = image.clamp(0 , 1 ) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase = self.numpy_to_pil(_snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=_snake_case )
4
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''bert''' def __init__( self , _snake_case=3_05_22 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache lowerCAmelCase = classifier_dropout class a ( a__ ): @property def UpperCamelCase__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
4
1
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=_UpperCAmelCase , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=_UpperCAmelCase , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=_UpperCAmelCase , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=_UpperCAmelCase , default=0 , help='cuda_id.' , ) lowerCAmelCase = parser.parse_args() return args def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ): if not len(_UpperCAmelCase ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) lowerCAmelCase ,lowerCAmelCase = imgs[0].size lowerCAmelCase = Image.new('RGB' , size=(cols * w, rows * h) ) lowerCAmelCase ,lowerCAmelCase = grid.size for i, img in enumerate(_UpperCAmelCase ): grid.paste(_UpperCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]="robotic cat with wings" , _UpperCAmelCase : Optional[int]=7.5 , _UpperCAmelCase : Dict=50 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=42 , ): lowerCAmelCase = torch.Generator(pipeline.device ).manual_seed(_UpperCAmelCase ) lowerCAmelCase = pipeline( _UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , ).images lowerCAmelCase = int(math.sqrt(_UpperCAmelCase ) ) lowerCAmelCase = image_grid(_UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __UpperCamelCase : Optional[Any] = parse_args() # Load models and create wrapper for stable diffusion __UpperCamelCase : List[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') __UpperCamelCase : str = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') __UpperCamelCase : Optional[int] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') __UpperCamelCase : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') __UpperCamelCase : Tuple = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __UpperCamelCase : Union[str, Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): __UpperCamelCase : Dict = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: __UpperCamelCase : Dict = unet.to(torch.device('''cuda''', args.cuda_id)) __UpperCamelCase : Optional[Any] = pipeline.to(unet.device) __UpperCamelCase ,__UpperCamelCase : List[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) __UpperCamelCase : int = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
4
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( a__ , unittest.TestCase ): snake_case__ = DanceDiffusionPipeline snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_snake_case , use_timestep_embedding=_snake_case , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase = IPNDMScheduler() lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = DanceDiffusionPipeline(**_snake_case ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = pipe(**_snake_case ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_local() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
4
1
"""simple docstring""" __UpperCamelCase : str = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : float ): assert type(_UpperCAmelCase ) in (int, float) and decimal == int(_UpperCAmelCase ) lowerCAmelCase = int(_UpperCAmelCase ) lowerCAmelCase = '' lowerCAmelCase = False if decimal < 0: lowerCAmelCase = True decimal *= -1 while decimal > 0: lowerCAmelCase ,lowerCAmelCase = divmod(_UpperCAmelCase , 16 ) lowerCAmelCase = values[remainder] + hexadecimal lowerCAmelCase = '0x' + hexadecimal if negative: lowerCAmelCase = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
4
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , use_stable_embedding=_snake_case , ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = OpenLlamaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = OpenLlamaModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , ) lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() # first forward pass lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , use_cache=_snake_case , ) lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , past_key_values=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) snake_case__ = (OpenLlamaForCausalLM,) if is_torch_available() else () snake_case__ = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenLlamaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase = type self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'single_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'multi_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = OpenLlamaModel(_snake_case ) original_model.to(_snake_case ) original_model.eval() lowerCAmelCase = original_model(_snake_case ).last_hidden_state lowerCAmelCase = original_model(_snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = {'type': scaling_type, 'factor': 10.0} lowerCAmelCase = OpenLlamaModel(_snake_case ) scaled_model.to(_snake_case ) scaled_model.eval() lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
4
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCamelCase : List[str] = logging.get_logger(__name__) class a ( a__ ): snake_case__ = ['''pixel_values'''] def __init__( self , _snake_case = True , _snake_case = None , _snake_case = PILImageResampling.BILINEAR , _snake_case = True , _snake_case = None , _snake_case = True , _snake_case = 1 / 2_55 , _snake_case = True , _snake_case = None , _snake_case = None , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = size if size is not None else {'shortest_edge': 2_56} lowerCAmelCase = get_size_dict(_snake_case , default_to_square=_snake_case ) lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} lowerCAmelCase = get_size_dict(_snake_case ) lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = resample lowerCAmelCase = do_center_crop lowerCAmelCase = crop_size lowerCAmelCase = do_rescale lowerCAmelCase = rescale_factor lowerCAmelCase = do_normalize lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = PILImageResampling.BICUBIC , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = get_size_dict(_snake_case , default_to_square=_snake_case ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowerCAmelCase = get_resize_output_image_size(_snake_case , size=size['shortest_edge'] , default_to_square=_snake_case ) return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = get_size_dict(_snake_case ) return center_crop(_snake_case , size=(size['height'], size['width']) , data_format=_snake_case , **_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case ): """simple docstring""" return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case = None , **_snake_case , ): """simple docstring""" return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = ChannelDimension.FIRST , **_snake_case , ): """simple docstring""" lowerCAmelCase = do_resize if do_resize is not None else self.do_resize lowerCAmelCase = size if size is not None else self.size lowerCAmelCase = get_size_dict(_snake_case , default_to_square=_snake_case ) lowerCAmelCase = resample if resample is not None else self.resample lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase = crop_size if crop_size is not None else self.crop_size lowerCAmelCase = get_size_dict(_snake_case ) lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase = image_mean if image_mean is not None else self.image_mean lowerCAmelCase = image_std if image_std is not None else self.image_std lowerCAmelCase = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCAmelCase = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowerCAmelCase = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) for image in images] if do_center_crop: lowerCAmelCase = [self.center_crop(image=_snake_case , size=_snake_case ) for image in images] if do_rescale: lowerCAmelCase = [self.rescale(image=_snake_case , scale=_snake_case ) for image in images] if do_normalize: lowerCAmelCase = [self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case ) for image in images] lowerCAmelCase = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=_snake_case , tensor_type=_snake_case )
4
