code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import math
from collections.abc import Iterator
from itertools import takewhile
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = 2
while True:
if is_prime(_UpperCAmelCase ):
yield num
num += 1
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 200_0000 ):
return sum(takewhile(lambda _UpperCAmelCase : x < n , prime_generator() ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 4 |
"""simple docstring"""
from __future__ import annotations
import requests
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
lowerCAmelCase = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty'
return requests.get(_UpperCAmelCase ).json()
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ):
lowerCAmelCase = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty'
lowerCAmelCase = requests.get(_UpperCAmelCase ).json()[:max_stories]
return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ):
lowerCAmelCase = hackernews_top_stories(_UpperCAmelCase )
return "\n".join('* [{title}]({url})'.format(**_UpperCAmelCase ) for story in stories )
if __name__ == "__main__":
print(hackernews_top_stories_as_markdown())
| 4 | 1 |
"""simple docstring"""
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class a :
def __init__( self , _snake_case , _snake_case=99 , _snake_case=13 , _snake_case=7 , _snake_case=9 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case=8 , _snake_case=0.1 , _snake_case=0.002 , _snake_case=1 , _snake_case=0 , _snake_case=0 , _snake_case=None , _snake_case=None , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = encoder_seq_length
lowerCAmelCase = decoder_seq_length
# For common tests
lowerCAmelCase = self.decoder_seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_attention_mask
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = d_ff
lowerCAmelCase = relative_attention_num_buckets
lowerCAmelCase = dropout_rate
lowerCAmelCase = initializer_factor
lowerCAmelCase = eos_token_id
lowerCAmelCase = pad_token_id
lowerCAmelCase = decoder_start_token_id
lowerCAmelCase = None
lowerCAmelCase = decoder_layers
def UpperCamelCase__ ( self ):
"""simple docstring"""
return TaConfig.from_pretrained('google/umt5-base' )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , ):
"""simple docstring"""
if attention_mask is None:
lowerCAmelCase = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
lowerCAmelCase = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
lowerCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_snake_case )
if decoder_head_mask is None:
lowerCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_snake_case )
if cross_attn_head_mask is None:
lowerCAmelCase = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=_snake_case )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
lowerCAmelCase = input_ids.clamp(self.pad_token_id + 1 )
lowerCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 )
lowerCAmelCase = self.get_config()
lowerCAmelCase = config.num_attention_heads
lowerCAmelCase = self.prepare_inputs_dict(_snake_case , _snake_case , _snake_case )
return config, input_dict
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def UpperCamelCase__ ( self ):
"""simple docstring"""
return TaConfig(
vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = UMTaModel(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(
input_ids=_snake_case , decoder_input_ids=_snake_case , attention_mask=_snake_case , decoder_attention_mask=_snake_case , )
lowerCAmelCase = model(input_ids=_snake_case , decoder_input_ids=_snake_case )
lowerCAmelCase = result.last_hidden_state
lowerCAmelCase = result.past_key_values
lowerCAmelCase = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(_snake_case ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = UMTaModel(config=_snake_case ).get_decoder().to(_snake_case ).eval()
# first forward pass
lowerCAmelCase = model(_snake_case , use_cache=_snake_case )
lowerCAmelCase = model(_snake_case )
lowerCAmelCase = model(_snake_case , use_cache=_snake_case )
self.parent.assertTrue(len(_snake_case ) == len(_snake_case ) )
self.parent.assertTrue(len(_snake_case ) == len(_snake_case ) + 1 )
lowerCAmelCase ,lowerCAmelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
lowerCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
lowerCAmelCase = model(_snake_case )['last_hidden_state']
lowerCAmelCase = model(_snake_case , past_key_values=_snake_case )['last_hidden_state']
# select random slice
lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
lowerCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach()
lowerCAmelCase = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = UMTaModel(config=_snake_case ).to(_snake_case ).half().eval()
lowerCAmelCase = model(**_snake_case )['last_hidden_state']
self.parent.assertFalse(torch.isnan(_snake_case ).any().item() )
@require_torch
class a ( a__ , a__ , a__ , unittest.TestCase ):
snake_case__ = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
snake_case__ = (UMTaForConditionalGeneration,) if is_torch_available() else ()
snake_case__ = (
{
'''conversational''': UMTaForConditionalGeneration,
'''feature-extraction''': UMTaModel,
'''summarization''': UMTaForConditionalGeneration,
'''text2text-generation''': UMTaForConditionalGeneration,
'''translation''': UMTaForConditionalGeneration,
'''question-answering''': UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
snake_case__ = True
snake_case__ = False
snake_case__ = False
snake_case__ = True
snake_case__ = True
# The small UMT5 model needs higher percentages for CPU/MP tests
snake_case__ = [0.8, 0.9]
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = UMTaModelTester(self )
@unittest.skip('Test has a segmentation fault on torch 1.8.0' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
lowerCAmelCase = UMTaModel(config_and_inputs[0] ).to(_snake_case )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
_snake_case , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=_snake_case , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , )
@unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ['encoder_attentions', 'decoder_attentions', 'cross_attentions']
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
lowerCAmelCase = config_and_inputs[0]
lowerCAmelCase = UMTaForConditionalGeneration(_snake_case ).eval()
model.to(_snake_case )
lowerCAmelCase = {
'head_mask': torch.zeros(config.num_layers , config.num_heads , device=_snake_case ),
'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=_snake_case ),
'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=_snake_case ),
}
for attn_name, (name, mask) in zip(_snake_case , head_masking.items() ):
lowerCAmelCase = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
lowerCAmelCase = torch.ones(
config.num_decoder_layers , config.num_heads , device=_snake_case )
lowerCAmelCase = model.generate(
config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=_snake_case , return_dict_in_generate=_snake_case , **_snake_case , )
# We check the state of decoder_attentions and cross_attentions just from the last step
lowerCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class a ( unittest.TestCase ):
@slow
@unittest.skip(
'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=_snake_case ).to(_snake_case )
lowerCAmelCase = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=_snake_case , legacy=_snake_case )
lowerCAmelCase = [
'Bonjour monsieur <extra_id_0> bien <extra_id_1>.',
'No se como puedo <extra_id_0>.',
'This is the reason why we <extra_id_0> them.',
'The <extra_id_0> walks in <extra_id_1>, seats',
'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.',
]
lowerCAmelCase = tokenizer(_snake_case , return_tensors='pt' , padding=_snake_case ).input_ids
# fmt: off
lowerCAmelCase = torch.tensor(
[
[ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1],
] )
# fmt: on
torch.testing.assert_allclose(_snake_case , _snake_case )
lowerCAmelCase = model.generate(input_ids.to(_snake_case ) )
lowerCAmelCase = [
'<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ <extra_id_56>ajลกietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajลกie</s>',
'<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>',
'<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>',
'<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> ํผํด[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>',
'<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>',
]
lowerCAmelCase = tokenizer.batch_decode(_snake_case )
self.assertEqual(_snake_case , _snake_case )
| 4 |
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ):
lowerCAmelCase = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowerCAmelCase = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
lowerCAmelCase = 4
lowerCAmelCase = 48
lowerCAmelCase = 'pixelshuffle_aux'
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowerCAmelCase = [6, 6, 6, 6]
lowerCAmelCase = 60
lowerCAmelCase = [6, 6, 6, 6]
lowerCAmelCase = 'pixelshuffledirect'
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowerCAmelCase = 4
lowerCAmelCase = 'nearest+conv'
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
lowerCAmelCase = 1
lowerCAmelCase = 1
lowerCAmelCase = 126
lowerCAmelCase = 7
lowerCAmelCase = 255.0
lowerCAmelCase = ''
return config
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ):
if "patch_embed.proj" in name and "layers" not in name:
lowerCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
lowerCAmelCase = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' )
if "layers" in name:
lowerCAmelCase = name.replace('layers' , 'encoder.stages' )
if "residual_group.blocks" in name:
lowerCAmelCase = name.replace('residual_group.blocks' , 'layers' )
if "attn.proj" in name:
lowerCAmelCase = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
lowerCAmelCase = name.replace('attn' , 'attention.self' )
if "norm1" in name:
lowerCAmelCase = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
lowerCAmelCase = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
lowerCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
lowerCAmelCase = name.replace('mlp.fc2' , 'output.dense' )
if "q_bias" in name:
lowerCAmelCase = name.replace('q_bias' , 'query.bias' )
if "k_bias" in name:
lowerCAmelCase = name.replace('k_bias' , 'key.bias' )
if "v_bias" in name:
lowerCAmelCase = name.replace('v_bias' , 'value.bias' )
if "cpb_mlp" in name:
lowerCAmelCase = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' )
if "patch_embed.proj" in name:
lowerCAmelCase = name.replace('patch_embed.proj' , 'patch_embed.projection' )
if name == "norm.weight":
lowerCAmelCase = 'layernorm.weight'
if name == "norm.bias":
lowerCAmelCase = 'layernorm.bias'
if "conv_first" in name:
lowerCAmelCase = name.replace('conv_first' , 'first_convolution' )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
lowerCAmelCase = name.replace('conv_last' , 'final_convolution' )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
lowerCAmelCase = name.replace('conv_before_upsample.0' , 'conv_before_upsample' )
if "upsample.0" in name:
lowerCAmelCase = name.replace('upsample.0' , 'upsample.convolution_0' )
if "upsample.2" in name:
lowerCAmelCase = name.replace('upsample.2' , 'upsample.convolution_1' )
lowerCAmelCase = 'upsample.' + name
elif config.upsampler == "pixelshuffledirect":
lowerCAmelCase = name.replace('upsample.0.weight' , 'upsample.conv.weight' )
lowerCAmelCase = name.replace('upsample.0.bias' , 'upsample.conv.bias' )
else:
pass
else:
lowerCAmelCase = 'swin2sr.' + name
return name
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict ):
for key in orig_state_dict.copy().keys():
lowerCAmelCase = orig_state_dict.pop(_UpperCAmelCase )
if "qkv" in key:
lowerCAmelCase = key.split('.' )
lowerCAmelCase = int(key_split[1] )
lowerCAmelCase = int(key_split[4] )
lowerCAmelCase = config.embed_dim
if "weight" in key:
lowerCAmelCase = val[:dim, :]
lowerCAmelCase = val[dim : dim * 2, :]
lowerCAmelCase = val[-dim:, :]
else:
lowerCAmelCase = val[:dim]
lowerCAmelCase = val[dim : dim * 2]
lowerCAmelCase = val[-dim:]
pass
else:
lowerCAmelCase = val
return orig_state_dict
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ):
lowerCAmelCase = get_config(_UpperCAmelCase )
lowerCAmelCase = SwinaSRForImageSuperResolution(_UpperCAmelCase )
model.eval()
lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' )
lowerCAmelCase = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase ,lowerCAmelCase = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase )
if len(_UpperCAmelCase ) > 0:
raise ValueError('Missing keys when converting: {}'.format(_UpperCAmelCase ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(F'Unexpected key {key} in state_dict' )
# verify values
lowerCAmelCase = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true'
lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' )
lowerCAmelCase = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
lowerCAmelCase = 126 if 'Jpeg' in checkpoint_url else 256
lowerCAmelCase = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
lowerCAmelCase = transforms(_UpperCAmelCase ).unsqueeze(0 )
if config.num_channels == 1:
lowerCAmelCase = pixel_values[:, 0, :, :].unsqueeze(1 )
lowerCAmelCase = model(_UpperCAmelCase )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
lowerCAmelCase = torch.Size([1, 3, 512, 512] )
lowerCAmelCase = torch.tensor(
[[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowerCAmelCase = torch.Size([1, 3, 1024, 1024] )
lowerCAmelCase = torch.tensor(
[[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
lowerCAmelCase = torch.Size([1, 3, 1024, 1024] )
lowerCAmelCase = torch.tensor(
[[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowerCAmelCase = torch.Size([1, 3, 512, 512] )
lowerCAmelCase = torch.tensor(
[[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowerCAmelCase = torch.Size([1, 3, 1024, 1024] )
lowerCAmelCase = torch.tensor(
[[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] )
assert (
outputs.reconstruction.shape == expected_shape
), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-3 )
print('Looks ok!' )
lowerCAmelCase = {
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': (
'swin2SR-classical-sr-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': (
'swin2SR-classical-sr-x4-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': (
'swin2SR-compressed-sr-x4-48'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': (
'swin2SR-lightweight-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': (
'swin2SR-realworld-sr-x4-64-bsrgan-psnr'
),
}
lowerCAmelCase = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(_UpperCAmelCase )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(_UpperCAmelCase )
if push_to_hub:
model.push_to_hub(F'caidas/{model_name}' )
processor.push_to_hub(F'caidas/{model_name}' )
if __name__ == "__main__":
__UpperCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''',
type=str,
help='''URL of the original Swin2SR checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''')
__UpperCamelCase : Optional[int] = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 4 | 1 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .attention_processor import AttentionProcessor, AttnProcessor
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder
@dataclass
class a ( a__ ):
snake_case__ = 42
class a ( a__ , a__ ):
snake_case__ = True
@register_to_config
def __init__( self , _snake_case = 3 , _snake_case = 3 , _snake_case = ("DownEncoderBlock2D",) , _snake_case = ("UpDecoderBlock2D",) , _snake_case = (64,) , _snake_case = 1 , _snake_case = "silu" , _snake_case = 4 , _snake_case = 32 , _snake_case = 32 , _snake_case = 0.18_215 , ):
"""simple docstring"""
super().__init__()
# pass init params to Encoder
lowerCAmelCase = Encoder(
in_channels=_snake_case , out_channels=_snake_case , down_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , double_z=_snake_case , )
# pass init params to Decoder
lowerCAmelCase = Decoder(
in_channels=_snake_case , out_channels=_snake_case , up_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , norm_num_groups=_snake_case , act_fn=_snake_case , )
lowerCAmelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 )
lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 )
lowerCAmelCase = False
lowerCAmelCase = False
# only relevant if vae tiling is enabled
lowerCAmelCase = self.config.sample_size
lowerCAmelCase = (
self.config.sample_size[0]
if isinstance(self.config.sample_size , (list, tuple) )
else self.config.sample_size
)
lowerCAmelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) )
lowerCAmelCase = 0.25
def UpperCamelCase__ ( self , _snake_case , _snake_case=False ):
"""simple docstring"""
if isinstance(_snake_case , (Encoder, Decoder) ):
lowerCAmelCase = value
def UpperCamelCase__ ( self , _snake_case = True ):
"""simple docstring"""
lowerCAmelCase = use_tiling
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.enable_tiling(_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = True
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = False
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = {}
def fn_recursive_add_processors(_snake_case , _snake_case , _snake_case ):
if hasattr(_snake_case , 'set_processor' ):
lowerCAmelCase = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F'{name}.{sub_name}' , _snake_case , _snake_case )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(_snake_case , _snake_case , _snake_case )
return processors
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = len(self.attn_processors.keys() )
if isinstance(_snake_case , _snake_case ) and len(_snake_case ) != count:
raise ValueError(
F'A dict of processors was passed, but the number of processors {len(_snake_case )} does not match the'
F' number of attention layers: {count}. Please make sure to pass {count} processor classes.' )
def fn_recursive_attn_processor(_snake_case , _snake_case , _snake_case ):
if hasattr(_snake_case , 'set_processor' ):
if not isinstance(_snake_case , _snake_case ):
module.set_processor(_snake_case )
else:
module.set_processor(processor.pop(F'{name}.processor' ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F'{name}.{sub_name}' , _snake_case , _snake_case )
for name, module in self.named_children():
fn_recursive_attn_processor(_snake_case , _snake_case , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.set_attn_processor(AttnProcessor() )
@apply_forward_hook
def UpperCamelCase__ ( self , _snake_case , _snake_case = True ):
"""simple docstring"""
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
return self.tiled_encode(_snake_case , return_dict=_snake_case )
if self.use_slicing and x.shape[0] > 1:
lowerCAmelCase = [self.encoder(_snake_case ) for x_slice in x.split(1 )]
lowerCAmelCase = torch.cat(_snake_case )
else:
lowerCAmelCase = self.encoder(_snake_case )
lowerCAmelCase = self.quant_conv(_snake_case )
lowerCAmelCase = DiagonalGaussianDistribution(_snake_case )
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case = True ):
"""simple docstring"""
if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
return self.tiled_decode(_snake_case , return_dict=_snake_case )
lowerCAmelCase = self.post_quant_conv(_snake_case )
lowerCAmelCase = self.decoder(_snake_case )
if not return_dict:
return (dec,)
return DecoderOutput(sample=_snake_case )
@apply_forward_hook
def UpperCamelCase__ ( self , _snake_case , _snake_case = True ):
"""simple docstring"""
if self.use_slicing and z.shape[0] > 1:
lowerCAmelCase = [self._decode(_snake_case ).sample for z_slice in z.split(1 )]
lowerCAmelCase = torch.cat(_snake_case )
else:
lowerCAmelCase = self._decode(_snake_case ).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = min(a.shape[2] , b.shape[2] , _snake_case )
for y in range(_snake_case ):
lowerCAmelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
return b
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = min(a.shape[3] , b.shape[3] , _snake_case )
for x in range(_snake_case ):
lowerCAmelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
return b
def UpperCamelCase__ ( self , _snake_case , _snake_case = True ):
"""simple docstring"""
lowerCAmelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) )
lowerCAmelCase = int(self.tile_latent_min_size * self.tile_overlap_factor )
lowerCAmelCase = self.tile_latent_min_size - blend_extent
# Split the image into 512x512 tiles and encode them separately.
lowerCAmelCase = []
for i in range(0 , x.shape[2] , _snake_case ):
lowerCAmelCase = []
for j in range(0 , x.shape[3] , _snake_case ):
lowerCAmelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
lowerCAmelCase = self.encoder(_snake_case )
lowerCAmelCase = self.quant_conv(_snake_case )
row.append(_snake_case )
rows.append(_snake_case )
lowerCAmelCase = []
for i, row in enumerate(_snake_case ):
lowerCAmelCase = []
for j, tile in enumerate(_snake_case ):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
lowerCAmelCase = self.blend_v(rows[i - 1][j] , _snake_case , _snake_case )
if j > 0:
lowerCAmelCase = self.blend_h(row[j - 1] , _snake_case , _snake_case )
result_row.append(tile[:, :, :row_limit, :row_limit] )
result_rows.append(torch.cat(_snake_case , dim=3 ) )
lowerCAmelCase = torch.cat(_snake_case , dim=2 )
lowerCAmelCase = DiagonalGaussianDistribution(_snake_case )
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case = True ):
"""simple docstring"""
lowerCAmelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) )
lowerCAmelCase = int(self.tile_sample_min_size * self.tile_overlap_factor )
lowerCAmelCase = self.tile_sample_min_size - blend_extent
# Split z into overlapping 64x64 tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
lowerCAmelCase = []
for i in range(0 , z.shape[2] , _snake_case ):
lowerCAmelCase = []
for j in range(0 , z.shape[3] , _snake_case ):
lowerCAmelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
lowerCAmelCase = self.post_quant_conv(_snake_case )
lowerCAmelCase = self.decoder(_snake_case )
row.append(_snake_case )
rows.append(_snake_case )
lowerCAmelCase = []
for i, row in enumerate(_snake_case ):
lowerCAmelCase = []
for j, tile in enumerate(_snake_case ):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
lowerCAmelCase = self.blend_v(rows[i - 1][j] , _snake_case , _snake_case )
if j > 0:
lowerCAmelCase = self.blend_h(row[j - 1] , _snake_case , _snake_case )
result_row.append(tile[:, :, :row_limit, :row_limit] )
result_rows.append(torch.cat(_snake_case , dim=3 ) )
lowerCAmelCase = torch.cat(_snake_case , dim=2 )
if not return_dict:
return (dec,)
return DecoderOutput(sample=_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case = False , _snake_case = True , _snake_case = None , ):
"""simple docstring"""
lowerCAmelCase = sample
lowerCAmelCase = self.encode(_snake_case ).latent_dist
if sample_posterior:
lowerCAmelCase = posterior.sample(generator=_snake_case )
else:
lowerCAmelCase = posterior.mode()
lowerCAmelCase = self.decode(_snake_case ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=_snake_case )
| 4 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
__UpperCamelCase : List[Any] = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class a ( a__ ):
snake_case__ = '''megatron-bert'''
def __init__( self , _snake_case=2_90_56 , _snake_case=10_24 , _snake_case=24 , _snake_case=16 , _snake_case=40_96 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , **_snake_case , ):
"""simple docstring"""
super().__init__(pad_token_id=_snake_case , **_snake_case )
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_act
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = initializer_range
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = position_embedding_type
lowerCAmelCase = use_cache
| 4 | 1 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = list(_UpperCAmelCase )
lowerCAmelCase = list(_UpperCAmelCase )
lowerCAmelCase = 0
for i in range(len(_UpperCAmelCase ) ):
if lista[i] != lista[i]:
count += 1
lowerCAmelCase = '_'
if count > 1:
return False
else:
return "".join(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[str] ):
lowerCAmelCase = []
while True:
lowerCAmelCase = ['$'] * len(_UpperCAmelCase )
lowerCAmelCase = []
for i in range(len(_UpperCAmelCase ) ):
for j in range(i + 1 , len(_UpperCAmelCase ) ):
lowerCAmelCase = compare_string(binary[i] , binary[j] )
if k is False:
lowerCAmelCase = '*'
lowerCAmelCase = '*'
temp.append('X' )
for i in range(len(_UpperCAmelCase ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(_UpperCAmelCase ) == 0:
return pi
lowerCAmelCase = list(set(_UpperCAmelCase ) )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : Sequence[float] ):
lowerCAmelCase = []
for minterm in minterms:
lowerCAmelCase = ''
for _ in range(_UpperCAmelCase ):
lowerCAmelCase = str(minterm % 2 ) + string
minterm //= 2
temp.append(_UpperCAmelCase )
return temp
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int ):
lowerCAmelCase = list(_UpperCAmelCase )
lowerCAmelCase = list(_UpperCAmelCase )
lowerCAmelCase = 0
for i in range(len(_UpperCAmelCase ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[int]] , _UpperCAmelCase : list[str] ):
lowerCAmelCase = []
lowerCAmelCase = [0] * len(_UpperCAmelCase )
for i in range(len(chart[0] ) ):
lowerCAmelCase = 0
lowerCAmelCase = -1
for j in range(len(_UpperCAmelCase ) ):
if chart[j][i] == 1:
count += 1
lowerCAmelCase = j
if count == 1:
lowerCAmelCase = 1
for i in range(len(_UpperCAmelCase ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(_UpperCAmelCase ) ):
lowerCAmelCase = 0
temp.append(prime_implicants[i] )
while True:
lowerCAmelCase = 0
lowerCAmelCase = -1
lowerCAmelCase = 0
for i in range(len(_UpperCAmelCase ) ):
lowerCAmelCase = chart[i].count(1 )
if count_n > max_n:
lowerCAmelCase = count_n
lowerCAmelCase = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(_UpperCAmelCase ) ):
lowerCAmelCase = 0
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[str] , _UpperCAmelCase : list[str] ):
lowerCAmelCase = [[0 for x in range(len(_UpperCAmelCase ) )] for x in range(len(_UpperCAmelCase ) )]
for i in range(len(_UpperCAmelCase ) ):
lowerCAmelCase = prime_implicants[i].count('_' )
for j in range(len(_UpperCAmelCase ) ):
if is_for_table(prime_implicants[i] , binary[j] , _UpperCAmelCase ):
lowerCAmelCase = 1
return chart
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = int(input('Enter the no. of variables\n' ) )
lowerCAmelCase = [
float(_UpperCAmelCase )
for x in input(
'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split()
]
lowerCAmelCase = decimal_to_binary(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = check(_UpperCAmelCase )
print('Prime Implicants are:' )
print(_UpperCAmelCase )
lowerCAmelCase = prime_implicant_chart(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = selection(_UpperCAmelCase , _UpperCAmelCase )
print('Essential Prime Implicants are:' )
print(_UpperCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 4 |
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
return " ".join(input_str.split()[::-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 | 1 |
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
if num <= 0:
raise ValueError('Input must be a positive integer' )
lowerCAmelCase = [True] * (num + 1)
lowerCAmelCase = 2
while p * p <= num:
if primes[p]:
for i in range(p * p , num + 1 , _UpperCAmelCase ):
lowerCAmelCase = False
p += 1
return [prime for prime in range(2 , num + 1 ) if primes[prime]]
if __name__ == "__main__":
import doctest
doctest.testmod()
__UpperCamelCase : Union[str, Any] = int(input('''Enter a positive integer: ''').strip())
print(prime_sieve_eratosthenes(user_num))
| 4 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class a ( a__ ):
snake_case__ = 42
class a ( a__ , a__ ):
@register_to_config
def __init__( self , _snake_case = 3 , _snake_case = 3 , _snake_case = ("DownEncoderBlock2D",) , _snake_case = ("UpDecoderBlock2D",) , _snake_case = (64,) , _snake_case = 1 , _snake_case = "silu" , _snake_case = 3 , _snake_case = 32 , _snake_case = 2_56 , _snake_case = 32 , _snake_case = None , _snake_case = 0.18_215 , _snake_case = "group" , ):
"""simple docstring"""
super().__init__()
# pass init params to Encoder
lowerCAmelCase = Encoder(
in_channels=_snake_case , out_channels=_snake_case , down_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , double_z=_snake_case , )
lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels
lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 )
lowerCAmelCase = VectorQuantizer(_snake_case , _snake_case , beta=0.25 , remap=_snake_case , sane_index_shape=_snake_case )
lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 )
# pass init params to Decoder
lowerCAmelCase = Decoder(
in_channels=_snake_case , out_channels=_snake_case , up_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , norm_type=_snake_case , )
@apply_forward_hook
def UpperCamelCase__ ( self , _snake_case , _snake_case = True ):
"""simple docstring"""
lowerCAmelCase = self.encoder(_snake_case )
lowerCAmelCase = self.quant_conv(_snake_case )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=_snake_case )
@apply_forward_hook
def UpperCamelCase__ ( self , _snake_case , _snake_case = False , _snake_case = True ):
"""simple docstring"""
if not force_not_quantize:
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = self.quantize(_snake_case )
else:
lowerCAmelCase = h
lowerCAmelCase = self.post_quant_conv(_snake_case )
lowerCAmelCase = self.decoder(_snake_case , quant if self.config.norm_type == 'spatial' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case = True ):
"""simple docstring"""
lowerCAmelCase = sample
lowerCAmelCase = self.encode(_snake_case ).latents
lowerCAmelCase = self.decode(_snake_case ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=_snake_case )
| 4 | 1 |
"""simple docstring"""
import os
from collections.abc import Iterator
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ):
for dir_path, dir_names, filenames in os.walk(_UpperCAmelCase ):
lowerCAmelCase = [d for d in dir_names if d != 'scripts' and d[0] not in '._']
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(_UpperCAmelCase )[1] in (".py", ".ipynb"):
yield os.path.join(_UpperCAmelCase , _UpperCAmelCase ).lstrip('./' )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ):
return F'{i * " "}*' if i else "\n##"
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(_UpperCAmelCase ) or old_parts[i] != new_part) and new_part:
print(F'{md_prefix(_UpperCAmelCase )} {new_part.replace("_" , " " ).title()}' )
return new_path
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ):
lowerCAmelCase = ''
for filepath in sorted(good_file_paths(_UpperCAmelCase ) ):
lowerCAmelCase ,lowerCAmelCase = os.path.split(_UpperCAmelCase )
if filepath != old_path:
lowerCAmelCase = print_path(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = (filepath.count(os.sep ) + 1) if filepath else 0
lowerCAmelCase = F'{filepath}/{filename}'.replace(' ' , '%20' )
lowerCAmelCase = os.path.splitext(filename.replace('_' , ' ' ).title() )[0]
print(F'{md_prefix(_UpperCAmelCase )} [{filename}]({url})' )
if __name__ == "__main__":
print_directory_md('''.''')
| 4 |
"""simple docstring"""
from __future__ import annotations
import os
from collections.abc import Mapping
__UpperCamelCase : Optional[Any] = tuple[int, int]
class a :
def __init__( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = vertices
lowerCAmelCase = {
(min(_snake_case ), max(_snake_case )): weight for edge, weight in edges.items()
}
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
lowerCAmelCase = weight
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = Graph({min(self.vertices )} , {} )
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
while len(subgraph.vertices ) < len(self.vertices ):
lowerCAmelCase = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
lowerCAmelCase = edge
lowerCAmelCase = weight
subgraph.add_edge(_snake_case , _snake_case )
return subgraph
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "p107_network.txt" ):
lowerCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) )
lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = {}
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
with open(_UpperCAmelCase ) as f:
lowerCAmelCase = f.read().strip().split('\n' )
lowerCAmelCase = [line.split(',' ) for line in data]
for edgea in range(1 , len(_UpperCAmelCase ) ):
for edgea in range(_UpperCAmelCase ):
if adjaceny_matrix[edgea][edgea] != "-":
lowerCAmelCase = int(adjaceny_matrix[edgea][edgea] )
lowerCAmelCase = Graph(set(range(len(_UpperCAmelCase ) ) ) , _UpperCAmelCase )
lowerCAmelCase = graph.prims_algorithm()
lowerCAmelCase = sum(graph.edges.values() )
lowerCAmelCase = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(f'''{solution() = }''')
| 4 | 1 |
"""simple docstring"""
import argparse
from collections import defaultdict
import yaml
__UpperCamelCase : Union[str, Any] = '''docs/source/en/_toctree.yml'''
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
lowerCAmelCase = defaultdict(_UpperCAmelCase )
for doc in model_doc:
counts[doc["local"]] += 1
lowerCAmelCase = [key for key, value in counts.items() if value > 1]
lowerCAmelCase = []
for duplicate_key in duplicates:
lowerCAmelCase = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} )
if len(_UpperCAmelCase ) > 1:
raise ValueError(
F'{duplicate_key} is present several times in the documentation table of content at '
'`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the '
'others.' )
# Only add this once
new_doc.append({'local': duplicate_key, 'title': titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] )
# Sort
return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : s["title"].lower() )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any=False ):
with open(_UpperCAmelCase , encoding='utf-8' ) as f:
lowerCAmelCase = yaml.safe_load(f.read() )
# Get to the API doc
lowerCAmelCase = 0
while content[api_idx]["title"] != "API":
api_idx += 1
lowerCAmelCase = content[api_idx]['sections']
# Then to the model doc
lowerCAmelCase = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
lowerCAmelCase = api_doc[model_idx]['sections']
lowerCAmelCase = [(idx, section) for idx, section in enumerate(_UpperCAmelCase ) if 'sections' in section]
lowerCAmelCase = False
for idx, modality_doc in modalities_docs:
lowerCAmelCase = modality_doc['sections']
lowerCAmelCase = clean_model_doc_toc(_UpperCAmelCase )
if old_modality_doc != new_modality_doc:
lowerCAmelCase = True
if overwrite:
lowerCAmelCase = new_modality_doc
if diff:
if overwrite:
lowerCAmelCase = model_doc
lowerCAmelCase = api_doc
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(yaml.dump(_UpperCAmelCase , allow_unicode=_UpperCAmelCase ) )
else:
raise ValueError(
'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' )
if __name__ == "__main__":
__UpperCamelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
__UpperCamelCase : int = parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 4 |
"""simple docstring"""
import numpy as np
import pandas as pd
from sklearn.preprocessing import Normalizer
from sklearn.svm import SVR
from statsmodels.tsa.statespace.sarimax import SARIMAX
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ):
lowerCAmelCase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCAmelCase )] )
lowerCAmelCase = np.array(_UpperCAmelCase )
lowerCAmelCase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCAmelCase ) ) , x.transpose() ) , _UpperCAmelCase )
return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ):
lowerCAmelCase = (1, 2, 1)
lowerCAmelCase = (1, 1, 0, 7)
lowerCAmelCase = SARIMAX(
_UpperCAmelCase , exog=_UpperCAmelCase , order=_UpperCAmelCase , seasonal_order=_UpperCAmelCase )
lowerCAmelCase = model.fit(disp=_UpperCAmelCase , maxiter=600 , method='nm' )
lowerCAmelCase = model_fit.predict(1 , len(_UpperCAmelCase ) , exog=[test_match] )
return result[0]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ):
lowerCAmelCase = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 )
regressor.fit(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = regressor.predict(_UpperCAmelCase )
return y_pred[0]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ):
train_user.sort()
lowerCAmelCase = np.percentile(_UpperCAmelCase , 25 )
lowerCAmelCase = np.percentile(_UpperCAmelCase , 75 )
lowerCAmelCase = qa - qa
lowerCAmelCase = qa - (iqr * 0.1)
return low_lim
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : float ):
lowerCAmelCase = 0
lowerCAmelCase = 0
for i in list_vote:
if i > actual_result:
lowerCAmelCase = not_safe + 1
else:
if abs(abs(_UpperCAmelCase ) - abs(_UpperCAmelCase ) ) <= 0.1:
safe += 1
else:
not_safe += 1
return safe > not_safe
if __name__ == "__main__":
# data_input_df = pd.read_csv("ex_data.csv", header=None)
__UpperCamelCase : Optional[Any] = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]]
__UpperCamelCase : Any = pd.DataFrame(
data_input, columns=['''total_user''', '''total_even''', '''days''']
)
__UpperCamelCase : Dict = Normalizer().fit_transform(data_input_df.values)
# split data
__UpperCamelCase : Dict = normalize_df[:, 2].tolist()
__UpperCamelCase : Union[str, Any] = normalize_df[:, 0].tolist()
__UpperCamelCase : List[str] = normalize_df[:, 1].tolist()
# for svr (input variable = total date and total match)
__UpperCamelCase : Optional[int] = normalize_df[:, [1, 2]].tolist()
__UpperCamelCase : Tuple = x[: len(x) - 1]
__UpperCamelCase : Any = x[len(x) - 1 :]
# for linear regression & sarimax
__UpperCamelCase : str = total_date[: len(total_date) - 1]
__UpperCamelCase : Union[str, Any] = total_user[: len(total_user) - 1]
__UpperCamelCase : List[Any] = total_match[: len(total_match) - 1]
__UpperCamelCase : Optional[Any] = total_date[len(total_date) - 1 :]
__UpperCamelCase : str = total_user[len(total_user) - 1 :]
__UpperCamelCase : str = total_match[len(total_match) - 1 :]
# voting system with forecasting
__UpperCamelCase : Any = [
linear_regression_prediction(
trn_date, trn_user, trn_match, tst_date, tst_match
),
sarimax_predictor(trn_user, trn_match, tst_match),
support_vector_regressor(x_train, x_test, trn_user),
]
# check the safety of today's data
__UpperCamelCase : List[str] = '''''' if data_safety_checker(res_vote, tst_user) else '''not '''
print('''Today\'s data is {not_str}safe.''')