"""simple docstring""" from typing import Any class a : def __init__( self , _snake_case ): """simple docstring""" lowerCAmelCase = data lowerCAmelCase = None def __repr__( self ): """simple docstring""" return F'Node({self.data})' class a : def __init__( self ): """simple docstring""" lowerCAmelCase = None def __iter__( self ): """simple docstring""" lowerCAmelCase = self.head while node: yield node.data lowerCAmelCase = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(_snake_case ) for item in self] ) def __getitem__( self , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase = self.head for _ in range(_snake_case ): lowerCAmelCase = current.next lowerCAmelCase = data def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(len(self ) , _snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(0 , _snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase = Node(_snake_case ) if self.head is None: lowerCAmelCase = new_node elif index == 0: lowerCAmelCase = self.head # link new_node to head lowerCAmelCase = new_node else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = new_node def UpperCamelCase__ ( self ): # print every node data """simple docstring""" print(self ) def UpperCamelCase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def UpperCamelCase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def UpperCamelCase__ ( self , _snake_case = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase = self.head # default first node if index == 0: lowerCAmelCase = self.head.next else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = temp.next.next return delete_node.data def UpperCamelCase__ ( self ): """simple docstring""" return self.head is None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = None lowerCAmelCase = self.head while current: # Store the current node's next node. lowerCAmelCase = current.next # Make the current node's next point backwards lowerCAmelCase = prev # Make the previous node be the current node lowerCAmelCase = current # Make the current node the next node (to progress iteration) lowerCAmelCase = next_node # Return prev in order to put the head at the end lowerCAmelCase = prev def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = LinkedList() assert linked_list.is_empty() is True assert str(_UpperCAmelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_UpperCAmelCase ) == i linked_list.insert_nth(_UpperCAmelCase , i + 1 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_UpperCAmelCase ) == 9 assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(-8 , 1 ) ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = [ -9, 100, Node(7734_5112 ), 'dlrow olleH', 7, 5555, 0, -192.5_5555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase = LinkedList() for i in test_input: linked_list.insert_tail(_UpperCAmelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase = linked_list.delete_head() assert result == -9 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_UpperCAmelCase ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_UpperCAmelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _SCREAMING_SNAKE_CASE (): from doctest import testmod testmod() lowerCAmelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_UpperCAmelCase ) print('\nReading/changing Node data using indexing:' ) print(F'Element at Position 1: {linked_list[1]}' ) lowerCAmelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_UpperCAmelCase ) print(F'length of linked_list is : {len(_UpperCAmelCase )}' ) if __name__ == "__main__": main()
4
1
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ): if len(_UpperCAmelCase ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) lowerCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
4
"""simple docstring""" from __future__ import annotations import requests def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(_UpperCAmelCase ).json() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' lowerCAmelCase = requests.get(_UpperCAmelCase ).json()[:max_stories] return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = hackernews_top_stories(_UpperCAmelCase ) return "\n".join('* [{title}]({url})'.format(**_UpperCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
1
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _SCREAMING_SNAKE_CASE (): import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join lowerCAmelCase = '__test_patch_submodule_mock__' with patch_submodule(_test_patching , 'os.path.join' , _UpperCAmelCase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _SCREAMING_SNAKE_CASE (): assert _test_patching.open is open lowerCAmelCase = '__test_patch_submodule_builtin_mock__' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , 'open' , _UpperCAmelCase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _SCREAMING_SNAKE_CASE (): # pandas.read_csv is not present in _test_patching lowerCAmelCase = '__test_patch_submodule_missing_mock__' with patch_submodule(_test_patching , 'pandas.read_csv' , _UpperCAmelCase ): pass def _SCREAMING_SNAKE_CASE (): # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point lowerCAmelCase = '__test_patch_submodule_missing_builtin_mock__' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , 'len' , _UpperCAmelCase ) is None with patch_submodule(_test_patching , 'len' , _UpperCAmelCase ): assert _test_patching.len is mock assert _test_patching.len is len def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = '__test_patch_submodule_start_and_stop_mock__' lowerCAmelCase = patch_submodule(_test_patching , 'open' , _UpperCAmelCase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _SCREAMING_SNAKE_CASE (): from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join lowerCAmelCase = '__test_patch_submodule_successive_join__' lowerCAmelCase = '__test_patch_submodule_successive_dirname__' lowerCAmelCase = '__test_patch_submodule_successive_rename__' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , 'os.path.join' , _UpperCAmelCase ): with patch_submodule(_test_patching , 'os.rename' , _UpperCAmelCase ): with patch_submodule(_test_patching , 'os.path.dirname' , _UpperCAmelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , 'os.rename' , _UpperCAmelCase ): with patch_submodule(_test_patching , 'os.path.join' , _UpperCAmelCase ): with patch_submodule(_test_patching , 'os.path.dirname' , _UpperCAmelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = '__test_patch_submodule_doesnt_exist_mock__' with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , _UpperCAmelCase ): pass with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , _UpperCAmelCase ): pass
4
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ): lowerCAmelCase = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 48 lowerCAmelCase = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 60 lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCAmelCase = 1 lowerCAmelCase = 1 lowerCAmelCase = 126 lowerCAmelCase = 7 lowerCAmelCase = 255.0 lowerCAmelCase = '' return config def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): if "patch_embed.proj" in name and "layers" not in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCAmelCase = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: lowerCAmelCase = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: lowerCAmelCase = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: lowerCAmelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCAmelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCAmelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCAmelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: lowerCAmelCase = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: lowerCAmelCase = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: lowerCAmelCase = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: lowerCAmelCase = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": lowerCAmelCase = 'layernorm.weight' if name == "norm.bias": lowerCAmelCase = 'layernorm.bias' if "conv_first" in name: lowerCAmelCase = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCAmelCase = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCAmelCase = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: lowerCAmelCase = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: lowerCAmelCase = name.replace('upsample.2' , 'upsample.convolution_1' ) lowerCAmelCase = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": lowerCAmelCase = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) lowerCAmelCase = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: lowerCAmelCase = 'swin2sr.' + name return name def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict ): for key in orig_state_dict.copy().keys(): lowerCAmelCase = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: lowerCAmelCase = key.split('.' ) lowerCAmelCase = int(key_split[1] ) lowerCAmelCase = int(key_split[4] ) lowerCAmelCase = config.embed_dim if "weight" in key: lowerCAmelCase = val[:dim, :] lowerCAmelCase = val[dim : dim * 2, :] lowerCAmelCase = val[-dim:, :] else: lowerCAmelCase = val[:dim] lowerCAmelCase = val[dim : dim * 2] lowerCAmelCase = val[-dim:] pass else: lowerCAmelCase = val return orig_state_dict def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ): lowerCAmelCase = get_config(_UpperCAmelCase ) lowerCAmelCase = SwinaSRForImageSuperResolution(_UpperCAmelCase ) model.eval() lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' ) lowerCAmelCase = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_UpperCAmelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowerCAmelCase = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) lowerCAmelCase = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCAmelCase = 126 if 'Jpeg' in checkpoint_url else 256 lowerCAmelCase = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowerCAmelCase = transforms(_UpperCAmelCase ).unsqueeze(0 ) if config.num_channels == 1: lowerCAmelCase = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCAmelCase = model(_UpperCAmelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-3 ) print('Looks ok!' ) lowerCAmelCase = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } lowerCAmelCase = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') __UpperCamelCase : Optional[int] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
1
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class a ( a__ ): snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
4
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''megatron-bert''' def __init__( self , _snake_case=2_90_56 , _snake_case=10_24 , _snake_case=24 , _snake_case=16 , _snake_case=40_96 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache
4
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) lowerCAmelCase = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowerCAmelCase = model(_snake_case )['last_hidden_state'] lowerCAmelCase = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , _snake_case ) # compare the actual values for a slice. lowerCAmelCase = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
4
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
4
1
"""simple docstring""" class a : def __init__( self , _snake_case ): """simple docstring""" lowerCAmelCase = val lowerCAmelCase = None lowerCAmelCase = None def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if self.val: if val < self.val: if self.left is None: lowerCAmelCase = Node(_snake_case ) else: self.left.insert(_snake_case ) elif val > self.val: if self.right is None: lowerCAmelCase = Node(_snake_case ) else: self.right.insert(_snake_case ) else: lowerCAmelCase = val def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : str ): # Recursive traversal if root: inorder(root.left , _UpperCAmelCase ) res.append(root.val ) inorder(root.right , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): # Build BST if len(_UpperCAmelCase ) == 0: return arr lowerCAmelCase = Node(arr[0] ) for i in range(1 , len(_UpperCAmelCase ) ): root.insert(arr[i] ) # Traverse BST in order. lowerCAmelCase = [] inorder(_UpperCAmelCase , _UpperCAmelCase ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
4
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class a ( a__ ): snake_case__ = 42 class a ( a__ , a__ ): @register_to_config def __init__( self , _snake_case = 3 , _snake_case = 3 , _snake_case = ("DownEncoderBlock2D",) , _snake_case = ("UpDecoderBlock2D",) , _snake_case = (64,) , _snake_case = 1 , _snake_case = "silu" , _snake_case = 3 , _snake_case = 32 , _snake_case = 2_56 , _snake_case = 32 , _snake_case = None , _snake_case = 0.18_215 , _snake_case = "group" , ): """simple docstring""" super().__init__() # pass init params to Encoder lowerCAmelCase = Encoder( in_channels=_snake_case , out_channels=_snake_case , down_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , double_z=_snake_case , ) lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 ) lowerCAmelCase = VectorQuantizer(_snake_case , _snake_case , beta=0.25 , remap=_snake_case , sane_index_shape=_snake_case ) lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 ) # pass init params to Decoder lowerCAmelCase = Decoder( in_channels=_snake_case , out_channels=_snake_case , up_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , norm_type=_snake_case , ) @apply_forward_hook def UpperCamelCase__ ( self , _snake_case , _snake_case = True ): """simple docstring""" lowerCAmelCase = self.encoder(_snake_case ) lowerCAmelCase = self.quant_conv(_snake_case ) if not return_dict: return (h,) return VQEncoderOutput(latents=_snake_case ) @apply_forward_hook def UpperCamelCase__ ( self , _snake_case , _snake_case = False , _snake_case = True ): """simple docstring""" if not force_not_quantize: lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = self.quantize(_snake_case ) else: lowerCAmelCase = h lowerCAmelCase = self.post_quant_conv(_snake_case ) lowerCAmelCase = self.decoder(_snake_case , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case = True ): """simple docstring""" lowerCAmelCase = sample lowerCAmelCase = self.encode(_snake_case ).latents lowerCAmelCase = self.decode(_snake_case ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_snake_case )
4
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : List[str] = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __UpperCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping __UpperCamelCase : Optional[Any] = tuple[int, int] class a : def __init__( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = vertices lowerCAmelCase = { (min(_snake_case ), max(_snake_case )): weight for edge, weight in edges.items() } def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase = weight def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Graph({min(self.vertices )} , {} ) lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase = edge lowerCAmelCase = weight subgraph.add_edge(_snake_case , _snake_case ) return subgraph def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "p107_network.txt" ): lowerCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) ) lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = {} lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 with open(_UpperCAmelCase ) as f: lowerCAmelCase = f.read().strip().split('\n' ) lowerCAmelCase = [line.split(',' ) for line in data] for edgea in range(1 , len(_UpperCAmelCase ) ): for edgea in range(_UpperCAmelCase ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase = Graph(set(range(len(_UpperCAmelCase ) ) ) , _UpperCAmelCase ) lowerCAmelCase = graph.prims_algorithm() lowerCAmelCase = sum(graph.edges.values() ) lowerCAmelCase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
4
1
"""simple docstring""" import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class a ( unittest.TestCase ): def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=4 , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_attention_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_choices def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_attention_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = config_and_inputs lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class a ( a__ , unittest.TestCase ): snake_case__ = True snake_case__ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = FlaxBertModelTester(self ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = FlaxBertModel.from_pretrained('bert-base-cased' ) lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_snake_case )
4
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCAmelCase )] ) lowerCAmelCase = np.array(_UpperCAmelCase ) lowerCAmelCase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCAmelCase ) ) , x.transpose() ) , _UpperCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = (1, 2, 1) lowerCAmelCase = (1, 1, 0, 7) lowerCAmelCase = SARIMAX( _UpperCAmelCase , exog=_UpperCAmelCase , order=_UpperCAmelCase , seasonal_order=_UpperCAmelCase ) lowerCAmelCase = model.fit(disp=_UpperCAmelCase , maxiter=600 , method='nm' ) lowerCAmelCase = model_fit.predict(1 , len(_UpperCAmelCase ) , exog=[test_match] ) return result[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = regressor.predict(_UpperCAmelCase ) return y_pred[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ): train_user.sort() lowerCAmelCase = np.percentile(_UpperCAmelCase , 25 ) lowerCAmelCase = np.percentile(_UpperCAmelCase , 75 ) lowerCAmelCase = qa - qa lowerCAmelCase = qa - (iqr * 0.1) return low_lim def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : float ): lowerCAmelCase = 0 lowerCAmelCase = 0 for i in list_vote: if i > actual_result: lowerCAmelCase = not_safe + 1 else: if abs(abs(_UpperCAmelCase ) - abs(_UpperCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __UpperCamelCase : Optional[Any] = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] __UpperCamelCase : Any = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) __UpperCamelCase : Dict = Normalizer().fit_transform(data_input_df.values) # split data __UpperCamelCase : Dict = normalize_df[:, 2].tolist() __UpperCamelCase : Union[str, Any] = normalize_df[:, 0].tolist() __UpperCamelCase : List[str] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __UpperCamelCase : Optional[int] = normalize_df[:, [1, 2]].tolist() __UpperCamelCase : Tuple = x[: len(x) - 1] __UpperCamelCase : Any = x[len(x) - 1 :] # for linear regression & sarimax __UpperCamelCase : str = total_date[: len(total_date) - 1] __UpperCamelCase : Union[str, Any] = total_user[: len(total_user) - 1] __UpperCamelCase : List[Any] = total_match[: len(total_match) - 1] __UpperCamelCase : Optional[Any] = total_date[len(total_date) - 1 :] __UpperCamelCase : str = total_user[len(total_user) - 1 :] __UpperCamelCase : str = total_match[len(total_match) - 1 :] # voting system with forecasting __UpperCamelCase : Any = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __UpperCamelCase : List[str] = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('''Today\'s data is {not_str}safe.''')