| 4 | 1 |
"""simple docstring"""
import math
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
lowerCAmelCase = F'Input value of [number={number}] must be an integer'
raise TypeError(_UpperCAmelCase )
if number < 1:
lowerCAmelCase = F'Input value of [number={number}] must be > 0'
raise ValueError(_UpperCAmelCase )
elif number == 1:
return 3
elif number == 2:
return 5
else:
lowerCAmelCase = int(math.log(number // 3 , 2 ) ) + 2
lowerCAmelCase = [3, 5]
lowerCAmelCase = 2
lowerCAmelCase = 3
for block in range(1 , _UpperCAmelCase ):
for _ in range(_UpperCAmelCase ):
proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] )
proth_index += 1
increment *= 2
return proth_list[number - 1]
if __name__ == "__main__":
import doctest
doctest.testmod()
for number in range(11):
__UpperCamelCase : Optional[int] = 0
try:
__UpperCamelCase : List[str] = proth(number)
except ValueError:
print(f'''ValueError: there is no {number}th Proth number''')
continue
print(f'''The {number}th Proth number: {value}''')
| 4 |
"""simple docstring"""
import argparse
import math
import os
import torch
from neural_compressor.utils.pytorch import load
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument(
'-m' , '--pretrained_model_name_or_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , )
parser.add_argument(
'-c' , '--caption' , type=_UpperCAmelCase , default='robotic cat with wings' , help='Text used to generate images.' , )
parser.add_argument(
'-n' , '--images_num' , type=_UpperCAmelCase , default=4 , help='How much images to generate.' , )
parser.add_argument(
'-s' , '--seed' , type=_UpperCAmelCase , default=42 , help='Seed for random process.' , )
parser.add_argument(
'-ci' , '--cuda_id' , type=_UpperCAmelCase , default=0 , help='cuda_id.' , )
lowerCAmelCase = parser.parse_args()
return args
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ):
if not len(_UpperCAmelCase ) == rows * cols:
raise ValueError('The specified number of rows and columns are not correct.' )
lowerCAmelCase ,lowerCAmelCase = imgs[0].size
lowerCAmelCase = Image.new('RGB' , size=(cols * w, rows * h) )
lowerCAmelCase ,lowerCAmelCase = grid.size
for i, img in enumerate(_UpperCAmelCase ):
grid.paste(_UpperCAmelCase , box=(i % cols * w, i // cols * h) )
return grid
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]="robotic cat with wings" , _UpperCAmelCase : Optional[int]=7.5 , _UpperCAmelCase : Dict=50 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=42 , ):
lowerCAmelCase = torch.Generator(pipeline.device ).manual_seed(_UpperCAmelCase )
lowerCAmelCase = pipeline(
_UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , ).images
lowerCAmelCase = int(math.sqrt(_UpperCAmelCase ) )
lowerCAmelCase = image_grid(_UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows )
return grid, images
__UpperCamelCase : Optional[Any] = parse_args()
# Load models and create wrapper for stable diffusion
__UpperCamelCase : List[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''')
__UpperCamelCase : str = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''')
__UpperCamelCase : Optional[int] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''')
__UpperCamelCase : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''')
__UpperCamelCase : Tuple = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer
)
__UpperCamelCase : Union[str, Any] = lambda images, clip_input: (images, False)
if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')):
__UpperCamelCase : Dict = load(args.pretrained_model_name_or_path, model=unet)
unet.eval()
setattr(pipeline, '''unet''', unet)
else:
__UpperCamelCase : Dict = unet.to(torch.device('''cuda''', args.cuda_id))
__UpperCamelCase : Optional[Any] = pipeline.to(unet.device)
__UpperCamelCase ,__UpperCamelCase : List[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed)
grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split()))))
__UpperCamelCase : int = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split()))
os.makedirs(dirname, exist_ok=True)
for idx, image in enumerate(images):
image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
| 4 | 1 |
"""simple docstring"""
import argparse
from collections import defaultdict
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] ):
lowerCAmelCase = F'{file}_{class_name}_{test_name}'
done_test[_id] += 1
with open(_UpperCAmelCase , 'r' ) as f:
lowerCAmelCase = f.readlines()
lowerCAmelCase = F'class {class_name}('
lowerCAmelCase = F'{4 * " "}def {test_name}('
lowerCAmelCase = F'{8 * " "}{correct_line.split()[0]}'
lowerCAmelCase = F'{16 * " "}{correct_line.split()[0]}'
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = 0
lowerCAmelCase = 0
lowerCAmelCase = []
for line in lines:
if line.startswith(_UpperCAmelCase ):
lowerCAmelCase = True
elif in_class and line.startswith(_UpperCAmelCase ):
lowerCAmelCase = True
elif in_class and in_func and (line.startswith(_UpperCAmelCase ) or line.startswith(_UpperCAmelCase )):
lowerCAmelCase = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
lowerCAmelCase = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
lowerCAmelCase = True
if in_class and in_func and in_line and insert_line:
new_lines.append(F'{spaces * " "}{correct_line}' )
lowerCAmelCase = lowerCAmelCase = lowerCAmelCase = lowerCAmelCase = False
else:
new_lines.append(_UpperCAmelCase )
with open(_UpperCAmelCase , 'w' ) as f:
for line in new_lines:
f.write(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple=None ):
if fail is not None:
with open(_UpperCAmelCase , 'r' ) as f:
lowerCAmelCase = {l.strip() for l in f.readlines()}
else:
lowerCAmelCase = None
with open(_UpperCAmelCase , 'r' ) as f:
lowerCAmelCase = f.readlines()
lowerCAmelCase = defaultdict(_UpperCAmelCase )
for line in correct_lines:
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = line.split(';' )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if __name__ == "__main__":
__UpperCamelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''')
parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None)
__UpperCamelCase : Dict = parser.parse_args()
main(args.correct_filename, args.fail_filename)
| 4 |
"""simple docstring"""
import warnings
from pathlib import Path
from typing import List, Tuple, Union
import fire
from torch import nn
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel
from transformers.utils import logging
__UpperCamelCase : List[Any] = logging.get_logger(__name__)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : List[int] ):
lowerCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] )
assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ), F'{len(_UpperCAmelCase )} != {len(_UpperCAmelCase )}'
dest_layers.load_state_dict(layers_to_copy.state_dict() )
__UpperCamelCase : Optional[Any] = {
# maps num layers in teacher -> num_layers in student -> which teacher layers to copy.
# 12: bart, 16: pegasus, 6: marian/Helsinki-NLP
12: {
1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher
2: [0, 6],
3: [0, 6, 11],
4: [0, 4, 8, 11],
6: [0, 2, 4, 7, 9, 11],
9: [0, 1, 2, 4, 5, 7, 9, 10, 11],
12: list(range(12)),
},
16: { # maps num layers in student -> which teacher layers to copy
1: [0],
2: [0, 15],
3: [0, 8, 15],
4: [0, 5, 10, 15],
6: [0, 3, 6, 9, 12, 15],
8: [0, 2, 4, 6, 8, 10, 12, 15],
9: [0, 1, 3, 5, 7, 9, 11, 13, 15],
12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15],
16: list(range(16)),
},
6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))},
}
__UpperCamelCase : int = {
# maps num layers in student -> which teacher layers to copy.
6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]},
12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]},
16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]},
}
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ):
try:
lowerCAmelCase = LAYERS_TO_COPY[n_teacher][n_student]
return val
except KeyError:
if n_student != n_teacher:
warnings.warn(
F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first'
F' {n_student}' )
return list(range(_UpperCAmelCase ) )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ):
if n_student > n_teacher:
raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' )
elif n_teacher == n_student:
return list(range(_UpperCAmelCase ) )
elif n_student == 1:
return [n_teacher - 1]
else:
return LAYERS_TO_SUPERVISE[n_teacher][n_student]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, PreTrainedModel] , _UpperCAmelCase : Union[str, Path] = "student" , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ):
lowerCAmelCase = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.'
assert (e is not None) or (d is not None), _msg
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
AutoTokenizer.from_pretrained(_UpperCAmelCase ).save_pretrained(_UpperCAmelCase ) # purely for convenience
lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).eval()
else:
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), F'teacher must be a model or string got type {type(_UpperCAmelCase )}'
lowerCAmelCase = teacher.config.to_diff_dict()
try:
lowerCAmelCase ,lowerCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers
if e is None:
lowerCAmelCase = teacher_e
if d is None:
lowerCAmelCase = teacher_d
init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} )
except AttributeError: # T5
if hasattr(teacher.config , 'num_encoder_layers' ):
lowerCAmelCase ,lowerCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers
else:
lowerCAmelCase ,lowerCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers
if e is None:
lowerCAmelCase = teacher_e
if d is None:
lowerCAmelCase = teacher_d
if hasattr(teacher.config , 'num_encoder_layers' ):
init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} )
else:
init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} )
# Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs
init_kwargs.update(_UpperCAmelCase )
# Copy weights
lowerCAmelCase = teacher.config_class(**_UpperCAmelCase )
lowerCAmelCase = AutoModelForSeqaSeqLM.from_config(_UpperCAmelCase )
# Start by copying the full teacher state dict this will copy the first N teacher layers to the student.
lowerCAmelCase = student.load_state_dict(teacher.state_dict() , strict=_UpperCAmelCase )
assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys.
if copy_first_teacher_layers: # Our copying is done. We just log and save
lowerCAmelCase ,lowerCAmelCase = list(range(_UpperCAmelCase ) ), list(range(_UpperCAmelCase ) )
logger.info(
F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to'
F' {save_path}' )
student.save_pretrained(_UpperCAmelCase )
return student, e_layers_to_copy, d_layers_to_copy
# Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer.
if e_layers_to_copy is None:
lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase )
if d_layers_to_copy is None:
lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase )
try:
if hasattr(
_UpperCAmelCase , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers
copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _UpperCAmelCase )
copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _UpperCAmelCase )
else:
copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _UpperCAmelCase )
copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _UpperCAmelCase )
except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block
copy_layers(teacher.encoder.block , student.encoder.block , _UpperCAmelCase )
copy_layers(teacher.decoder.block , student.decoder.block , _UpperCAmelCase )
logger.info(
F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' )
lowerCAmelCase = {
'teacher_type': teacher.config.model_type,
'copied_encoder_layers': e_layers_to_copy,
'copied_decoder_layers': d_layers_to_copy,
}
student.save_pretrained(_UpperCAmelCase )
# Save information about copying for easier reproducibility
return student, e_layers_to_copy, d_layers_to_copy
if __name__ == "__main__":
fire.Fire(create_student_by_copying_alternating_layers)
| 4 | 1 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel
@require_tf
class a :
snake_case__ = BlenderbotSmallConfig
snake_case__ = {}
snake_case__ = '''gelu'''
def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=False , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case=0.1 , _snake_case=0.1 , _snake_case=20 , _snake_case=2 , _snake_case=1 , _snake_case=0 , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = eos_token_id
lowerCAmelCase = pad_token_id
lowerCAmelCase = bos_token_id
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
lowerCAmelCase = prepare_blenderbot_small_inputs_dict(_snake_case , _snake_case , _snake_case )
return config, inputs_dict
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFBlenderbotSmallModel(config=_snake_case ).get_decoder()
lowerCAmelCase = inputs_dict['input_ids']
lowerCAmelCase = input_ids[:1, :]
lowerCAmelCase = inputs_dict['attention_mask'][:1, :]
lowerCAmelCase = inputs_dict['head_mask']
lowerCAmelCase = 1
# first forward pass
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , head_mask=_snake_case , use_cache=_snake_case )
lowerCAmelCase ,lowerCAmelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowerCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
lowerCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 )
lowerCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case )[0]
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , past_key_values=_snake_case )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
lowerCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx]
lowerCAmelCase = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_snake_case , _snake_case , rtol=1E-3 )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : str=None , ):
if attention_mask is None:
lowerCAmelCase = tf.cast(tf.math.not_equal(_UpperCAmelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
lowerCAmelCase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
lowerCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class a ( a__ , a__ , unittest.TestCase ):
snake_case__ = (
(TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else ()
)
snake_case__ = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else ()
snake_case__ = (
{
'''conversational''': TFBlenderbotSmallForConditionalGeneration,
'''feature-extraction''': TFBlenderbotSmallModel,
'''summarization''': TFBlenderbotSmallForConditionalGeneration,
'''text2text-generation''': TFBlenderbotSmallForConditionalGeneration,
'''translation''': TFBlenderbotSmallForConditionalGeneration,
}
if is_tf_available()
else {}
)
snake_case__ = True
snake_case__ = False
snake_case__ = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFBlenderbotSmallModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_snake_case )
@require_tokenizers
@require_tf
class a ( unittest.TestCase ):
snake_case__ = [
'''Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like '''
''' i\'m going to throw up.\nand why is that?'''
]
snake_case__ = '''facebook/blenderbot_small-90M'''
@cached_property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' )
@cached_property
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.tokenizer(self.src_text , return_tensors='tf' )
lowerCAmelCase = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_snake_case , )
lowerCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_snake_case )[0]
assert generated_words in (
"i don't know. i just feel like i'm going to throw up. it's not fun.",
"i'm not sure. i just feel like i've been feeling like i have to be in a certain place",
"i'm not sure. i just feel like i've been in a bad situation.",
)
| 4 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__UpperCamelCase : Dict = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = ['''LayoutXLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Any = ['''LayoutXLMTokenizerFast''']
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
__UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__UpperCamelCase : List[Any] = {'''configuration_mmbt''': ['''MMBTConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : List[Any] = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings''']
if TYPE_CHECKING:
from .configuration_mmbt import MMBTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
else:
import sys
__UpperCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 |
"""simple docstring"""
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ):
lowerCAmelCase = 0.00
lowerCAmelCase = 0
for resistor in resistors:
if resistor <= 0:
lowerCAmelCase = F'Resistor at index {index} has a negative or zero value!'
raise ValueError(_UpperCAmelCase )
first_sum += 1 / float(_UpperCAmelCase )
index += 1
return 1 / first_sum
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ):
lowerCAmelCase = 0.00
lowerCAmelCase = 0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
lowerCAmelCase = F'Resistor at index {index} has a negative value!'
raise ValueError(_UpperCAmelCase )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 | 1 |
"""simple docstring"""
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple ):
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class a ( nn.Module ):
def __init__( self , _snake_case , _snake_case ):
"""simple docstring"""
super().__init__()
lowerCAmelCase = module
lowerCAmelCase = nn.Sequential(
nn.Linear(module.in_features , _snake_case , bias=_snake_case ) , nn.Linear(_snake_case , module.out_features , bias=_snake_case ) , )
lowerCAmelCase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=_snake_case )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def UpperCamelCase__ ( self , _snake_case , *_snake_case , **_snake_case ):
"""simple docstring"""
return self.module(_snake_case , *_snake_case , **_snake_case ) + self.adapter(_snake_case )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class a ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
snake_case__ = '''bigscience/bloom-1b7'''
# Constant values
snake_case__ = 2.1_09_65_95_52_69_25_74
snake_case__ = '''Hello my name is'''
snake_case__ = set()
EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' )
EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' )
EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' )
snake_case__ = 1_0
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = AutoTokenizer.from_pretrained(self.model_name )
class a ( a__ ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().setUp()
# Models and tokenizer
lowerCAmelCase = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='auto' )
lowerCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_snake_case , device_map='auto' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_abit.config
self.assertTrue(hasattr(_snake_case , 'quantization_config' ) )
lowerCAmelCase = config.to_dict()
lowerCAmelCase = config.to_diff_dict()
lowerCAmelCase = config.to_json_string()
def UpperCamelCase__ ( self ):
"""simple docstring"""
from bitsandbytes.nn import Paramsabit
lowerCAmelCase = self.model_fpaa.get_memory_footprint()
lowerCAmelCase = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
lowerCAmelCase = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def UpperCamelCase__ ( self ):
"""simple docstring"""
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(_snake_case , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.tokenizer(self.input_text , return_tensors='pt' )
lowerCAmelCase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_snake_case ) , self.EXPECTED_OUTPUTS )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = BitsAndBytesConfig()
lowerCAmelCase = True
lowerCAmelCase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_snake_case , device_map='auto' )
lowerCAmelCase = self.tokenizer(self.input_text , return_tensors='pt' )
lowerCAmelCase = model_abit_from_config.generate(
input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_snake_case ) , self.EXPECTED_OUTPUTS )
def UpperCamelCase__ ( self ):
"""simple docstring"""
with self.assertRaises(_snake_case ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = BitsAndBytesConfig()
with self.assertRaises(_snake_case ):
lowerCAmelCase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_snake_case , load_in_abit=_snake_case , device_map='auto' , bnb_abit_quant_type='nf4' , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
with self.assertRaises(_snake_case ):
# Tries with `str`
self.model_abit.to('cpu' )
with self.assertRaises(_snake_case ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(_snake_case ):
# Tries with a `device`
self.model_abit.to(torch.device('cuda:0' ) )
with self.assertRaises(_snake_case ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(_snake_case ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
lowerCAmelCase = self.tokenizer(self.input_text , return_tensors='pt' )
lowerCAmelCase = self.model_fpaa.to(torch.floataa )
lowerCAmelCase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
# Check this does not throw an error
lowerCAmelCase = self.model_fpaa.to('cpu' )
# Check this does not throw an error
lowerCAmelCase = self.model_fpaa.half()
# Check this does not throw an error
lowerCAmelCase = self.model_fpaa.float()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_snake_case , device_map='auto' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class a ( unittest.TestCase ):
@classmethod
def UpperCamelCase__ ( cls ):
"""simple docstring"""
lowerCAmelCase = 't5-small'
lowerCAmelCase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense
lowerCAmelCase = AutoTokenizer.from_pretrained(cls.model_name )
lowerCAmelCase = 'Translate in German: Hello, my dog is cute'
def UpperCamelCase__ ( self ):
"""simple docstring"""
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self ):
"""simple docstring"""
from transformers import TaForConditionalGeneration
lowerCAmelCase = TaForConditionalGeneration._keep_in_fpaa_modules
lowerCAmelCase = None
# test with `t5-small`
lowerCAmelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_snake_case , device_map='auto' )
lowerCAmelCase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
lowerCAmelCase = model.generate(**_snake_case )
# test with `flan-t5-small`
lowerCAmelCase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_snake_case , device_map='auto' )
lowerCAmelCase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
lowerCAmelCase = model.generate(**_snake_case )
lowerCAmelCase = modules
def UpperCamelCase__ ( self ):
"""simple docstring"""
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
lowerCAmelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_snake_case , device_map='auto' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
lowerCAmelCase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
lowerCAmelCase = model.generate(**_snake_case )
# test with `flan-t5-small`
lowerCAmelCase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_snake_case , device_map='auto' )
lowerCAmelCase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
lowerCAmelCase = model.generate(**_snake_case )
class a ( a__ ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().setUp()
# model_name
lowerCAmelCase = 'bigscience/bloom-560m'
lowerCAmelCase = 't5-small'
# Different types of model
lowerCAmelCase = AutoModel.from_pretrained(self.model_name , load_in_abit=_snake_case , device_map='auto' )
# Sequence classification model
lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=_snake_case , device_map='auto' )
# CausalLM model
lowerCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_snake_case , device_map='auto' )
# Seq2seq model
lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=_snake_case , device_map='auto' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self ):
"""simple docstring"""
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class a ( a__ ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().setUp()
def UpperCamelCase__ ( self ):
"""simple docstring"""
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = pipeline(
'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
lowerCAmelCase = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class a ( a__ ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().setUp()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=_snake_case , device_map='balanced' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
lowerCAmelCase = self.tokenizer(self.input_text , return_tensors='pt' )
# Second real batch
lowerCAmelCase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_snake_case ) , self.EXPECTED_OUTPUTS )
class a ( a__ ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'facebook/opt-350m'
super().setUp()
def UpperCamelCase__ ( self ):
"""simple docstring"""
if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ):
return
# Step 1: freeze all parameters
lowerCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_snake_case )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
lowerCAmelCase = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
lowerCAmelCase = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(_snake_case ) ):
lowerCAmelCase = LoRALayer(module.q_proj , rank=16 )
lowerCAmelCase = LoRALayer(module.k_proj , rank=16 )
lowerCAmelCase = LoRALayer(module.v_proj , rank=16 )
# Step 3: dummy batch
lowerCAmelCase = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
lowerCAmelCase = model.forward(**_snake_case )
out.logits.norm().backward()
for module in model.modules():
if isinstance(_snake_case , _snake_case ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(_snake_case , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class a ( a__ ):
snake_case__ = '''gpt2-xl'''
snake_case__ = 3.31_91_85_48_54_15_21_87
| 4 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase : List[str] = logging.get_logger(__name__)
__UpperCamelCase : Tuple = {
'''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''',
# See all GLPN models at https://huggingface.co/models?filter=glpn
}
class a ( a__ ):
snake_case__ = '''glpn'''
def __init__( self , _snake_case=3 , _snake_case=4 , _snake_case=[2, 2, 2, 2] , _snake_case=[8, 4, 2, 1] , _snake_case=[32, 64, 1_60, 2_56] , _snake_case=[7, 3, 3, 3] , _snake_case=[4, 2, 2, 2] , _snake_case=[1, 2, 5, 8] , _snake_case=[4, 4, 4, 4] , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=0.1 , _snake_case=1E-6 , _snake_case=64 , _snake_case=10 , _snake_case=-1 , **_snake_case , ):
"""simple docstring"""
super().__init__(**_snake_case )
lowerCAmelCase = num_channels
lowerCAmelCase = num_encoder_blocks
lowerCAmelCase = depths
lowerCAmelCase = sr_ratios
lowerCAmelCase = hidden_sizes
lowerCAmelCase = patch_sizes
lowerCAmelCase = strides
lowerCAmelCase = mlp_ratios
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = initializer_range
lowerCAmelCase = drop_path_rate
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = decoder_hidden_size
lowerCAmelCase = max_depth
lowerCAmelCase = head_in_index
| 4 | 1 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = tempfile.mkdtemp()
# fmt: off
lowerCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest']
# fmt: on
lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
lowerCAmelCase = {
'do_resize': True,
'size': {'height': 18, 'width': 18},
'do_normalize': True,
'image_mean': [0.5, 0.5, 0.5],
'image_std': [0.5, 0.5, 0.5],
}
lowerCAmelCase = os.path.join(self.tmpdirname , _snake_case )
with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:
json.dump(_snake_case , _snake_case )
def UpperCamelCase__ ( self , **_snake_case ):
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname , **_snake_case )
def UpperCamelCase__ ( self , **_snake_case ):
"""simple docstring"""
return ViTImageProcessor.from_pretrained(self.tmpdirname , **_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
lowerCAmelCase = [Image.fromarray(np.moveaxis(_snake_case , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_snake_case , image_processor=_snake_case )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
lowerCAmelCase = self.get_image_processor(do_normalize=_snake_case , padding_value=1.0 )
lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_snake_case , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_snake_case , image_processor=_snake_case )
lowerCAmelCase = self.prepare_image_inputs()
lowerCAmelCase = image_processor(_snake_case , return_tensors='np' )
lowerCAmelCase = processor(images=_snake_case , return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_snake_case , image_processor=_snake_case )
lowerCAmelCase = 'lower newer'
lowerCAmelCase = processor(text=_snake_case )
lowerCAmelCase = tokenizer(_snake_case )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_snake_case , image_processor=_snake_case )
lowerCAmelCase = 'lower newer'
lowerCAmelCase = self.prepare_image_inputs()
lowerCAmelCase = processor(text=_snake_case , images=_snake_case )
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with self.assertRaises(_snake_case ):
processor()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_snake_case , image_processor=_snake_case )
lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase = processor.batch_decode(_snake_case )
lowerCAmelCase = tokenizer.batch_decode(_snake_case )
self.assertListEqual(_snake_case , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_snake_case , image_processor=_snake_case )
lowerCAmelCase = 'lower newer'
lowerCAmelCase = self.prepare_image_inputs()
lowerCAmelCase = processor(text=_snake_case , images=_snake_case )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 4 |
"""simple docstring"""
from __future__ import annotations
import unittest
import numpy as np
from transformers import LayoutLMConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.layoutlm.modeling_tf_layoutlm import (
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMForMaskedLM,
TFLayoutLMForQuestionAnswering,
TFLayoutLMForSequenceClassification,
TFLayoutLMForTokenClassification,
TFLayoutLMModel,
)
class a :
def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , _snake_case=10_00 , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_input_mask
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
lowerCAmelCase = range_bbox
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# convert bbox to numpy since TF does not support item assignment
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
lowerCAmelCase = bbox[i, j, 3]
lowerCAmelCase = bbox[i, j, 1]
lowerCAmelCase = t
if bbox[i, j, 2] < bbox[i, j, 0]:
lowerCAmelCase = bbox[i, j, 2]
lowerCAmelCase = bbox[i, j, 0]
lowerCAmelCase = t
lowerCAmelCase = tf.convert_to_tensor(_snake_case )
lowerCAmelCase = None
if self.use_input_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
if self.use_token_type_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = LayoutLMConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMModel(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , token_type_ids=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForMaskedLM(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = TFLayoutLMForSequenceClassification(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = TFLayoutLMForTokenClassification(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForQuestionAnswering(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {
'input_ids': input_ids,
'bbox': bbox,
'token_type_ids': token_type_ids,
'attention_mask': input_mask,
}
return config, inputs_dict
@require_tf
class a ( a__ , a__ , unittest.TestCase ):
snake_case__ = (
(
TFLayoutLMModel,
TFLayoutLMForMaskedLM,
TFLayoutLMForTokenClassification,
TFLayoutLMForSequenceClassification,
TFLayoutLMForQuestionAnswering,
)
if is_tf_available()
else ()
)
snake_case__ = (
{
'''feature-extraction''': TFLayoutLMModel,
'''fill-mask''': TFLayoutLMForMaskedLM,
'''text-classification''': TFLayoutLMForSequenceClassification,
'''token-classification''': TFLayoutLMForTokenClassification,
'''zero-shot''': TFLayoutLMForSequenceClassification,
}
if is_tf_available()
else {}
)
snake_case__ = False
snake_case__ = True
snake_case__ = 1_0
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = TFLayoutLMModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
@unittest.skip('Onnx compliancy broke with TF 2.10' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def _SCREAMING_SNAKE_CASE ():
# Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on:
# fmt: off
lowerCAmelCase = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231
lowerCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231
lowerCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231
lowerCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231
# these are sequence labels (i.e. at the token level)
lowerCAmelCase = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231
# fmt: on
return input_ids, attention_mask, bbox, token_type_ids, labels
@require_tf
class a ( unittest.TestCase ):
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
# test the sequence output on [0, :3, :3]
lowerCAmelCase = tf.convert_to_tensor(
[[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]] , )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _snake_case , atol=1E-3 ) )
# test the pooled output on [1, :3]
lowerCAmelCase = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552] )
self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _snake_case , atol=1E-3 ) )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
lowerCAmelCase = model(
input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=tf.convert_to_tensor([1, 1] ) , )
# test whether we get a loss as a scalar
lowerCAmelCase = outputs.loss
lowerCAmelCase = (2,)
self.assertEqual(loss.shape , _snake_case )
# test the shape of the logits
lowerCAmelCase = outputs.logits
lowerCAmelCase = (2, 2)
self.assertEqual(logits.shape , _snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
lowerCAmelCase = model(
input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case )
# test the shape of the logits
lowerCAmelCase = outputs.logits
lowerCAmelCase = tf.convert_to_tensor((2, 25, 13) )
self.assertEqual(logits.shape , _snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
# test the shape of the logits
lowerCAmelCase = tf.convert_to_tensor((2, 25) )
self.assertEqual(outputs.start_logits.shape , _snake_case )
self.assertEqual(outputs.end_logits.shape , _snake_case )
| 4 | 1 |
"""simple docstring"""
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class a ( a__ ):
@slow
@require_torch
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' )
lowerCAmelCase = BertTokenizer.from_pretrained('bert-base-uncased' )
lowerCAmelCase = bertabert.config.encoder.vocab_size
lowerCAmelCase = tokenizer.sep_token_id
lowerCAmelCase = tokenizer.cls_token_id
lowerCAmelCase = 1_28
lowerCAmelCase = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' )
lowerCAmelCase = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' )
lowerCAmelCase = train_dataset.select(range(32 ) )
lowerCAmelCase = val_dataset.select(range(16 ) )
lowerCAmelCase = 4
def _map_to_encoder_decoder_inputs(_snake_case ):
# Tokenizer will automatically set [BOS] <text> [EOS]
lowerCAmelCase = tokenizer(batch['article'] , padding='max_length' , truncation=_snake_case , max_length=5_12 )
lowerCAmelCase = tokenizer(batch['highlights'] , padding='max_length' , truncation=_snake_case , max_length=1_28 )
lowerCAmelCase = inputs.input_ids
lowerCAmelCase = inputs.attention_mask
lowerCAmelCase = outputs.input_ids
lowerCAmelCase = outputs.input_ids.copy()
lowerCAmelCase = [
[-1_00 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels']
]
lowerCAmelCase = outputs.attention_mask
assert all(len(_snake_case ) == 5_12 for x in inputs.input_ids )
assert all(len(_snake_case ) == 1_28 for x in outputs.input_ids )
return batch
def _compute_metrics(_snake_case ):
lowerCAmelCase = pred.label_ids
lowerCAmelCase = pred.predictions
# all unnecessary tokens are removed
lowerCAmelCase = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case )
lowerCAmelCase = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case )
lowerCAmelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_snake_case ) )] ) / len(_snake_case )
return {"accuracy": accuracy}
# map train dataset
lowerCAmelCase = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=_snake_case , batch_size=_snake_case , remove_columns=['article', 'highlights'] , )
train_dataset.set_format(
type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , )
# same for validation dataset
lowerCAmelCase = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=_snake_case , batch_size=_snake_case , remove_columns=['article', 'highlights'] , )
val_dataset.set_format(
type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , )
lowerCAmelCase = self.get_auto_remove_tmp_dir()
lowerCAmelCase = SeqaSeqTrainingArguments(
output_dir=_snake_case , per_device_train_batch_size=_snake_case , per_device_eval_batch_size=_snake_case , predict_with_generate=_snake_case , evaluation_strategy='steps' , do_train=_snake_case , do_eval=_snake_case , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
lowerCAmelCase = SeqaSeqTrainer(
model=_snake_case , args=_snake_case , compute_metrics=_compute_metrics , train_dataset=_snake_case , eval_dataset=_snake_case , tokenizer=_snake_case , )
# start training
trainer.train()
| 4 |
"""simple docstring"""
import argparse
import os
import re
import packaging.version
__UpperCamelCase : Union[str, Any] = '''examples/'''
__UpperCamelCase : str = {
'''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''),
'''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''),
'''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''),
'''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''),
}
__UpperCamelCase : List[str] = {
'''init''': '''src/transformers/__init__.py''',
'''setup''': '''setup.py''',
}
__UpperCamelCase : Optional[int] = '''README.md'''
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ):
with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f:
lowerCAmelCase = f.read()
lowerCAmelCase ,lowerCAmelCase = REPLACE_PATTERNS[pattern]
lowerCAmelCase = replace.replace('VERSION' , _UpperCAmelCase )
lowerCAmelCase = re_pattern.sub(_UpperCAmelCase , _UpperCAmelCase )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ):
for folder, directories, fnames in os.walk(_UpperCAmelCase ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('research_projects' )
if "legacy" in directories:
directories.remove('legacy' )
for fname in fnames:
if fname.endswith('.py' ):
update_version_in_file(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , pattern='examples' )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict=False ):
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if not patch:
update_version_in_examples(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = '๐ค Transformers currently provides the following architectures'
lowerCAmelCase = '1. Want to contribute a new model?'
with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f:
lowerCAmelCase = f.readlines()
# Find the start of the list.
lowerCAmelCase = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
lowerCAmelCase = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('1.' ):
lowerCAmelCase = lines[index].replace(
'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , )
index += 1
with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE ():
with open(REPLACE_FILES['init'] , 'r' ) as f:
lowerCAmelCase = f.read()
lowerCAmelCase = REPLACE_PATTERNS['init'][0].search(_UpperCAmelCase ).groups()[0]
return packaging.version.parse(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple=False ):
lowerCAmelCase = get_version()
if patch and default_version.is_devrelease:
raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' )
if default_version.is_devrelease:
lowerCAmelCase = default_version.base_version
elif patch:
lowerCAmelCase = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}'
else:
lowerCAmelCase = F'{default_version.major}.{default_version.minor + 1}.0'
# Now let's ask nicely if that's the right one.
lowerCAmelCase = input(F'Which version are you releasing? [{default_version}]' )
if len(_UpperCAmelCase ) == 0:
lowerCAmelCase = default_version
print(F'Updating version to {version}.' )
global_version_update(_UpperCAmelCase , patch=_UpperCAmelCase )
if not patch:
print('Cleaning main README, don\'t forget to run `make fix-copies`.' )
clean_main_ref_in_model_list()
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = get_version()
lowerCAmelCase = F'{current_version.major}.{current_version.minor + 1}.0.dev0'
lowerCAmelCase = current_version.base_version
# Check with the user we got that right.
lowerCAmelCase = input(F'Which version are we developing now? [{dev_version}]' )
if len(_UpperCAmelCase ) == 0:
lowerCAmelCase = dev_version
print(F'Updating version to {version}.' )
global_version_update(_UpperCAmelCase )
print('Cleaning main README, don\'t forget to run `make fix-copies`.' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
__UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''')
parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''')
__UpperCamelCase : Optional[int] = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('''Nothing to do after a patch :-)''')
else:
post_release_work()
| 4 | 1 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_lxmert import LxmertTokenizer
__UpperCamelCase : Union[str, Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__UpperCamelCase : int = {
'''vocab_file''': {
'''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''',
},
'''tokenizer_file''': {
'''unc-nlp/lxmert-base-uncased''': (
'''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json'''
),
},
}
__UpperCamelCase : List[str] = {
'''unc-nlp/lxmert-base-uncased''': 512,
}
__UpperCamelCase : Optional[int] = {
'''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True},
}
class a ( a__ ):
snake_case__ = VOCAB_FILES_NAMES
snake_case__ = PRETRAINED_VOCAB_FILES_MAP
snake_case__ = PRETRAINED_INIT_CONFIGURATION
snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ = LxmertTokenizer
def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ):
"""simple docstring"""
super().__init__(
_snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , )
lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , _snake_case ) != do_lower_case
or normalizer_state.get('strip_accents' , _snake_case ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , _snake_case ) != tokenize_chinese_chars
):
lowerCAmelCase = getattr(_snake_case , normalizer_state.pop('type' ) )
lowerCAmelCase = do_lower_case
lowerCAmelCase = strip_accents
lowerCAmelCase = tokenize_chinese_chars
lowerCAmelCase = normalizer_class(**_snake_case )
lowerCAmelCase = do_lower_case
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case )
return tuple(_snake_case )
| 4 |
"""simple docstring"""
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
__UpperCamelCase : Optional[int] = pytest.mark.integration
@require_faiss
class a ( a__ ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_snake_case ) for x in np.arange(30 ).tolist()]} )
return dset
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = self._create_dummy_dataset()
lowerCAmelCase = dset.map(
lambda _snake_case , _snake_case : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_snake_case , keep_in_memory=_snake_case )
lowerCAmelCase = dset.add_faiss_index('vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT )
lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
dset.drop_index('vecs' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , )
lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file:
dset.save_faiss_index('vecs' , tmp_file.name )
dset.load_faiss_index('vecs2' , tmp_file.name )
os.unlink(tmp_file.name )
lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' )
dset.drop_index('vecs' )
self.assertRaises(_snake_case , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
from elasticsearch import Elasticsearch
lowerCAmelCase = self._create_dummy_dataset()
with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(
'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:
lowerCAmelCase = {'acknowledged': True}
mocked_bulk.return_value([(True, None)] * 30 )
lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 29}]}}
lowerCAmelCase = Elasticsearch()
dset.add_elasticsearch_index('filename' , es_client=_snake_case )
lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('filename' , 'my_name-train_29' )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
@require_faiss
class a ( a__ ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
lowerCAmelCase = np.zeros(5 , dtype=np.floataa )
lowerCAmelCase = 1
lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case )
self.assertRaises(_snake_case , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
lowerCAmelCase = np.eye(5 , dtype=np.floataa )[::-1]
lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case )
self.assertRaises(_snake_case , index.search_batch , queries[0] )
lowerCAmelCase = [scores[0] for scores in total_scores]
lowerCAmelCase = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_snake_case ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = FaissIndex(string_factory='Flat' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
lowerCAmelCase = FaissIndex(string_factory='LSH' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(_snake_case ):
lowerCAmelCase = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = faiss.IndexFlat(5 )
lowerCAmelCase = FaissIndex(custom_index=_snake_case )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file:
index.save(tmp_file.name )
lowerCAmelCase = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
lowerCAmelCase = np.zeros(5 , dtype=np.floataa )
lowerCAmelCase = 1
lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ):
import faiss
lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
lowerCAmelCase = 'index.faiss'
lowerCAmelCase = F'mock://{index_name}'
index.save(_UpperCAmelCase , storage_options=mockfs.storage_options )
lowerCAmelCase = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options )
lowerCAmelCase = np.zeros(5 , dtype=np.floataa )
lowerCAmelCase = 1
lowerCAmelCase ,lowerCAmelCase = index.search(_UpperCAmelCase )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class a ( a__ ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
from elasticsearch import Elasticsearch
with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(
'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:
lowerCAmelCase = Elasticsearch()
lowerCAmelCase = {'acknowledged': True}
lowerCAmelCase = ElasticSearchIndex(es_client=_snake_case )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(['foo', 'bar', 'foobar'] )
# single query
lowerCAmelCase = 'foo'
lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
lowerCAmelCase = 'foo'
lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
lowerCAmelCase = ['foo', 'bar', 'foobar']
lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case )
lowerCAmelCase = [scores[0] for scores in total_scores]
lowerCAmelCase = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_snake_case ) , 0 )
self.assertListEqual([1, 1, 1] , _snake_case )
# batched queries with timeout
lowerCAmelCase = ['foo', 'bar', 'foobar']
lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case , request_timeout=30 )
lowerCAmelCase = [scores[0] for scores in total_scores]
lowerCAmelCase = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_snake_case ) , 0 )
self.assertListEqual([1, 1, 1] , _snake_case )
| 4 | 1 |
"""simple docstring"""
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
__UpperCamelCase : Tuple = logging.get_logger(__name__)
class a ( a__ ):
snake_case__ = ['''input_features''', '''is_longer''']
def __init__( self , _snake_case=64 , _snake_case=4_80_00 , _snake_case=4_80 , _snake_case=10 , _snake_case=10_24 , _snake_case=0.0 , _snake_case=False , _snake_case = 0 , _snake_case = 1_40_00 , _snake_case = None , _snake_case = "fusion" , _snake_case = "repeatpad" , **_snake_case , ):
"""simple docstring"""
super().__init__(
feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , return_attention_mask=_snake_case , **_snake_case , )
lowerCAmelCase = top_db
lowerCAmelCase = truncation
lowerCAmelCase = padding
lowerCAmelCase = fft_window_size
lowerCAmelCase = (fft_window_size >> 1) + 1
lowerCAmelCase = hop_length
lowerCAmelCase = max_length_s
lowerCAmelCase = max_length_s * sampling_rate
lowerCAmelCase = sampling_rate
lowerCAmelCase = frequency_min
lowerCAmelCase = frequency_max
lowerCAmelCase = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_snake_case , min_frequency=_snake_case , max_frequency=_snake_case , sampling_rate=_snake_case , norm=_snake_case , mel_scale='htk' , )
lowerCAmelCase = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_snake_case , min_frequency=_snake_case , max_frequency=_snake_case , sampling_rate=_snake_case , norm='slaney' , mel_scale='slaney' , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = copy.deepcopy(self.__dict__ )
lowerCAmelCase = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = spectrogram(
_snake_case , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_snake_case , log_mel='dB' , )
return log_mel_spectrogram.T
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
lowerCAmelCase = [0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
lowerCAmelCase = [0]
# randomly choose index for each part
lowerCAmelCase = np.random.choice(ranges[0] )
lowerCAmelCase = np.random.choice(ranges[1] )
lowerCAmelCase = np.random.choice(ranges[2] )
lowerCAmelCase = mel[idx_front : idx_front + chunk_frames, :]
lowerCAmelCase = mel[idx_middle : idx_middle + chunk_frames, :]
lowerCAmelCase = mel[idx_back : idx_back + chunk_frames, :]
lowerCAmelCase = torch.tensor(mel[None, None, :] )
lowerCAmelCase = torch.nn.functional.interpolate(
_snake_case , size=[chunk_frames, 64] , mode='bilinear' , align_corners=_snake_case )
lowerCAmelCase = mel_shrink[0][0].numpy()
lowerCAmelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 )
return mel_fusion
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
lowerCAmelCase = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
lowerCAmelCase = len(_snake_case ) - max_length
lowerCAmelCase = np.random.randint(0 , overflow + 1 )
lowerCAmelCase = waveform[idx : idx + max_length]
lowerCAmelCase = self._np_extract_fbank_features(_snake_case , self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
lowerCAmelCase = self._np_extract_fbank_features(_snake_case , self.mel_filters )
lowerCAmelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
lowerCAmelCase = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
lowerCAmelCase = np.stack([mel, mel, mel, mel] , axis=0 )
lowerCAmelCase = False
else:
lowerCAmelCase = self._random_mel_fusion(_snake_case , _snake_case , _snake_case )
lowerCAmelCase = True
else:
raise NotImplementedError(F'data_truncating {truncation} not implemented' )
else:
lowerCAmelCase = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
lowerCAmelCase = int(max_length / len(_snake_case ) )
lowerCAmelCase = np.stack(np.tile(_snake_case , n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
lowerCAmelCase = int(max_length / len(_snake_case ) )
lowerCAmelCase = np.stack(np.tile(_snake_case , _snake_case ) )
lowerCAmelCase = np.pad(_snake_case , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 )
if truncation == "fusion":
lowerCAmelCase = self._np_extract_fbank_features(_snake_case , self.mel_filters )
lowerCAmelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 )
else:
lowerCAmelCase = self._np_extract_fbank_features(_snake_case , self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , **_snake_case , ):
"""simple docstring"""
lowerCAmelCase = truncation if truncation is not None else self.truncation
lowerCAmelCase = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a'
F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input'
F' was sampled with {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
lowerCAmelCase = isinstance(_snake_case , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'Only mono-channel audio is supported for input to {self}' )
lowerCAmelCase = is_batched_numpy or (
isinstance(_snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
lowerCAmelCase = [np.asarray(_snake_case , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(_snake_case , np.ndarray ):
lowerCAmelCase = np.asarray(_snake_case , dtype=np.floataa )
elif isinstance(_snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowerCAmelCase = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowerCAmelCase = [np.asarray(_snake_case )]