4
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE (): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] __UpperCamelCase : Union[str, Any] = generate_large_matrix() __UpperCamelCase : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[int]] ): assert all(row == sorted(_UpperCAmelCase , reverse=_UpperCAmelCase ) for row in grid ) assert all(list(_UpperCAmelCase ) == sorted(_UpperCAmelCase , reverse=_UpperCAmelCase ) for col in zip(*_UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[int] ): lowerCAmelCase = 0 lowerCAmelCase = len(_UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCAmelCase = (left + right) // 2 lowerCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCAmelCase = mid + 1 else: lowerCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[int]] ): lowerCAmelCase = 0 lowerCAmelCase = len(grid[0] ) for i in range(len(_UpperCAmelCase ) ): lowerCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(_UpperCAmelCase ) * len(grid[0] )) - total def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[int]] ): lowerCAmelCase = 0 for row in grid: for i, number in enumerate(_UpperCAmelCase ): if number < 0: total += len(_UpperCAmelCase ) - i break return total def _SCREAMING_SNAKE_CASE (): from timeit import timeit print('Running benchmarks' ) lowerCAmelCase = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCAmelCase = timeit(F'{func}(grid=grid)' , setup=_UpperCAmelCase , number=500 ) print(F'{func}() took {time:0.4f} seconds' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
4
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=_UpperCAmelCase , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=_UpperCAmelCase , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=_UpperCAmelCase , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=_UpperCAmelCase , default=0 , help='cuda_id.' , ) lowerCAmelCase = parser.parse_args() return args def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ): if not len(_UpperCAmelCase ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) lowerCAmelCase ,lowerCAmelCase = imgs[0].size lowerCAmelCase = Image.new('RGB' , size=(cols * w, rows * h) ) lowerCAmelCase ,lowerCAmelCase = grid.size for i, img in enumerate(_UpperCAmelCase ): grid.paste(_UpperCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]="robotic cat with wings" , _UpperCAmelCase : Optional[int]=7.5 , _UpperCAmelCase : Dict=50 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=42 , ): lowerCAmelCase = torch.Generator(pipeline.device ).manual_seed(_UpperCAmelCase ) lowerCAmelCase = pipeline( _UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , ).images lowerCAmelCase = int(math.sqrt(_UpperCAmelCase ) ) lowerCAmelCase = image_grid(_UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __UpperCamelCase : Optional[Any] = parse_args() # Load models and create wrapper for stable diffusion __UpperCamelCase : List[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') __UpperCamelCase : str = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') __UpperCamelCase : Optional[int] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') __UpperCamelCase : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') __UpperCamelCase : Tuple = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __UpperCamelCase : Union[str, Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): __UpperCamelCase : Dict = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: __UpperCamelCase : Dict = unet.to(torch.device('''cuda''', args.cuda_id)) __UpperCamelCase : Optional[Any] = pipeline.to(unet.device) __UpperCamelCase ,__UpperCamelCase : List[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) __UpperCamelCase : int = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
4
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCamelCase : Optional[Any] = { '''configuration_transfo_xl''': ['''TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TransfoXLConfig'''], '''tokenization_transfo_xl''': ['''TransfoXLCorpus''', '''TransfoXLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = [ '''TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AdaptiveEmbedding''', '''TransfoXLForSequenceClassification''', '''TransfoXLLMHeadModel''', '''TransfoXLModel''', '''TransfoXLPreTrainedModel''', '''load_tf_weights_in_transfo_xl''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ '''TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAdaptiveEmbedding''', '''TFTransfoXLForSequenceClassification''', '''TFTransfoXLLMHeadModel''', '''TFTransfoXLMainLayer''', '''TFTransfoXLModel''', '''TFTransfoXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : List[int] ): lowerCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ), F'{len(_UpperCAmelCase )} != {len(_UpperCAmelCase )}' dest_layers.load_state_dict(layers_to_copy.state_dict() ) __UpperCamelCase : Optional[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } __UpperCamelCase : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ): try: lowerCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first' F' {n_student}' ) return list(range(_UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ): if n_student > n_teacher: raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' ) elif n_teacher == n_student: return list(range(_UpperCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, PreTrainedModel] , _UpperCAmelCase : Union[str, Path] = "student" , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ): lowerCAmelCase = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(_UpperCAmelCase , _UpperCAmelCase ): AutoTokenizer.from_pretrained(_UpperCAmelCase ).save_pretrained(_UpperCAmelCase ) # purely for convenience lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).eval() else: assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), F'teacher must be a model or string got type {type(_UpperCAmelCase )}' lowerCAmelCase = teacher.config.to_diff_dict() try: lowerCAmelCase ,lowerCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: lowerCAmelCase = teacher_e if d is None: lowerCAmelCase = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): lowerCAmelCase ,lowerCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: lowerCAmelCase ,lowerCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: lowerCAmelCase = teacher_e if d is None: lowerCAmelCase = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(_UpperCAmelCase ) # Copy weights lowerCAmelCase = teacher.config_class(**_UpperCAmelCase ) lowerCAmelCase = AutoModelForSeqaSeqLM.from_config(_UpperCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. lowerCAmelCase = student.load_state_dict(teacher.state_dict() , strict=_UpperCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save lowerCAmelCase ,lowerCAmelCase = list(range(_UpperCAmelCase ) ), list(range(_UpperCAmelCase ) ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to' F' {save_path}' ) student.save_pretrained(_UpperCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase ) if d_layers_to_copy is None: lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase ) try: if hasattr( _UpperCAmelCase , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _UpperCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _UpperCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _UpperCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _UpperCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , _UpperCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , _UpperCAmelCase ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' ) lowerCAmelCase = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(_UpperCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
4
1
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) __UpperCamelCase : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=a__ ) class a : snake_case__ = 42 snake_case__ = 42 snake_case__ = None snake_case__ = None snake_case__ = None @dataclass(frozen=a__ ) class a : snake_case__ = 42 snake_case__ = None snake_case__ = None snake_case__ = None snake_case__ = None if is_torch_available(): import torch from torch.utils.data import Dataset class a ( a__ ): snake_case__ = 42 def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case = None , _snake_case=False , _snake_case = False , ): """simple docstring""" lowerCAmelCase = hans_processors[task]() lowerCAmelCase = os.path.join( _snake_case , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(_snake_case ) , _snake_case , ) , ) lowerCAmelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCAmelCase ,lowerCAmelCase = label_list[2], label_list[1] lowerCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase = cached_features_file + '.lock' with FileLock(_snake_case ): if os.path.exists(_snake_case ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) lowerCAmelCase = torch.load(_snake_case ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) lowerCAmelCase = ( processor.get_dev_examples(_snake_case ) if evaluate else processor.get_train_examples(_snake_case ) ) logger.info('Training examples: %s' , len(_snake_case ) ) lowerCAmelCase = hans_convert_examples_to_features(_snake_case , _snake_case , _snake_case , _snake_case ) logger.info('Saving features into cached file %s' , _snake_case ) torch.save(self.features , _snake_case ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _snake_case ): """simple docstring""" return self.features[i] def UpperCamelCase__ ( self ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class a : snake_case__ = 42 def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case = 1_28 , _snake_case=False , _snake_case = False , ): """simple docstring""" lowerCAmelCase = hans_processors[task]() lowerCAmelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCAmelCase ,lowerCAmelCase = label_list[2], label_list[1] lowerCAmelCase = label_list lowerCAmelCase = processor.get_dev_examples(_snake_case ) if evaluate else processor.get_train_examples(_snake_case ) lowerCAmelCase = hans_convert_examples_to_features(_snake_case , _snake_case , _snake_case , _snake_case ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d of %d' % (ex_index, len(_snake_case )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowerCAmelCase = tf.data.Dataset.from_generator( _snake_case , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCamelCase__ ( self ): """simple docstring""" return self.dataset def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _snake_case ): """simple docstring""" return self.features[i] def UpperCamelCase__ ( self ): """simple docstring""" return self.label_list class a ( a__ ): def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_snake_case , 'heuristics_train_set.txt' ) ) , 'train' ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_snake_case , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def UpperCamelCase__ ( self ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = [] for i, line in enumerate(_snake_case ): if i == 0: continue lowerCAmelCase = '%s-%s' % (set_type, line[0]) lowerCAmelCase = line[5] lowerCAmelCase = line[6] lowerCAmelCase = line[7][2:] if line[7].startswith('ex' ) else line[7] lowerCAmelCase = line[0] examples.append(InputExample(guid=_snake_case , text_a=_snake_case , text_b=_snake_case , label=_snake_case , pairID=_snake_case ) ) return examples def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[InputExample] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : PreTrainedTokenizer , ): lowerCAmelCase = {label: i for i, label in enumerate(_UpperCAmelCase )} lowerCAmelCase = [] for ex_index, example in tqdm.tqdm(enumerate(_UpperCAmelCase ) , desc='convert examples to features' ): if ex_index % 1_0000 == 0: logger.info('Writing example %d' % (ex_index) ) lowerCAmelCase = tokenizer( example.text_a , example.text_b , add_special_tokens=_UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , truncation=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , ) lowerCAmelCase = label_map[example.label] if example.label in label_map else 0 lowerCAmelCase = int(example.pairID ) features.append(InputFeatures(**_UpperCAmelCase , label=_UpperCAmelCase , pairID=_UpperCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F'guid: {example}' ) logger.info(F'features: {features[i]}' ) return features __UpperCamelCase : Optional[Any] = { '''hans''': 3, } __UpperCamelCase : int = { '''hans''': HansProcessor, }
4
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Dict = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCamelCase : List[Any] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ): lowerCAmelCase = 0.00 lowerCAmelCase = 0 for resistor in resistors: if resistor <= 0: lowerCAmelCase = F'Resistor at index {index} has a negative or zero value!' raise ValueError(_UpperCAmelCase ) first_sum += 1 / float(_UpperCAmelCase ) index += 1 return 1 / first_sum def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ): lowerCAmelCase = 0.00 lowerCAmelCase = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowerCAmelCase = F'Resistor at index {index} has a negative value!' raise ValueError(_UpperCAmelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
4
1
"""simple docstring""" class a : # Public class to implement a graph def __init__( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = row lowerCAmelCase = col lowerCAmelCase = graph def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowerCAmelCase = [-1, 0, 1, -1, 1, -1, 0, 1] lowerCAmelCase = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _snake_case ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _snake_case ) def UpperCamelCase__ ( self ): # And finally, count all islands. """simple docstring""" lowerCAmelCase = [[False for j in range(self.COL )] for i in range(self.ROW )] lowerCAmelCase = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_snake_case , _snake_case , _snake_case ) count += 1 return count
4
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''', # See all GLPN models at https://huggingface.co/models?filter=glpn } class a ( a__ ): snake_case__ = '''glpn''' def __init__( self , _snake_case=3 , _snake_case=4 , _snake_case=[2, 2, 2, 2] , _snake_case=[8, 4, 2, 1] , _snake_case=[32, 64, 1_60, 2_56] , _snake_case=[7, 3, 3, 3] , _snake_case=[4, 2, 2, 2] , _snake_case=[1, 2, 5, 8] , _snake_case=[4, 4, 4, 4] , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=0.1 , _snake_case=1E-6 , _snake_case=64 , _snake_case=10 , _snake_case=-1 , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = num_channels lowerCAmelCase = num_encoder_blocks lowerCAmelCase = depths lowerCAmelCase = sr_ratios lowerCAmelCase = hidden_sizes lowerCAmelCase = patch_sizes lowerCAmelCase = strides lowerCAmelCase = mlp_ratios lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = drop_path_rate lowerCAmelCase = layer_norm_eps lowerCAmelCase = decoder_hidden_size lowerCAmelCase = max_depth lowerCAmelCase = head_in_index
4
1
"""simple docstring""" import numpy as np def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : np.ndarray , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float = 1e-12 , _UpperCAmelCase : int = 100 , ): assert np.shape(_UpperCAmelCase )[0] == np.shape(_UpperCAmelCase )[1] # Ensure proper dimensionality. assert np.shape(_UpperCAmelCase )[0] == np.shape(_UpperCAmelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(_UpperCAmelCase ) == np.iscomplexobj(_UpperCAmelCase ) lowerCAmelCase = np.iscomplexobj(_UpperCAmelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(_UpperCAmelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. lowerCAmelCase = False lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 1e12 while not convergence: # Multiple matrix by the vector. lowerCAmelCase = np.dot(_UpperCAmelCase , _UpperCAmelCase ) # Normalize the resulting output vector. lowerCAmelCase = w / np.linalg.norm(_UpperCAmelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) lowerCAmelCase = vector.conj().T if is_complex else vector.T lowerCAmelCase = np.dot(_UpperCAmelCase , np.dot(_UpperCAmelCase , _UpperCAmelCase ) ) # Check convergence. lowerCAmelCase = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: lowerCAmelCase = True lowerCAmelCase = lambda_ if is_complex: lowerCAmelCase = np.real(lambda_ ) return lambda_, vector def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) lowerCAmelCase = np.array([41, 4, 20] ) lowerCAmelCase = real_input_matrix.astype(np.complexaaa ) lowerCAmelCase = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T lowerCAmelCase = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": lowerCAmelCase = real_input_matrix lowerCAmelCase = real_vector elif problem_type == "complex": lowerCAmelCase = complex_input_matrix lowerCAmelCase = complex_vector # Our implementation. lowerCAmelCase ,lowerCAmelCase = power_iteration(_UpperCAmelCase , _UpperCAmelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). lowerCAmelCase ,lowerCAmelCase = np.linalg.eigh(_UpperCAmelCase ) # Last eigenvalue is the maximum one. lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(_UpperCAmelCase ) - np.abs(_UpperCAmelCase ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
4
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , _snake_case=10_00 , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = range_bbox def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase = bbox[i, j, 3] lowerCAmelCase = bbox[i, j, 1] lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase = bbox[i, j, 2] lowerCAmelCase = bbox[i, j, 0] lowerCAmelCase = t lowerCAmelCase = tf.convert_to_tensor(_snake_case ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForMaskedLM(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForSequenceClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForTokenClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = True snake_case__ = 1_0 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFLayoutLMModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def _SCREAMING_SNAKE_CASE (): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off lowerCAmelCase = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowerCAmelCase = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the sequence output on [0, :3, :3] lowerCAmelCase = tf.convert_to_tensor( [[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _snake_case , atol=1E-3 ) ) # test the pooled output on [1, :3] lowerCAmelCase = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _snake_case , atol=1E-3 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar lowerCAmelCase = outputs.loss lowerCAmelCase = (2,) self.assertEqual(loss.shape , _snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = (2, 2) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the shape of the logits lowerCAmelCase = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _snake_case ) self.assertEqual(outputs.end_logits.shape , _snake_case )
4
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : float , _UpperCAmelCase : float ): if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(_UpperCAmelCase ) * abs(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
4
"""simple docstring""" import argparse import os import re import packaging.version __UpperCamelCase : Union[str, Any] = '''examples/''' __UpperCamelCase : str = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __UpperCamelCase : List[str] = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } __UpperCamelCase : Optional[int] = '''README.md''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ): with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.read() lowerCAmelCase ,lowerCAmelCase = REPLACE_PATTERNS[pattern] lowerCAmelCase = replace.replace('VERSION' , _UpperCAmelCase ) lowerCAmelCase = re_pattern.sub(_UpperCAmelCase , _UpperCAmelCase ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ): for folder, directories, fnames in os.walk(_UpperCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , pattern='examples' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not patch: update_version_in_examples(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = '🤗 Transformers currently provides the following architectures' lowerCAmelCase = '1. Want to contribute a new model?' with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.readlines() # Find the start of the list. lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): lowerCAmelCase = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): with open(REPLACE_FILES['init'] , 'r' ) as f: lowerCAmelCase = f.read() lowerCAmelCase = REPLACE_PATTERNS['init'][0].search(_UpperCAmelCase ).groups()[0] return packaging.version.parse(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple=False ): lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: lowerCAmelCase = default_version.base_version elif patch: lowerCAmelCase = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: lowerCAmelCase = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. lowerCAmelCase = input(F'Which version are you releasing? [{default_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = default_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase , patch=_UpperCAmelCase ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = get_version() lowerCAmelCase = F'{current_version.major}.{current_version.minor + 1}.0.dev0' lowerCAmelCase = current_version.base_version # Check with the user we got that right. lowerCAmelCase = input(F'Which version are we developing now? [{dev_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = dev_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __UpperCamelCase : Optional[int] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