# convert to mel spectrogram, truncate and pad if needed.
lowerCAmelCase = [
self._get_input_mel(_snake_case , max_length if max_length else self.nb_max_samples , _snake_case , _snake_case )
for waveform in raw_speech
]
lowerCAmelCase = []
lowerCAmelCase = []
for mel, longer in padded_inputs:
input_mel.append(_snake_case )
is_longer.append(_snake_case )
if truncation == "fusion" and sum(_snake_case ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
lowerCAmelCase = np.random.randint(0 , len(_snake_case ) )
lowerCAmelCase = True
if isinstance(input_mel[0] , _snake_case ):
lowerCAmelCase = [np.asarray(_snake_case , dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
lowerCAmelCase = [[longer] for longer in is_longer]
lowerCAmelCase = {'input_features': input_mel, 'is_longer': is_longer}
lowerCAmelCase = BatchFeature(_snake_case )
if return_tensors is not None:
lowerCAmelCase = input_features.convert_to_tensors(_snake_case )
return input_features
| 4 |
"""simple docstring"""
import random
import unittest
import torch
from diffusers import IFInpaintingPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class a ( a__ , a__ , unittest.TestCase ):
snake_case__ = IFInpaintingPipeline
snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''}
snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
snake_case__ = PipelineTesterMixin.required_optional_params - {'''latents'''}
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self._get_dummy_components()
def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ):
"""simple docstring"""
if str(_snake_case ).startswith('mps' ):
lowerCAmelCase = torch.manual_seed(_snake_case )
else:
lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case )
lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case )
lowerCAmelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1E-1 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_save_load_local()
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 4 | 1 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__UpperCamelCase : Optional[int] = {'''configuration_timm_backbone''': ['''TimmBackboneConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = ['''TimmBackbone''']
if TYPE_CHECKING:
from .configuration_timm_backbone import TimmBackboneConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_timm_backbone import TimmBackbone
else:
import sys
__UpperCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class a :
def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
lowerCAmelCase = self.vocab_size - 1
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_token_type_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTModel(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , head_mask=_snake_case )
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case )
lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTLMHeadModel(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTDoubleHeadsModel(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = OpenAIGPTForSequenceClassification(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {
'input_ids': input_ids,
'token_type_ids': token_type_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_torch
class a ( a__ , a__ , a__ , unittest.TestCase ):
snake_case__ = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
snake_case__ = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
snake_case__ = (
{
'''feature-extraction''': OpenAIGPTModel,
'''text-classification''': OpenAIGPTForSequenceClassification,
'''text-generation''': OpenAIGPTLMHeadModel,
'''zero-shot''': OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=False ):
"""simple docstring"""
lowerCAmelCase = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
lowerCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_snake_case , )
lowerCAmelCase = inputs_dict['labels']
lowerCAmelCase = inputs_dict['labels']
lowerCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_snake_case , )
lowerCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_snake_case )
return inputs_dict
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , n_embd=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = OpenAIGPTModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
@require_torch
class a ( unittest.TestCase ):
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' )
model.to(_snake_case )
lowerCAmelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=_snake_case ) # the president is
lowerCAmelCase = [
4_81,
47_35,
5_44,
2_46,
9_63,
8_70,
7_62,
2_39,
2_44,
4_04_77,
2_44,
2_49,
7_19,
8_81,
4_87,
5_44,
2_40,
2_44,
6_03,
4_81,
] # the president is a very good man. " \n " i\'m sure he is, " said the
lowerCAmelCase = model.generate(_snake_case , do_sample=_snake_case )
self.assertListEqual(output_ids[0].tolist() , _snake_case )
| 4 | 1 |
"""simple docstring"""
import unittest
from knapsack import greedy_knapsack as kp
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = [10, 20, 30, 40, 50, 60]
lowerCAmelCase = [2, 4, 6, 8, 10, 12]
lowerCAmelCase = 1_00
self.assertEqual(kp.calc_profit(_snake_case , _snake_case , _snake_case ) , 2_10 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.assertRaisesRegex(_snake_case , 'max_weight must greater than zero.' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.assertRaisesRegex(_snake_case , 'Weight can not be negative.' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.assertRaisesRegex(_snake_case , 'Profit can not be negative.' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.assertRaisesRegex(_snake_case , 'max_weight must greater than zero.' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.assertRaisesRegex(
_snake_case , 'The length of profit and weight must be same.' )
if __name__ == "__main__":
unittest.main()
| 4 |
"""simple docstring"""
import argparse
import logging
import pickle
import random
import time
import numpy as np
from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO
)
__UpperCamelCase : str = logging.getLogger(__name__)
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = argparse.ArgumentParser(
description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' )
parser.add_argument('--file_path' , type=_UpperCAmelCase , default='data/dump.txt' , help='The path to the data.' )
parser.add_argument('--tokenizer_type' , type=_UpperCAmelCase , default='bert' , choices=['bert', 'roberta', 'gpt2'] )
parser.add_argument('--tokenizer_name' , type=_UpperCAmelCase , default='bert-base-uncased' , help='The tokenizer to use.' )
parser.add_argument('--dump_file' , type=_UpperCAmelCase , default='data/dump' , help='The dump file prefix.' )
lowerCAmelCase = parser.parse_args()
logger.info(F'Loading Tokenizer ({args.tokenizer_name})' )
if args.tokenizer_type == "bert":
lowerCAmelCase = BertTokenizer.from_pretrained(args.tokenizer_name )
lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `[CLS]`
lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `[SEP]`
elif args.tokenizer_type == "roberta":
lowerCAmelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name )
lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `<s>`
lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `</s>`
elif args.tokenizer_type == "gpt2":
lowerCAmelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name )
lowerCAmelCase = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>`
lowerCAmelCase = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>`
logger.info(F'Loading text from {args.file_path}' )
with open(args.file_path , 'r' , encoding='utf8' ) as fp:
lowerCAmelCase = fp.readlines()
logger.info('Start encoding' )
logger.info(F'{len(_UpperCAmelCase )} examples to process.' )
lowerCAmelCase = []
lowerCAmelCase = 0
lowerCAmelCase = 1_0000
lowerCAmelCase = time.time()
for text in data:
lowerCAmelCase = F'{bos} {text.strip()} {sep}'
lowerCAmelCase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
rslt.append(_UpperCAmelCase )
iter += 1
if iter % interval == 0:
lowerCAmelCase = time.time()
logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' )
lowerCAmelCase = time.time()
logger.info('Finished binarization' )
logger.info(F'{len(_UpperCAmelCase )} examples processed.' )
lowerCAmelCase = F'{args.dump_file}.{args.tokenizer_name}.pickle'
lowerCAmelCase = tokenizer.vocab_size
if vocab_size < (1 << 16):
lowerCAmelCase = [np.uintaa(_UpperCAmelCase ) for d in rslt]
else:
lowerCAmelCase = [np.intaa(_UpperCAmelCase ) for d in rslt]
random.shuffle(rslt_ )
logger.info(F'Dump to {dp_file}' )
with open(_UpperCAmelCase , 'wb' ) as handle:
pickle.dump(rslt_ , _UpperCAmelCase , protocol=pickle.HIGHEST_PROTOCOL )
if __name__ == "__main__":
main()
| 4 | 1 |
"""simple docstring"""
import os
from pathlib import Path
from unittest.mock import patch
import pytest
import zstandard as zstd
from datasets.download.download_config import DownloadConfig
from datasets.utils.file_utils import (
OfflineModeIsEnabled,
cached_path,
fsspec_get,
fsspec_head,
ftp_get,
ftp_head,
get_from_cache,
http_get,
http_head,
)
__UpperCamelCase : Union[str, Any] = '''\
Text data.
Second line of data.'''
__UpperCamelCase : Tuple = '''file'''
@pytest.fixture(scope='session' )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ):
lowerCAmelCase = tmp_path_factory.mktemp('data' ) / (FILE_PATH + '.zstd')
lowerCAmelCase = bytes(_UpperCAmelCase , 'utf-8' )
with zstd.open(_UpperCAmelCase , 'wb' ) as f:
f.write(_UpperCAmelCase )
return path
@pytest.fixture
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
with open(os.path.join(tmpfs.local_root_dir , _UpperCAmelCase ) , 'w' ) as f:
f.write(_UpperCAmelCase )
return FILE_PATH
@pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ):
lowerCAmelCase = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path}
lowerCAmelCase = input_paths[compression_format]
lowerCAmelCase = tmp_path / 'cache'
lowerCAmelCase = DownloadConfig(cache_dir=_UpperCAmelCase , extract_compressed_file=_UpperCAmelCase )
lowerCAmelCase = cached_path(_UpperCAmelCase , download_config=_UpperCAmelCase )
with open(_UpperCAmelCase ) as f:
lowerCAmelCase = f.read()
with open(_UpperCAmelCase ) as f:
lowerCAmelCase = f.read()
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize('default_extracted' , [True, False] )
@pytest.mark.parametrize('default_cache_dir' , [True, False] )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : str ):
lowerCAmelCase = 'custom_cache'
lowerCAmelCase = 'custom_extracted_dir'
lowerCAmelCase = tmp_path / 'custom_extracted_path'
if default_extracted:
lowerCAmelCase = ('downloads' if default_cache_dir else custom_cache_dir, 'extracted')
else:
monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , _UpperCAmelCase )
monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_UpperCAmelCase ) )
lowerCAmelCase = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir)
lowerCAmelCase = xz_file
lowerCAmelCase = (
DownloadConfig(extract_compressed_file=_UpperCAmelCase )
if default_cache_dir
else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_UpperCAmelCase )
)
lowerCAmelCase = cached_path(_UpperCAmelCase , download_config=_UpperCAmelCase )
assert Path(_UpperCAmelCase ).parent.parts[-2:] == expected
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ):
# absolute path
lowerCAmelCase = str(Path(_UpperCAmelCase ).resolve() )
assert cached_path(_UpperCAmelCase ) == text_file
# relative path
lowerCAmelCase = str(Path(_UpperCAmelCase ).resolve().relative_to(Path(os.getcwd() ) ) )
assert cached_path(_UpperCAmelCase ) == text_file
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] ):
# absolute path
lowerCAmelCase = str(tmp_path.resolve() / '__missing_file__.txt' )
with pytest.raises(_UpperCAmelCase ):
cached_path(_UpperCAmelCase )
# relative path
lowerCAmelCase = './__missing_file__.txt'
with pytest.raises(_UpperCAmelCase ):
cached_path(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
lowerCAmelCase = get_from_cache(F'tmp://{tmpfs_file}' )
with open(_UpperCAmelCase ) as f:
lowerCAmelCase = f.read()
assert output_file_content == FILE_CONTENT
@patch('datasets.config.HF_DATASETS_OFFLINE' , _UpperCAmelCase )
def _SCREAMING_SNAKE_CASE ():
with pytest.raises(_UpperCAmelCase ):
cached_path('https://huggingface.co' )
@patch('datasets.config.HF_DATASETS_OFFLINE' , _UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] ):
lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.html'
with pytest.raises(_UpperCAmelCase ):
http_get('https://huggingface.co' , temp_file=_UpperCAmelCase )
with pytest.raises(_UpperCAmelCase ):
http_head('https://huggingface.co' )
@patch('datasets.config.HF_DATASETS_OFFLINE' , _UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ):
lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.html'
with pytest.raises(_UpperCAmelCase ):
ftp_get('ftp://huggingface.co' , temp_file=_UpperCAmelCase )
with pytest.raises(_UpperCAmelCase ):
ftp_head('ftp://huggingface.co' )
@patch('datasets.config.HF_DATASETS_OFFLINE' , _UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ):
lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.html'
with pytest.raises(_UpperCAmelCase ):
fsspec_get('s3://huggingface.co' , temp_file=_UpperCAmelCase )
with pytest.raises(_UpperCAmelCase ):
fsspec_head('s3://huggingface.co' )
| 4 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
__UpperCamelCase : Tuple = {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''',
'''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''',
'''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''',
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json'''
),
'''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''',
'''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''',
'''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''',
'''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''',
'''cl-tohoku/bert-base-japanese-whole-word-masking''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json'''
),
'''cl-tohoku/bert-base-japanese-char''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json'''
),
'''cl-tohoku/bert-base-japanese-char-whole-word-masking''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json'''
),
'''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''',
# See all BERT models at https://huggingface.co/models?filter=bert
}
class a ( a__ ):
snake_case__ = '''bert'''
def __init__( self , _snake_case=3_05_22 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , _snake_case=None , **_snake_case , ):
"""simple docstring"""
super().__init__(pad_token_id=_snake_case , **_snake_case )
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_act
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = initializer_range
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = position_embedding_type
lowerCAmelCase = use_cache
lowerCAmelCase = classifier_dropout
class a ( a__ ):
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
if self.task == "multiple-choice":
lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
lowerCAmelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] )
| 4 | 1 |
"""simple docstring"""
from __future__ import annotations
import os
from typing import Any
import requests
__UpperCamelCase : Dict = '''https://api.github.com'''
# https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user
__UpperCamelCase : List[str] = BASE_URL + '''/user'''
# https://github.com/settings/tokens
__UpperCamelCase : Optional[int] = os.environ.get('''USER_TOKEN''', '''''')
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
lowerCAmelCase = {
'Authorization': F'token {auth_token}',
'Accept': 'application/vnd.github.v3+json',
}
return requests.get(_UpperCAmelCase , headers=_UpperCAmelCase ).json()
if __name__ == "__main__": # pragma: no cover
if USER_TOKEN:
for key, value in fetch_github_info(USER_TOKEN).items():
print(f'''{key}: {value}''')
else:
raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
| 4 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class a ( a__ , unittest.TestCase ):
snake_case__ = DanceDiffusionPipeline
snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS
snake_case__ = PipelineTesterMixin.required_optional_params - {
'''callback''',
'''latents''',
'''callback_steps''',
'''output_type''',
'''num_images_per_prompt''',
}
snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS
snake_case__ = False
snake_case__ = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase = UNetaDModel(
block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_snake_case , use_timestep_embedding=_snake_case , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , )
lowerCAmelCase = IPNDMScheduler()
lowerCAmelCase = {
'unet': unet,
'scheduler': scheduler,
}
return components
def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ):
"""simple docstring"""
if str(_snake_case ).startswith('mps' ):
lowerCAmelCase = torch.manual_seed(_snake_case )
else:
lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowerCAmelCase = {
'batch_size': 1,
'generator': generator,
'num_inference_steps': 4,
}
return inputs
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase = self.get_dummy_components()
lowerCAmelCase = DanceDiffusionPipeline(**_snake_case )
lowerCAmelCase = pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = self.get_dummy_inputs(_snake_case )
lowerCAmelCase = pipe(**_snake_case )
lowerCAmelCase = output.audios
lowerCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, components["unet"].sample_size)
lowerCAmelCase = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().test_save_load_local()
@skip_mps
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
@skip_mps
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().test_save_load_optional_components()
@skip_mps
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().test_attention_slicing_forward_pass()
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = torch_device
lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' )
lowerCAmelCase = pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 )
lowerCAmelCase = output.audios
lowerCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
lowerCAmelCase = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = torch_device
lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa )
lowerCAmelCase = pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 )
lowerCAmelCase = output.audios
lowerCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
lowerCAmelCase = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
| 4 | 1 |
"""simple docstring"""
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[int] ):
if not nums:
return 0
lowerCAmelCase = nums[0]
lowerCAmelCase = 0
for num in nums[1:]:
lowerCAmelCase ,lowerCAmelCase = (
max_excluding + num,
max(_UpperCAmelCase , _UpperCAmelCase ),
)
return max(_UpperCAmelCase , _UpperCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 |
"""simple docstring"""
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class a :
def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_input_mask
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_input_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
if self.use_token_type_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ ( self ):
"""simple docstring"""
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , use_stable_embedding=_snake_case , )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = OpenLlamaModel(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case )
lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = True
lowerCAmelCase = OpenLlamaModel(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , )
lowerCAmelCase = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , )
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = True
lowerCAmelCase = True
lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case )
model.to(_snake_case )
model.eval()
# first forward pass
lowerCAmelCase = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , use_cache=_snake_case , )
lowerCAmelCase = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 )
lowerCAmelCase = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0]
lowerCAmelCase = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , past_key_values=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0]
# select random slice
lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach()
lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class a ( a__ , a__ , a__ , unittest.TestCase ):
snake_case__ = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
snake_case__ = (OpenLlamaForCausalLM,) if is_torch_available() else ()
snake_case__ = (
{
'''feature-extraction''': OpenLlamaModel,
'''text-classification''': OpenLlamaForSequenceClassification,
'''text-generation''': OpenLlamaForCausalLM,
'''zero-shot''': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case__ = False
snake_case__ = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = OpenLlamaModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCAmelCase = type
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = 3
lowerCAmelCase = input_dict['input_ids']
lowerCAmelCase = input_ids.ne(1 ).to(_snake_case )
lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = 3
lowerCAmelCase = 'single_label_classification'
lowerCAmelCase = input_dict['input_ids']
lowerCAmelCase = input_ids.ne(1 ).to(_snake_case )
lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = 3
lowerCAmelCase = 'multi_label_classification'
lowerCAmelCase = input_dict['input_ids']
lowerCAmelCase = input_ids.ne(1 ).to(_snake_case )
lowerCAmelCase = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@parameterized.expand([('linear',), ('dynamic',)] )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = ids_tensor([1, 10] , config.vocab_size )
lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
lowerCAmelCase = OpenLlamaModel(_snake_case )
original_model.to(_snake_case )
original_model.eval()
lowerCAmelCase = original_model(_snake_case ).last_hidden_state
lowerCAmelCase = original_model(_snake_case ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
lowerCAmelCase = {'type': scaling_type, 'factor': 10.0}
lowerCAmelCase = OpenLlamaModel(_snake_case )
scaled_model.to(_snake_case )
scaled_model.eval()
lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state
lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
| 4 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
if is_vision_available():
import PIL
class a ( a__ ):
snake_case__ = ['''pixel_values''']
def __init__( self , _snake_case = True , _snake_case = None , _snake_case = PILImageResampling.BICUBIC , _snake_case = True , _snake_case = None , _snake_case = True , _snake_case = 1 / 2_55 , _snake_case = True , _snake_case = None , _snake_case = None , _snake_case = True , **_snake_case , ):
"""simple docstring"""
super().__init__(**_snake_case )
lowerCAmelCase = size if size is not None else {'shortest_edge': 2_24}
lowerCAmelCase = get_size_dict(_snake_case , default_to_square=_snake_case )
lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24}
lowerCAmelCase = get_size_dict(_snake_case , default_to_square=_snake_case , param_name='crop_size' )
lowerCAmelCase = do_resize
lowerCAmelCase = size
lowerCAmelCase = resample
lowerCAmelCase = do_center_crop
lowerCAmelCase = crop_size
lowerCAmelCase = do_rescale
lowerCAmelCase = rescale_factor
lowerCAmelCase = do_normalize
lowerCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
lowerCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD
lowerCAmelCase = do_convert_rgb
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = PILImageResampling.BICUBIC , _snake_case = None , **_snake_case , ):
"""simple docstring"""
lowerCAmelCase = get_size_dict(_snake_case , default_to_square=_snake_case )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
lowerCAmelCase = get_resize_output_image_size(_snake_case , size=size['shortest_edge'] , default_to_square=_snake_case )
return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case , ):
"""simple docstring"""
lowerCAmelCase = get_size_dict(_snake_case )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(_snake_case , size=(size['height'], size['width']) , data_format=_snake_case , **_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case , ):
"""simple docstring"""
return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case = None , **_snake_case , ):
"""simple docstring"""
return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = ChannelDimension.FIRST , **_snake_case , ):
"""simple docstring"""
lowerCAmelCase = do_resize if do_resize is not None else self.do_resize
lowerCAmelCase = size if size is not None else self.size
lowerCAmelCase = get_size_dict(_snake_case , param_name='size' , default_to_square=_snake_case )
lowerCAmelCase = resample if resample is not None else self.resample
lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
lowerCAmelCase = crop_size if crop_size is not None else self.crop_size
lowerCAmelCase = get_size_dict(_snake_case , param_name='crop_size' , default_to_square=_snake_case )
lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
lowerCAmelCase = image_mean if image_mean is not None else self.image_mean
lowerCAmelCase = image_std if image_std is not None else self.image_std
lowerCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
lowerCAmelCase = make_list_of_images(_snake_case )
if not valid_images(_snake_case ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
lowerCAmelCase = [convert_to_rgb(_snake_case ) for image in images]
# All transformations expect numpy arrays.
lowerCAmelCase = [to_numpy_array(_snake_case ) for image in images]
if do_resize:
lowerCAmelCase = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) for image in images]
if do_center_crop:
lowerCAmelCase = [self.center_crop(image=_snake_case , size=_snake_case ) for image in images]
if do_rescale:
lowerCAmelCase = [self.rescale(image=_snake_case , scale=_snake_case ) for image in images]
if do_normalize:
lowerCAmelCase = [self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case ) for image in images]
lowerCAmelCase = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images]
lowerCAmelCase = {'pixel_values': images}
return BatchFeature(data=_snake_case , tensor_type=_snake_case )
| 4 |
"""simple docstring"""
from typing import Any
class a :
def __init__( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = data
lowerCAmelCase = None
def __repr__( self ):
"""simple docstring"""
return F'Node({self.data})'
class a :
def __init__( self ):
"""simple docstring"""
lowerCAmelCase = None
def __iter__( self ):
"""simple docstring"""
lowerCAmelCase = self.head
while node:
yield node.data
lowerCAmelCase = node.next
def __len__( self ):
"""simple docstring"""
return sum(1 for _ in self )
def __repr__( self ):
"""simple docstring"""
return "->".join([str(_snake_case ) for item in self] )
def __getitem__( self , _snake_case ):
"""simple docstring"""
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self , _snake_case , _snake_case ):
"""simple docstring"""
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
lowerCAmelCase = self.head
for _ in range(_snake_case ):
lowerCAmelCase = current.next
lowerCAmelCase = data
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
self.insert_nth(len(self ) , _snake_case )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
self.insert_nth(0 , _snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
if not 0 <= index <= len(self ):
raise IndexError('list index out of range' )
lowerCAmelCase = Node(_snake_case )
if self.head is None:
lowerCAmelCase = new_node
elif index == 0:
lowerCAmelCase = self.head # link new_node to head
lowerCAmelCase = new_node
else:
lowerCAmelCase = self.head
for _ in range(index - 1 ):
lowerCAmelCase = temp.next
lowerCAmelCase = temp.next
lowerCAmelCase = new_node
def UpperCamelCase__ ( self ): # print every node data
"""simple docstring"""
print(self )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.delete_nth(0 )
def UpperCamelCase__ ( self ): # delete from tail
"""simple docstring"""
return self.delete_nth(len(self ) - 1 )
def UpperCamelCase__ ( self , _snake_case = 0 ):
"""simple docstring"""
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('List index out of range.' )
lowerCAmelCase = self.head # default first node
if index == 0:
lowerCAmelCase = self.head.next
else:
lowerCAmelCase = self.head
for _ in range(index - 1 ):
lowerCAmelCase = temp.next
lowerCAmelCase = temp.next
lowerCAmelCase = temp.next.next
return delete_node.data
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.head is None
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = None
lowerCAmelCase = self.head
while current:
# Store the current node's next node.
lowerCAmelCase = current.next
# Make the current node's next point backwards
lowerCAmelCase = prev
# Make the previous node be the current node
lowerCAmelCase = current
# Make the current node the next node (to progress iteration)
lowerCAmelCase = next_node
# Return prev in order to put the head at the end
lowerCAmelCase = prev
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = LinkedList()
assert linked_list.is_empty() is True
assert str(_UpperCAmelCase ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(_UpperCAmelCase ) == i
linked_list.insert_nth(_UpperCAmelCase , i + 1 )
assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(0 , 12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(_UpperCAmelCase ) == 9
assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
lowerCAmelCase = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(-8 , 1 ) )
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = [
-9,
100,
Node(7734_5112 ),
'dlrow olleH',
7,
5555,
0,
-192.5_5555,
'Hello, world!',
77.9,
Node(10 ),
None,
None,
12.20,
]
lowerCAmelCase = LinkedList()
for i in test_input:
linked_list.insert_tail(_UpperCAmelCase )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(_UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
lowerCAmelCase = linked_list.delete_head()
assert result == -9
assert (
str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
lowerCAmelCase = linked_list.delete_tail()
assert result == 12.2
assert (
str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
lowerCAmelCase = linked_list.delete_nth(10 )
assert result is None
assert (
str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('Hello again, world!' ) )
assert (
str(_UpperCAmelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(_UpperCAmelCase )
assert (
str(_UpperCAmelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(_UpperCAmelCase )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def _SCREAMING_SNAKE_CASE ():
from doctest import testmod
testmod()
lowerCAmelCase = LinkedList()
linked_list.insert_head(input('Inserting 1st at head ' ).strip() )
linked_list.insert_head(input('Inserting 2nd at head ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() )
linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
print('\nDelete head' )
linked_list.delete_head()
print('Delete tail' )
linked_list.delete_tail()
print('\nPrint list:' )
linked_list.print_list()
print('\nReverse linked list' )
linked_list.reverse()
print('\nPrint list:' )
linked_list.print_list()
print('\nString representation of linked list:' )
print(_UpperCAmelCase )
print('\nReading/changing Node data using indexing:' )
print(F'Element at Position 1: {linked_list[1]}' )
lowerCAmelCase = input('Enter New Value: ' ).strip()
print('New list:' )
print(_UpperCAmelCase )
print(F'length of linked_list is : {len(_UpperCAmelCase )}' )
if __name__ == "__main__":
main()
| 4 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
__UpperCamelCase : int = logging.get_logger(__name__)
if is_vision_available():
import PIL
class a ( a__ ):
snake_case__ = ['''pixel_values''']
def __init__( self , _snake_case = True , _snake_case = None , _snake_case = PILImageResampling.BICUBIC , _snake_case = True , _snake_case = None , _snake_case = True , _snake_case = 1 / 2_55 , _snake_case = True , _snake_case = None , _snake_case = None , _snake_case = True , **_snake_case , ):
"""simple docstring"""
super().__init__(**_snake_case )
lowerCAmelCase = size if size is not None else {'shortest_edge': 2_24}
lowerCAmelCase = get_size_dict(_snake_case , default_to_square=_snake_case )
lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24}
lowerCAmelCase = get_size_dict(_snake_case , default_to_square=_snake_case , param_name='crop_size' )
lowerCAmelCase = do_resize
lowerCAmelCase = size
lowerCAmelCase = resample
lowerCAmelCase = do_center_crop
lowerCAmelCase = crop_size
lowerCAmelCase = do_rescale
lowerCAmelCase = rescale_factor
lowerCAmelCase = do_normalize
lowerCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
lowerCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD
lowerCAmelCase = do_convert_rgb
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = PILImageResampling.BICUBIC , _snake_case = None , **_snake_case , ):
"""simple docstring"""
lowerCAmelCase = get_size_dict(_snake_case , default_to_square=_snake_case )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
lowerCAmelCase = get_resize_output_image_size(_snake_case , size=size['shortest_edge'] , default_to_square=_snake_case )
return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case , ):
"""simple docstring"""
lowerCAmelCase = get_size_dict(_snake_case )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(_snake_case , size=(size['height'], size['width']) , data_format=_snake_case , **_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case , ):
"""simple docstring"""
return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case = None , **_snake_case , ):
"""simple docstring"""
return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = ChannelDimension.FIRST , **_snake_case , ):
"""simple docstring"""
lowerCAmelCase = do_resize if do_resize is not None else self.do_resize
lowerCAmelCase = size if size is not None else self.size
lowerCAmelCase = get_size_dict(_snake_case , param_name='size' , default_to_square=_snake_case )
lowerCAmelCase = resample if resample is not None else self.resample
lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
lowerCAmelCase = crop_size if crop_size is not None else self.crop_size
lowerCAmelCase = get_size_dict(_snake_case , param_name='crop_size' , default_to_square=_snake_case )
lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
lowerCAmelCase = image_mean if image_mean is not None else self.image_mean
lowerCAmelCase = image_std if image_std is not None else self.image_std
lowerCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
lowerCAmelCase = make_list_of_images(_snake_case )
if not valid_images(_snake_case ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
lowerCAmelCase = [convert_to_rgb(_snake_case ) for image in images]
# All transformations expect numpy arrays.
lowerCAmelCase = [to_numpy_array(_snake_case ) for image in images]
if do_resize:
lowerCAmelCase = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) for image in images]
if do_center_crop:
lowerCAmelCase = [self.center_crop(image=_snake_case , size=_snake_case ) for image in images]
if do_rescale:
lowerCAmelCase = [self.rescale(image=_snake_case , scale=_snake_case ) for image in images]
if do_normalize:
lowerCAmelCase = [self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case ) for image in images]
lowerCAmelCase = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images]
lowerCAmelCase = {'pixel_values': images}
return BatchFeature(data=_snake_case , tensor_type=_snake_case )
| 4 |
"""simple docstring"""
from __future__ import annotations
import requests
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
lowerCAmelCase = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty'
return requests.get(_UpperCAmelCase ).json()
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ):
lowerCAmelCase = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty'
lowerCAmelCase = requests.get(_UpperCAmelCase ).json()[:max_stories]
return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ):
lowerCAmelCase = hackernews_top_stories(_UpperCAmelCase )
return "\n".join('* [{title}]({url})'.format(**_UpperCAmelCase ) for story in stories )
if __name__ == "__main__":
print(hackernews_top_stories_as_markdown())
| 4 | 1 |
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] ):
lowerCAmelCase = 384
lowerCAmelCase = 7
if "tiny" in model_name:
lowerCAmelCase = 96
lowerCAmelCase = (2, 2, 6, 2)
lowerCAmelCase = (3, 6, 12, 24)
elif "small" in model_name:
lowerCAmelCase = 96
lowerCAmelCase = (2, 2, 18, 2)
lowerCAmelCase = (3, 6, 12, 24)
elif "base" in model_name:
lowerCAmelCase = 128
lowerCAmelCase = (2, 2, 18, 2)
lowerCAmelCase = (4, 8, 16, 32)
lowerCAmelCase = 12
lowerCAmelCase = 512
elif "large" in model_name:
lowerCAmelCase = 192
lowerCAmelCase = (2, 2, 18, 2)
lowerCAmelCase = (6, 12, 24, 48)
lowerCAmelCase = 12
lowerCAmelCase = 768
# set label information
lowerCAmelCase = 150
lowerCAmelCase = 'huggingface/label-files'
lowerCAmelCase = 'ade20k-id2label.json'
lowerCAmelCase = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) , 'r' ) )
lowerCAmelCase = {int(_UpperCAmelCase ): v for k, v in idalabel.items()}
lowerCAmelCase = {v: k for k, v in idalabel.items()}
lowerCAmelCase = SwinConfig(
embed_dim=_UpperCAmelCase , depths=_UpperCAmelCase , num_heads=_UpperCAmelCase , window_size=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
lowerCAmelCase = UperNetConfig(
backbone_config=_UpperCAmelCase , auxiliary_in_channels=_UpperCAmelCase , num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase , )
return config
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ):
lowerCAmelCase = []
# fmt: off
# stem
rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') )
rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') )
rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') )
rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F'backbone.stages.{i}.blocks.{j}.norm1.weight', F'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') )
rename_keys.append((F'backbone.stages.{i}.blocks.{j}.norm1.bias', F'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') )
rename_keys.append((F'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table', F'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') )
rename_keys.append((F'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index', F'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') )
rename_keys.append((F'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight', F'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') )
rename_keys.append((F'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias', F'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') )
rename_keys.append((F'backbone.stages.{i}.blocks.{j}.norm2.weight', F'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') )
rename_keys.append((F'backbone.stages.{i}.blocks.{j}.norm2.bias', F'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') )
rename_keys.append((F'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight', F'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') )
rename_keys.append((F'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias', F'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') )
rename_keys.append((F'backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight', F'backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight') )
rename_keys.append((F'backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias', F'backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias') )
if i < 3:
rename_keys.append((F'backbone.stages.{i}.downsample.reduction.weight', F'backbone.encoder.layers.{i}.downsample.reduction.weight') )
rename_keys.append((F'backbone.stages.{i}.downsample.norm.weight', F'backbone.encoder.layers.{i}.downsample.norm.weight') )
rename_keys.append((F'backbone.stages.{i}.downsample.norm.bias', F'backbone.encoder.layers.{i}.downsample.norm.bias') )
rename_keys.append((F'backbone.norm{i}.weight', F'backbone.hidden_states_norms.stage{i+1}.weight') )
rename_keys.append((F'backbone.norm{i}.bias', F'backbone.hidden_states_norms.stage{i+1}.bias') )
# decode head
rename_keys.extend(
[
('decode_head.conv_seg.weight', 'decode_head.classifier.weight'),
('decode_head.conv_seg.bias', 'decode_head.classifier.bias'),
('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'),
('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'),
] )
# fmt: on
return rename_keys
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : int ):
lowerCAmelCase = dct.pop(_UpperCAmelCase )
lowerCAmelCase = val
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] ):
lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
lowerCAmelCase = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
lowerCAmelCase = state_dict.pop(F'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight' )
lowerCAmelCase = state_dict.pop(F'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase = in_proj_weight[:dim, :]
lowerCAmelCase = in_proj_bias[: dim]
lowerCAmelCase = in_proj_weight[
dim : dim * 2, :
]
lowerCAmelCase = in_proj_bias[
dim : dim * 2
]
lowerCAmelCase = in_proj_weight[
-dim :, :
]
lowerCAmelCase = in_proj_bias[-dim :]
# fmt: on
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ):
lowerCAmelCase ,lowerCAmelCase = x.shape
lowerCAmelCase = x.reshape(_UpperCAmelCase , 4 , in_channel // 4 )
lowerCAmelCase = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(_UpperCAmelCase , _UpperCAmelCase )
return x
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
lowerCAmelCase ,lowerCAmelCase = x.shape
lowerCAmelCase = x.reshape(_UpperCAmelCase , in_channel // 4 , 4 )
lowerCAmelCase = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(_UpperCAmelCase , _UpperCAmelCase )
return x
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] ):
lowerCAmelCase = x.shape[0]
lowerCAmelCase = x.reshape(4 , in_channel // 4 )
lowerCAmelCase = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(_UpperCAmelCase )
return x
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ):
lowerCAmelCase = x.shape[0]
lowerCAmelCase = x.reshape(in_channel // 4 , 4 )
lowerCAmelCase = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(_UpperCAmelCase )
return x
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ):
lowerCAmelCase = {
'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth',
'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth',
'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth',
'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth',
}
lowerCAmelCase = model_name_to_url[model_name]
lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' , file_name=_UpperCAmelCase )[
'state_dict'
]
for name, param in state_dict.items():
print(_UpperCAmelCase , param.shape )
lowerCAmelCase = get_upernet_config(_UpperCAmelCase )
lowerCAmelCase = UperNetForSemanticSegmentation(_UpperCAmelCase )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
lowerCAmelCase = state_dict.pop(_UpperCAmelCase )
if "bn" in key:
lowerCAmelCase = key.replace('bn' , 'batch_norm' )
lowerCAmelCase = val
# rename keys
lowerCAmelCase = create_rename_keys(_UpperCAmelCase )
for src, dest in rename_keys:
rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
read_in_q_k_v(_UpperCAmelCase , config.backbone_config )
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
lowerCAmelCase = reverse_correct_unfold_reduction_order(_UpperCAmelCase )
if "norm" in key:
lowerCAmelCase = reverse_correct_unfold_norm_order(_UpperCAmelCase )
model.load_state_dict(_UpperCAmelCase )
# verify on image
lowerCAmelCase = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'
lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' )
lowerCAmelCase = SegformerImageProcessor()
lowerCAmelCase = processor(_UpperCAmelCase , return_tensors='pt' ).pixel_values
with torch.no_grad():
lowerCAmelCase = model(_UpperCAmelCase )
lowerCAmelCase = outputs.logits
print(logits.shape )
print('First values of logits:' , logits[0, 0, :3, :3] )
# assert values
if model_name == "upernet-swin-tiny":
lowerCAmelCase = torch.tensor(
[[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] )
elif model_name == "upernet-swin-small":
lowerCAmelCase = torch.tensor(
[[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] )
elif model_name == "upernet-swin-base":
lowerCAmelCase = torch.tensor(
[[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] )
elif model_name == "upernet-swin-large":
lowerCAmelCase = torch.tensor(
[[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] )
print('Logits:' , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(_UpperCAmelCase )
print(F'Saving processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(_UpperCAmelCase )
if push_to_hub:
print(F'Pushing model and processor for {model_name} to hub' )
model.push_to_hub(F'openmmlab/{model_name}' )
processor.push_to_hub(F'openmmlab/{model_name}' )
if __name__ == "__main__":
__UpperCamelCase : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''upernet-swin-tiny''',
type=str,
choices=[f'''upernet-swin-{size}''' for size in ['''tiny''', '''small''', '''base''', '''large''']],
help='''Name of the Swin + UperNet model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the ๐ค hub.'''