4
1
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __UpperCamelCase : int = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] ): inspect_dataset(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = path + '.py' assert script_name in os.listdir(_UpperCAmelCase ) assert "__pycache__" not in os.listdir(_UpperCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : int ): inspect_metric(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = path + '.py' assert script_name in os.listdir(_UpperCAmelCase ) assert "__pycache__" not in os.listdir(_UpperCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] ): lowerCAmelCase = get_dataset_config_info(_UpperCAmelCase , config_name=_UpperCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] ): with pytest.raises(_UpperCAmelCase ): get_dataset_config_info(_UpperCAmelCase , config_name=_UpperCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] ): lowerCAmelCase = get_dataset_config_names(_UpperCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ): lowerCAmelCase = get_dataset_infos(_UpperCAmelCase ) assert list(infos.keys() ) == expected_configs lowerCAmelCase = expected_configs[0] assert expected_config in infos lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ): lowerCAmelCase = get_dataset_infos(_UpperCAmelCase ) assert expected_config in infos lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): with pytest.raises(_UpperCAmelCase ): get_dataset_split_names(_UpperCAmelCase , config_name=_UpperCAmelCase )
4
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __UpperCamelCase : Optional[int] = pytest.mark.integration @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_snake_case ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() lowerCAmelCase = dset.map( lambda _snake_case , _snake_case : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_snake_case , keep_in_memory=_snake_case ) lowerCAmelCase = dset.add_faiss_index('vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_snake_case , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch lowerCAmelCase = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCAmelCase = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_snake_case ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertRaises(_snake_case , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCAmelCase = np.eye(5 , dtype=np.floataa )[::-1] lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) self.assertRaises(_snake_case , index.search_batch , queries[0] ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCAmelCase = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_snake_case ): lowerCAmelCase = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = faiss.IndexFlat(5 ) lowerCAmelCase = FaissIndex(custom_index=_snake_case ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: index.save(tmp_file.name ) lowerCAmelCase = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ): import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCAmelCase = 'index.faiss' lowerCAmelCase = F'mock://{index_name}' index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = Elasticsearch() lowerCAmelCase = {'acknowledged': True} lowerCAmelCase = ElasticSearchIndex(es_client=_snake_case ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case ) # batched queries with timeout lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case , request_timeout=30 ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case )
4
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCamelCase : List[Any] = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['''EncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''TFEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''FlaxEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys __UpperCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a ( a__ , a__ , unittest.TestCase ): snake_case__ = IFInpaintingPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_dummy_components() def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
4
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : List[str] = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class a ( a__ ): snake_case__ = '''luke''' def __init__( self , _snake_case=5_02_67 , _snake_case=50_00_00 , _snake_case=7_68 , _snake_case=2_56 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=True , _snake_case=None , _snake_case=1 , _snake_case=0 , _snake_case=2 , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = entity_vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = entity_emb_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = use_entity_aware_attention lowerCAmelCase = classifier_dropout
4
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = self.vocab_size - 1 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , head_mask=_snake_case ) lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTLMHeadModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTDoubleHeadsModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = OpenAIGPTForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case__ = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=False ): """simple docstring""" lowerCAmelCase = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_snake_case , ) lowerCAmelCase = inputs_dict['labels'] lowerCAmelCase = inputs_dict['labels'] lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_snake_case , ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_snake_case ) return inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenAIGPTModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , n_embd=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = OpenAIGPTModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_torch class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(_snake_case ) lowerCAmelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=_snake_case ) # the president is lowerCAmelCase = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCAmelCase = model.generate(_snake_case , do_sample=_snake_case ) self.assertListEqual(output_ids[0].tolist() , _snake_case )
4
1
"""simple docstring""" from collections.abc import Sequence def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Sequence[float] , _UpperCAmelCase : float ): return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Sequence[float] , _UpperCAmelCase : float ): lowerCAmelCase = 0.0 for coeff in reversed(_UpperCAmelCase ): lowerCAmelCase = result * x + coeff return result if __name__ == "__main__": __UpperCamelCase : List[str] = (0.0, 0.0, 5.0, 9.3, 7.0) __UpperCamelCase : int = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
4
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __UpperCamelCase : str = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=_UpperCAmelCase , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=_UpperCAmelCase , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=_UpperCAmelCase , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=_UpperCAmelCase , default='data/dump' , help='The dump file prefix.' ) lowerCAmelCase = parser.parse_args() logger.info(F'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": lowerCAmelCase = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `[CLS]` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCAmelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `<s>` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": lowerCAmelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` lowerCAmelCase = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(F'Loading text from {args.file_path}' ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: lowerCAmelCase = fp.readlines() logger.info('Start encoding' ) logger.info(F'{len(_UpperCAmelCase )} examples to process.' ) lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 1_0000 lowerCAmelCase = time.time() for text in data: lowerCAmelCase = F'{bos} {text.strip()} {sep}' lowerCAmelCase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) rslt.append(_UpperCAmelCase ) iter += 1 if iter % interval == 0: lowerCAmelCase = time.time() logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) lowerCAmelCase = time.time() logger.info('Finished binarization' ) logger.info(F'{len(_UpperCAmelCase )} examples processed.' ) lowerCAmelCase = F'{args.dump_file}.{args.tokenizer_name}.pickle' lowerCAmelCase = tokenizer.vocab_size if vocab_size < (1 << 16): lowerCAmelCase = [np.uintaa(_UpperCAmelCase ) for d in rslt] else: lowerCAmelCase = [np.intaa(_UpperCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'Dump to {dp_file}' ) with open(_UpperCAmelCase , 'wb' ) as handle: pickle.dump(rslt_ , _UpperCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
4
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class a ( a__ ): snake_case__ = '''vit_mae''' def __init__( self , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=2_24 , _snake_case=16 , _snake_case=3 , _snake_case=True , _snake_case=16 , _snake_case=5_12 , _snake_case=8 , _snake_case=20_48 , _snake_case=0.75 , _snake_case=False , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = qkv_bias lowerCAmelCase = decoder_num_attention_heads lowerCAmelCase = decoder_hidden_size lowerCAmelCase = decoder_num_hidden_layers lowerCAmelCase = decoder_intermediate_size lowerCAmelCase = mask_ratio lowerCAmelCase = norm_pix_loss