)
__UpperCamelCase : int = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 4 |
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ):
lowerCAmelCase = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowerCAmelCase = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
lowerCAmelCase = 4
lowerCAmelCase = 48
lowerCAmelCase = 'pixelshuffle_aux'
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowerCAmelCase = [6, 6, 6, 6]
lowerCAmelCase = 60
lowerCAmelCase = [6, 6, 6, 6]
lowerCAmelCase = 'pixelshuffledirect'
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowerCAmelCase = 4
lowerCAmelCase = 'nearest+conv'
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
lowerCAmelCase = 1
lowerCAmelCase = 1
lowerCAmelCase = 126
lowerCAmelCase = 7
lowerCAmelCase = 255.0
lowerCAmelCase = ''
return config
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ):
if "patch_embed.proj" in name and "layers" not in name:
lowerCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
lowerCAmelCase = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' )
if "layers" in name:
lowerCAmelCase = name.replace('layers' , 'encoder.stages' )
if "residual_group.blocks" in name:
lowerCAmelCase = name.replace('residual_group.blocks' , 'layers' )
if "attn.proj" in name:
lowerCAmelCase = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
lowerCAmelCase = name.replace('attn' , 'attention.self' )
if "norm1" in name:
lowerCAmelCase = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
lowerCAmelCase = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
lowerCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
lowerCAmelCase = name.replace('mlp.fc2' , 'output.dense' )
if "q_bias" in name:
lowerCAmelCase = name.replace('q_bias' , 'query.bias' )
if "k_bias" in name:
lowerCAmelCase = name.replace('k_bias' , 'key.bias' )
if "v_bias" in name:
lowerCAmelCase = name.replace('v_bias' , 'value.bias' )
if "cpb_mlp" in name:
lowerCAmelCase = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' )
if "patch_embed.proj" in name:
lowerCAmelCase = name.replace('patch_embed.proj' , 'patch_embed.projection' )
if name == "norm.weight":
lowerCAmelCase = 'layernorm.weight'
if name == "norm.bias":
lowerCAmelCase = 'layernorm.bias'
if "conv_first" in name:
lowerCAmelCase = name.replace('conv_first' , 'first_convolution' )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
lowerCAmelCase = name.replace('conv_last' , 'final_convolution' )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
lowerCAmelCase = name.replace('conv_before_upsample.0' , 'conv_before_upsample' )
if "upsample.0" in name:
lowerCAmelCase = name.replace('upsample.0' , 'upsample.convolution_0' )
if "upsample.2" in name:
lowerCAmelCase = name.replace('upsample.2' , 'upsample.convolution_1' )
lowerCAmelCase = 'upsample.' + name
elif config.upsampler == "pixelshuffledirect":
lowerCAmelCase = name.replace('upsample.0.weight' , 'upsample.conv.weight' )
lowerCAmelCase = name.replace('upsample.0.bias' , 'upsample.conv.bias' )
else:
pass
else:
lowerCAmelCase = 'swin2sr.' + name
return name
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict ):
for key in orig_state_dict.copy().keys():
lowerCAmelCase = orig_state_dict.pop(_UpperCAmelCase )
if "qkv" in key:
lowerCAmelCase = key.split('.' )
lowerCAmelCase = int(key_split[1] )
lowerCAmelCase = int(key_split[4] )
lowerCAmelCase = config.embed_dim
if "weight" in key:
lowerCAmelCase = val[:dim, :]
lowerCAmelCase = val[dim : dim * 2, :]
lowerCAmelCase = val[-dim:, :]
else:
lowerCAmelCase = val[:dim]
lowerCAmelCase = val[dim : dim * 2]
lowerCAmelCase = val[-dim:]
pass
else:
lowerCAmelCase = val
return orig_state_dict
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ):
lowerCAmelCase = get_config(_UpperCAmelCase )
lowerCAmelCase = SwinaSRForImageSuperResolution(_UpperCAmelCase )
model.eval()
lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' )
lowerCAmelCase = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase ,lowerCAmelCase = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase )
if len(_UpperCAmelCase ) > 0:
raise ValueError('Missing keys when converting: {}'.format(_UpperCAmelCase ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(F'Unexpected key {key} in state_dict' )
# verify values
lowerCAmelCase = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true'
lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' )
lowerCAmelCase = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
lowerCAmelCase = 126 if 'Jpeg' in checkpoint_url else 256
lowerCAmelCase = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
lowerCAmelCase = transforms(_UpperCAmelCase ).unsqueeze(0 )
if config.num_channels == 1:
lowerCAmelCase = pixel_values[:, 0, :, :].unsqueeze(1 )
lowerCAmelCase = model(_UpperCAmelCase )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
lowerCAmelCase = torch.Size([1, 3, 512, 512] )
lowerCAmelCase = torch.tensor(
[[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowerCAmelCase = torch.Size([1, 3, 1024, 1024] )
lowerCAmelCase = torch.tensor(
[[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
lowerCAmelCase = torch.Size([1, 3, 1024, 1024] )
lowerCAmelCase = torch.tensor(
[[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowerCAmelCase = torch.Size([1, 3, 512, 512] )
lowerCAmelCase = torch.tensor(
[[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowerCAmelCase = torch.Size([1, 3, 1024, 1024] )
lowerCAmelCase = torch.tensor(
[[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] )
assert (
outputs.reconstruction.shape == expected_shape
), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-3 )
print('Looks ok!' )
lowerCAmelCase = {
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': (
'swin2SR-classical-sr-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': (
'swin2SR-classical-sr-x4-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': (
'swin2SR-compressed-sr-x4-48'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': (
'swin2SR-lightweight-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': (
'swin2SR-realworld-sr-x4-64-bsrgan-psnr'
),
}
lowerCAmelCase = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(_UpperCAmelCase )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(_UpperCAmelCase )
if push_to_hub:
model.push_to_hub(F'caidas/{model_name}' )
processor.push_to_hub(F'caidas/{model_name}' )
if __name__ == "__main__":
__UpperCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''',
type=str,
help='''URL of the original Swin2SR checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''')
__UpperCamelCase : Optional[int] = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 4 | 1 |
"""simple docstring"""
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class a :
def __init__( self , _snake_case , _snake_case=2 , _snake_case=8 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=16 , _snake_case=5 , _snake_case=2 , _snake_case=36 , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_input_mask
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_input_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
if self.use_token_type_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ ( self ):
"""simple docstring"""
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.get_config()
lowerCAmelCase = 3_00
return config
def UpperCamelCase__ ( self ):
"""simple docstring"""
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = self.prepare_config_and_inputs()
lowerCAmelCase = True
lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = MraModel(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case )
lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = True
lowerCAmelCase = MraModel(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(
_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , )
lowerCAmelCase = model(
_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , encoder_hidden_states=_snake_case , )
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = MraForMaskedLM(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = MraForQuestionAnswering(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(
_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , start_positions=_snake_case , end_positions=_snake_case , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = MraForSequenceClassification(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = MraForTokenClassification(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_choices
lowerCAmelCase = MraForMultipleChoice(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCAmelCase = model(
_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class a ( a__ , unittest.TestCase ):
snake_case__ = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
snake_case__ = False
snake_case__ = False
snake_case__ = False
snake_case__ = False
snake_case__ = ()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = MraModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCAmelCase = type
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = MraModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
@unittest.skip(reason='MRA does not output attentions' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return
@require_torch
class a ( unittest.TestCase ):
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = MraModel.from_pretrained('uw-madison/mra-base-512-4' )
lowerCAmelCase = torch.arange(2_56 ).unsqueeze(0 )
with torch.no_grad():
lowerCAmelCase = model(_snake_case )[0]
lowerCAmelCase = torch.Size((1, 2_56, 7_68) )
self.assertEqual(output.shape , _snake_case )
lowerCAmelCase = torch.tensor(
[[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=1E-4 ) )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' )
lowerCAmelCase = torch.arange(2_56 ).unsqueeze(0 )
with torch.no_grad():
lowerCAmelCase = model(_snake_case )[0]
lowerCAmelCase = 5_02_65
lowerCAmelCase = torch.Size((1, 2_56, vocab_size) )
self.assertEqual(output.shape , _snake_case )
lowerCAmelCase = torch.tensor(
[[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=1E-4 ) )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' )
lowerCAmelCase = torch.arange(40_96 ).unsqueeze(0 )
with torch.no_grad():
lowerCAmelCase = model(_snake_case )[0]
lowerCAmelCase = 5_02_65
lowerCAmelCase = torch.Size((1, 40_96, vocab_size) )
self.assertEqual(output.shape , _snake_case )
lowerCAmelCase = torch.tensor(
[[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=1E-4 ) )
| 4 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
__UpperCamelCase : List[Any] = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class a ( a__ ):
snake_case__ = '''megatron-bert'''
def __init__( self , _snake_case=2_90_56 , _snake_case=10_24 , _snake_case=24 , _snake_case=16 , _snake_case=40_96 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , **_snake_case , ):
"""simple docstring"""
super().__init__(pad_token_id=_snake_case , **_snake_case )
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_act
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = initializer_range
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = position_embedding_type
lowerCAmelCase = use_cache
| 4 | 1 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
__UpperCamelCase : str = logging.get_logger(__name__)
class a ( a__ ):
def __init__( self , *_snake_case , **_snake_case ):
"""simple docstring"""
warnings.warn(
'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use YolosImageProcessor instead.' , _snake_case , )
super().__init__(*_snake_case , **_snake_case )
| 4 |
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
return " ".join(input_str.split()[::-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 | 1 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase : Dict = logging.get_logger(__name__)
__UpperCamelCase : Union[str, Any] = {
'''microsoft/unispeech-sat-base-100h-libri-ft''': (
'''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json'''
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class a ( a__ ):
snake_case__ = '''unispeech-sat'''
def __init__( self , _snake_case=32 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=0.1 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.1 , _snake_case=0.1 , _snake_case=0.02 , _snake_case=1E-5 , _snake_case="group" , _snake_case="gelu" , _snake_case=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , _snake_case=(5, 2, 2, 2, 2, 2, 2) , _snake_case=(10, 3, 3, 3, 3, 2, 2) , _snake_case=False , _snake_case=1_28 , _snake_case=16 , _snake_case=False , _snake_case=True , _snake_case=0.05 , _snake_case=10 , _snake_case=2 , _snake_case=0.0 , _snake_case=10 , _snake_case=0 , _snake_case=3_20 , _snake_case=2 , _snake_case=0.1 , _snake_case=1_00 , _snake_case=2_56 , _snake_case=2_56 , _snake_case=0.1 , _snake_case="mean" , _snake_case=False , _snake_case=False , _snake_case=2_56 , _snake_case=(5_12, 5_12, 5_12, 5_12, 15_00) , _snake_case=(5, 3, 3, 1, 1) , _snake_case=(1, 2, 3, 1, 1) , _snake_case=5_12 , _snake_case=0 , _snake_case=1 , _snake_case=2 , _snake_case=5_04 , **_snake_case , ):
"""simple docstring"""
super().__init__(**_snake_case , pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case )
lowerCAmelCase = hidden_size
lowerCAmelCase = feat_extract_norm
lowerCAmelCase = feat_extract_activation
lowerCAmelCase = list(_snake_case )
lowerCAmelCase = list(_snake_case )
lowerCAmelCase = list(_snake_case )
lowerCAmelCase = conv_bias
lowerCAmelCase = num_conv_pos_embeddings
lowerCAmelCase = num_conv_pos_embedding_groups
lowerCAmelCase = len(self.conv_dim )
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_dropout
lowerCAmelCase = attention_dropout
lowerCAmelCase = activation_dropout
lowerCAmelCase = feat_proj_dropout
lowerCAmelCase = final_dropout
lowerCAmelCase = layerdrop
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = initializer_range
lowerCAmelCase = vocab_size
lowerCAmelCase = num_clusters
lowerCAmelCase = do_stable_layer_norm
lowerCAmelCase = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowerCAmelCase = apply_spec_augment
lowerCAmelCase = mask_time_prob
lowerCAmelCase = mask_time_length
lowerCAmelCase = mask_time_min_masks
lowerCAmelCase = mask_feature_prob
lowerCAmelCase = mask_feature_length
lowerCAmelCase = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
lowerCAmelCase = num_codevectors_per_group
lowerCAmelCase = num_codevector_groups
lowerCAmelCase = contrastive_logits_temperature
lowerCAmelCase = feat_quantizer_dropout
lowerCAmelCase = num_negatives
lowerCAmelCase = codevector_dim
lowerCAmelCase = proj_codevector_dim
lowerCAmelCase = diversity_loss_weight
# ctc loss
lowerCAmelCase = ctc_loss_reduction
lowerCAmelCase = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
lowerCAmelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
lowerCAmelCase = list(_snake_case )
lowerCAmelCase = list(_snake_case )
lowerCAmelCase = list(_snake_case )
lowerCAmelCase = xvector_output_dim
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 4 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class a ( a__ ):
snake_case__ = 42
class a ( a__ , a__ ):
@register_to_config
def __init__( self , _snake_case = 3 , _snake_case = 3 , _snake_case = ("DownEncoderBlock2D",) , _snake_case = ("UpDecoderBlock2D",) , _snake_case = (64,) , _snake_case = 1 , _snake_case = "silu" , _snake_case = 3 , _snake_case = 32 , _snake_case = 2_56 , _snake_case = 32 , _snake_case = None , _snake_case = 0.18_215 , _snake_case = "group" , ):
"""simple docstring"""
super().__init__()
# pass init params to Encoder
lowerCAmelCase = Encoder(
in_channels=_snake_case , out_channels=_snake_case , down_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , double_z=_snake_case , )
lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels
lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 )
lowerCAmelCase = VectorQuantizer(_snake_case , _snake_case , beta=0.25 , remap=_snake_case , sane_index_shape=_snake_case )
lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 )
# pass init params to Decoder
lowerCAmelCase = Decoder(
in_channels=_snake_case , out_channels=_snake_case , up_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , norm_type=_snake_case , )
@apply_forward_hook
def UpperCamelCase__ ( self , _snake_case , _snake_case = True ):
"""simple docstring"""
lowerCAmelCase = self.encoder(_snake_case )
lowerCAmelCase = self.quant_conv(_snake_case )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=_snake_case )
@apply_forward_hook
def UpperCamelCase__ ( self , _snake_case , _snake_case = False , _snake_case = True ):
"""simple docstring"""
if not force_not_quantize:
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = self.quantize(_snake_case )
else:
lowerCAmelCase = h
lowerCAmelCase = self.post_quant_conv(_snake_case )
lowerCAmelCase = self.decoder(_snake_case , quant if self.config.norm_type == 'spatial' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case = True ):
"""simple docstring"""
lowerCAmelCase = sample
lowerCAmelCase = self.encode(_snake_case ).latents
lowerCAmelCase = self.decode(_snake_case ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=_snake_case )
| 4 | 1 |
"""simple docstring"""
import argparse
import csv
import logging
import os
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from tqdm import tqdm, trange
from transformers import (
CONFIG_NAME,
WEIGHTS_NAME,
AdamW,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTTokenizer,
get_linear_schedule_with_warmup,
)
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO
)
__UpperCamelCase : str = logging.getLogger(__name__)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[str] ):
lowerCAmelCase = np.argmax(_UpperCAmelCase , axis=1 )
return np.sum(outputs == labels )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ):
with open(_UpperCAmelCase , encoding='utf_8' ) as f:
lowerCAmelCase = csv.reader(_UpperCAmelCase )
lowerCAmelCase = []
next(_UpperCAmelCase ) # skip the first line
for line in tqdm(_UpperCAmelCase ):
output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) )
return output
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Dict ):
lowerCAmelCase = []
for dataset in encoded_datasets:
lowerCAmelCase = len(_UpperCAmelCase )
lowerCAmelCase = np.zeros((n_batch, 2, input_len) , dtype=np.intaa )
lowerCAmelCase = np.zeros((n_batch, 2) , dtype=np.intaa )
lowerCAmelCase = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa )
lowerCAmelCase = np.zeros((n_batch,) , dtype=np.intaa )
for (
i,
(story, conta, conta, mc_label),
) in enumerate(_UpperCAmelCase ):
lowerCAmelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
lowerCAmelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
lowerCAmelCase = with_conta
lowerCAmelCase = with_conta
lowerCAmelCase = len(_UpperCAmelCase ) - 1
lowerCAmelCase = len(_UpperCAmelCase ) - 1
lowerCAmelCase = with_conta
lowerCAmelCase = with_conta
lowerCAmelCase = mc_label
lowerCAmelCase = (input_ids, mc_token_ids, lm_labels, mc_labels)
tensor_datasets.append(tuple(torch.tensor(_UpperCAmelCase ) for t in all_inputs ) )
return tensor_datasets
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument('--model_name' , type=_UpperCAmelCase , default='openai-gpt' , help='pretrained model name' )
parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' )
parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' )
parser.add_argument(
'--output_dir' , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , )
parser.add_argument('--train_dataset' , type=_UpperCAmelCase , default='' )
parser.add_argument('--eval_dataset' , type=_UpperCAmelCase , default='' )
parser.add_argument('--seed' , type=_UpperCAmelCase , default=42 )
parser.add_argument('--num_train_epochs' , type=_UpperCAmelCase , default=3 )
parser.add_argument('--train_batch_size' , type=_UpperCAmelCase , default=8 )
parser.add_argument('--eval_batch_size' , type=_UpperCAmelCase , default=16 )
parser.add_argument('--adam_epsilon' , default=1e-8 , type=_UpperCAmelCase , help='Epsilon for Adam optimizer.' )
parser.add_argument('--max_grad_norm' , type=_UpperCAmelCase , default=1 )
parser.add_argument(
'--max_steps' , default=-1 , type=_UpperCAmelCase , help=(
'If > 0: set total number of training steps to perform. Override num_train_epochs.'
) , )
parser.add_argument(
'--gradient_accumulation_steps' , type=_UpperCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , )
parser.add_argument('--learning_rate' , type=_UpperCAmelCase , default=6.25e-5 )
parser.add_argument('--warmup_steps' , default=0 , type=_UpperCAmelCase , help='Linear warmup over warmup_steps.' )
parser.add_argument('--lr_schedule' , type=_UpperCAmelCase , default='warmup_linear' )
parser.add_argument('--weight_decay' , type=_UpperCAmelCase , default=0.01 )
parser.add_argument('--lm_coef' , type=_UpperCAmelCase , default=0.9 )
parser.add_argument('--n_valid' , type=_UpperCAmelCase , default=374 )
parser.add_argument('--server_ip' , type=_UpperCAmelCase , default='' , help='Can be used for distant debugging.' )
parser.add_argument('--server_port' , type=_UpperCAmelCase , default='' , help='Can be used for distant debugging.' )
lowerCAmelCase = parser.parse_args()
print(_UpperCAmelCase )
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print('Waiting for debugger attach' )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_UpperCAmelCase )
ptvsd.wait_for_attach()
random.seed(args.seed )
np.random.seed(args.seed )
torch.manual_seed(args.seed )
torch.cuda.manual_seed_all(args.seed )
lowerCAmelCase = torch.device('cuda' if torch.cuda.is_available() else 'cpu' )
lowerCAmelCase = torch.cuda.device_count()
logger.info('device: {}, n_gpu {}'.format(_UpperCAmelCase , _UpperCAmelCase ) )
if not args.do_train and not args.do_eval:
raise ValueError('At least one of `do_train` or `do_eval` must be True.' )
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
# Load tokenizer and model
# This loading functions also add new tokens and embeddings called `special tokens`
# These new embeddings will be fine-tuned on the RocStories dataset
lowerCAmelCase = ['_start_', '_delimiter_', '_classify_']
lowerCAmelCase = OpenAIGPTTokenizer.from_pretrained(args.model_name )
tokenizer.add_tokens(_UpperCAmelCase )
lowerCAmelCase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
lowerCAmelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name )
model.resize_token_embeddings(len(_UpperCAmelCase ) )
model.to(_UpperCAmelCase )
# Load and encode the datasets
def tokenize_and_encode(_UpperCAmelCase : Optional[int] ):
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_UpperCAmelCase ) )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
return obj
return [tokenize_and_encode(_UpperCAmelCase ) for o in obj]
logger.info('Encoding dataset...' )
lowerCAmelCase = load_rocstories_dataset(args.train_dataset )
lowerCAmelCase = load_rocstories_dataset(args.eval_dataset )
lowerCAmelCase = (train_dataset, eval_dataset)
lowerCAmelCase = tokenize_and_encode(_UpperCAmelCase )
# Compute the max input length for the Transformer
lowerCAmelCase = model.config.n_positions // 2 - 2
lowerCAmelCase = max(
len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3
for dataset in encoded_datasets
for story, conta, conta, _ in dataset )
lowerCAmelCase = min(_UpperCAmelCase , model.config.n_positions ) # Max size of input for the pre-trained model
# Prepare inputs tensors and dataloaders
lowerCAmelCase = pre_process_datasets(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase )
lowerCAmelCase ,lowerCAmelCase = tensor_datasets[0], tensor_datasets[1]
lowerCAmelCase = TensorDataset(*_UpperCAmelCase )
lowerCAmelCase = RandomSampler(_UpperCAmelCase )
lowerCAmelCase = DataLoader(_UpperCAmelCase , sampler=_UpperCAmelCase , batch_size=args.train_batch_size )
lowerCAmelCase = TensorDataset(*_UpperCAmelCase )
lowerCAmelCase = SequentialSampler(_UpperCAmelCase )
lowerCAmelCase = DataLoader(_UpperCAmelCase , sampler=_UpperCAmelCase , batch_size=args.eval_batch_size )
# Prepare optimizer
if args.do_train:
if args.max_steps > 0:
lowerCAmelCase = args.max_steps
lowerCAmelCase = args.max_steps // (len(_UpperCAmelCase ) // args.gradient_accumulation_steps) + 1
else:
lowerCAmelCase = len(_UpperCAmelCase ) // args.gradient_accumulation_steps * args.num_train_epochs
lowerCAmelCase = list(model.named_parameters() )
lowerCAmelCase = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
lowerCAmelCase = [
{
'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )],
'weight_decay': args.weight_decay,
},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0},
]
lowerCAmelCase = AdamW(_UpperCAmelCase , lr=args.learning_rate , eps=args.adam_epsilon )
lowerCAmelCase = get_linear_schedule_with_warmup(
_UpperCAmelCase , num_warmup_steps=args.warmup_steps , num_training_steps=_UpperCAmelCase )
if args.do_train:
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = 0, 0, None
model.train()
for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ):
lowerCAmelCase = 0
lowerCAmelCase = 0
lowerCAmelCase = tqdm(_UpperCAmelCase , desc='Training' )
for step, batch in enumerate(_UpperCAmelCase ):
lowerCAmelCase = tuple(t.to(_UpperCAmelCase ) for t in batch )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = batch
lowerCAmelCase = model(_UpperCAmelCase , mc_token_ids=_UpperCAmelCase , lm_labels=_UpperCAmelCase , mc_labels=_UpperCAmelCase )
lowerCAmelCase = args.lm_coef * losses[0] + losses[1]
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
tr_loss += loss.item()
lowerCAmelCase = (
loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item()
)
nb_tr_steps += 1
lowerCAmelCase = 'Training loss: {:.2e} lr: {:.2e}'.format(_UpperCAmelCase , scheduler.get_lr()[0] )
# Save a trained model
if args.do_train:
# Save a trained model, configuration and tokenizer
lowerCAmelCase = model.module if hasattr(_UpperCAmelCase , 'module' ) else model # Only save the model itself
# If we save using the predefined names, we can load using `from_pretrained`
lowerCAmelCase = os.path.join(args.output_dir , _UpperCAmelCase )
lowerCAmelCase = os.path.join(args.output_dir , _UpperCAmelCase )
torch.save(model_to_save.state_dict() , _UpperCAmelCase )
model_to_save.config.to_json_file(_UpperCAmelCase )
tokenizer.save_vocabulary(args.output_dir )
# Load a trained model and vocabulary that you have fine-tuned
lowerCAmelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir )
lowerCAmelCase = OpenAIGPTTokenizer.from_pretrained(args.output_dir )
model.to(_UpperCAmelCase )
if args.do_eval:
model.eval()
lowerCAmelCase ,lowerCAmelCase = 0, 0
lowerCAmelCase ,lowerCAmelCase = 0, 0
for batch in tqdm(_UpperCAmelCase , desc='Evaluating' ):
lowerCAmelCase = tuple(t.to(_UpperCAmelCase ) for t in batch )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = batch
with torch.no_grad():
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = model(
_UpperCAmelCase , mc_token_ids=_UpperCAmelCase , lm_labels=_UpperCAmelCase , mc_labels=_UpperCAmelCase )
lowerCAmelCase = mc_logits.detach().cpu().numpy()
lowerCAmelCase = mc_labels.to('cpu' ).numpy()
lowerCAmelCase = accuracy(_UpperCAmelCase , _UpperCAmelCase )
eval_loss += mc_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0 )
nb_eval_steps += 1
lowerCAmelCase = eval_loss / nb_eval_steps
lowerCAmelCase = eval_accuracy / nb_eval_examples
lowerCAmelCase = tr_loss / nb_tr_steps if args.do_train else None
lowerCAmelCase = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss}
lowerCAmelCase = os.path.join(args.output_dir , 'eval_results.txt' )
with open(_UpperCAmelCase , 'w' ) as writer:
logger.info('***** Eval results *****' )
for key in sorted(result.keys() ):
logger.info(' %s = %s' , _UpperCAmelCase , str(result[key] ) )
writer.write('%s = %s\n' % (key, str(result[key] )) )
if __name__ == "__main__":
main()
| 4 |
"""simple docstring"""
from __future__ import annotations
import os
from collections.abc import Mapping
__UpperCamelCase : Optional[Any] = tuple[int, int]
class a :
def __init__( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = vertices
lowerCAmelCase = {
(min(_snake_case ), max(_snake_case )): weight for edge, weight in edges.items()
}
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
lowerCAmelCase = weight
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = Graph({min(self.vertices )} , {} )
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
while len(subgraph.vertices ) < len(self.vertices ):
lowerCAmelCase = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
lowerCAmelCase = edge
lowerCAmelCase = weight
subgraph.add_edge(_snake_case , _snake_case )
return subgraph
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "p107_network.txt" ):
lowerCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) )
lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = {}
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
with open(_UpperCAmelCase ) as f:
lowerCAmelCase = f.read().strip().split('\n' )
lowerCAmelCase = [line.split(',' ) for line in data]
for edgea in range(1 , len(_UpperCAmelCase ) ):
for edgea in range(_UpperCAmelCase ):
if adjaceny_matrix[edgea][edgea] != "-":
lowerCAmelCase = int(adjaceny_matrix[edgea][edgea] )
lowerCAmelCase = Graph(set(range(len(_UpperCAmelCase ) ) ) , _UpperCAmelCase )
lowerCAmelCase = graph.prims_algorithm()
lowerCAmelCase = sum(graph.edges.values() )
lowerCAmelCase = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(f'''{solution() = }''')
| 4 | 1 |
"""simple docstring"""
from __future__ import annotations
import os
from collections.abc import Mapping
__UpperCamelCase : Optional[Any] = tuple[int, int]
class a :
def __init__( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = vertices
lowerCAmelCase = {
(min(_snake_case ), max(_snake_case )): weight for edge, weight in edges.items()
}
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
lowerCAmelCase = weight
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = Graph({min(self.vertices )} , {} )
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
while len(subgraph.vertices ) < len(self.vertices ):
lowerCAmelCase = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
lowerCAmelCase = edge
lowerCAmelCase = weight
subgraph.add_edge(_snake_case , _snake_case )
return subgraph
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "p107_network.txt" ):
lowerCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) )
lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = {}
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
with open(_UpperCAmelCase ) as f:
lowerCAmelCase = f.read().strip().split('\n' )
lowerCAmelCase = [line.split(',' ) for line in data]
for edgea in range(1 , len(_UpperCAmelCase ) ):
for edgea in range(_UpperCAmelCase ):
if adjaceny_matrix[edgea][edgea] != "-":
lowerCAmelCase = int(adjaceny_matrix[edgea][edgea] )
lowerCAmelCase = Graph(set(range(len(_UpperCAmelCase ) ) ) , _UpperCAmelCase )
lowerCAmelCase = graph.prims_algorithm()
lowerCAmelCase = sum(graph.edges.values() )
lowerCAmelCase = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(f'''{solution() = }''')
| 4 |
"""simple docstring"""
import numpy as np
import pandas as pd
from sklearn.preprocessing import Normalizer
from sklearn.svm import SVR
from statsmodels.tsa.statespace.sarimax import SARIMAX
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ):
lowerCAmelCase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCAmelCase )] )
lowerCAmelCase = np.array(_UpperCAmelCase )
lowerCAmelCase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCAmelCase ) ) , x.transpose() ) , _UpperCAmelCase )
return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ):
lowerCAmelCase = (1, 2, 1)
lowerCAmelCase = (1, 1, 0, 7)
lowerCAmelCase = SARIMAX(
_UpperCAmelCase , exog=_UpperCAmelCase , order=_UpperCAmelCase , seasonal_order=_UpperCAmelCase )
lowerCAmelCase = model.fit(disp=_UpperCAmelCase , maxiter=600 , method='nm' )
lowerCAmelCase = model_fit.predict(1 , len(_UpperCAmelCase ) , exog=[test_match] )
return result[0]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ):
lowerCAmelCase = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 )
regressor.fit(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = regressor.predict(_UpperCAmelCase )
return y_pred[0]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ):
train_user.sort()
lowerCAmelCase = np.percentile(_UpperCAmelCase , 25 )
lowerCAmelCase = np.percentile(_UpperCAmelCase , 75 )
lowerCAmelCase = qa - qa
lowerCAmelCase = qa - (iqr * 0.1)
return low_lim
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : float ):
lowerCAmelCase = 0
lowerCAmelCase = 0
for i in list_vote:
if i > actual_result:
lowerCAmelCase = not_safe + 1
else:
if abs(abs(_UpperCAmelCase ) - abs(_UpperCAmelCase ) ) <= 0.1:
safe += 1
else:
not_safe += 1
return safe > not_safe
if __name__ == "__main__":
# data_input_df = pd.read_csv("ex_data.csv", header=None)
__UpperCamelCase : Optional[Any] = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]]
__UpperCamelCase : Any = pd.DataFrame(
data_input, columns=['''total_user''', '''total_even''', '''days''']
)
__UpperCamelCase : Dict = Normalizer().fit_transform(data_input_df.values)
# split data
__UpperCamelCase : Dict = normalize_df[:, 2].tolist()
__UpperCamelCase : Union[str, Any] = normalize_df[:, 0].tolist()
__UpperCamelCase : List[str] = normalize_df[:, 1].tolist()
# for svr (input variable = total date and total match)
__UpperCamelCase : Optional[int] = normalize_df[:, [1, 2]].tolist()
__UpperCamelCase : Tuple = x[: len(x) - 1]
__UpperCamelCase : Any = x[len(x) - 1 :]
# for linear regression & sarimax
__UpperCamelCase : str = total_date[: len(total_date) - 1]
__UpperCamelCase : Union[str, Any] = total_user[: len(total_user) - 1]
__UpperCamelCase : List[Any] = total_match[: len(total_match) - 1]
__UpperCamelCase : Optional[Any] = total_date[len(total_date) - 1 :]
__UpperCamelCase : str = total_user[len(total_user) - 1 :]
__UpperCamelCase : str = total_match[len(total_match) - 1 :]
# voting system with forecasting
__UpperCamelCase : Any = [
linear_regression_prediction(
trn_date, trn_user, trn_match, tst_date, tst_match
),
sarimax_predictor(trn_user, trn_match, tst_match),
support_vector_regressor(x_train, x_test, trn_user),
]
# check the safety of today's data
__UpperCamelCase : List[str] = '''''' if data_safety_checker(res_vote, tst_user) else '''not '''
print('''Today\'s data is {not_str}safe.''')
| 4 | 1 |
"""simple docstring"""
from collections import defaultdict
class a :
def __init__( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = total # total no of tasks (N)
# DP table will have a dimension of (2^M)*N
# initially all values are set to -1
lowerCAmelCase = [
[-1 for i in range(total + 1 )] for j in range(2 ** len(_snake_case ) )
]
lowerCAmelCase = defaultdict(_snake_case ) # stores the list of persons for each task
# final_mask is used to check if all persons are included by setting all bits
# to 1
lowerCAmelCase = (1 << len(_snake_case )) - 1
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
if mask == self.final_mask:
return 1
# if not everyone gets the task and no more tasks are available, return 0
if task_no > self.total_tasks:
return 0
# if case already considered
if self.dp[mask][task_no] != -1:
return self.dp[mask][task_no]
# Number of ways when we don't this task in the arrangement
lowerCAmelCase = self.count_ways_until(_snake_case , task_no + 1 )
# now assign the tasks one by one to all possible persons and recursively
# assign for the remaining tasks.
if task_no in self.task:
for p in self.task[task_no]:
# if p is already given a task
if mask & (1 << p):
continue
# assign this task to p and change the mask value. And recursively
# assign tasks with the new mask value.
total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 )
# save the value.
lowerCAmelCase = total_ways_util
return self.dp[mask][task_no]
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
for i in range(len(_snake_case ) ):
for j in task_performed[i]:
self.task[j].append(_snake_case )
# call the function to fill the DP table, final answer is stored in dp[0][1]
return self.count_ways_until(0 , 1 )
if __name__ == "__main__":
__UpperCamelCase : Tuple = 5 # total no of tasks (the value of N)
# the list of tasks that can be done by M persons.
__UpperCamelCase : str = [[1, 3, 4], [1, 2, 5], [3, 4]]
print(
AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways(
task_performed
)
)
| 4 |
"""simple docstring"""
import argparse
import math
import os
import torch
from neural_compressor.utils.pytorch import load
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument(
'-m' , '--pretrained_model_name_or_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , )
parser.add_argument(
'-c' , '--caption' , type=_UpperCAmelCase , default='robotic cat with wings' , help='Text used to generate images.' , )
parser.add_argument(
'-n' , '--images_num' , type=_UpperCAmelCase , default=4 , help='How much images to generate.' , )
parser.add_argument(
'-s' , '--seed' , type=_UpperCAmelCase , default=42 , help='Seed for random process.' , )
parser.add_argument(
'-ci' , '--cuda_id' , type=_UpperCAmelCase , default=0 , help='cuda_id.' , )
lowerCAmelCase = parser.parse_args()
return args
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ):
if not len(_UpperCAmelCase ) == rows * cols:
raise ValueError('The specified number of rows and columns are not correct.' )
lowerCAmelCase ,lowerCAmelCase = imgs[0].size
lowerCAmelCase = Image.new('RGB' , size=(cols * w, rows * h) )
lowerCAmelCase ,lowerCAmelCase = grid.size
for i, img in enumerate(_UpperCAmelCase ):
grid.paste(_UpperCAmelCase , box=(i % cols * w, i // cols * h) )
return grid
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]="robotic cat with wings" , _UpperCAmelCase : Optional[int]=7.5 , _UpperCAmelCase : Dict=50 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=42 , ):
lowerCAmelCase = torch.Generator(pipeline.device ).manual_seed(_UpperCAmelCase )
lowerCAmelCase = pipeline(
_UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , ).images
lowerCAmelCase = int(math.sqrt(_UpperCAmelCase ) )
lowerCAmelCase = image_grid(_UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows )
return grid, images
__UpperCamelCase : Optional[Any] = parse_args()
# Load models and create wrapper for stable diffusion
__UpperCamelCase : List[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''')
__UpperCamelCase : str = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''')
__UpperCamelCase : Optional[int] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''')
__UpperCamelCase : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''')
__UpperCamelCase : Tuple = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer
)
__UpperCamelCase : Union[str, Any] = lambda images, clip_input: (images, False)
if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')):
__UpperCamelCase : Dict = load(args.pretrained_model_name_or_path, model=unet)
unet.eval()
setattr(pipeline, '''unet''', unet)
else:
__UpperCamelCase : Dict = unet.to(torch.device('''cuda''', args.cuda_id))
__UpperCamelCase : Optional[Any] = pipeline.to(unet.device)
__UpperCamelCase ,__UpperCamelCase : List[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed)
grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split()))))
__UpperCamelCase : int = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split()))
os.makedirs(dirname, exist_ok=True)
for idx, image in enumerate(images):
image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
| 4 | 1 |
"""simple docstring"""
import os
from pathlib import Path
import numpy as np
import pytest
from pack_dataset import pack_data_dir
from parameterized import parameterized
from save_len_file import save_len_file
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from transformers.models.mbart.modeling_mbart import shift_tokens_right
from transformers.testing_utils import TestCasePlus, slow
from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset
__UpperCamelCase : Optional[Any] = '''bert-base-cased'''
__UpperCamelCase : str = '''google/pegasus-xsum'''
__UpperCamelCase : int = [''' Sam ate lunch today.''', '''Sams lunch ingredients.''']
__UpperCamelCase : Dict = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee''']
__UpperCamelCase : Any = '''patrickvonplaten/t5-tiny-random'''
__UpperCamelCase : List[Any] = '''sshleifer/bart-tiny-random'''
__UpperCamelCase : Dict = '''sshleifer/tiny-mbart'''
__UpperCamelCase : List[Any] = '''sshleifer/tiny-marian-en-de'''
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Path , _UpperCAmelCase : list ):
lowerCAmelCase = '\n'.join(_UpperCAmelCase )
Path(_UpperCAmelCase ).open('w' ).writelines(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
for split in ["train", "val", "test"]:
_dump_articles(os.path.join(_UpperCAmelCase , F'{split}.source' ) , _UpperCAmelCase )
_dump_articles(os.path.join(_UpperCAmelCase , F'{split}.target' ) , _UpperCAmelCase )
return tmp_dir
class a ( a__ ):
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
@slow
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = AutoTokenizer.from_pretrained(_snake_case )
lowerCAmelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
lowerCAmelCase = max(len(tokenizer.encode(_snake_case ) ) for a in ARTICLES )
lowerCAmelCase = max(len(tokenizer.encode(_snake_case ) ) for a in SUMMARIES )
lowerCAmelCase = 4
lowerCAmelCase = 8
assert max_len_target > max_src_len # Will be truncated
assert max_len_source > max_src_len # Will be truncated
lowerCAmelCase ,lowerCAmelCase = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error.
lowerCAmelCase = SeqaSeqDataset(
_snake_case , data_dir=_snake_case , type_path='train' , max_source_length=_snake_case , max_target_length=_snake_case , src_lang=_snake_case , tgt_lang=_snake_case , )
lowerCAmelCase = DataLoader(_snake_case , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert isinstance(_snake_case , _snake_case )
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_src_len
# show that targets are the same len
assert batch["labels"].shape[1] == max_tgt_len
if tok_name != MBART_TINY:
continue
# check language codes in correct place
lowerCAmelCase = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id )
assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang]
assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang]
break # No need to test every batch
@parameterized.expand([BART_TINY, BERT_BASE_CASED] )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = AutoTokenizer.from_pretrained(_snake_case )
lowerCAmelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
lowerCAmelCase = max(len(tokenizer.encode(_snake_case ) ) for a in ARTICLES )
lowerCAmelCase = max(len(tokenizer.encode(_snake_case ) ) for a in SUMMARIES )
lowerCAmelCase = 4
lowerCAmelCase = LegacySeqaSeqDataset(
_snake_case , data_dir=_snake_case , type_path='train' , max_source_length=20 , max_target_length=_snake_case , )
lowerCAmelCase = DataLoader(_snake_case , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_len_source
assert 20 >= batch["input_ids"].shape[1] # trimmed significantly
# show that targets were truncated
assert batch["labels"].shape[1] == trunc_target # Truncated
assert max_len_target > trunc_target # Truncated
break # No need to test every batch
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' )
lowerCAmelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
lowerCAmelCase = tmp_dir.joinpath('train.source' ).open().readlines()
lowerCAmelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
pack_data_dir(_snake_case , _snake_case , 1_28 , _snake_case )
lowerCAmelCase = {x.name for x in tmp_dir.iterdir()}
lowerCAmelCase = {x.name for x in save_dir.iterdir()}
lowerCAmelCase = save_dir.joinpath('train.source' ).open().readlines()
# orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.']
# desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.']
assert len(_snake_case ) < len(_snake_case )
assert len(_snake_case ) == 1
assert len(packed_examples[0] ) == sum(len(_snake_case ) for x in orig_examples )
assert orig_paths == new_paths
@pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
if not FAIRSEQ_AVAILABLE:
return
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = self._get_dataset(max_len=64 )
lowerCAmelCase = 64
lowerCAmelCase = ds.make_dynamic_sampler(_snake_case , required_batch_size_multiple=_snake_case )
lowerCAmelCase = [len(_snake_case ) for x in batch_sampler]
assert len(set(_snake_case ) ) > 1 # it's not dynamic batch size if every batch is the same length
assert sum(_snake_case ) == len(_snake_case ) # no dropped or added examples
lowerCAmelCase = DataLoader(_snake_case , batch_sampler=_snake_case , collate_fn=ds.collate_fn , num_workers=2 )
lowerCAmelCase = []
lowerCAmelCase = []
for batch in data_loader:
lowerCAmelCase = batch['input_ids'].shape
lowerCAmelCase = src_shape[0]
assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple
lowerCAmelCase = np.product(batch['input_ids'].shape )
num_src_per_batch.append(_snake_case )
if num_src_tokens > (max_tokens * 1.1):
failures.append(_snake_case )
assert num_src_per_batch[0] == max(_snake_case )
if failures:
raise AssertionError(F'too many tokens in {len(_snake_case )} batches' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = self._get_dataset(max_len=5_12 )
lowerCAmelCase = 2
lowerCAmelCase = ds.make_sortish_sampler(_snake_case , shuffle=_snake_case )
lowerCAmelCase = DataLoader(_snake_case , batch_size=_snake_case , collate_fn=ds.collate_fn , num_workers=2 )
lowerCAmelCase = DataLoader(_snake_case , batch_size=_snake_case , collate_fn=ds.collate_fn , num_workers=2 , sampler=_snake_case )
lowerCAmelCase = tokenizer.pad_token_id
def count_pad_tokens(_snake_case , _snake_case="input_ids" ):
return [batch[k].eq(_snake_case ).sum().item() for batch in data_loader]
assert sum(count_pad_tokens(_snake_case , k='labels' ) ) < sum(count_pad_tokens(_snake_case , k='labels' ) )
assert sum(count_pad_tokens(_snake_case ) ) < sum(count_pad_tokens(_snake_case ) )
assert len(_snake_case ) == len(_snake_case )
def UpperCamelCase__ ( self , _snake_case=10_00 , _snake_case=1_28 ):
"""simple docstring"""
if os.getenv('USE_REAL_DATA' , _snake_case ):
lowerCAmelCase = 'examples/seq2seq/wmt_en_ro'
lowerCAmelCase = max_len * 2 * 64
if not Path(_snake_case ).joinpath('train.len' ).exists():
save_len_file(_snake_case , _snake_case )
else:
lowerCAmelCase = 'examples/seq2seq/test_data/wmt_en_ro'
lowerCAmelCase = max_len * 4
save_len_file(_snake_case , _snake_case )
lowerCAmelCase = AutoTokenizer.from_pretrained(_snake_case )
lowerCAmelCase = SeqaSeqDataset(
_snake_case , data_dir=_snake_case , type_path='train' , max_source_length=_snake_case , max_target_length=_snake_case , n_obs=_snake_case , )
return ds, max_tokens, tokenizer
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = self._get_dataset()
lowerCAmelCase = set(DistributedSortishSampler(_snake_case , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=_snake_case ) )
lowerCAmelCase = set(DistributedSortishSampler(_snake_case , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=_snake_case ) )
assert idsa.intersection(_snake_case ) == set()
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = AutoTokenizer.from_pretrained(_snake_case , use_fast=_snake_case )
if tok_name == MBART_TINY:
lowerCAmelCase = SeqaSeqDataset(
_snake_case , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , )
lowerCAmelCase = train_dataset.dataset_kwargs
assert "src_lang" in kwargs and "tgt_lang" in kwargs
else:
lowerCAmelCase = SeqaSeqDataset(
_snake_case , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , )
lowerCAmelCase = train_dataset.dataset_kwargs
assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs
assert len(_snake_case ) == 1 if tok_name == BART_TINY else len(_snake_case ) == 0
| 4 |
"""simple docstring"""
import warnings
from pathlib import Path
from typing import List, Tuple, Union
import fire
from torch import nn
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel
from transformers.utils import logging
__UpperCamelCase : List[Any] = logging.get_logger(__name__)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : List[int] ):
lowerCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] )
assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ), F'{len(_UpperCAmelCase )} != {len(_UpperCAmelCase )}'
dest_layers.load_state_dict(layers_to_copy.state_dict() )
__UpperCamelCase : Optional[Any] = {
# maps num layers in teacher -> num_layers in student -> which teacher layers to copy.
# 12: bart, 16: pegasus, 6: marian/Helsinki-NLP
12: {
1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher
2: [0, 6],
3: [0, 6, 11],
4: [0, 4, 8, 11],
6: [0, 2, 4, 7, 9, 11],
9: [0, 1, 2, 4, 5, 7, 9, 10, 11],
12: list(range(12)),
},
16: { # maps num layers in student -> which teacher layers to copy
1: [0],
2: [0, 15],
3: [0, 8, 15],
4: [0, 5, 10, 15],
6: [0, 3, 6, 9, 12, 15],
8: [0, 2, 4, 6, 8, 10, 12, 15],
9: [0, 1, 3, 5, 7, 9, 11, 13, 15],
12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15],
16: list(range(16)),
},
6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))},
}
__UpperCamelCase : int = {
# maps num layers in student -> which teacher layers to copy.
6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]},
12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]},
16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]},
}
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ):
try:
lowerCAmelCase = LAYERS_TO_COPY[n_teacher][n_student]
return val
except KeyError:
if n_student != n_teacher:
warnings.warn(
F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first'
F' {n_student}' )
return list(range(_UpperCAmelCase ) )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ):
if n_student > n_teacher:
raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' )
elif n_teacher == n_student:
return list(range(_UpperCAmelCase ) )
elif n_student == 1:
return [n_teacher - 1]
else:
return LAYERS_TO_SUPERVISE[n_teacher][n_student]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, PreTrainedModel] , _UpperCAmelCase : Union[str, Path] = "student" , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ):
lowerCAmelCase = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.'
assert (e is not None) or (d is not None), _msg
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
AutoTokenizer.from_pretrained(_UpperCAmelCase ).save_pretrained(_UpperCAmelCase ) # purely for convenience
lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).eval()
else:
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), F'teacher must be a model or string got type {type(_UpperCAmelCase )}'
lowerCAmelCase = teacher.config.to_diff_dict()
try:
lowerCAmelCase ,lowerCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers
if e is None:
lowerCAmelCase = teacher_e
if d is None:
lowerCAmelCase = teacher_d
init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} )
except AttributeError: # T5
if hasattr(teacher.config , 'num_encoder_layers' ):
lowerCAmelCase ,lowerCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers
else:
lowerCAmelCase ,lowerCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers
if e is None:
lowerCAmelCase = teacher_e
if d is None:
lowerCAmelCase = teacher_d
if hasattr(teacher.config , 'num_encoder_layers' ):
init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} )
else:
init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} )
# Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs
init_kwargs.update(_UpperCAmelCase )
# Copy weights
lowerCAmelCase = teacher.config_class(**_UpperCAmelCase )
lowerCAmelCase = AutoModelForSeqaSeqLM.from_config(_UpperCAmelCase )
# Start by copying the full teacher state dict this will copy the first N teacher layers to the student.
lowerCAmelCase = student.load_state_dict(teacher.state_dict() , strict=_UpperCAmelCase )
assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys.
if copy_first_teacher_layers: # Our copying is done. We just log and save
lowerCAmelCase ,lowerCAmelCase = list(range(_UpperCAmelCase ) ), list(range(_UpperCAmelCase ) )
logger.info(
F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to'
F' {save_path}' )
student.save_pretrained(_UpperCAmelCase )
return student, e_layers_to_copy, d_layers_to_copy
# Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer.
if e_layers_to_copy is None:
lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase )
if d_layers_to_copy is None:
lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase )
try:
if hasattr(
_UpperCAmelCase , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers
copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _UpperCAmelCase )
copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _UpperCAmelCase )
else:
copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _UpperCAmelCase )
copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _UpperCAmelCase )
except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block
copy_layers(teacher.encoder.block , student.encoder.block , _UpperCAmelCase )
copy_layers(teacher.decoder.block , student.decoder.block , _UpperCAmelCase )
logger.info(
F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' )
lowerCAmelCase = {
'teacher_type': teacher.config.model_type,
'copied_encoder_layers': e_layers_to_copy,
'copied_decoder_layers': d_layers_to_copy,
}
student.save_pretrained(_UpperCAmelCase )
# Save information about copying for easier reproducibility
return student, e_layers_to_copy, d_layers_to_copy
if __name__ == "__main__":
fire.Fire(create_student_by_copying_alternating_layers)
| 4 | 1 |
"""simple docstring"""
from io import BytesIO
from typing import List, Union
import requests
from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_decord_available():
import numpy as np
from decord import VideoReader
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
__UpperCamelCase : Tuple = logging.get_logger(__name__)
@add_end_docstrings(a__ )
class a ( a__ ):
def __init__( self , *_snake_case , **_snake_case ):
"""simple docstring"""
super().__init__(*_snake_case , **_snake_case )
requires_backends(self , 'decord' )
self.check_model_type(_snake_case )
def UpperCamelCase__ ( self , _snake_case=None , _snake_case=None , _snake_case=None ):
"""simple docstring"""
lowerCAmelCase = {}
if frame_sampling_rate is not None:
lowerCAmelCase = frame_sampling_rate
if num_frames is not None:
lowerCAmelCase = num_frames
lowerCAmelCase = {}
if top_k is not None:
lowerCAmelCase = top_k
return preprocess_params, {}, postprocess_params
def __call__( self , _snake_case , **_snake_case ):
"""simple docstring"""
return super().__call__(_snake_case , **_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case=1 ):
"""simple docstring"""
if num_frames is None:
lowerCAmelCase = self.model.config.num_frames
if video.startswith('http://' ) or video.startswith('https://' ):
lowerCAmelCase = BytesIO(requests.get(_snake_case ).content )
lowerCAmelCase = VideoReader(_snake_case )
videoreader.seek(0 )
lowerCAmelCase = 0
lowerCAmelCase = num_frames * frame_sampling_rate - 1
lowerCAmelCase = np.linspace(_snake_case , _snake_case , num=_snake_case , dtype=np.intaa )
lowerCAmelCase = videoreader.get_batch(_snake_case ).asnumpy()
lowerCAmelCase = list(_snake_case )
lowerCAmelCase = self.image_processor(_snake_case , return_tensors=self.framework )
return model_inputs
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.model(**_snake_case )
return model_outputs
def UpperCamelCase__ ( self , _snake_case , _snake_case=5 ):
"""simple docstring"""
if top_k > self.model.config.num_labels:
lowerCAmelCase = self.model.config.num_labels
if self.framework == "pt":
lowerCAmelCase = model_outputs.logits.softmax(-1 )[0]
lowerCAmelCase ,lowerCAmelCase = probs.topk(_snake_case )
else:
raise ValueError(F'Unsupported framework: {self.framework}' )
lowerCAmelCase = scores.tolist()
lowerCAmelCase = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_snake_case , _snake_case )]
| 4 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__UpperCamelCase : Dict = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = ['''LayoutXLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Any = ['''LayoutXLMTokenizerFast''']
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
__UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 | 1 |
"""simple docstring"""
import os
import sys
import unittest
__UpperCamelCase : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
__UpperCamelCase : Dict = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''')
__UpperCamelCase : int = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''')
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = get_test_to_tester_mapping(_snake_case )
lowerCAmelCase = get_test_to_tester_mapping(_snake_case )
lowerCAmelCase = {'BertModelTest': 'BertModelTester'}
lowerCAmelCase = {
'BlipModelTest': 'BlipModelTester',
'BlipTextImageModelTest': 'BlipTextImageModelsModelTester',
'BlipTextModelTest': 'BlipTextModelTester',
'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester',
'BlipVQAModelTest': 'BlipVQAModelTester',
'BlipVisionModelTest': 'BlipVisionModelTester',
}
self.assertEqual(get_test_info.to_json(_snake_case ) , _snake_case )
self.assertEqual(get_test_info.to_json(_snake_case ) , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = get_model_to_test_mapping(_snake_case )
lowerCAmelCase = get_model_to_test_mapping(_snake_case )
lowerCAmelCase = {
'BertForMaskedLM': ['BertModelTest'],
'BertForMultipleChoice': ['BertModelTest'],
'BertForNextSentencePrediction': ['BertModelTest'],
'BertForPreTraining': ['BertModelTest'],
'BertForQuestionAnswering': ['BertModelTest'],
'BertForSequenceClassification': ['BertModelTest'],
'BertForTokenClassification': ['BertModelTest'],
'BertLMHeadModel': ['BertModelTest'],
'BertModel': ['BertModelTest'],
}
lowerCAmelCase = {
'BlipForConditionalGeneration': ['BlipTextImageModelTest'],
'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'],
'BlipForQuestionAnswering': ['BlipVQAModelTest'],
'BlipModel': ['BlipModelTest'],
'BlipTextModel': ['BlipTextModelTest'],
'BlipVisionModel': ['BlipVisionModelTest'],
}
self.assertEqual(get_test_info.to_json(_snake_case ) , _snake_case )
self.assertEqual(get_test_info.to_json(_snake_case ) , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = get_model_to_tester_mapping(_snake_case )
lowerCAmelCase = get_model_to_tester_mapping(_snake_case )
lowerCAmelCase = {
'BertForMaskedLM': ['BertModelTester'],
'BertForMultipleChoice': ['BertModelTester'],
'BertForNextSentencePrediction': ['BertModelTester'],
'BertForPreTraining': ['BertModelTester'],
'BertForQuestionAnswering': ['BertModelTester'],
'BertForSequenceClassification': ['BertModelTester'],
'BertForTokenClassification': ['BertModelTester'],
'BertLMHeadModel': ['BertModelTester'],
'BertModel': ['BertModelTester'],
}
lowerCAmelCase = {
'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'],
'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'],
'BlipForQuestionAnswering': ['BlipVQAModelTester'],
'BlipModel': ['BlipModelTester'],
'BlipTextModel': ['BlipTextModelTester'],
'BlipVisionModel': ['BlipVisionModelTester'],
}
self.assertEqual(get_test_info.to_json(_snake_case ) , _snake_case )
self.assertEqual(get_test_info.to_json(_snake_case ) , _snake_case )
| 4 |
"""simple docstring"""
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ):
lowerCAmelCase = 0.00
lowerCAmelCase = 0
for resistor in resistors:
if resistor <= 0:
lowerCAmelCase = F'Resistor at index {index} has a negative or zero value!'
raise ValueError(_UpperCAmelCase )
first_sum += 1 / float(_UpperCAmelCase )
index += 1
return 1 / first_sum
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ):
lowerCAmelCase = 0.00
lowerCAmelCase = 0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
lowerCAmelCase = F'Resistor at index {index} has a negative value!'
raise ValueError(_UpperCAmelCase )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 | 1 |
"""simple docstring"""
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
__UpperCamelCase : List[str] = logging.get_logger(__name__)
class a ( a__ ):
snake_case__ = ['''input_features''']
def __init__( self , _snake_case=80 , _snake_case=1_60_00 , _snake_case=1_60 , _snake_case=30 , _snake_case=4_00 , _snake_case=0.0 , _snake_case=False , **_snake_case , ):
"""simple docstring"""
super().__init__(
feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , return_attention_mask=_snake_case , **_snake_case , )
lowerCAmelCase = n_fft
lowerCAmelCase = hop_length
lowerCAmelCase = chunk_length
lowerCAmelCase = chunk_length * sampling_rate
lowerCAmelCase = self.n_samples // hop_length
lowerCAmelCase = sampling_rate
lowerCAmelCase = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_snake_case , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=_snake_case , norm='slaney' , mel_scale='slaney' , )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = spectrogram(
_snake_case , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='log10' , )
lowerCAmelCase = log_spec[:, :-1]
lowerCAmelCase = np.maximum(_snake_case , log_spec.max() - 8.0 )
lowerCAmelCase = (log_spec + 4.0) / 4.0
return log_spec
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def UpperCamelCase__ ( _snake_case , _snake_case , _snake_case = 0.0 ):
"""simple docstring"""
if attention_mask is not None:
lowerCAmelCase = np.array(_snake_case , np.intaa )
lowerCAmelCase = []
for vector, length in zip(_snake_case , attention_mask.sum(-1 ) ):
lowerCAmelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 )
if length < normed_slice.shape[0]:
lowerCAmelCase = padding_value
normed_input_values.append(_snake_case )
else:
lowerCAmelCase = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values]
return normed_input_values
def __call__( self , _snake_case , _snake_case = True , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = "max_length" , _snake_case = None , _snake_case = None , _snake_case = None , **_snake_case , ):
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a'
F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input'
F' was sampled with {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
lowerCAmelCase = isinstance(_snake_case , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'Only mono-channel audio is supported for input to {self}' )
lowerCAmelCase = is_batched_numpy or (
isinstance(_snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
lowerCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(_snake_case , np.ndarray ):
lowerCAmelCase = np.asarray(_snake_case , dtype=np.floataa )
elif isinstance(_snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowerCAmelCase = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowerCAmelCase = [np.asarray([raw_speech] ).T]
lowerCAmelCase = BatchFeature({'input_features': raw_speech} )
# convert into correct format for padding
lowerCAmelCase = self.pad(
_snake_case , padding=_snake_case , max_length=max_length if max_length else self.n_samples , truncation=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=return_attention_mask or do_normalize , )
# zero-mean and unit-variance normalization
if do_normalize:
lowerCAmelCase = self.zero_mean_unit_var_norm(
padded_inputs['input_features'] , attention_mask=padded_inputs['attention_mask'] , padding_value=self.padding_value , )
lowerCAmelCase = np.stack(padded_inputs['input_features'] , axis=0 )
# make sure list is in array format
lowerCAmelCase = padded_inputs.get('input_features' ).transpose(2 , 0 , 1 )
lowerCAmelCase = [self._np_extract_fbank_features(_snake_case ) for waveform in input_features[0]]
if isinstance(input_features[0] , _snake_case ):
lowerCAmelCase = [np.asarray(_snake_case , dtype=np.floataa ) for feature in input_features]
else:
lowerCAmelCase = input_features
if return_attention_mask:
# rescale from sample (48000) to feature (3000)
lowerCAmelCase = padded_inputs['attention_mask'][:, :: self.hop_length]
if return_tensors is not None:
lowerCAmelCase = padded_inputs.convert_to_tensors(_snake_case )
return padded_inputs
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = copy.deepcopy(self.__dict__ )
lowerCAmelCase = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
return output
| 4 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase : List[str] = logging.get_logger(__name__)
__UpperCamelCase : Tuple = {
'''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''',
# See all GLPN models at https://huggingface.co/models?filter=glpn
}
class a ( a__ ):
snake_case__ = '''glpn'''
def __init__( self , _snake_case=3 , _snake_case=4 , _snake_case=[2, 2, 2, 2] , _snake_case=[8, 4, 2, 1] , _snake_case=[32, 64, 1_60, 2_56] , _snake_case=[7, 3, 3, 3] , _snake_case=[4, 2, 2, 2] , _snake_case=[1, 2, 5, 8] , _snake_case=[4, 4, 4, 4] , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=0.1 , _snake_case=1E-6 , _snake_case=64 , _snake_case=10 , _snake_case=-1 , **_snake_case , ):
"""simple docstring"""
super().__init__(**_snake_case )
lowerCAmelCase = num_channels
lowerCAmelCase = num_encoder_blocks
lowerCAmelCase = depths
lowerCAmelCase = sr_ratios
lowerCAmelCase = hidden_sizes
lowerCAmelCase = patch_sizes
lowerCAmelCase = strides
lowerCAmelCase = mlp_ratios
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = initializer_range
lowerCAmelCase = drop_path_rate
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = decoder_hidden_size
lowerCAmelCase = max_depth
lowerCAmelCase = head_in_index
| 4 | 1 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class a :
def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
lowerCAmelCase = self.vocab_size - 1
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_token_type_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTModel(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , head_mask=_snake_case )
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case )
lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTLMHeadModel(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTDoubleHeadsModel(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = OpenAIGPTForSequenceClassification(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {
'input_ids': input_ids,
'token_type_ids': token_type_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_torch
class a ( a__ , a__ , a__ , unittest.TestCase ):
snake_case__ = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
snake_case__ = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
snake_case__ = (
{
'''feature-extraction''': OpenAIGPTModel,
'''text-classification''': OpenAIGPTForSequenceClassification,
'''text-generation''': OpenAIGPTLMHeadModel,
'''zero-shot''': OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=False ):
"""simple docstring"""
lowerCAmelCase = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
lowerCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_snake_case , )
lowerCAmelCase = inputs_dict['labels']
lowerCAmelCase = inputs_dict['labels']
lowerCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_snake_case , )
lowerCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_snake_case )
return inputs_dict
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , n_embd=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = OpenAIGPTModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
@require_torch
class a ( unittest.TestCase ):
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' )
model.to(_snake_case )
lowerCAmelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=_snake_case ) # the president is
lowerCAmelCase = [
4_81,
47_35,
5_44,
2_46,
9_63,
8_70,
7_62,
2_39,
2_44,
4_04_77,
2_44,
2_49,
7_19,
8_81,
4_87,
5_44,
2_40,
2_44,
6_03,
4_81,
] # the president is a very good man. " \n " i\'m sure he is, " said the
lowerCAmelCase = model.generate(_snake_case , do_sample=_snake_case )
self.assertListEqual(output_ids[0].tolist() , _snake_case )
| 4 |
"""simple docstring"""
from __future__ import annotations
import unittest
import numpy as np
from transformers import LayoutLMConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.layoutlm.modeling_tf_layoutlm import (
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMForMaskedLM,
TFLayoutLMForQuestionAnswering,
TFLayoutLMForSequenceClassification,
TFLayoutLMForTokenClassification,
TFLayoutLMModel,
)
class a :
def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , _snake_case=10_00 , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_input_mask
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
lowerCAmelCase = range_bbox
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# convert bbox to numpy since TF does not support item assignment
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
lowerCAmelCase = bbox[i, j, 3]
lowerCAmelCase = bbox[i, j, 1]
lowerCAmelCase = t
if bbox[i, j, 2] < bbox[i, j, 0]:
lowerCAmelCase = bbox[i, j, 2]
lowerCAmelCase = bbox[i, j, 0]
lowerCAmelCase = t
lowerCAmelCase = tf.convert_to_tensor(_snake_case )
lowerCAmelCase = None
if self.use_input_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
if self.use_token_type_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = LayoutLMConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMModel(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , token_type_ids=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForMaskedLM(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = TFLayoutLMForSequenceClassification(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = TFLayoutLMForTokenClassification(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForQuestionAnswering(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {
'input_ids': input_ids,
'bbox': bbox,
'token_type_ids': token_type_ids,
'attention_mask': input_mask,
}
return config, inputs_dict
@require_tf
class a ( a__ , a__ , unittest.TestCase ):
snake_case__ = (
(
TFLayoutLMModel,
TFLayoutLMForMaskedLM,
TFLayoutLMForTokenClassification,
TFLayoutLMForSequenceClassification,
TFLayoutLMForQuestionAnswering,
)
if is_tf_available()
else ()
)
snake_case__ = (
{
'''feature-extraction''': TFLayoutLMModel,
'''fill-mask''': TFLayoutLMForMaskedLM,
'''text-classification''': TFLayoutLMForSequenceClassification,
'''token-classification''': TFLayoutLMForTokenClassification,
'''zero-shot''': TFLayoutLMForSequenceClassification,
}
if is_tf_available()
else {}
)
snake_case__ = False
snake_case__ = True
snake_case__ = 1_0
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = TFLayoutLMModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
@unittest.skip('Onnx compliancy broke with TF 2.10' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def _SCREAMING_SNAKE_CASE ():
# Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on:
# fmt: off
lowerCAmelCase = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231
lowerCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231
lowerCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231
lowerCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231
# these are sequence labels (i.e. at the token level)
lowerCAmelCase = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231
# fmt: on
return input_ids, attention_mask, bbox, token_type_ids, labels
@require_tf
class a ( unittest.TestCase ):
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
# test the sequence output on [0, :3, :3]
lowerCAmelCase = tf.convert_to_tensor(
[[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]] , )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _snake_case , atol=1E-3 ) )
# test the pooled output on [1, :3]
lowerCAmelCase = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552] )
self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _snake_case , atol=1E-3 ) )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
lowerCAmelCase = model(
input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=tf.convert_to_tensor([1, 1] ) , )
# test whether we get a loss as a scalar
lowerCAmelCase = outputs.loss
lowerCAmelCase = (2,)
self.assertEqual(loss.shape , _snake_case )
# test the shape of the logits
lowerCAmelCase = outputs.logits
lowerCAmelCase = (2, 2)
self.assertEqual(logits.shape , _snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
lowerCAmelCase = model(
input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case )
# test the shape of the logits
lowerCAmelCase = outputs.logits
lowerCAmelCase = tf.convert_to_tensor((2, 25, 13) )
self.assertEqual(logits.shape , _snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
# test the shape of the logits
lowerCAmelCase = tf.convert_to_tensor((2, 25) )
self.assertEqual(outputs.start_logits.shape , _snake_case )
self.assertEqual(outputs.end_logits.shape , _snake_case )
| 4 | 1 |
"""simple docstring"""
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : bool = True , _UpperCAmelCase : float = math.inf , _UpperCAmelCase : float = -math.inf , _UpperCAmelCase : float = math.inf , _UpperCAmelCase : float = -math.inf , _UpperCAmelCase : bool = False , _UpperCAmelCase : float = 100 , _UpperCAmelCase : float = 0.01 , _UpperCAmelCase : float = 1 , ):
lowerCAmelCase = False
lowerCAmelCase = search_prob
lowerCAmelCase = start_temperate
lowerCAmelCase = []
lowerCAmelCase = 0
lowerCAmelCase = None
while not search_end:
lowerCAmelCase = current_state.score()
if best_state is None or current_score > best_state.score():
lowerCAmelCase = current_state
scores.append(_UpperCAmelCase )
iterations += 1
lowerCAmelCase = None
lowerCAmelCase = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
lowerCAmelCase = random.randint(0 , len(_UpperCAmelCase ) - 1 ) # picking a random neighbor
lowerCAmelCase = neighbors.pop(_UpperCAmelCase )
lowerCAmelCase = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
lowerCAmelCase = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
lowerCAmelCase = picked_neighbor
else:
lowerCAmelCase = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
lowerCAmelCase = picked_neighbor
lowerCAmelCase = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
lowerCAmelCase = True
else:
lowerCAmelCase = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(_UpperCAmelCase ) , _UpperCAmelCase )
plt.xlabel('Iterations' )
plt.ylabel('Function values' )
plt.show()
return best_state
if __name__ == "__main__":
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ):
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
__UpperCamelCase : int = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
__UpperCamelCase : Optional[Any] = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
# starting the problem with initial coordinates (12, 47)
__UpperCamelCase : Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
__UpperCamelCase : Optional[Any] = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : Any ):
return (3 * x**2) - (6 * y)
__UpperCamelCase : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
__UpperCamelCase : Any = simulated_annealing(prob, find_max=False, visualization=True)
print(
'''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
f'''{local_min.score()}'''
)
__UpperCamelCase : Optional[int] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
__UpperCamelCase : str = simulated_annealing(prob, find_max=True, visualization=True)
print(
'''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
f'''{local_min.score()}'''
)
| 4 |
"""simple docstring"""
import argparse
import os
import re
import packaging.version
__UpperCamelCase : Union[str, Any] = '''examples/'''
__UpperCamelCase : str = {
'''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''),
'''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''),
'''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''),
'''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''),
}
__UpperCamelCase : List[str] = {
'''init''': '''src/transformers/__init__.py''',
'''setup''': '''setup.py''',
}
__UpperCamelCase : Optional[int] = '''README.md'''
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ):
with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f:
lowerCAmelCase = f.read()
lowerCAmelCase ,lowerCAmelCase = REPLACE_PATTERNS[pattern]
lowerCAmelCase = replace.replace('VERSION' , _UpperCAmelCase )
lowerCAmelCase = re_pattern.sub(_UpperCAmelCase , _UpperCAmelCase )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ):
for folder, directories, fnames in os.walk(_UpperCAmelCase ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('research_projects' )
if "legacy" in directories:
directories.remove('legacy' )
for fname in fnames:
if fname.endswith('.py' ):
update_version_in_file(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , pattern='examples' )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict=False ):
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if not patch:
update_version_in_examples(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = '๐ค Transformers currently provides the following architectures'
lowerCAmelCase = '1. Want to contribute a new model?'