4
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''bert''' def __init__( self , _snake_case=3_05_22 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache lowerCAmelCase = classifier_dropout class a ( a__ ): @property def UpperCamelCase__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
4
1
"""simple docstring""" from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class a ( a__ , a__ ): snake_case__ = '''pixel_values''' snake_case__ = False snake_case__ = TimmBackboneConfig def __init__( self , _snake_case , **_snake_case ): """simple docstring""" requires_backends(self , 'timm' ) super().__init__(_snake_case ) lowerCAmelCase = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(_snake_case , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) lowerCAmelCase = getattr(_snake_case , 'use_pretrained_backbone' , _snake_case ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. lowerCAmelCase = config.out_indices if getattr(_snake_case , 'out_indices' , _snake_case ) is not None else (-1,) lowerCAmelCase = timm.create_model( config.backbone , pretrained=_snake_case , features_only=config.features_only , in_chans=config.num_channels , out_indices=_snake_case , **_snake_case , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCAmelCase = self._backbone.return_layers lowerCAmelCase = {layer['module']: str(_snake_case ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(_snake_case ) @classmethod def UpperCamelCase__ ( cls , _snake_case , *_snake_case , **_snake_case ): """simple docstring""" requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig lowerCAmelCase = kwargs.pop('config' , TimmBackboneConfig() ) lowerCAmelCase = kwargs.pop('use_timm_backbone' , _snake_case ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) lowerCAmelCase = kwargs.pop('num_channels' , config.num_channels ) lowerCAmelCase = kwargs.pop('features_only' , config.features_only ) lowerCAmelCase = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) lowerCAmelCase = kwargs.pop('out_indices' , config.out_indices ) lowerCAmelCase = TimmBackboneConfig( backbone=_snake_case , num_channels=_snake_case , features_only=_snake_case , use_pretrained_backbone=_snake_case , out_indices=_snake_case , ) return super()._from_config(_snake_case , **_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" pass def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ): """simple docstring""" lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCAmelCase = self._all_layers lowerCAmelCase = self._backbone(_snake_case , **_snake_case ) lowerCAmelCase = self._return_layers lowerCAmelCase = tuple(hidden_states[i] for i in self.out_indices ) else: lowerCAmelCase = self._backbone(_snake_case , **_snake_case ) lowerCAmelCase = None lowerCAmelCase = tuple(_snake_case ) lowerCAmelCase = tuple(_snake_case ) if hidden_states is not None else None if not return_dict: lowerCAmelCase = (feature_maps,) if output_hidden_states: lowerCAmelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=_snake_case , hidden_states=_snake_case , attentions=_snake_case )
4
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( a__ , unittest.TestCase ): snake_case__ = DanceDiffusionPipeline snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_snake_case , use_timestep_embedding=_snake_case , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase = IPNDMScheduler() lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = DanceDiffusionPipeline(**_snake_case ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = pipe(**_snake_case ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_local() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
4
1
"""simple docstring""" from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a : def __init__( self , _snake_case , _snake_case=2 , _snake_case=3 , _snake_case=4 , _snake_case=2 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=36 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=6 , _snake_case=6 , _snake_case=3 , _snake_case=4 , _snake_case=None , _snake_case=10_00 , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = coordinate_size lowerCAmelCase = shape_size lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCAmelCase = text_seq_length lowerCAmelCase = (image_size // patch_size) ** 2 + 1 lowerCAmelCase = self.text_seq_length + self.image_seq_length def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) lowerCAmelCase = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase = bbox[i, j, 3] lowerCAmelCase = bbox[i, j, 1] lowerCAmelCase = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase = bbox[i, j, 2] lowerCAmelCase = bbox[i, j, 0] lowerCAmelCase = tmp_coordinate lowerCAmelCase = tf.constant(_snake_case ) lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowerCAmelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMvaModel(config=_snake_case ) # text + image lowerCAmelCase = model(_snake_case , pixel_values=_snake_case , training=_snake_case ) lowerCAmelCase = model( _snake_case , bbox=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , training=_snake_case , ) lowerCAmelCase = model(_snake_case , bbox=_snake_case , pixel_values=_snake_case , training=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCAmelCase = model(_snake_case , training=_snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCAmelCase = model({'pixel_values': pixel_values} , training=_snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMvaForSequenceClassification(config=_snake_case ) lowerCAmelCase = model( _snake_case , bbox=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , training=_snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMvaForTokenClassification(config=_snake_case ) lowerCAmelCase = model( _snake_case , bbox=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , training=_snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = 2 lowerCAmelCase = TFLayoutLMvaForQuestionAnswering(config=_snake_case ) lowerCAmelCase = model( _snake_case , bbox=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , start_positions=_snake_case , end_positions=_snake_case , training=_snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ((lowerCAmelCase) ,(lowerCAmelCase) ,(lowerCAmelCase) ,(lowerCAmelCase) ,(lowerCAmelCase) ,(lowerCAmelCase) ,(lowerCAmelCase) ,(lowerCAmelCase)) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) snake_case__ = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" return True def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=False ): """simple docstring""" lowerCAmelCase = copy.deepcopy(_snake_case ) if model_class in get_values(_snake_case ): lowerCAmelCase = { k: tf.tile(tf.expand_dims(_snake_case , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(_snake_case , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_snake_case ): lowerCAmelCase = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_snake_case ): lowerCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) lowerCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_snake_case ): lowerCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_snake_case ): lowerCAmelCase = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMvaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_snake_case ) if getattr(_snake_case , 'hf_compute_loss' , _snake_case ): # The number of elements in the loss should be the same as the number of elements in the label lowerCAmelCase = self._prepare_for_class(inputs_dict.copy() , _snake_case , return_labels=_snake_case ) lowerCAmelCase = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=_snake_case )[0] ] lowerCAmelCase = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs lowerCAmelCase = self._prepare_for_class(inputs_dict.copy() , _snake_case , return_labels=_snake_case ) lowerCAmelCase = prepared_for_class.pop('input_ids' ) lowerCAmelCase = model(_snake_case , **_snake_case )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions lowerCAmelCase = self._prepare_for_class(inputs_dict.copy() , _snake_case , return_labels=_snake_case ) lowerCAmelCase = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: lowerCAmelCase = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: lowerCAmelCase = -1_00 lowerCAmelCase = tf.convert_to_tensor(_snake_case ) lowerCAmelCase = model(_snake_case , **_snake_case )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict lowerCAmelCase = self._prepare_for_class(inputs_dict.copy() , _snake_case , return_labels=_snake_case ) lowerCAmelCase = model(_snake_case )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple lowerCAmelCase = self._prepare_for_class(inputs_dict.copy() , _snake_case , return_labels=_snake_case ) # Get keys that were added with the _prepare_for_class function lowerCAmelCase = prepared_for_class.keys() - inputs_dict.keys() lowerCAmelCase = inspect.signature(model.call ).parameters lowerCAmelCase = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple lowerCAmelCase = {0: 'input_ids'} for label_key in label_keys: lowerCAmelCase = signature_names.index(_snake_case ) lowerCAmelCase = label_key lowerCAmelCase = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple lowerCAmelCase = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: lowerCAmelCase = prepared_for_class[value] lowerCAmelCase = tuple(_snake_case ) # Send to model lowerCAmelCase = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def UpperCamelCase__ ( self ): """simple docstring""" ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase = type self.model_tester.create_and_check_model(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFLayoutLMvaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class a ( unittest.TestCase ): @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=_snake_case ) if is_vision_available() else None @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=_snake_case , return_tensors='tf' ).pixel_values lowerCAmelCase = tf.constant([[1, 2]] ) lowerCAmelCase = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , pixel_values=_snake_case , training=_snake_case ) # verify the logits lowerCAmelCase = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , _snake_case ) lowerCAmelCase = tf.constant( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _snake_case , atol=1E-4 ) )