with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f:
lowerCAmelCase = f.readlines()
# Find the start of the list.
lowerCAmelCase = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
lowerCAmelCase = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('1.' ):
lowerCAmelCase = lines[index].replace(
'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , )
index += 1
with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE ():
with open(REPLACE_FILES['init'] , 'r' ) as f:
lowerCAmelCase = f.read()
lowerCAmelCase = REPLACE_PATTERNS['init'][0].search(_UpperCAmelCase ).groups()[0]
return packaging.version.parse(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple=False ):
lowerCAmelCase = get_version()
if patch and default_version.is_devrelease:
raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' )
if default_version.is_devrelease:
lowerCAmelCase = default_version.base_version
elif patch:
lowerCAmelCase = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}'
else:
lowerCAmelCase = F'{default_version.major}.{default_version.minor + 1}.0'
# Now let's ask nicely if that's the right one.
lowerCAmelCase = input(F'Which version are you releasing? [{default_version}]' )
if len(_UpperCAmelCase ) == 0:
lowerCAmelCase = default_version
print(F'Updating version to {version}.' )
global_version_update(_UpperCAmelCase , patch=_UpperCAmelCase )
if not patch:
print('Cleaning main README, don\'t forget to run `make fix-copies`.' )
clean_main_ref_in_model_list()
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = get_version()
lowerCAmelCase = F'{current_version.major}.{current_version.minor + 1}.0.dev0'
lowerCAmelCase = current_version.base_version
# Check with the user we got that right.
lowerCAmelCase = input(F'Which version are we developing now? [{dev_version}]' )
if len(_UpperCAmelCase ) == 0:
lowerCAmelCase = dev_version
print(F'Updating version to {version}.' )
global_version_update(_UpperCAmelCase )
print('Cleaning main README, don\'t forget to run `make fix-copies`.' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
__UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''')
parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''')
__UpperCamelCase : Optional[int] = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('''Nothing to do after a patch :-)''')
else:
post_release_work()
| 4 | 1 |
"""simple docstring"""
import itertools
from dataclasses import dataclass
from typing import List, Optional
import pyarrow as pa
import pyarrow.parquet as pq
import datasets
from datasets.table import table_cast
__UpperCamelCase : Union[str, Any] = datasets.utils.logging.get_logger(__name__)
@dataclass
class a ( datasets.BuilderConfig ):
snake_case__ = 1_0_0_0_0
snake_case__ = None
snake_case__ = None
class a ( datasets.ArrowBasedBuilder ):
snake_case__ = ParquetConfig
def UpperCamelCase__ ( self ):
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' )
lowerCAmelCase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_snake_case , (str, list, tuple) ):
lowerCAmelCase = data_files
if isinstance(_snake_case , _snake_case ):
lowerCAmelCase = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
lowerCAmelCase = [dl_manager.iter_files(_snake_case ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )]
lowerCAmelCase = []
for split_name, files in data_files.items():
if isinstance(_snake_case , _snake_case ):
lowerCAmelCase = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
lowerCAmelCase = [dl_manager.iter_files(_snake_case ) for file in files]
# Infer features is they are stoed in the arrow schema
if self.info.features is None:
for file in itertools.chain.from_iterable(_snake_case ):
with open(_snake_case , 'rb' ) as f:
lowerCAmelCase = datasets.Features.from_arrow_schema(pq.read_schema(_snake_case ) )
break
splits.append(datasets.SplitGenerator(name=_snake_case , gen_kwargs={'files': files} ) )
return splits
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if self.info.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
lowerCAmelCase = table_cast(_snake_case , self.info.features.arrow_schema )
return pa_table
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.info.features.arrow_schema if self.info.features is not None else None
if self.info.features is not None and self.config.columns is not None:
if sorted(field.name for field in schema ) != sorted(self.config.columns ):
raise ValueError(
F'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' )
for file_idx, file in enumerate(itertools.chain.from_iterable(_snake_case ) ):
with open(_snake_case , 'rb' ) as f:
lowerCAmelCase = pq.ParquetFile(_snake_case )
try:
for batch_idx, record_batch in enumerate(
parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ):
lowerCAmelCase = pa.Table.from_batches([record_batch] )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield F'{file_idx}_{batch_idx}', self._cast_table(_snake_case )
except ValueError as e:
logger.error(F'Failed to read file \'{file}\' with error {type(_snake_case )}: {e}' )
raise
| 4 |
"""simple docstring"""
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
__UpperCamelCase : Optional[int] = pytest.mark.integration
@require_faiss
class a ( a__ ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_snake_case ) for x in np.arange(30 ).tolist()]} )
return dset
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = self._create_dummy_dataset()
lowerCAmelCase = dset.map(
lambda _snake_case , _snake_case : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_snake_case , keep_in_memory=_snake_case )
lowerCAmelCase = dset.add_faiss_index('vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT )
lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
dset.drop_index('vecs' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , )
lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file:
dset.save_faiss_index('vecs' , tmp_file.name )
dset.load_faiss_index('vecs2' , tmp_file.name )
os.unlink(tmp_file.name )
lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' )
dset.drop_index('vecs' )
self.assertRaises(_snake_case , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
from elasticsearch import Elasticsearch
lowerCAmelCase = self._create_dummy_dataset()
with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(
'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:
lowerCAmelCase = {'acknowledged': True}
mocked_bulk.return_value([(True, None)] * 30 )
lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 29}]}}
lowerCAmelCase = Elasticsearch()
dset.add_elasticsearch_index('filename' , es_client=_snake_case )
lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('filename' , 'my_name-train_29' )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
@require_faiss
class a ( a__ ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
lowerCAmelCase = np.zeros(5 , dtype=np.floataa )
lowerCAmelCase = 1
lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case )
self.assertRaises(_snake_case , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
lowerCAmelCase = np.eye(5 , dtype=np.floataa )[::-1]
lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case )
self.assertRaises(_snake_case , index.search_batch , queries[0] )
lowerCAmelCase = [scores[0] for scores in total_scores]
lowerCAmelCase = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_snake_case ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = FaissIndex(string_factory='Flat' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
lowerCAmelCase = FaissIndex(string_factory='LSH' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(_snake_case ):
lowerCAmelCase = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = faiss.IndexFlat(5 )
lowerCAmelCase = FaissIndex(custom_index=_snake_case )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file:
index.save(tmp_file.name )
lowerCAmelCase = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
lowerCAmelCase = np.zeros(5 , dtype=np.floataa )
lowerCAmelCase = 1
lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ):
import faiss
lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
lowerCAmelCase = 'index.faiss'
lowerCAmelCase = F'mock://{index_name}'
index.save(_UpperCAmelCase , storage_options=mockfs.storage_options )
lowerCAmelCase = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options )
lowerCAmelCase = np.zeros(5 , dtype=np.floataa )
lowerCAmelCase = 1
lowerCAmelCase ,lowerCAmelCase = index.search(_UpperCAmelCase )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class a ( a__ ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
from elasticsearch import Elasticsearch
with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(
'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:
lowerCAmelCase = Elasticsearch()
lowerCAmelCase = {'acknowledged': True}
lowerCAmelCase = ElasticSearchIndex(es_client=_snake_case )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(['foo', 'bar', 'foobar'] )
# single query
lowerCAmelCase = 'foo'
lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
lowerCAmelCase = 'foo'
lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
lowerCAmelCase = ['foo', 'bar', 'foobar']
lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case )
lowerCAmelCase = [scores[0] for scores in total_scores]
lowerCAmelCase = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_snake_case ) , 0 )
self.assertListEqual([1, 1, 1] , _snake_case )
# batched queries with timeout
lowerCAmelCase = ['foo', 'bar', 'foobar']
lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case , request_timeout=30 )
lowerCAmelCase = [scores[0] for scores in total_scores]
lowerCAmelCase = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_snake_case ) , 0 )
self.assertListEqual([1, 1, 1] , _snake_case )
| 4 | 1 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase : Tuple = {
'''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[Any] = ['''VivitImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[Any] = [
'''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''VivitModel''',
'''VivitPreTrainedModel''',
'''VivitForVideoClassification''',
]
if TYPE_CHECKING:
from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_vivit import VivitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vivit import (
VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
VivitForVideoClassification,
VivitModel,
VivitPreTrainedModel,
)
else:
import sys
__UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 |
"""simple docstring"""
import random
import unittest
import torch
from diffusers import IFInpaintingPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class a ( a__ , a__ , unittest.TestCase ):
snake_case__ = IFInpaintingPipeline
snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''}
snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
snake_case__ = PipelineTesterMixin.required_optional_params - {'''latents'''}
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self._get_dummy_components()
def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ):
"""simple docstring"""
if str(_snake_case ).startswith('mps' ):
lowerCAmelCase = torch.manual_seed(_snake_case )
else:
lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case )
lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case )
lowerCAmelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1E-1 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_save_load_local()
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 4 | 1 |
"""simple docstring"""
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
__UpperCamelCase : Dict = logging.get_logger(__name__)
@add_end_docstrings(a__ )
class a ( a__ ):
def __init__( self , **_snake_case ):
"""simple docstring"""
super().__init__(**_snake_case )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == 'tf'
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self , _snake_case , **_snake_case ):
"""simple docstring"""
return super().__call__(_snake_case , **_snake_case )
def UpperCamelCase__ ( self , **_snake_case ):
"""simple docstring"""
lowerCAmelCase = {}
if "candidate_labels" in kwargs:
lowerCAmelCase = kwargs['candidate_labels']
if "hypothesis_template" in kwargs:
lowerCAmelCase = kwargs['hypothesis_template']
return preprocess_params, {}, {}
def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case="This is a photo of {}." ):
"""simple docstring"""
lowerCAmelCase = load_image(_snake_case )
lowerCAmelCase = self.image_processor(images=[image] , return_tensors=self.framework )
lowerCAmelCase = candidate_labels
lowerCAmelCase = [hypothesis_template.format(_snake_case ) for x in candidate_labels]
lowerCAmelCase = self.tokenizer(_snake_case , return_tensors=self.framework , padding=_snake_case )
lowerCAmelCase = [text_inputs]
return inputs
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = model_inputs.pop('candidate_labels' )
lowerCAmelCase = model_inputs.pop('text_inputs' )
if isinstance(text_inputs[0] , _snake_case ):
lowerCAmelCase = text_inputs[0]
else:
# Batching case.
lowerCAmelCase = text_inputs[0][0]
lowerCAmelCase = self.model(**_snake_case , **_snake_case )
lowerCAmelCase = {
'candidate_labels': candidate_labels,
'logits': outputs.logits_per_image,
}
return model_outputs
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = model_outputs.pop('candidate_labels' )
lowerCAmelCase = model_outputs['logits'][0]
if self.framework == "pt":
lowerCAmelCase = logits.softmax(dim=-1 ).squeeze(-1 )
lowerCAmelCase = probs.tolist()
if not isinstance(_snake_case , _snake_case ):
lowerCAmelCase = [scores]
elif self.framework == "tf":
lowerCAmelCase = stable_softmax(_snake_case , axis=-1 )
lowerCAmelCase = probs.numpy().tolist()
else:
raise ValueError(F'Unsupported framework: {self.framework}' )
lowerCAmelCase = [
{'score': score, 'label': candidate_label}
for score, candidate_label in sorted(zip(_snake_case , _snake_case ) , key=lambda _snake_case : -x[0] )
]
return result
| 4 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class a :
def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
lowerCAmelCase = self.vocab_size - 1
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_token_type_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTModel(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , head_mask=_snake_case )
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case )
lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTLMHeadModel(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTDoubleHeadsModel(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = OpenAIGPTForSequenceClassification(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {
'input_ids': input_ids,
'token_type_ids': token_type_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_torch
class a ( a__ , a__ , a__ , unittest.TestCase ):
snake_case__ = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
snake_case__ = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
snake_case__ = (
{
'''feature-extraction''': OpenAIGPTModel,
'''text-classification''': OpenAIGPTForSequenceClassification,
'''text-generation''': OpenAIGPTLMHeadModel,
'''zero-shot''': OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=False ):
"""simple docstring"""
lowerCAmelCase = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
lowerCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_snake_case , )
lowerCAmelCase = inputs_dict['labels']
lowerCAmelCase = inputs_dict['labels']
lowerCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_snake_case , )
lowerCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_snake_case )
return inputs_dict
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , n_embd=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = OpenAIGPTModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
@require_torch
class a ( unittest.TestCase ):
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' )
model.to(_snake_case )
lowerCAmelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=_snake_case ) # the president is
lowerCAmelCase = [
4_81,
47_35,
5_44,
2_46,
9_63,
8_70,
7_62,
2_39,
2_44,
4_04_77,
2_44,
2_49,
7_19,
8_81,
4_87,
5_44,
2_40,
2_44,
6_03,
4_81,
] # the president is a very good man. " \n " i\'m sure he is, " said the
lowerCAmelCase = model.generate(_snake_case , do_sample=_snake_case )
self.assertListEqual(output_ids[0].tolist() , _snake_case )
| 4 | 1 |
"""simple docstring"""
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCamelCase : Any = logging.get_logger(__name__)
__UpperCamelCase : List[Any] = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
__UpperCamelCase : List[str] = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ):
lowerCAmelCase = torch.load(_UpperCAmelCase , map_location='cpu' )
return sd
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any=rename_keys_prefix ):
lowerCAmelCase = OrderedDict()
lowerCAmelCase = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
lowerCAmelCase = key
for name_pair in rename_keys_prefix:
lowerCAmelCase = new_key.replace(name_pair[0] , name_pair[1] )
lowerCAmelCase = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
lowerCAmelCase = new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] ):
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'
# Get Config
if "pre" in checkpoint_path:
lowerCAmelCase = 'pretraining'
if "vcr" in checkpoint_path:
lowerCAmelCase = {'visual_embedding_dim': 512}
elif "vqa_advanced" in checkpoint_path:
lowerCAmelCase = {'visual_embedding_dim': 2048}
elif "vqa" in checkpoint_path:
lowerCAmelCase = {'visual_embedding_dim': 2048}
elif "nlvr" in checkpoint_path:
lowerCAmelCase = {'visual_embedding_dim': 1024}
else:
raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' )
else:
if "vcr" in checkpoint_path:
lowerCAmelCase = {'visual_embedding_dim': 512}
lowerCAmelCase = 'multichoice'
elif "vqa_advanced" in checkpoint_path:
lowerCAmelCase = {'visual_embedding_dim': 2048}
lowerCAmelCase = 'vqa_advanced'
elif "vqa" in checkpoint_path:
lowerCAmelCase = {'visual_embedding_dim': 2048, 'num_labels': 3129}
lowerCAmelCase = 'vqa'
elif "nlvr" in checkpoint_path:
lowerCAmelCase = {
'visual_embedding_dim': 1024,
'num_labels': 2,
}
lowerCAmelCase = 'nlvr'
lowerCAmelCase = VisualBertConfig(**_UpperCAmelCase )
# Load State Dict
lowerCAmelCase = load_state_dict(_UpperCAmelCase )
lowerCAmelCase = get_new_dict(_UpperCAmelCase , _UpperCAmelCase )
if model_type == "pretraining":
lowerCAmelCase = VisualBertForPreTraining(_UpperCAmelCase )
elif model_type == "vqa":
lowerCAmelCase = VisualBertForQuestionAnswering(_UpperCAmelCase )
elif model_type == "nlvr":
lowerCAmelCase = VisualBertForVisualReasoning(_UpperCAmelCase )
elif model_type == "multichoice":
lowerCAmelCase = VisualBertForMultipleChoice(_UpperCAmelCase )
model.load_state_dict(_UpperCAmelCase )
# Save Checkpoints
Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase )
model.save_pretrained(_UpperCAmelCase )
if __name__ == "__main__":
__UpperCamelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
__UpperCamelCase : Optional[Any] = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 4 |
"""simple docstring"""
import argparse
import logging
import pickle
import random
import time
import numpy as np
from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO
)
__UpperCamelCase : str = logging.getLogger(__name__)
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = argparse.ArgumentParser(
description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' )
parser.add_argument('--file_path' , type=_UpperCAmelCase , default='data/dump.txt' , help='The path to the data.' )
parser.add_argument('--tokenizer_type' , type=_UpperCAmelCase , default='bert' , choices=['bert', 'roberta', 'gpt2'] )
parser.add_argument('--tokenizer_name' , type=_UpperCAmelCase , default='bert-base-uncased' , help='The tokenizer to use.' )
parser.add_argument('--dump_file' , type=_UpperCAmelCase , default='data/dump' , help='The dump file prefix.' )
lowerCAmelCase = parser.parse_args()
logger.info(F'Loading Tokenizer ({args.tokenizer_name})' )
if args.tokenizer_type == "bert":
lowerCAmelCase = BertTokenizer.from_pretrained(args.tokenizer_name )
lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `[CLS]`
lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `[SEP]`
elif args.tokenizer_type == "roberta":
lowerCAmelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name )
lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `<s>`
lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `</s>`
elif args.tokenizer_type == "gpt2":
lowerCAmelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name )
lowerCAmelCase = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>`
lowerCAmelCase = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>`
logger.info(F'Loading text from {args.file_path}' )
with open(args.file_path , 'r' , encoding='utf8' ) as fp:
lowerCAmelCase = fp.readlines()
logger.info('Start encoding' )
logger.info(F'{len(_UpperCAmelCase )} examples to process.' )
lowerCAmelCase = []
lowerCAmelCase = 0
lowerCAmelCase = 1_0000
lowerCAmelCase = time.time()
for text in data:
lowerCAmelCase = F'{bos} {text.strip()} {sep}'
lowerCAmelCase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
rslt.append(_UpperCAmelCase )
iter += 1
if iter % interval == 0:
lowerCAmelCase = time.time()
logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' )
lowerCAmelCase = time.time()
logger.info('Finished binarization' )
logger.info(F'{len(_UpperCAmelCase )} examples processed.' )
lowerCAmelCase = F'{args.dump_file}.{args.tokenizer_name}.pickle'
lowerCAmelCase = tokenizer.vocab_size
if vocab_size < (1 << 16):
lowerCAmelCase = [np.uintaa(_UpperCAmelCase ) for d in rslt]
else:
lowerCAmelCase = [np.intaa(_UpperCAmelCase ) for d in rslt]
random.shuffle(rslt_ )
logger.info(F'Dump to {dp_file}' )
with open(_UpperCAmelCase , 'wb' ) as handle:
pickle.dump(rslt_ , _UpperCAmelCase , protocol=pickle.HIGHEST_PROTOCOL )
if __name__ == "__main__":
main()
| 4 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__UpperCamelCase : Dict = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = ['''LayoutXLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Any = ['''LayoutXLMTokenizerFast''']
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
__UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
__UpperCamelCase : Tuple = {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''',
'''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''',
'''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''',
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json'''
),
'''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''',
'''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''',
'''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''',
'''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''',
'''cl-tohoku/bert-base-japanese-whole-word-masking''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json'''
),
'''cl-tohoku/bert-base-japanese-char''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json'''
),
'''cl-tohoku/bert-base-japanese-char-whole-word-masking''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json'''
),
'''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''',
# See all BERT models at https://huggingface.co/models?filter=bert
}
class a ( a__ ):
snake_case__ = '''bert'''
def __init__( self , _snake_case=3_05_22 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , _snake_case=None , **_snake_case , ):
"""simple docstring"""
super().__init__(pad_token_id=_snake_case , **_snake_case )
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_act
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = initializer_range
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = position_embedding_type
lowerCAmelCase = use_cache
lowerCAmelCase = classifier_dropout
class a ( a__ ):
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
if self.task == "multiple-choice":
lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
lowerCAmelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] )
| 4 | 1 |
"""simple docstring"""
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
lowerCAmelCase = filter(lambda _UpperCAmelCase : p.requires_grad , model.parameters() )
lowerCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] )
return params
__UpperCamelCase : Union[str, Any] = logging.getLogger(__name__)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : str ):
if metric == "rouge2":
lowerCAmelCase = '{val_avg_rouge2:.4f}-{step_count}'
elif metric == "bleu":
lowerCAmelCase = '{val_avg_bleu:.4f}-{step_count}'
elif metric == "em":
lowerCAmelCase = '{val_avg_em:.4f}-{step_count}'
elif metric == "loss":
lowerCAmelCase = '{val_avg_loss:.4f}-{step_count}'
else:
raise NotImplementedError(
F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'
' function.' )
lowerCAmelCase = ModelCheckpoint(
dirpath=_UpperCAmelCase , filename=_UpperCAmelCase , monitor=F'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , )
return checkpoint_callback
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ):
return EarlyStopping(
monitor=F'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=_UpperCAmelCase , verbose=_UpperCAmelCase , )
class a ( pl.Callback ):
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(_snake_case )
@rank_zero_only
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case=True ):
"""simple docstring"""
logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' )
lowerCAmelCase = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} )
# Log results
lowerCAmelCase = Path(pl_module.hparams.output_dir )
if type_path == "test":
lowerCAmelCase = od / 'test_results.txt'
lowerCAmelCase = od / 'test_generations.txt'
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
lowerCAmelCase = od / F'{type_path}_results/{trainer.global_step:05d}.txt'
lowerCAmelCase = od / F'{type_path}_generations/{trainer.global_step:05d}.txt'
results_file.parent.mkdir(exist_ok=_snake_case )
generations_file.parent.mkdir(exist_ok=_snake_case )
with open(_snake_case , 'a+' ) as writer:
for key in sorted(_snake_case ):
if key in ["log", "progress_bar", "preds"]:
continue
lowerCAmelCase = metrics[key]
if isinstance(_snake_case , torch.Tensor ):
lowerCAmelCase = val.item()
lowerCAmelCase = F'{key}: {val:.6f}\n'
writer.write(_snake_case )
if not save_generations:
return
if "preds" in metrics:
lowerCAmelCase = '\n'.join(metrics['preds'] )
generations_file.open('w+' ).write(_snake_case )
@rank_zero_only
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
try:
lowerCAmelCase = pl_module.model.model.num_parameters()
except AttributeError:
lowerCAmelCase = pl_module.model.num_parameters()
lowerCAmelCase = count_trainable_parameters(_snake_case )
# mp stands for million parameters
trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} )
@rank_zero_only
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(_snake_case , _snake_case , 'test' )
@rank_zero_only
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 4 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class a ( a__ , unittest.TestCase ):
snake_case__ = DanceDiffusionPipeline
snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS
snake_case__ = PipelineTesterMixin.required_optional_params - {
'''callback''',
'''latents''',
'''callback_steps''',
'''output_type''',
'''num_images_per_prompt''',
}
snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS
snake_case__ = False
snake_case__ = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase = UNetaDModel(
block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_snake_case , use_timestep_embedding=_snake_case , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , )
lowerCAmelCase = IPNDMScheduler()
lowerCAmelCase = {
'unet': unet,
'scheduler': scheduler,
}
return components
def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ):
"""simple docstring"""
if str(_snake_case ).startswith('mps' ):
lowerCAmelCase = torch.manual_seed(_snake_case )
else:
lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowerCAmelCase = {
'batch_size': 1,
'generator': generator,
'num_inference_steps': 4,
}
return inputs
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase = self.get_dummy_components()
lowerCAmelCase = DanceDiffusionPipeline(**_snake_case )
lowerCAmelCase = pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = self.get_dummy_inputs(_snake_case )
lowerCAmelCase = pipe(**_snake_case )
lowerCAmelCase = output.audios
lowerCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, components["unet"].sample_size)
lowerCAmelCase = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().test_save_load_local()
@skip_mps
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
@skip_mps
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().test_save_load_optional_components()
@skip_mps
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().test_attention_slicing_forward_pass()
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = torch_device
lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' )
lowerCAmelCase = pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 )
lowerCAmelCase = output.audios
lowerCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
lowerCAmelCase = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = torch_device
lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa )
lowerCAmelCase = pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 )
lowerCAmelCase = output.audios
lowerCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
lowerCAmelCase = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
| 4 | 1 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class a ( a__ , a__ , a__ , unittest.TestCase ):
snake_case__ = AltDiffusionPipeline
snake_case__ = TEXT_TO_IMAGE_PARAMS
snake_case__ = TEXT_TO_IMAGE_BATCH_PARAMS
snake_case__ = TEXT_TO_IMAGE_IMAGE_PARAMS
snake_case__ = TEXT_TO_IMAGE_IMAGE_PARAMS
def UpperCamelCase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
lowerCAmelCase = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , )
torch.manual_seed(0 )
lowerCAmelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
# TODO: address the non-deterministic text encoder (fails for save-load tests)
# torch.manual_seed(0)
# text_encoder_config = RobertaSeriesConfig(
# hidden_size=32,
# project_dim=32,
# intermediate_size=37,
# layer_norm_eps=1e-05,
# num_attention_heads=4,
# num_hidden_layers=5,
# vocab_size=5002,
# )
# text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
torch.manual_seed(0 )
lowerCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_02 , )
lowerCAmelCase = CLIPTextModel(_snake_case )
lowerCAmelCase = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' )
lowerCAmelCase = 77
lowerCAmelCase = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ):
"""simple docstring"""
if str(_snake_case ).startswith('mps' ):
lowerCAmelCase = torch.manual_seed(_snake_case )
else:
lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowerCAmelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase = self.get_dummy_components()
torch.manual_seed(0 )
lowerCAmelCase = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , )
# TODO: remove after fixing the non-deterministic text encoder
lowerCAmelCase = RobertaSeriesModelWithTransformation(_snake_case )
lowerCAmelCase = text_encoder
lowerCAmelCase = AltDiffusionPipeline(**_snake_case )
lowerCAmelCase = alt_pipe.to(_snake_case )
alt_pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = self.get_dummy_inputs(_snake_case )
lowerCAmelCase = 'A photo of an astronaut'
lowerCAmelCase = alt_pipe(**_snake_case )
lowerCAmelCase = output.images
lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase = np.array(
[0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase = self.get_dummy_components()
lowerCAmelCase = PNDMScheduler(skip_prk_steps=_snake_case )
torch.manual_seed(0 )
lowerCAmelCase = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , )
# TODO: remove after fixing the non-deterministic text encoder
lowerCAmelCase = RobertaSeriesModelWithTransformation(_snake_case )
lowerCAmelCase = text_encoder
lowerCAmelCase = AltDiffusionPipeline(**_snake_case )
lowerCAmelCase = alt_pipe.to(_snake_case )
alt_pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = self.get_dummy_inputs(_snake_case )
lowerCAmelCase = alt_pipe(**_snake_case )
lowerCAmelCase = output.images
lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase = np.array(
[0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , safety_checker=_snake_case )
lowerCAmelCase = alt_pipe.to(_snake_case )
alt_pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = 'A painting of a squirrel eating a burger'
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = alt_pipe([prompt] , generator=_snake_case , guidance_scale=6.0 , num_inference_steps=20 , output_type='np' )
lowerCAmelCase = output.images
lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowerCAmelCase = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = DDIMScheduler.from_pretrained('BAAI/AltDiffusion' , subfolder='scheduler' )
lowerCAmelCase = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , scheduler=_snake_case , safety_checker=_snake_case )
lowerCAmelCase = alt_pipe.to(_snake_case )
alt_pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = 'A painting of a squirrel eating a burger'
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = alt_pipe([prompt] , generator=_snake_case , num_inference_steps=2 , output_type='numpy' )
lowerCAmelCase = output.images
lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowerCAmelCase = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 4 |
"""simple docstring"""
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class a :
def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_input_mask
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_input_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
if self.use_token_type_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ ( self ):
"""simple docstring"""
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , use_stable_embedding=_snake_case , )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = OpenLlamaModel(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case )
lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = True
lowerCAmelCase = OpenLlamaModel(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , )
lowerCAmelCase = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , )
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = True
lowerCAmelCase = True
lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case )
model.to(_snake_case )
model.eval()
# first forward pass
lowerCAmelCase = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , use_cache=_snake_case , )
lowerCAmelCase = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 )
lowerCAmelCase = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0]
lowerCAmelCase = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , past_key_values=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0]
# select random slice
lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach()
lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class a ( a__ , a__ , a__ , unittest.TestCase ):
snake_case__ = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
snake_case__ = (OpenLlamaForCausalLM,) if is_torch_available() else ()
snake_case__ = (
{
'''feature-extraction''': OpenLlamaModel,
'''text-classification''': OpenLlamaForSequenceClassification,
'''text-generation''': OpenLlamaForCausalLM,
'''zero-shot''': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case__ = False
snake_case__ = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = OpenLlamaModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCAmelCase = type
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = 3
lowerCAmelCase = input_dict['input_ids']
lowerCAmelCase = input_ids.ne(1 ).to(_snake_case )
lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = 3
lowerCAmelCase = 'single_label_classification'
lowerCAmelCase = input_dict['input_ids']
lowerCAmelCase = input_ids.ne(1 ).to(_snake_case )
lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = 3
lowerCAmelCase = 'multi_label_classification'
lowerCAmelCase = input_dict['input_ids']
lowerCAmelCase = input_ids.ne(1 ).to(_snake_case )
lowerCAmelCase = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@parameterized.expand([('linear',), ('dynamic',)] )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = ids_tensor([1, 10] , config.vocab_size )
lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
lowerCAmelCase = OpenLlamaModel(_snake_case )
original_model.to(_snake_case )
original_model.eval()
lowerCAmelCase = original_model(_snake_case ).last_hidden_state
lowerCAmelCase = original_model(_snake_case ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
lowerCAmelCase = {'type': scaling_type, 'factor': 10.0}
lowerCAmelCase = OpenLlamaModel(_snake_case )
scaled_model.to(_snake_case )
scaled_model.eval()
lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state
lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
| 4 | 1 |
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] ):
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4e00 and cp <= 0x9fff)
or (cp >= 0x3400 and cp <= 0x4dbf) #
or (cp >= 0x2_0000 and cp <= 0x2_a6df) #
or (cp >= 0x2_a700 and cp <= 0x2_b73f) #
or (cp >= 0x2_b740 and cp <= 0x2_b81f) #
or (cp >= 0x2_b820 and cp <= 0x2_ceaf) #
or (cp >= 0xf900 and cp <= 0xfaff)
or (cp >= 0x2_f800 and cp <= 0x2_fa1f) #
): #
return True
return False
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
# word like '180' or '่บซ้ซ' or '็ฅ'
for char in word:
lowerCAmelCase = ord(_UpperCAmelCase )
if not _is_chinese_char(_UpperCAmelCase ):
return 0
return 1
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ):
lowerCAmelCase = set()
for token in tokens:
lowerCAmelCase = len(_UpperCAmelCase ) > 1 and is_chinese(_UpperCAmelCase )
if chinese_word:
word_set.add(_UpperCAmelCase )
lowerCAmelCase = list(_UpperCAmelCase )
return word_list
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : set() ):
if not chinese_word_set:
return bert_tokens
lowerCAmelCase = max([len(_UpperCAmelCase ) for w in chinese_word_set] )
lowerCAmelCase = bert_tokens
lowerCAmelCase ,lowerCAmelCase = 0, len(_UpperCAmelCase )
while start < end:
lowerCAmelCase = True
if is_chinese(bert_word[start] ):
lowerCAmelCase = min(end - start , _UpperCAmelCase )
for i in range(_UpperCAmelCase , 1 , -1 ):
lowerCAmelCase = ''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
lowerCAmelCase = '##' + bert_word[j]
lowerCAmelCase = start + i
lowerCAmelCase = False
break
if single_word:
start += 1
return bert_word
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : LTP , _UpperCAmelCase : BertTokenizer ):
lowerCAmelCase = []
for i in range(0 , len(_UpperCAmelCase ) , 100 ):
lowerCAmelCase = ltp_tokenizer.seg(lines[i : i + 100] )[0]
lowerCAmelCase = [get_chinese_word(_UpperCAmelCase ) for r in res]
ltp_res.extend(_UpperCAmelCase )
assert len(_UpperCAmelCase ) == len(_UpperCAmelCase )
lowerCAmelCase = []
for i in range(0 , len(_UpperCAmelCase ) , 100 ):
lowerCAmelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=512 )
bert_res.extend(res['input_ids'] )
assert len(_UpperCAmelCase ) == len(_UpperCAmelCase )
lowerCAmelCase = []
for input_ids, chinese_word in zip(_UpperCAmelCase , _UpperCAmelCase ):
lowerCAmelCase = []
for id in input_ids:
lowerCAmelCase = bert_tokenizer._convert_id_to_token(_UpperCAmelCase )
input_tokens.append(_UpperCAmelCase )
lowerCAmelCase = add_sub_symbol(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_UpperCAmelCase ):
if token[:2] == "##":
lowerCAmelCase = token[2:]
# save chinese tokens' pos
if len(_UpperCAmelCase ) == 1 and _is_chinese_char(ord(_UpperCAmelCase ) ):
ref_id.append(_UpperCAmelCase )
ref_ids.append(_UpperCAmelCase )
assert len(_UpperCAmelCase ) == len(_UpperCAmelCase )
return ref_ids
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple ):
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , 'r' , encoding='utf-8' ) as f:
lowerCAmelCase = f.readlines()
lowerCAmelCase = [line.strip() for line in data if len(_UpperCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
lowerCAmelCase = LTP(args.ltp ) # faster in GPU device
lowerCAmelCase = BertTokenizer.from_pretrained(args.bert )
lowerCAmelCase = prepare_ref(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
with open(args.save_path , 'w' , encoding='utf-8' ) as f:
lowerCAmelCase = [json.dumps(_UpperCAmelCase ) + '\n' for ref in ref_ids]
f.writelines(_UpperCAmelCase )
if __name__ == "__main__":
__UpperCamelCase : Any = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path'''
)
parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''')
parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''')
__UpperCamelCase : Optional[int] = parser.parse_args()
main(args)
| 4 |
"""simple docstring"""
from typing import Any
class a :
def __init__( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = data
lowerCAmelCase = None
def __repr__( self ):
"""simple docstring"""
return F'Node({self.data})'
class a :
def __init__( self ):
"""simple docstring"""
lowerCAmelCase = None
def __iter__( self ):
"""simple docstring"""
lowerCAmelCase = self.head
while node:
yield node.data
lowerCAmelCase = node.next
def __len__( self ):
"""simple docstring"""
return sum(1 for _ in self )
def __repr__( self ):
"""simple docstring"""
return "->".join([str(_snake_case ) for item in self] )
def __getitem__( self , _snake_case ):
"""simple docstring"""
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self , _snake_case , _snake_case ):
"""simple docstring"""
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
lowerCAmelCase = self.head
for _ in range(_snake_case ):
lowerCAmelCase = current.next
lowerCAmelCase = data
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
self.insert_nth(len(self ) , _snake_case )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
self.insert_nth(0 , _snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
if not 0 <= index <= len(self ):
raise IndexError('list index out of range' )
lowerCAmelCase = Node(_snake_case )
if self.head is None:
lowerCAmelCase = new_node
elif index == 0:
lowerCAmelCase = self.head # link new_node to head
lowerCAmelCase = new_node
else:
lowerCAmelCase = self.head
for _ in range(index - 1 ):
lowerCAmelCase = temp.next
lowerCAmelCase = temp.next
lowerCAmelCase = new_node
def UpperCamelCase__ ( self ): # print every node data
"""simple docstring"""
print(self )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.delete_nth(0 )
def UpperCamelCase__ ( self ): # delete from tail
"""simple docstring"""
return self.delete_nth(len(self ) - 1 )
def UpperCamelCase__ ( self , _snake_case = 0 ):
"""simple docstring"""
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('List index out of range.' )
lowerCAmelCase = self.head # default first node
if index == 0:
lowerCAmelCase = self.head.next
else:
lowerCAmelCase = self.head
for _ in range(index - 1 ):
lowerCAmelCase = temp.next
lowerCAmelCase = temp.next
lowerCAmelCase = temp.next.next
return delete_node.data
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.head is None
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = None
lowerCAmelCase = self.head
while current:
# Store the current node's next node.
lowerCAmelCase = current.next
# Make the current node's next point backwards
lowerCAmelCase = prev
# Make the previous node be the current node
lowerCAmelCase = current
# Make the current node the next node (to progress iteration)
lowerCAmelCase = next_node
# Return prev in order to put the head at the end
lowerCAmelCase = prev
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = LinkedList()
assert linked_list.is_empty() is True
assert str(_UpperCAmelCase ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(_UpperCAmelCase ) == i
linked_list.insert_nth(_UpperCAmelCase , i + 1 )
assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(0 , 12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(_UpperCAmelCase ) == 9
assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
lowerCAmelCase = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(-8 , 1 ) )
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = [
-9,
100,
Node(7734_5112 ),
'dlrow olleH',
7,
5555,
0,
-192.5_5555,
'Hello, world!',
77.9,
Node(10 ),
None,
None,
12.20,
]
lowerCAmelCase = LinkedList()
for i in test_input:
linked_list.insert_tail(_UpperCAmelCase )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(_UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
lowerCAmelCase = linked_list.delete_head()
assert result == -9
assert (
str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
lowerCAmelCase = linked_list.delete_tail()
assert result == 12.2
assert (
str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
lowerCAmelCase = linked_list.delete_nth(10 )
assert result is None
assert (
str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('Hello again, world!' ) )
assert (
str(_UpperCAmelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(_UpperCAmelCase )
assert (
str(_UpperCAmelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(_UpperCAmelCase )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def _SCREAMING_SNAKE_CASE ():
from doctest import testmod
testmod()
lowerCAmelCase = LinkedList()
linked_list.insert_head(input('Inserting 1st at head ' ).strip() )
linked_list.insert_head(input('Inserting 2nd at head ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() )
linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
print('\nDelete head' )
linked_list.delete_head()
print('Delete tail' )
linked_list.delete_tail()
print('\nPrint list:' )
linked_list.print_list()
print('\nReverse linked list' )
linked_list.reverse()
print('\nPrint list:' )
linked_list.print_list()
print('\nString representation of linked list:' )
print(_UpperCAmelCase )
print('\nReading/changing Node data using indexing:' )
print(F'Element at Position 1: {linked_list[1]}' )
lowerCAmelCase = input('Enter New Value: ' ).strip()
print('New list:' )
print(_UpperCAmelCase )
print(F'length of linked_list is : {len(_UpperCAmelCase )}' )
if __name__ == "__main__":
main()
| 4 | 1 |
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : float ):
if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError('Length must be a positive.' )
return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : float ):
if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError('Length must be a positive.' )
return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 |
"""simple docstring"""
from __future__ import annotations
import requests
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
lowerCAmelCase = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty'
return requests.get(_UpperCAmelCase ).json()
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ):
lowerCAmelCase = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty'
lowerCAmelCase = requests.get(_UpperCAmelCase ).json()[:max_stories]
return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ):
lowerCAmelCase = hackernews_top_stories(_UpperCAmelCase )
return "\n".join('* [{title}]({url})'.format(**_UpperCAmelCase ) for story in stories )
if __name__ == "__main__":
print(hackernews_top_stories_as_markdown())
| 4 | 1 |
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 1000 ):
lowerCAmelCase = -1
lowerCAmelCase = 0
for a in range(1 , n // 3 ):
# Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c
lowerCAmelCase = (n * n - 2 * a * n) // (2 * n - 2 * a)
lowerCAmelCase = n - a - b
if c * c == (a * a + b * b):
lowerCAmelCase = a * b * c
if candidate >= product:
lowerCAmelCase = candidate
return product
if __name__ == "__main__":
print(f'''{solution() = }''')
| 4 |
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ):
lowerCAmelCase = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowerCAmelCase = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
lowerCAmelCase = 4
lowerCAmelCase = 48
lowerCAmelCase = 'pixelshuffle_aux'
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowerCAmelCase = [6, 6, 6, 6]
lowerCAmelCase = 60
lowerCAmelCase = [6, 6, 6, 6]
lowerCAmelCase = 'pixelshuffledirect'
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowerCAmelCase = 4
lowerCAmelCase = 'nearest+conv'
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
lowerCAmelCase = 1
lowerCAmelCase = 1
lowerCAmelCase = 126
lowerCAmelCase = 7
lowerCAmelCase = 255.0
lowerCAmelCase = ''
return config
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ):
if "patch_embed.proj" in name and "layers" not in name:
lowerCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
lowerCAmelCase = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' )
if "layers" in name:
lowerCAmelCase = name.replace('layers' , 'encoder.stages' )
if "residual_group.blocks" in name:
lowerCAmelCase = name.replace('residual_group.blocks' , 'layers' )
if "attn.proj" in name:
lowerCAmelCase = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
lowerCAmelCase = name.replace('attn' , 'attention.self' )
if "norm1" in name:
lowerCAmelCase = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
lowerCAmelCase = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
lowerCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
lowerCAmelCase = name.replace('mlp.fc2' , 'output.dense' )
if "q_bias" in name:
lowerCAmelCase = name.replace('q_bias' , 'query.bias' )
if "k_bias" in name:
lowerCAmelCase = name.replace('k_bias' , 'key.bias' )
if "v_bias" in name:
lowerCAmelCase = name.replace('v_bias' , 'value.bias' )
if "cpb_mlp" in name:
lowerCAmelCase = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' )
if "patch_embed.proj" in name:
lowerCAmelCase = name.replace('patch_embed.proj' , 'patch_embed.projection' )
if name == "norm.weight":
lowerCAmelCase = 'layernorm.weight'
if name == "norm.bias":
lowerCAmelCase = 'layernorm.bias'
if "conv_first" in name:
lowerCAmelCase = name.replace('conv_first' , 'first_convolution' )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
lowerCAmelCase = name.replace('conv_last' , 'final_convolution' )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
lowerCAmelCase = name.replace('conv_before_upsample.0' , 'conv_before_upsample' )
if "upsample.0" in name:
lowerCAmelCase = name.replace('upsample.0' , 'upsample.convolution_0' )
if "upsample.2" in name:
lowerCAmelCase = name.replace('upsample.2' , 'upsample.convolution_1' )
lowerCAmelCase = 'upsample.' + name
elif config.upsampler == "pixelshuffledirect":
lowerCAmelCase = name.replace('upsample.0.weight' , 'upsample.conv.weight' )
lowerCAmelCase = name.replace('upsample.0.bias' , 'upsample.conv.bias' )
else:
pass
else:
lowerCAmelCase = 'swin2sr.' + name
return name
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict ):
for key in orig_state_dict.copy().keys():
lowerCAmelCase = orig_state_dict.pop(_UpperCAmelCase )
if "qkv" in key:
lowerCAmelCase = key.split('.' )
lowerCAmelCase = int(key_split[1] )
lowerCAmelCase = int(key_split[4] )
lowerCAmelCase = config.embed_dim
if "weight" in key:
lowerCAmelCase = val[:dim, :]
lowerCAmelCase = val[dim : dim * 2, :]
lowerCAmelCase = val[-dim:, :]
else:
lowerCAmelCase = val[:dim]
lowerCAmelCase = val[dim : dim * 2]
lowerCAmelCase = val[-dim:]
pass
else:
lowerCAmelCase = val
return orig_state_dict
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ):
lowerCAmelCase = get_config(_UpperCAmelCase )
lowerCAmelCase = SwinaSRForImageSuperResolution(_UpperCAmelCase )
model.eval()
lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' )
lowerCAmelCase = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase ,lowerCAmelCase = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase )
if len(_UpperCAmelCase ) > 0:
raise ValueError('Missing keys when converting: {}'.format(_UpperCAmelCase ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(F'Unexpected key {key} in state_dict' )
# verify values
lowerCAmelCase = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true'
lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' )
lowerCAmelCase = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
lowerCAmelCase = 126 if 'Jpeg' in checkpoint_url else 256
lowerCAmelCase = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
lowerCAmelCase = transforms(_UpperCAmelCase ).unsqueeze(0 )
if config.num_channels == 1:
lowerCAmelCase = pixel_values[:, 0, :, :].unsqueeze(1 )
lowerCAmelCase = model(_UpperCAmelCase )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
lowerCAmelCase = torch.Size([1, 3, 512, 512] )
lowerCAmelCase = torch.tensor(
[[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowerCAmelCase = torch.Size([1, 3, 1024, 1024] )
lowerCAmelCase = torch.tensor(
[[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
lowerCAmelCase = torch.Size([1, 3, 1024, 1024] )
lowerCAmelCase = torch.tensor(
[[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowerCAmelCase = torch.Size([1, 3, 512, 512] )
lowerCAmelCase = torch.tensor(
[[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowerCAmelCase = torch.Size([1, 3, 1024, 1024] )
lowerCAmelCase = torch.tensor(
[[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] )
assert (
outputs.reconstruction.shape == expected_shape
), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-3 )
print('Looks ok!' )
lowerCAmelCase = {
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': (
'swin2SR-classical-sr-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': (
'swin2SR-classical-sr-x4-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': (
'swin2SR-compressed-sr-x4-48'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': (
'swin2SR-lightweight-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': (
'swin2SR-realworld-sr-x4-64-bsrgan-psnr'
),
}
lowerCAmelCase = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(_UpperCAmelCase )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(_UpperCAmelCase )
if push_to_hub:
model.push_to_hub(F'caidas/{model_name}' )
processor.push_to_hub(F'caidas/{model_name}' )
if __name__ == "__main__":
__UpperCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''',
type=str,
help='''URL of the original Swin2SR checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''')
__UpperCamelCase : Optional[int] = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 4 | 1 |
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError('Input must be an integer' )
if input_num <= 0:
raise ValueError('Input must be positive' )
return sum(
divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
__UpperCamelCase : List[Any] = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class a ( a__ ):
snake_case__ = '''megatron-bert'''
def __init__( self , _snake_case=2_90_56 , _snake_case=10_24 , _snake_case=24 , _snake_case=16 , _snake_case=40_96 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , **_snake_case , ):
"""simple docstring"""
super().__init__(pad_token_id=_snake_case , **_snake_case )
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_act
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = initializer_range
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = position_embedding_type
lowerCAmelCase = use_cache
| 4 | 1 |
"""simple docstring"""
import random
import unittest
import torch
from diffusers import IFInpaintingPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class a ( a__ , a__ , unittest.TestCase ):
snake_case__ = IFInpaintingPipeline
snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''}
snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
snake_case__ = PipelineTesterMixin.required_optional_params - {'''latents'''}
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self._get_dummy_components()
def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ):
"""simple docstring"""
if str(_snake_case ).startswith('mps' ):
lowerCAmelCase = torch.manual_seed(_snake_case )
else:
lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case )
lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case )
lowerCAmelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1E-1 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_save_load_local()
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 4 |
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
return " ".join(input_str.split()[::-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 | 1 |
"""simple docstring"""
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
__UpperCamelCase : int = logging.getLogger(__name__)
class a ( a__ ):
def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case=None ):
"""simple docstring"""
super().__init__(
_snake_case , question_encoder_tokenizer=_snake_case , generator_tokenizer=_snake_case , index=_snake_case , init_retrieval=_snake_case , )
lowerCAmelCase = None
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
logger.info('initializing retrieval' )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info('dist initialized' )
# needs to be set manually
lowerCAmelCase = self._infer_socket_ifname()
# avoid clash with the NCCL port
lowerCAmelCase = str(distributed_port + 1 )
lowerCAmelCase = dist.new_group(ranks=_snake_case , backend='gloo' )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info('dist not initialized / main' )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return dist.get_rank(group=self.process_group ) == 0
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=torch.floataa ):
"""simple docstring"""
lowerCAmelCase = torch.empty(_snake_case , dtype=_snake_case )
dist.scatter(_snake_case , src=0 , scatter_list=_snake_case , group=self.process_group )
return target_tensor
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
lowerCAmelCase = next((addr for addr in addrs if addr.startswith('e' )) , _snake_case )
return ifname
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
if not dist.is_initialized():
lowerCAmelCase ,lowerCAmelCase = self._main_retrieve(_snake_case , _snake_case )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_snake_case )
# distributed training
lowerCAmelCase = dist.get_world_size(group=self.process_group )
# gather logic
lowerCAmelCase = None
if self._is_main():
lowerCAmelCase = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(_snake_case )]
dist.gather(torch.tensor(_snake_case ) , dst=0 , gather_list=_snake_case , group=self.process_group )
# scatter logic
lowerCAmelCase = question_hidden_states.shape[0]
lowerCAmelCase = []
lowerCAmelCase = []
if self._is_main():
assert len(_snake_case ) == world_size
lowerCAmelCase ,lowerCAmelCase = self._main_retrieve(torch.cat(_snake_case ).numpy() , _snake_case )
lowerCAmelCase ,lowerCAmelCase = torch.tensor(_snake_case ), torch.tensor(_snake_case )
lowerCAmelCase = self._chunk_tensor(_snake_case , _snake_case )
lowerCAmelCase = self._chunk_tensor(_snake_case , _snake_case )
lowerCAmelCase = self._scattered(_snake_case , [n_queries, n_docs] , target_type=torch.intaa )
lowerCAmelCase = self._scattered(_snake_case , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(_snake_case )
| 4 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class a ( a__ ):
snake_case__ = 42
class a ( a__ , a__ ):
@register_to_config
def __init__( self , _snake_case = 3 , _snake_case = 3 , _snake_case = ("DownEncoderBlock2D",) , _snake_case = ("UpDecoderBlock2D",) , _snake_case = (64,) , _snake_case = 1 , _snake_case = "silu" , _snake_case = 3 , _snake_case = 32 , _snake_case = 2_56 , _snake_case = 32 , _snake_case = None , _snake_case = 0.18_215 , _snake_case = "group" , ):
"""simple docstring"""
super().__init__()
# pass init params to Encoder
lowerCAmelCase = Encoder(
in_channels=_snake_case , out_channels=_snake_case , down_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , double_z=_snake_case , )
lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels
lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 )
lowerCAmelCase = VectorQuantizer(_snake_case , _snake_case , beta=0.25 , remap=_snake_case , sane_index_shape=_snake_case )
lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 )
# pass init params to Decoder
lowerCAmelCase = Decoder(
in_channels=_snake_case , out_channels=_snake_case , up_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , norm_type=_snake_case , )
@apply_forward_hook
def UpperCamelCase__ ( self , _snake_case , _snake_case = True ):
"""simple docstring"""
lowerCAmelCase = self.encoder(_snake_case )
lowerCAmelCase = self.quant_conv(_snake_case )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=_snake_case )
@apply_forward_hook
def UpperCamelCase__ ( self , _snake_case , _snake_case = False , _snake_case = True ):
"""simple docstring"""
if not force_not_quantize:
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = self.quantize(_snake_case )
else:
lowerCAmelCase = h
lowerCAmelCase = self.post_quant_conv(_snake_case )
lowerCAmelCase = self.decoder(_snake_case , quant if self.config.norm_type == 'spatial' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case = True ):
"""simple docstring"""
lowerCAmelCase = sample
lowerCAmelCase = self.encode(_snake_case ).latents
lowerCAmelCase = self.decode(_snake_case ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=_snake_case )
| 4 | 1 |
"""simple docstring"""
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class a ( a__ ):
snake_case__ = (DDIMParallelScheduler,)
snake_case__ = (('''eta''', 0.0), ('''num_inference_steps''', 5_0))
def UpperCamelCase__ ( self , **_snake_case ):
"""simple docstring"""
lowerCAmelCase = {
'num_train_timesteps': 10_00,
'beta_start': 0.0_001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'clip_sample': True,
}
config.update(**_snake_case )
return config
def UpperCamelCase__ ( self , **_snake_case ):
"""simple docstring"""
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config(**_snake_case )
lowerCAmelCase = scheduler_class(**_snake_case )
lowerCAmelCase ,lowerCAmelCase = 10, 0.0
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter
scheduler.set_timesteps(_snake_case )
for t in scheduler.timesteps:
lowerCAmelCase = model(_snake_case , _snake_case )
lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , _snake_case ).prev_sample
return sample
def UpperCamelCase__ ( self ):
"""simple docstring"""
for timesteps in [1_00, 5_00, 10_00]:
self.check_over_configs(num_train_timesteps=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=_snake_case )
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config(steps_offset=1 )
lowerCAmelCase = scheduler_class(**_snake_case )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_snake_case , beta_end=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.check_over_configs(thresholding=_snake_case )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for t in [1, 10, 49]:
self.check_over_forward(time_step=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ):
self.check_over_forward(time_step=_snake_case , num_inference_steps=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=_snake_case , eta=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**_snake_case )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.14_771 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.32_460 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.00_979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1E-5
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**_snake_case )
lowerCAmelCase ,lowerCAmelCase = 10, 0.0
scheduler.set_timesteps(_snake_case )
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter
lowerCAmelCase = self.dummy_sample_deter + 0.1
lowerCAmelCase = self.dummy_sample_deter - 0.1
lowerCAmelCase = samplea.shape[0]
lowerCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 )
lowerCAmelCase = torch.arange(_snake_case )[0:3, None].repeat(1 , _snake_case )
lowerCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
lowerCAmelCase = scheduler.batch_step_no_noise(_snake_case , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _snake_case )
lowerCAmelCase = torch.sum(torch.abs(_snake_case ) )
lowerCAmelCase = torch.mean(torch.abs(_snake_case ) )
assert abs(result_sum.item() - 1_147.7_904 ) < 1E-2
assert abs(result_mean.item() - 0.4_982 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.full_loop()
lowerCAmelCase = torch.sum(torch.abs(_snake_case ) )
lowerCAmelCase = torch.mean(torch.abs(_snake_case ) )
assert abs(result_sum.item() - 172.0_067 ) < 1E-2
assert abs(result_mean.item() - 0.223_967 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.full_loop(prediction_type='v_prediction' )
lowerCAmelCase = torch.sum(torch.abs(_snake_case ) )
lowerCAmelCase = torch.mean(torch.abs(_snake_case ) )
assert abs(result_sum.item() - 52.5_302 ) < 1E-2
assert abs(result_mean.item() - 0.0_684 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.full_loop(set_alpha_to_one=_snake_case , beta_start=0.01 )
lowerCAmelCase = torch.sum(torch.abs(_snake_case ) )
lowerCAmelCase = torch.mean(torch.abs(_snake_case ) )
assert abs(result_sum.item() - 149.8_295 ) < 1E-2
assert abs(result_mean.item() - 0.1_951 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.full_loop(set_alpha_to_one=_snake_case , beta_start=0.01 )
lowerCAmelCase = torch.sum(torch.abs(_snake_case ) )
lowerCAmelCase = torch.mean(torch.abs(_snake_case ) )
assert abs(result_sum.item() - 149.0_784 ) < 1E-2
assert abs(result_mean.item() - 0.1_941 ) < 1E-3
| 4 |
"""simple docstring"""
from __future__ import annotations
import os
from collections.abc import Mapping
__UpperCamelCase : Optional[Any] = tuple[int, int]
class a :
def __init__( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = vertices
lowerCAmelCase = {
(min(_snake_case ), max(_snake_case )): weight for edge, weight in edges.items()
}
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
lowerCAmelCase = weight
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = Graph({min(self.vertices )} , {} )
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
while len(subgraph.vertices ) < len(self.vertices ):
lowerCAmelCase = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
lowerCAmelCase = edge
lowerCAmelCase = weight
subgraph.add_edge(_snake_case , _snake_case )
return subgraph
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "p107_network.txt" ):
lowerCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) )
lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = {}
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
with open(_UpperCAmelCase ) as f:
lowerCAmelCase = f.read().strip().split('\n' )
lowerCAmelCase = [line.split(',' ) for line in data]
for edgea in range(1 , len(_UpperCAmelCase ) ):
for edgea in range(_UpperCAmelCase ):
if adjaceny_matrix[edgea][edgea] != "-":
lowerCAmelCase = int(adjaceny_matrix[edgea][edgea] )
lowerCAmelCase = Graph(set(range(len(_UpperCAmelCase ) ) ) , _UpperCAmelCase )
lowerCAmelCase = graph.prims_algorithm()
lowerCAmelCase = sum(graph.edges.values() )
lowerCAmelCase = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(f'''{solution() = }''')
| 4 | 1 |
"""simple docstring"""
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class a :
def __init__( self , _snake_case , _snake_case=13 , _snake_case=32 , _snake_case=3 , _snake_case=4 , _snake_case=[10, 20, 30, 40] , _snake_case=[2, 2, 3, 2] , _snake_case=True , _snake_case=True , _snake_case=37 , _snake_case="gelu" , _snake_case=10 , _snake_case=0.02 , _snake_case=["stage2", "stage3", "stage4"] , _snake_case=3 , _snake_case=None , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = image_size
lowerCAmelCase = num_channels
lowerCAmelCase = num_stages
lowerCAmelCase = hidden_sizes
lowerCAmelCase = depths
lowerCAmelCase = is_training
lowerCAmelCase = use_labels
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = out_features
lowerCAmelCase = num_labels
lowerCAmelCase = scope
lowerCAmelCase = num_stages
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ ( self ):
"""simple docstring"""
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_snake_case , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=_snake_case , loss_ignore_index=2_55 , num_labels=self.num_labels , )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = UperNetForSemanticSegmentation(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class a ( a__ , a__ , unittest.TestCase ):
snake_case__ = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
snake_case__ = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {}
snake_case__ = False
snake_case__ = False
snake_case__ = False
snake_case__ = False
snake_case__ = False
snake_case__ = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = UperNetModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase__ ( self ):
"""simple docstring"""
return
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase = model_class(_snake_case )
lowerCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase = [*signature.parameters.keys()]
lowerCAmelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_snake_case )
@unittest.skip(reason='UperNet does not use inputs_embeds' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@unittest.skip(reason='UperNet does not support input and output embeddings' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@unittest.skip(reason='UperNet does not have a base model' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@unittest.skip(reason='UperNet does not have a base model' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@require_torch_multi_gpu
@unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
def check_hidden_states_output(_snake_case , _snake_case , _snake_case ):
lowerCAmelCase = model_class(_snake_case )
model.to(_snake_case )
model.eval()
with torch.no_grad():
lowerCAmelCase = model(**self._prepare_for_class(_snake_case , _snake_case ) )
lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowerCAmelCase = self.model_tester.num_stages
self.assertEqual(len(_snake_case ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase = True
check_hidden_states_output(_snake_case , _snake_case , _snake_case )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCAmelCase = True
check_hidden_states_output(_snake_case , _snake_case , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = _config_zero_init(_snake_case )
lowerCAmelCase = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
lowerCAmelCase = model_class(config=_snake_case )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@unittest.skip(reason='UperNet does not have tied weights' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = hf_hub_download(
repo_id='hf-internal-testing/fixtures_ade20k' , repo_type='dataset' , filename='ADE_val_00000001.jpg' )
lowerCAmelCase = Image.open(_UpperCAmelCase ).convert('RGB' )
return image
@require_torch
@require_vision
@slow
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' )
lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(_snake_case )
lowerCAmelCase = prepare_img()
lowerCAmelCase = processor(images=_snake_case , return_tensors='pt' ).to(_snake_case )
with torch.no_grad():
lowerCAmelCase = model(**_snake_case )
lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12) )
self.assertEqual(outputs.logits.shape , _snake_case )
lowerCAmelCase = torch.tensor(
[[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(_snake_case )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _snake_case , atol=1E-4 ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' )
lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(_snake_case )
lowerCAmelCase = prepare_img()
lowerCAmelCase = processor(images=_snake_case , return_tensors='pt' ).to(_snake_case )
with torch.no_grad():
lowerCAmelCase = model(**_snake_case )
lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12) )
self.assertEqual(outputs.logits.shape , _snake_case )
lowerCAmelCase = torch.tensor(
[[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(_snake_case )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _snake_case , atol=1E-4 ) )
| 4 |
"""simple docstring"""
import numpy as np
import pandas as pd
from sklearn.preprocessing import Normalizer
from sklearn.svm import SVR
from statsmodels.tsa.statespace.sarimax import SARIMAX
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ):
lowerCAmelCase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCAmelCase )] )
lowerCAmelCase = np.array(_UpperCAmelCase )
lowerCAmelCase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCAmelCase ) ) , x.transpose() ) , _UpperCAmelCase )
return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ):
lowerCAmelCase = (1, 2, 1)
lowerCAmelCase = (1, 1, 0, 7)
lowerCAmelCase = SARIMAX(
_UpperCAmelCase , exog=_UpperCAmelCase , order=_UpperCAmelCase , seasonal_order=_UpperCAmelCase )
lowerCAmelCase = model.fit(disp=_UpperCAmelCase , maxiter=600 , method='nm' )
lowerCAmelCase = model_fit.predict(1 , len(_UpperCAmelCase ) , exog=[test_match] )
return result[0]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ):
lowerCAmelCase = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 )
regressor.fit(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = regressor.predict(_UpperCAmelCase )
return y_pred[0]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ):
train_user.sort()
lowerCAmelCase = np.percentile(_UpperCAmelCase , 25 )
lowerCAmelCase = np.percentile(_UpperCAmelCase , 75 )
lowerCAmelCase = qa - qa
lowerCAmelCase = qa - (iqr * 0.1)
return low_lim
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : float ):
lowerCAmelCase = 0
lowerCAmelCase = 0
for i in list_vote:
if i > actual_result:
lowerCAmelCase = not_safe + 1
else:
if abs(abs(_UpperCAmelCase ) - abs(_UpperCAmelCase ) ) <= 0.1:
safe += 1
else:
not_safe += 1
return safe > not_safe
if __name__ == "__main__":
# data_input_df = pd.read_csv("ex_data.csv", header=None)
__UpperCamelCase : Optional[Any] = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]]
__UpperCamelCase : Any = pd.DataFrame(
data_input, columns=['''total_user''', '''total_even''', '''days''']
)
__UpperCamelCase : Dict = Normalizer().fit_transform(data_input_df.values)
# split data
__UpperCamelCase : Dict = normalize_df[:, 2].tolist()
__UpperCamelCase : Union[str, Any] = normalize_df[:, 0].tolist()
__UpperCamelCase : List[str] = normalize_df[:, 1].tolist()
# for svr (input variable = total date and total match)
__UpperCamelCase : Optional[int] = normalize_df[:, [1, 2]].tolist()
__UpperCamelCase : Tuple = x[: len(x) - 1]
__UpperCamelCase : Any = x[len(x) - 1 :]
# for linear regression & sarimax
__UpperCamelCase : str = total_date[: len(total_date) - 1]
__UpperCamelCase : Union[str, Any] = total_user[: len(total_user) - 1]
__UpperCamelCase : List[Any] = total_match[: len(total_match) - 1]
__UpperCamelCase : Optional[Any] = total_date[len(total_date) - 1 :]
__UpperCamelCase : str = total_user[len(total_user) - 1 :]
__UpperCamelCase : str = total_match[len(total_match) - 1 :]
# voting system with forecasting
__UpperCamelCase : Any = [
linear_regression_prediction(
trn_date, trn_user, trn_match, tst_date, tst_match
),
sarimax_predictor(trn_user, trn_match, tst_match),
support_vector_regressor(x_train, x_test, trn_user),
]
# check the safety of today's data
__UpperCamelCase : List[str] = '''''' if data_safety_checker(res_vote, tst_user) else '''not '''
print('''Today\'s data is {not_str}safe.''')
| 4 | 1 |
"""simple docstring"""
from __future__ import annotations
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTForImageClassification, TFViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class a :
def __init__( self , _snake_case , _snake_case=13 , _snake_case=30 , _snake_case=2 , _snake_case=3 , _snake_case=True , _snake_case=True , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=10 , _snake_case=0.02 , _snake_case=3 , _snake_case=None , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = image_size
lowerCAmelCase = patch_size
lowerCAmelCase = num_channels
lowerCAmelCase = is_training
lowerCAmelCase = use_labels
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
lowerCAmelCase = (image_size // patch_size) ** 2
lowerCAmelCase = num_patches + 1
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ ( self ):
"""simple docstring"""
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_snake_case , initializer_range=self.initializer_range , )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFViTModel(config=_snake_case )
lowerCAmelCase = model(_snake_case , training=_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# Test with an image with different size than the one specified in config.
lowerCAmelCase = self.image_size // 2
lowerCAmelCase = pixel_values[:, :, :image_size, :image_size]
lowerCAmelCase = model(_snake_case , interpolate_pos_encoding=_snake_case , training=_snake_case )
lowerCAmelCase = (image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.type_sequence_label_size
lowerCAmelCase = TFViTForImageClassification(_snake_case )
lowerCAmelCase = model(_snake_case , labels=_snake_case , training=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# Test with an image with different size than the one specified in config.
lowerCAmelCase = self.image_size // 2
lowerCAmelCase = pixel_values[:, :, :image_size, :image_size]
lowerCAmelCase = model(_snake_case , interpolate_pos_encoding=_snake_case , training=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
lowerCAmelCase = 1
lowerCAmelCase = TFViTForImageClassification(_snake_case )
lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = config_and_inputs
lowerCAmelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class a ( a__ , a__ , unittest.TestCase ):
snake_case__ = (TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
snake_case__ = (
{'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification}
if is_tf_available()
else {}
)
snake_case__ = False
snake_case__ = False
snake_case__ = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFViTModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='ViT does not use inputs_embeds' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@unittest.skip(reason='ViT does not use inputs_embeds' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase = model_class(_snake_case )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
lowerCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_snake_case , tf.keras.layers.Layer ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase = model_class(_snake_case )
lowerCAmelCase = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase = [*signature.parameters.keys()]
lowerCAmelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFViTModel.from_pretrained('google/vit-base-patch16-224' )
self.assertIsNotNone(_snake_case )
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class a ( unittest.TestCase ):
@cached_property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' )
lowerCAmelCase = self.default_image_processor
lowerCAmelCase = prepare_img()
lowerCAmelCase = image_processor(images=_snake_case , return_tensors='tf' )
# forward pass
lowerCAmelCase = model(**_snake_case )
# verify the logits
lowerCAmelCase = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape , _snake_case )
lowerCAmelCase = tf.constant([-0.2_744, 0.8_215, -0.0_836] )
tf.debugging.assert_near(outputs.logits[0, :3] , _snake_case , atol=1E-4 )
| 4 |
"""simple docstring"""
import argparse
import math
import os
import torch
from neural_compressor.utils.pytorch import load
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument(
'-m' , '--pretrained_model_name_or_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , )
parser.add_argument(
'-c' , '--caption' , type=_UpperCAmelCase , default='robotic cat with wings' , help='Text used to generate images.' , )
parser.add_argument(
'-n' , '--images_num' , type=_UpperCAmelCase , default=4 , help='How much images to generate.' , )
parser.add_argument(
'-s' , '--seed' , type=_UpperCAmelCase , default=42 , help='Seed for random process.' , )
parser.add_argument(
'-ci' , '--cuda_id' , type=_UpperCAmelCase , default=0 , help='cuda_id.' , )
lowerCAmelCase = parser.parse_args()
return args
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ):
if not len(_UpperCAmelCase ) == rows * cols:
raise ValueError('The specified number of rows and columns are not correct.' )
lowerCAmelCase ,lowerCAmelCase = imgs[0].size
lowerCAmelCase = Image.new('RGB' , size=(cols * w, rows * h) )
lowerCAmelCase ,lowerCAmelCase = grid.size
for i, img in enumerate(_UpperCAmelCase ):
grid.paste(_UpperCAmelCase , box=(i % cols * w, i // cols * h) )
return grid
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]="robotic cat with wings" , _UpperCAmelCase : Optional[int]=7.5 , _UpperCAmelCase : Dict=50 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=42 , ):
lowerCAmelCase = torch.Generator(pipeline.device ).manual_seed(_UpperCAmelCase )
lowerCAmelCase = pipeline(
_UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , ).images
lowerCAmelCase = int(math.sqrt(_UpperCAmelCase ) )
lowerCAmelCase = image_grid(_UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows )
return grid, images
__UpperCamelCase : Optional[Any] = parse_args()
# Load models and create wrapper for stable diffusion
__UpperCamelCase : List[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''')
__UpperCamelCase : str = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''')
__UpperCamelCase : Optional[int] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''')
__UpperCamelCase : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''')
__UpperCamelCase : Tuple = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer
)
__UpperCamelCase : Union[str, Any] = lambda images, clip_input: (images, False)
if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')):
__UpperCamelCase : Dict = load(args.pretrained_model_name_or_path, model=unet)
unet.eval()
setattr(pipeline, '''unet''', unet)
else:
__UpperCamelCase : Dict = unet.to(torch.device('''cuda''', args.cuda_id))
__UpperCamelCase : Optional[Any] = pipeline.to(unet.device)
__UpperCamelCase ,__UpperCamelCase : List[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed)
grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split()))))
__UpperCamelCase : int = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split()))
os.makedirs(dirname, exist_ok=True)
for idx, image in enumerate(images):
image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
| 4 | 1 |
"""simple docstring"""
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class a :
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
return None
class a :
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
return None
class a ( unittest.TestCase ):
snake_case__ = [
# (model_name, model_kwargs)
('''bert-base-cased''', {}),
('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(_snake_case , 'tf' , 12 , **_snake_case )
@require_torch
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(_snake_case , 'pt' , 12 , **_snake_case )
@require_torch
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
from transformers import BertModel
lowerCAmelCase = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words']
with NamedTemporaryFile(mode='w+t' ) as vocab_file:
vocab_file.write('\n'.join(_snake_case ) )
vocab_file.flush()
lowerCAmelCase = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
lowerCAmelCase = BertModel(BertConfig(vocab_size=len(_snake_case ) ) )
model.save_pretrained(_snake_case )
self._test_export(_snake_case , 'pt' , 12 , _snake_case )
@require_tf
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
lowerCAmelCase = self._test_export(_snake_case , 'tf' , 12 , **_snake_case )
lowerCAmelCase = quantize(Path(_snake_case ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(_snake_case ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
@require_torch
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
lowerCAmelCase = self._test_export(_snake_case , 'pt' , 12 , **_snake_case )
lowerCAmelCase = quantize(_snake_case )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(_snake_case ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ):
"""simple docstring"""
try:
# Compute path
with TemporaryDirectory() as tempdir:
lowerCAmelCase = Path(_snake_case ).joinpath('model.onnx' )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case )
return path
except Exception as e:
self.fail(_snake_case )
@require_torch
@require_tokenizers
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
from transformers import BertModel
lowerCAmelCase = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
lowerCAmelCase = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(_snake_case , _snake_case , 'pt' )
@require_tf
@require_tokenizers
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
from transformers import TFBertModel
lowerCAmelCase = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
lowerCAmelCase = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(_snake_case , _snake_case , 'tf' )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = FeatureExtractionPipeline(_snake_case , _snake_case )
lowerCAmelCase = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1']
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = infer_shapes(_snake_case , _snake_case )
# Assert all variables are present
self.assertEqual(len(_snake_case ) , len(_snake_case ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] , _snake_case )
self.assertSequenceEqual(variable_names[3:] , _snake_case )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} )
self.assertDictEqual(shapes['output_1'] , {0: 'batch'} )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ['input_ids', 'attention_mask', 'token_type_ids']
lowerCAmelCase = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]}
lowerCAmelCase ,lowerCAmelCase = ensure_valid_input(FuncContiguousArgs() , _snake_case , _snake_case )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(_snake_case ) , 3 )
# Should have exactly the same input names
self.assertEqual(set(_snake_case ) , set(_snake_case ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(_snake_case , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
lowerCAmelCase ,lowerCAmelCase = ensure_valid_input(FuncNonContiguousArgs() , _snake_case , _snake_case )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(_snake_case ) , 1 )
self.assertEqual(len(_snake_case ) , 1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] , tokens['input_ids'] )
self.assertEqual(ordered_input_names[0] , 'input_ids' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' )
self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
| 4 |
"""simple docstring"""
import warnings
from pathlib import Path
from typing import List, Tuple, Union
import fire
from torch import nn
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel
from transformers.utils import logging
__UpperCamelCase : List[Any] = logging.get_logger(__name__)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : List[int] ):
lowerCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] )
assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ), F'{len(_UpperCAmelCase )} != {len(_UpperCAmelCase )}'
dest_layers.load_state_dict(layers_to_copy.state_dict() )
__UpperCamelCase : Optional[Any] = {
# maps num layers in teacher -> num_layers in student -> which teacher layers to copy.
# 12: bart, 16: pegasus, 6: marian/Helsinki-NLP
12: {
1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher
2: [0, 6],
3: [0, 6, 11],
4: [0, 4, 8, 11],
6: [0, 2, 4, 7, 9, 11],
9: [0, 1, 2, 4, 5, 7, 9, 10, 11],
12: list(range(12)),
},
16: { # maps num layers in student -> which teacher layers to copy
1: [0],
2: [0, 15],
3: [0, 8, 15],
4: [0, 5, 10, 15],
6: [0, 3, 6, 9, 12, 15],
8: [0, 2, 4, 6, 8, 10, 12, 15],
9: [0, 1, 3, 5, 7, 9, 11, 13, 15],
12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15],
16: list(range(16)),
},
6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))},
}
__UpperCamelCase : int = {
# maps num layers in student -> which teacher layers to copy.
6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]},
12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]},
16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]},
}
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ):
try:
lowerCAmelCase = LAYERS_TO_COPY[n_teacher][n_student]
return val
except KeyError:
if n_student != n_teacher:
warnings.warn(
F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first'
F' {n_student}' )
return list(range(_UpperCAmelCase ) )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ):
if n_student > n_teacher:
raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' )
elif n_teacher == n_student:
return list(range(_UpperCAmelCase ) )
elif n_student == 1:
return [n_teacher - 1]
else:
return LAYERS_TO_SUPERVISE[n_teacher][n_student]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, PreTrainedModel] , _UpperCAmelCase : Union[str, Path] = "student" , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ):
lowerCAmelCase = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.'