4
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , use_stable_embedding=_snake_case , ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = OpenLlamaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = OpenLlamaModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , ) lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() # first forward pass lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , use_cache=_snake_case , ) lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , past_key_values=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) snake_case__ = (OpenLlamaForCausalLM,) if is_torch_available() else () snake_case__ = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenLlamaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase = type self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'single_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'multi_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = OpenLlamaModel(_snake_case ) original_model.to(_snake_case ) original_model.eval() lowerCAmelCase = original_model(_snake_case ).last_hidden_state lowerCAmelCase = original_model(_snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = {'type': scaling_type, 'factor': 10.0} lowerCAmelCase = OpenLlamaModel(_snake_case ) scaled_model.to(_snake_case ) scaled_model.eval() lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
4
1
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCamelCase : str = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model __UpperCamelCase : Tuple = { # fairseq: '''wmt19-ru-en''': {'''length_penalty''': 1.1}, '''wmt19-en-ru''': {'''length_penalty''': 1.15}, '''wmt19-en-de''': {'''length_penalty''': 1.0}, '''wmt19-de-en''': {'''length_penalty''': 1.1}, # allenai: '''wmt16-en-de-dist-12-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-dist-6-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-12-1''': {'''length_penalty''': 0.8}, '''wmt19-de-en-6-6-base''': {'''length_penalty''': 0.6}, '''wmt19-de-en-6-6-big''': {'''length_penalty''': 0.6}, } # this remaps the different models to their organization names __UpperCamelCase : int = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __UpperCamelCase : str = '''facebook''' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: __UpperCamelCase : Any = '''allenai''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCAmelCase = dict((re.sub(R'@@$' , '' , _UpperCAmelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , _UpperCAmelCase ), v) for k, v in d.items() ) lowerCAmelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] lowerCAmelCase = d[k] # restore return da def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Any ): # prep assert os.path.exists(_UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models lowerCAmelCase = basename(_UpperCAmelCase ) lowerCAmelCase = dirname(_UpperCAmelCase ) lowerCAmelCase = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCAmelCase = cls.hub_models() lowerCAmelCase = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCAmelCase = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F'using checkpoint {checkpoint_file}' ) lowerCAmelCase = hub_utils.from_pretrained( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , archive_map=_UpperCAmelCase , **_UpperCAmelCase ) lowerCAmelCase = vars(chkpt['args']['model'] ) lowerCAmelCase = args['source_lang'] lowerCAmelCase = args['target_lang'] lowerCAmelCase = dirname(_UpperCAmelCase ) lowerCAmelCase = basename(_UpperCAmelCase ) # dicts lowerCAmelCase = os.path.join(_UpperCAmelCase , F'dict.{src_lang}.txt' ) lowerCAmelCase = os.path.join(_UpperCAmelCase , F'dict.{tgt_lang}.txt' ) lowerCAmelCase = Dictionary.load(_UpperCAmelCase ) lowerCAmelCase = rewrite_dict_keys(src_dict.indices ) lowerCAmelCase = len(_UpperCAmelCase ) lowerCAmelCase = os.path.join(_UpperCAmelCase , 'vocab-src.json' ) print(F'Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records' ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCAmelCase , ensure_ascii=_UpperCAmelCase , indent=_UpperCAmelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCAmelCase = True for k in src_vocab.keys(): if not k.islower(): lowerCAmelCase = False break lowerCAmelCase = Dictionary.load(_UpperCAmelCase ) lowerCAmelCase = rewrite_dict_keys(tgt_dict.indices ) lowerCAmelCase = len(_UpperCAmelCase ) lowerCAmelCase = os.path.join(_UpperCAmelCase , 'vocab-tgt.json' ) print(F'Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records' ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCAmelCase , ensure_ascii=_UpperCAmelCase , indent=_UpperCAmelCase ) ) # merges_file (bpecodes) lowerCAmelCase = os.path.join(_UpperCAmelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if os.path.exists(_UpperCAmelCase ): break with open(_UpperCAmelCase , encoding='utf-8' ) as fin: lowerCAmelCase = fin.read() lowerCAmelCase = re.sub(R' \d+$' , '' , _UpperCAmelCase , 0 , re.M ) # remove frequency number print(F'Generating {merges_file}' ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_UpperCAmelCase ) # model config lowerCAmelCase = os.path.join(_UpperCAmelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F'need to extend tokenizer to support bpe={args["bpe"]}' assert args["tokenizer"] == "moses", F'need to extend tokenizer to support bpe={args["tokenizer"]}' lowerCAmelCase = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCAmelCase = 5 lowerCAmelCase = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCAmelCase = best_score_hparams[model_dir]['length_penalty'] else: lowerCAmelCase = 1.0 print(F'Generating {fsmt_model_config_file}' ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCAmelCase , ensure_ascii=_UpperCAmelCase , indent=_UpperCAmelCase ) ) # tokenizer config lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(F'Generating {fsmt_tokenizer_config_file}' ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCAmelCase , ensure_ascii=_UpperCAmelCase , indent=_UpperCAmelCase ) ) # model lowerCAmelCase = chkpt['models'][0] lowerCAmelCase = model.state_dict() # rename keys to start with 'model.' lowerCAmelCase = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCAmelCase = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = FSMTConfig.from_pretrained(_UpperCAmelCase ) lowerCAmelCase = FSMTForConditionalGeneration(_UpperCAmelCase ) # check that it loads ok model_new.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) # save lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(F'cd {data_root}' ) print(F'transformers-cli upload {model_dir}' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fsmt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __UpperCamelCase : Tuple = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
4
"""simple docstring""" from typing import Any class a : def __init__( self , _snake_case ): """simple docstring""" lowerCAmelCase = data lowerCAmelCase = None def __repr__( self ): """simple docstring""" return F'Node({self.data})' class a : def __init__( self ): """simple docstring""" lowerCAmelCase = None def __iter__( self ): """simple docstring""" lowerCAmelCase = self.head while node: yield node.data lowerCAmelCase = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(_snake_case ) for item in self] ) def __getitem__( self , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase = self.head for _ in range(_snake_case ): lowerCAmelCase = current.next lowerCAmelCase = data def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(len(self ) , _snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(0 , _snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase = Node(_snake_case ) if self.head is None: lowerCAmelCase = new_node elif index == 0: lowerCAmelCase = self.head # link new_node to head lowerCAmelCase = new_node else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = new_node def UpperCamelCase__ ( self ): # print every node data """simple docstring""" print(self ) def UpperCamelCase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def UpperCamelCase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def UpperCamelCase__ ( self , _snake_case = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase = self.head # default first node if index == 0: lowerCAmelCase = self.head.next else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = temp.next.next return delete_node.data def UpperCamelCase__ ( self ): """simple docstring""" return self.head is None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = None lowerCAmelCase = self.head while current: # Store the current node's next node. lowerCAmelCase = current.next # Make the current node's next point backwards lowerCAmelCase = prev # Make the previous node be the current node lowerCAmelCase = current # Make the current node the next node (to progress iteration) lowerCAmelCase = next_node # Return prev in order to put the head at the end lowerCAmelCase = prev def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = LinkedList() assert linked_list.is_empty() is True assert str(_UpperCAmelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_UpperCAmelCase ) == i linked_list.insert_nth(_UpperCAmelCase , i + 1 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_UpperCAmelCase ) == 9 assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(-8 , 1 ) ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = [ -9, 100, Node(7734_5112 ), 'dlrow olleH', 7, 5555, 0, -192.5_5555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase = LinkedList() for i in test_input: linked_list.insert_tail(_UpperCAmelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase = linked_list.delete_head() assert result == -9 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_UpperCAmelCase ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_UpperCAmelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _SCREAMING_SNAKE_CASE (): from doctest import testmod testmod() lowerCAmelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_UpperCAmelCase ) print('\nReading/changing Node data using indexing:' ) print(F'Element at Position 1: {linked_list[1]}' ) lowerCAmelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_UpperCAmelCase ) print(F'length of linked_list is : {len(_UpperCAmelCase )}' ) if __name__ == "__main__": main()
4
1