assert (e is not None) or (d is not None), _msg
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
AutoTokenizer.from_pretrained(_UpperCAmelCase ).save_pretrained(_UpperCAmelCase ) # purely for convenience
lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).eval()
else:
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), F'teacher must be a model or string got type {type(_UpperCAmelCase )}'
lowerCAmelCase = teacher.config.to_diff_dict()
try:
lowerCAmelCase ,lowerCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers
if e is None:
lowerCAmelCase = teacher_e
if d is None:
lowerCAmelCase = teacher_d
init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} )
except AttributeError: # T5
if hasattr(teacher.config , 'num_encoder_layers' ):
lowerCAmelCase ,lowerCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers
else:
lowerCAmelCase ,lowerCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers
if e is None:
lowerCAmelCase = teacher_e
if d is None:
lowerCAmelCase = teacher_d
if hasattr(teacher.config , 'num_encoder_layers' ):
init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} )
else:
init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} )
# Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs
init_kwargs.update(_UpperCAmelCase )
# Copy weights
lowerCAmelCase = teacher.config_class(**_UpperCAmelCase )
lowerCAmelCase = AutoModelForSeqaSeqLM.from_config(_UpperCAmelCase )
# Start by copying the full teacher state dict this will copy the first N teacher layers to the student.
lowerCAmelCase = student.load_state_dict(teacher.state_dict() , strict=_UpperCAmelCase )
assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys.
if copy_first_teacher_layers: # Our copying is done. We just log and save
lowerCAmelCase ,lowerCAmelCase = list(range(_UpperCAmelCase ) ), list(range(_UpperCAmelCase ) )
logger.info(
F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to'
F' {save_path}' )
student.save_pretrained(_UpperCAmelCase )
return student, e_layers_to_copy, d_layers_to_copy
# Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer.
if e_layers_to_copy is None:
lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase )
if d_layers_to_copy is None:
lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase )
try:
if hasattr(
_UpperCAmelCase , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers
copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _UpperCAmelCase )
copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _UpperCAmelCase )
else:
copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _UpperCAmelCase )
copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _UpperCAmelCase )
except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block
copy_layers(teacher.encoder.block , student.encoder.block , _UpperCAmelCase )
copy_layers(teacher.decoder.block , student.decoder.block , _UpperCAmelCase )
logger.info(
F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' )
lowerCAmelCase = {
'teacher_type': teacher.config.model_type,
'copied_encoder_layers': e_layers_to_copy,
'copied_decoder_layers': d_layers_to_copy,
}
student.save_pretrained(_UpperCAmelCase )
# Save information about copying for easier reproducibility
return student, e_layers_to_copy, d_layers_to_copy
if __name__ == "__main__":
fire.Fire(create_student_by_copying_alternating_layers)
| 4 | 1 |
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : int ):
lowerCAmelCase = word.split()
def justify(_UpperCAmelCase : list , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str:
lowerCAmelCase = max_width - width
lowerCAmelCase = len(_UpperCAmelCase )
if len(_UpperCAmelCase ) == 1:
# if there is only word in line
# just insert overall_spaces_count for the remainder of line
return line[0] + " " * overall_spaces_count
else:
lowerCAmelCase = words_count - 1
# num_spaces_between_words_list[i] : tells you to insert
# num_spaces_between_words_list[i] spaces
# after word on line[i]
lowerCAmelCase = spaces_to_insert_between_words * [
overall_spaces_count // spaces_to_insert_between_words
]
lowerCAmelCase = (
overall_spaces_count % spaces_to_insert_between_words
)
# distribute spaces via round robin to the left words
for i in range(_UpperCAmelCase ):
num_spaces_between_words_list[i] += 1
lowerCAmelCase = []
for i in range(_UpperCAmelCase ):
# add the word
aligned_words_list.append(line[i] )
# add the spaces to insert
aligned_words_list.append(num_spaces_between_words_list[i] * ' ' )
# just add the last word to the sentence
aligned_words_list.append(line[-1] )
# join the aligned words list to form a justified line
return "".join(_UpperCAmelCase )
lowerCAmelCase = []
lowerCAmelCase = []
lowerCAmelCase = 0
for word in words:
if width + len(_UpperCAmelCase ) + len(_UpperCAmelCase ) <= max_width:
# keep adding words until we can fill out max_width
# width = sum of length of all words (without overall_spaces_count)
# len(word) = length of current word
# len(line) = number of overall_spaces_count to insert between words
line.append(_UpperCAmelCase )
width += len(_UpperCAmelCase )
else:
# justify the line and add it to result
answer.append(justify(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) )
# reset new line and new width
lowerCAmelCase ,lowerCAmelCase = [word], len(_UpperCAmelCase )
lowerCAmelCase = max_width - width - len(_UpperCAmelCase )
answer.append(' '.join(_UpperCAmelCase ) + (remaining_spaces + 1) * ' ' )
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 4 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__UpperCamelCase : Dict = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = ['''LayoutXLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Any = ['''LayoutXLMTokenizerFast''']
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
__UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 | 1 |
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : list ):
_enforce_args(_UpperCAmelCase , _UpperCAmelCase )
if n == 0:
return 0
lowerCAmelCase = float('-inf' )
for i in range(1 , n + 1 ):
lowerCAmelCase = max(
_UpperCAmelCase , prices[i - 1] + naive_cut_rod_recursive(n - i , _UpperCAmelCase ) )
return max_revue
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : list ):
_enforce_args(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = [float('-inf' ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : list , _UpperCAmelCase : list ):
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
lowerCAmelCase = float('-inf' )
for i in range(1 , n + 1 ):
lowerCAmelCase = max(
_UpperCAmelCase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , _UpperCAmelCase , _UpperCAmelCase ) , )
lowerCAmelCase = max_revenue
return max_rev[n]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : list ):
_enforce_args(_UpperCAmelCase , _UpperCAmelCase )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
lowerCAmelCase = [float('-inf' ) for _ in range(n + 1 )]
lowerCAmelCase = 0
for i in range(1 , n + 1 ):
lowerCAmelCase = max_rev[i]
for j in range(1 , i + 1 ):
lowerCAmelCase = max(_UpperCAmelCase , prices[j - 1] + max_rev[i - j] )
lowerCAmelCase = max_revenue_i
return max_rev[n]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : list ):
if n < 0:
lowerCAmelCase = F'n must be greater than or equal to 0. Got n = {n}'
raise ValueError(_UpperCAmelCase )
if n > len(_UpperCAmelCase ):
lowerCAmelCase = (
'Each integral piece of rod must have a corresponding price. '
F'Got n = {n} but length of prices = {len(_UpperCAmelCase )}'
)
raise ValueError(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = [6, 10, 12, 15, 20, 23]
lowerCAmelCase = len(_UpperCAmelCase )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
lowerCAmelCase = 36
lowerCAmelCase = top_down_cut_rod(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = bottom_up_cut_rod(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = naive_cut_rod_recursive(_UpperCAmelCase , _UpperCAmelCase )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 4 |
"""simple docstring"""
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ):
lowerCAmelCase = 0.00
lowerCAmelCase = 0
for resistor in resistors:
if resistor <= 0:
lowerCAmelCase = F'Resistor at index {index} has a negative or zero value!'
raise ValueError(_UpperCAmelCase )
first_sum += 1 / float(_UpperCAmelCase )
index += 1
return 1 / first_sum
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ):
lowerCAmelCase = 0.00
lowerCAmelCase = 0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
lowerCAmelCase = F'Resistor at index {index} has a negative value!'
raise ValueError(_UpperCAmelCase )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 | 1 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]]
lowerCAmelCase = DisjunctiveConstraint(_snake_case )
self.assertTrue(isinstance(dc.token_ids , _snake_case ) )
with self.assertRaises(_snake_case ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(_snake_case ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(_snake_case ):
DisjunctiveConstraint(_snake_case ) # fails here
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = [[1, 2, 3], [1, 2, 4]]
lowerCAmelCase = DisjunctiveConstraint(_snake_case )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = dc.update(1 )
lowerCAmelCase = stepped is True and completed is False and reset is False
self.assertTrue(_snake_case )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = dc.update(2 )
lowerCAmelCase = stepped is True and completed is False and reset is False
self.assertTrue(_snake_case )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = dc.update(3 )
lowerCAmelCase = stepped is True and completed is True and reset is False
self.assertTrue(_snake_case )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
lowerCAmelCase = DisjunctiveConstraint(_snake_case )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 4 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase : List[str] = logging.get_logger(__name__)
__UpperCamelCase : Tuple = {
'''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''',
# See all GLPN models at https://huggingface.co/models?filter=glpn
}
class a ( a__ ):
snake_case__ = '''glpn'''
def __init__( self , _snake_case=3 , _snake_case=4 , _snake_case=[2, 2, 2, 2] , _snake_case=[8, 4, 2, 1] , _snake_case=[32, 64, 1_60, 2_56] , _snake_case=[7, 3, 3, 3] , _snake_case=[4, 2, 2, 2] , _snake_case=[1, 2, 5, 8] , _snake_case=[4, 4, 4, 4] , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=0.1 , _snake_case=1E-6 , _snake_case=64 , _snake_case=10 , _snake_case=-1 , **_snake_case , ):
"""simple docstring"""
super().__init__(**_snake_case )
lowerCAmelCase = num_channels
lowerCAmelCase = num_encoder_blocks
lowerCAmelCase = depths
lowerCAmelCase = sr_ratios
lowerCAmelCase = hidden_sizes
lowerCAmelCase = patch_sizes
lowerCAmelCase = strides
lowerCAmelCase = mlp_ratios
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = initializer_range
lowerCAmelCase = drop_path_rate
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = decoder_hidden_size
lowerCAmelCase = max_depth
lowerCAmelCase = head_in_index
| 4 | 1 |
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
return str(_UpperCAmelCase ) == str(_UpperCAmelCase )[::-1]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
return int(_UpperCAmelCase ) + int(str(_UpperCAmelCase )[::-1] )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 1_0000 ):
lowerCAmelCase = []
for num in range(1 , _UpperCAmelCase ):
lowerCAmelCase = 0
lowerCAmelCase = num
while iterations < 50:
lowerCAmelCase = sum_reverse(_UpperCAmelCase )
iterations += 1
if is_palindrome(_UpperCAmelCase ):
break
else:
lychrel_nums.append(_UpperCAmelCase )
return len(_UpperCAmelCase )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 4 |
"""simple docstring"""
from __future__ import annotations
import unittest
import numpy as np
from transformers import LayoutLMConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.layoutlm.modeling_tf_layoutlm import (
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMForMaskedLM,
TFLayoutLMForQuestionAnswering,
TFLayoutLMForSequenceClassification,
TFLayoutLMForTokenClassification,
TFLayoutLMModel,
)
class a :
def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , _snake_case=10_00 , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_input_mask
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
lowerCAmelCase = range_bbox
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# convert bbox to numpy since TF does not support item assignment
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
lowerCAmelCase = bbox[i, j, 3]
lowerCAmelCase = bbox[i, j, 1]
lowerCAmelCase = t
if bbox[i, j, 2] < bbox[i, j, 0]:
lowerCAmelCase = bbox[i, j, 2]
lowerCAmelCase = bbox[i, j, 0]
lowerCAmelCase = t
lowerCAmelCase = tf.convert_to_tensor(_snake_case )
lowerCAmelCase = None
if self.use_input_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
if self.use_token_type_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = LayoutLMConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMModel(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , token_type_ids=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForMaskedLM(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = TFLayoutLMForSequenceClassification(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = TFLayoutLMForTokenClassification(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForQuestionAnswering(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {
'input_ids': input_ids,
'bbox': bbox,
'token_type_ids': token_type_ids,
'attention_mask': input_mask,
}
return config, inputs_dict
@require_tf
class a ( a__ , a__ , unittest.TestCase ):
snake_case__ = (
(
TFLayoutLMModel,
TFLayoutLMForMaskedLM,
TFLayoutLMForTokenClassification,
TFLayoutLMForSequenceClassification,
TFLayoutLMForQuestionAnswering,
)
if is_tf_available()
else ()
)
snake_case__ = (
{
'''feature-extraction''': TFLayoutLMModel,
'''fill-mask''': TFLayoutLMForMaskedLM,
'''text-classification''': TFLayoutLMForSequenceClassification,
'''token-classification''': TFLayoutLMForTokenClassification,
'''zero-shot''': TFLayoutLMForSequenceClassification,
}
if is_tf_available()
else {}
)
snake_case__ = False
snake_case__ = True
snake_case__ = 1_0
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = TFLayoutLMModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
@unittest.skip('Onnx compliancy broke with TF 2.10' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def _SCREAMING_SNAKE_CASE ():
# Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on:
# fmt: off
lowerCAmelCase = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231
lowerCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231
lowerCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231
lowerCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231
# these are sequence labels (i.e. at the token level)
lowerCAmelCase = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231
# fmt: on
return input_ids, attention_mask, bbox, token_type_ids, labels
@require_tf
class a ( unittest.TestCase ):
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
# test the sequence output on [0, :3, :3]
lowerCAmelCase = tf.convert_to_tensor(
[[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]] , )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _snake_case , atol=1E-3 ) )
# test the pooled output on [1, :3]
lowerCAmelCase = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552] )
self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _snake_case , atol=1E-3 ) )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
lowerCAmelCase = model(
input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=tf.convert_to_tensor([1, 1] ) , )
# test whether we get a loss as a scalar
lowerCAmelCase = outputs.loss
lowerCAmelCase = (2,)
self.assertEqual(loss.shape , _snake_case )
# test the shape of the logits
lowerCAmelCase = outputs.logits
lowerCAmelCase = (2, 2)
self.assertEqual(logits.shape , _snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
lowerCAmelCase = model(
input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case )
# test the shape of the logits
lowerCAmelCase = outputs.logits
lowerCAmelCase = tf.convert_to_tensor((2, 25, 13) )
self.assertEqual(logits.shape , _snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
# test the shape of the logits
lowerCAmelCase = tf.convert_to_tensor((2, 25) )
self.assertEqual(outputs.start_logits.shape , _snake_case )
self.assertEqual(outputs.end_logits.shape , _snake_case )
| 4 | 1 |
"""simple docstring"""
__UpperCamelCase : Union[str, Any] = '''
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
'''
__UpperCamelCase : Any = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
__UpperCamelCase : List[str] = {
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 4 |
"""simple docstring"""
import argparse
import os
import re
import packaging.version
__UpperCamelCase : Union[str, Any] = '''examples/'''
__UpperCamelCase : str = {
'''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''),
'''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''),
'''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''),
'''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''),
}
__UpperCamelCase : List[str] = {
'''init''': '''src/transformers/__init__.py''',
'''setup''': '''setup.py''',
}
__UpperCamelCase : Optional[int] = '''README.md'''
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ):
with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f:
lowerCAmelCase = f.read()
lowerCAmelCase ,lowerCAmelCase = REPLACE_PATTERNS[pattern]
lowerCAmelCase = replace.replace('VERSION' , _UpperCAmelCase )
lowerCAmelCase = re_pattern.sub(_UpperCAmelCase , _UpperCAmelCase )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ):
for folder, directories, fnames in os.walk(_UpperCAmelCase ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('research_projects' )
if "legacy" in directories:
directories.remove('legacy' )
for fname in fnames:
if fname.endswith('.py' ):
update_version_in_file(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , pattern='examples' )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict=False ):
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if not patch:
update_version_in_examples(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = '๐ค Transformers currently provides the following architectures'
lowerCAmelCase = '1. Want to contribute a new model?'
with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f:
lowerCAmelCase = f.readlines()
# Find the start of the list.
lowerCAmelCase = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
lowerCAmelCase = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('1.' ):
lowerCAmelCase = lines[index].replace(
'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , )
index += 1
with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE ():
with open(REPLACE_FILES['init'] , 'r' ) as f:
lowerCAmelCase = f.read()
lowerCAmelCase = REPLACE_PATTERNS['init'][0].search(_UpperCAmelCase ).groups()[0]
return packaging.version.parse(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple=False ):
lowerCAmelCase = get_version()
if patch and default_version.is_devrelease:
raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' )
if default_version.is_devrelease:
lowerCAmelCase = default_version.base_version
elif patch:
lowerCAmelCase = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}'
else:
lowerCAmelCase = F'{default_version.major}.{default_version.minor + 1}.0'
# Now let's ask nicely if that's the right one.
lowerCAmelCase = input(F'Which version are you releasing? [{default_version}]' )
if len(_UpperCAmelCase ) == 0:
lowerCAmelCase = default_version
print(F'Updating version to {version}.' )
global_version_update(_UpperCAmelCase , patch=_UpperCAmelCase )
if not patch:
print('Cleaning main README, don\'t forget to run `make fix-copies`.' )
clean_main_ref_in_model_list()
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = get_version()
lowerCAmelCase = F'{current_version.major}.{current_version.minor + 1}.0.dev0'
lowerCAmelCase = current_version.base_version
# Check with the user we got that right.
lowerCAmelCase = input(F'Which version are we developing now? [{dev_version}]' )
if len(_UpperCAmelCase ) == 0:
lowerCAmelCase = dev_version
print(F'Updating version to {version}.' )
global_version_update(_UpperCAmelCase )
print('Cleaning main README, don\'t forget to run `make fix-copies`.' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
__UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''')
parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''')
__UpperCamelCase : Optional[int] = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('''Nothing to do after a patch :-)''')
else:
post_release_work()
| 4 | 1 |
"""simple docstring"""
__UpperCamelCase : int = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'''
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : bytes ):
# Make sure the supplied data is a bytes-like object
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
lowerCAmelCase = F'a bytes-like object is required, not \'{data.__class__.__name__}\''
raise TypeError(_UpperCAmelCase )
lowerCAmelCase = ''.join(bin(_UpperCAmelCase )[2:].zfill(8 ) for byte in data )
lowerCAmelCase = len(_UpperCAmelCase ) % 6 != 0
if padding_needed:
# The padding that will be added later
lowerCAmelCase = b'=' * ((6 - len(_UpperCAmelCase ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(_UpperCAmelCase ) % 6)
else:
lowerCAmelCase = b''
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6] , 2 )]
for index in range(0 , len(_UpperCAmelCase ) , 6 ) ).encode()
+ padding
)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
# Make sure encoded_data is either a string or a bytes-like object
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
lowerCAmelCase = (
'argument should be a bytes-like object or ASCII string, '
F'not \'{encoded_data.__class__.__name__}\''
)
raise TypeError(_UpperCAmelCase )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
try:
lowerCAmelCase = encoded_data.decode('utf-8' )
except UnicodeDecodeError:
raise ValueError('base64 encoded data should only contain ASCII characters' )
lowerCAmelCase = encoded_data.count('=' )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(_UpperCAmelCase ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
lowerCAmelCase = encoded_data[:-padding]
lowerCAmelCase = ''.join(
bin(B64_CHARSET.index(_UpperCAmelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
lowerCAmelCase = ''.join(
bin(B64_CHARSET.index(_UpperCAmelCase ) )[2:].zfill(6 ) for char in encoded_data )
lowerCAmelCase = [
int(binary_stream[index : index + 8] , 2 )
for index in range(0 , len(_UpperCAmelCase ) , 8 )
]
return bytes(_UpperCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 |
"""simple docstring"""
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
__UpperCamelCase : Optional[int] = pytest.mark.integration
@require_faiss
class a ( a__ ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_snake_case ) for x in np.arange(30 ).tolist()]} )
return dset
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = self._create_dummy_dataset()
lowerCAmelCase = dset.map(
lambda _snake_case , _snake_case : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_snake_case , keep_in_memory=_snake_case )
lowerCAmelCase = dset.add_faiss_index('vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT )
lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
dset.drop_index('vecs' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , )
lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file:
dset.save_faiss_index('vecs' , tmp_file.name )
dset.load_faiss_index('vecs2' , tmp_file.name )
os.unlink(tmp_file.name )
lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' )
dset.drop_index('vecs' )
self.assertRaises(_snake_case , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
from elasticsearch import Elasticsearch
lowerCAmelCase = self._create_dummy_dataset()
with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(
'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:
lowerCAmelCase = {'acknowledged': True}
mocked_bulk.return_value([(True, None)] * 30 )
lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 29}]}}
lowerCAmelCase = Elasticsearch()
dset.add_elasticsearch_index('filename' , es_client=_snake_case )
lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('filename' , 'my_name-train_29' )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
@require_faiss
class a ( a__ ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
lowerCAmelCase = np.zeros(5 , dtype=np.floataa )
lowerCAmelCase = 1
lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case )
self.assertRaises(_snake_case , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
lowerCAmelCase = np.eye(5 , dtype=np.floataa )[::-1]
lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case )
self.assertRaises(_snake_case , index.search_batch , queries[0] )
lowerCAmelCase = [scores[0] for scores in total_scores]
lowerCAmelCase = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_snake_case ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = FaissIndex(string_factory='Flat' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
lowerCAmelCase = FaissIndex(string_factory='LSH' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(_snake_case ):
lowerCAmelCase = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = faiss.IndexFlat(5 )
lowerCAmelCase = FaissIndex(custom_index=_snake_case )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file:
index.save(tmp_file.name )
lowerCAmelCase = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
lowerCAmelCase = np.zeros(5 , dtype=np.floataa )
lowerCAmelCase = 1
lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ):
import faiss
lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
lowerCAmelCase = 'index.faiss'
lowerCAmelCase = F'mock://{index_name}'
index.save(_UpperCAmelCase , storage_options=mockfs.storage_options )
lowerCAmelCase = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options )
lowerCAmelCase = np.zeros(5 , dtype=np.floataa )
lowerCAmelCase = 1
lowerCAmelCase ,lowerCAmelCase = index.search(_UpperCAmelCase )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class a ( a__ ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
from elasticsearch import Elasticsearch
with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(
'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:
lowerCAmelCase = Elasticsearch()
lowerCAmelCase = {'acknowledged': True}
lowerCAmelCase = ElasticSearchIndex(es_client=_snake_case )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(['foo', 'bar', 'foobar'] )
# single query
lowerCAmelCase = 'foo'
lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
lowerCAmelCase = 'foo'
lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
lowerCAmelCase = ['foo', 'bar', 'foobar']
lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case )
lowerCAmelCase = [scores[0] for scores in total_scores]
lowerCAmelCase = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_snake_case ) , 0 )
self.assertListEqual([1, 1, 1] , _snake_case )
# batched queries with timeout
lowerCAmelCase = ['foo', 'bar', 'foobar']
lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case , request_timeout=30 )
lowerCAmelCase = [scores[0] for scores in total_scores]
lowerCAmelCase = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_snake_case ) , 0 )
self.assertListEqual([1, 1, 1] , _snake_case )
| 4 | 1 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class a ( a__ ):
snake_case__ = '''microsoft/speecht5_tts'''
snake_case__ = (
'''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the '''
'''text to read (in English) and returns a waveform object containing the sound.'''
)
snake_case__ = '''text_reader'''
snake_case__ = SpeechTaProcessor
snake_case__ = SpeechTaForTextToSpeech
snake_case__ = SpeechTaHifiGan
snake_case__ = ['''text''']
snake_case__ = ['''audio''']
def UpperCamelCase__ ( self ):
"""simple docstring"""
if self.post_processor is None:
lowerCAmelCase = 'microsoft/speecht5_hifigan'
super().setup()
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
lowerCAmelCase = self.pre_processor(text=_snake_case , return_tensors='pt' , truncation=_snake_case )
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' )
lowerCAmelCase = load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation' )
lowerCAmelCase = torch.tensor(embeddings_dataset[73_05]['xvector'] ).unsqueeze(0 )
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
with torch.no_grad():
return self.model.generate_speech(**_snake_case )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
with torch.no_grad():
return self.post_processor(_snake_case ).cpu().detach()
| 4 |
"""simple docstring"""
import random
import unittest
import torch
from diffusers import IFInpaintingPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class a ( a__ , a__ , unittest.TestCase ):
snake_case__ = IFInpaintingPipeline
snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''}
snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
snake_case__ = PipelineTesterMixin.required_optional_params - {'''latents'''}
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self._get_dummy_components()
def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ):
"""simple docstring"""
if str(_snake_case ).startswith('mps' ):
lowerCAmelCase = torch.manual_seed(_snake_case )
else:
lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case )
lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case )
lowerCAmelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1E-1 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_save_load_local()
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 4 | 1 |
"""simple docstring"""
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
__UpperCamelCase : str = logging.getLogger(__name__)
require_version('''pytorch_lightning>=1.0.4''')
__UpperCamelCase : List[str] = {
'''base''': AutoModel,
'''sequence-classification''': AutoModelForSequenceClassification,
'''question-answering''': AutoModelForQuestionAnswering,
'''pretraining''': AutoModelForPreTraining,
'''token-classification''': AutoModelForTokenClassification,
'''language-modeling''': AutoModelWithLMHead,
'''summarization''': AutoModelForSeqaSeqLM,
'''translation''': AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
__UpperCamelCase : int = {
'''linear''': get_linear_schedule_with_warmup,
'''cosine''': get_cosine_schedule_with_warmup,
'''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup,
'''polynomial''': get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
__UpperCamelCase : Any = sorted(arg_to_scheduler.keys())
__UpperCamelCase : int = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}'''
class a ( pl.LightningModule ):
def __init__( self , _snake_case , _snake_case=None , _snake_case="base" , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case , ):
"""simple docstring"""
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(_snake_case )
lowerCAmelCase = 0
lowerCAmelCase = Path(self.hparams.output_dir )
lowerCAmelCase = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
lowerCAmelCase = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=_snake_case , **_snake_case , )
else:
lowerCAmelCase = config
lowerCAmelCase = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout')
for p in extra_model_params:
if getattr(self.hparams , _snake_case , _snake_case ):
assert hasattr(self.config , _snake_case ), F'model config doesn\'t have a `{p}` attribute'
setattr(self.config , _snake_case , getattr(self.hparams , _snake_case ) )
if tokenizer is None:
lowerCAmelCase = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_snake_case , )
else:
lowerCAmelCase = tokenizer
lowerCAmelCase = MODEL_MODES[mode]
if model is None:
lowerCAmelCase = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_snake_case , )
else:
lowerCAmelCase = model
def UpperCamelCase__ ( self , *_snake_case , **_snake_case ):
"""simple docstring"""
lowerCAmelCase = self.model_type.from_pretrained(*_snake_case , **_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = arg_to_scheduler[self.hparams.lr_scheduler]
lowerCAmelCase = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
lowerCAmelCase = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1}
return scheduler
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model
lowerCAmelCase = ['bias', 'LayerNorm.weight']
lowerCAmelCase = [
{
'params': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'weight_decay': self.hparams.weight_decay,
},
{
'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'weight_decay': 0.0,
},
]
if self.hparams.adafactor:
lowerCAmelCase = Adafactor(
_snake_case , lr=self.hparams.learning_rate , scale_parameter=_snake_case , relative_step=_snake_case )
else:
lowerCAmelCase = AdamW(
_snake_case , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
lowerCAmelCase = optimizer
lowerCAmelCase = self.get_lr_scheduler()
return [optimizer], [scheduler]
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
return self.validation_step(_snake_case , _snake_case )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return self.validation_end(_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
lowerCAmelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if stage == "test":
lowerCAmelCase = len(self.test_dataloader().dataset )
else:
lowerCAmelCase = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=_snake_case )
lowerCAmelCase = len(self.train_dataloader().dataset )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = False ):
"""simple docstring"""
raise NotImplementedError('You must implement this for your task' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.train_loader
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=_snake_case )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return os.path.join(
self.hparams.data_dir , 'cached_{}_{}_{}'.format(
_snake_case , list(filter(_snake_case , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.output_dir.joinpath('best_tfmr' )
lowerCAmelCase = self.step_count
self.model.save_pretrained(_snake_case )
self.tokenizer.save_pretrained(_snake_case )
@staticmethod
def UpperCamelCase__ ( _snake_case , _snake_case ):
"""simple docstring"""
parser.add_argument(
'--model_name_or_path' , default=_snake_case , type=_snake_case , required=_snake_case , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--config_name' , default='' , type=_snake_case , help='Pretrained config name or path if not the same as model_name' )
parser.add_argument(
'--tokenizer_name' , default=_snake_case , type=_snake_case , help='Pretrained tokenizer name or path if not the same as model_name' , )
parser.add_argument(
'--cache_dir' , default=str(Path(_snake_case ).parent / 'test_run' / 'cache' ) , type=_snake_case , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , )
parser.add_argument(
'--encoder_layerdrop' , type=_snake_case , help='Encoder layer dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--decoder_layerdrop' , type=_snake_case , help='Decoder layer dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--dropout' , type=_snake_case , help='Dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--attention_dropout' , type=_snake_case , help='Attention dropout probability (Optional). Goes into model.config' , )
parser.add_argument('--learning_rate' , default=5E-5 , type=_snake_case , help='The initial learning rate for Adam.' )
parser.add_argument(
'--lr_scheduler' , default='linear' , choices=_snake_case , metavar=_snake_case , type=_snake_case , help='Learning rate scheduler' , )
parser.add_argument('--weight_decay' , default=0.0 , type=_snake_case , help='Weight decay if we apply some.' )
parser.add_argument('--adam_epsilon' , default=1E-8 , type=_snake_case , help='Epsilon for Adam optimizer.' )
parser.add_argument('--warmup_steps' , default=0 , type=_snake_case , help='Linear warmup over warmup_steps.' )
parser.add_argument('--num_workers' , default=4 , type=_snake_case , help='kwarg passed to DataLoader' )
parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=_snake_case )
parser.add_argument('--train_batch_size' , default=32 , type=_snake_case )
parser.add_argument('--eval_batch_size' , default=32 , type=_snake_case )
parser.add_argument('--adafactor' , action='store_true' )
class a ( pl.Callback ):
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class a ( pl.Callback ):
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(_snake_case )
class a ( pl.Callback ):
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = trainer.lr_schedulers[0]['scheduler']
lowerCAmelCase = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
rank_zero_info('***** Validation results *****' )
lowerCAmelCase = trainer.callback_metrics
# Log results
for key in sorted(_snake_case ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(_snake_case , str(metrics[key] ) ) )
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
rank_zero_info('***** Test results *****' )
lowerCAmelCase = trainer.callback_metrics
# Log and save results to file
lowerCAmelCase = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' )
with open(_snake_case , 'w' ) as writer:
for key in sorted(_snake_case ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(_snake_case , str(metrics[key] ) ) )
writer.write('{} = {}\n'.format(_snake_case , str(metrics[key] ) ) )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] ):
# To allow all pl args uncomment the following line
# parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument(
'--output_dir' , default=str(Path(_UpperCAmelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=_UpperCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , )
parser.add_argument(
'--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , )
parser.add_argument(
'--fp16_opt_level' , type=_UpperCAmelCase , default='O2' , help=(
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'
'See details at https://nvidia.github.io/apex/amp.html'
) , )
parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=_UpperCAmelCase )
parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=_UpperCAmelCase , help='Max gradient norm' )
parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' )
parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' )
parser.add_argument(
'--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=_UpperCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , )
parser.add_argument('--seed' , type=_UpperCAmelCase , default=42 , help='random seed for initialization' )
parser.add_argument(
'--data_dir' , default=str(Path(_UpperCAmelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=_UpperCAmelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : BaseTransformer , _UpperCAmelCase : argparse.Namespace , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=[] , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : Dict , ):
pl.seed_everything(args.seed )
# init model
lowerCAmelCase = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=_UpperCAmelCase )
# add custom checkpoints
if checkpoint_callback is None:
lowerCAmelCase = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(_UpperCAmelCase )
if logging_callback is None:
lowerCAmelCase = LoggingCallback()
lowerCAmelCase = {}
if args.fpaa:
lowerCAmelCase = 16
if args.gpus > 1:
lowerCAmelCase = 'auto'
lowerCAmelCase = 'ddp'
lowerCAmelCase = args.accumulate_grad_batches
lowerCAmelCase = None
lowerCAmelCase = 'auto'
lowerCAmelCase = pl.Trainer.from_argparse_args(
_UpperCAmelCase , weights_summary=_UpperCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_UpperCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **_UpperCAmelCase , )
if args.do_train:
trainer.fit(_UpperCAmelCase )
else:
print('RAG modeling tests with new set functions successfuly executed!' )
return trainer
| 4 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class a :
def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
lowerCAmelCase = self.vocab_size - 1
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_token_type_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTModel(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , head_mask=_snake_case )
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case )
lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTLMHeadModel(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTDoubleHeadsModel(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = OpenAIGPTForSequenceClassification(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {
'input_ids': input_ids,
'token_type_ids': token_type_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_torch
class a ( a__ , a__ , a__ , unittest.TestCase ):
snake_case__ = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
snake_case__ = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
snake_case__ = (
{
'''feature-extraction''': OpenAIGPTModel,
'''text-classification''': OpenAIGPTForSequenceClassification,
'''text-generation''': OpenAIGPTLMHeadModel,
'''zero-shot''': OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=False ):
"""simple docstring"""
lowerCAmelCase = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
lowerCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_snake_case , )
lowerCAmelCase = inputs_dict['labels']
lowerCAmelCase = inputs_dict['labels']
lowerCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_snake_case , )
lowerCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_snake_case )
return inputs_dict
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , n_embd=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = OpenAIGPTModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
@require_torch
class a ( unittest.TestCase ):
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' )
model.to(_snake_case )
lowerCAmelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=_snake_case ) # the president is
lowerCAmelCase = [
4_81,
47_35,
5_44,
2_46,
9_63,
8_70,
7_62,
2_39,
2_44,
4_04_77,
2_44,
2_49,
7_19,
8_81,
4_87,
5_44,
2_40,
2_44,
6_03,
4_81,
] # the president is a very good man. " \n " i\'m sure he is, " said the
lowerCAmelCase = model.generate(_snake_case , do_sample=_snake_case )
self.assertListEqual(output_ids[0].tolist() , _snake_case )
| 4 | 1 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class a ( a__ ):
snake_case__ = 42
class a ( a__ , a__ ):
@register_to_config
def __init__( self , _snake_case = 3 , _snake_case = 3 , _snake_case = ("DownEncoderBlock2D",) , _snake_case = ("UpDecoderBlock2D",) , _snake_case = (64,) , _snake_case = 1 , _snake_case = "silu" , _snake_case = 3 , _snake_case = 32 , _snake_case = 2_56 , _snake_case = 32 , _snake_case = None , _snake_case = 0.18_215 , _snake_case = "group" , ):
"""simple docstring"""
super().__init__()
# pass init params to Encoder
lowerCAmelCase = Encoder(
in_channels=_snake_case , out_channels=_snake_case , down_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , double_z=_snake_case , )
lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels
lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 )
lowerCAmelCase = VectorQuantizer(_snake_case , _snake_case , beta=0.25 , remap=_snake_case , sane_index_shape=_snake_case )
lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 )
# pass init params to Decoder
lowerCAmelCase = Decoder(
in_channels=_snake_case , out_channels=_snake_case , up_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , norm_type=_snake_case , )
@apply_forward_hook
def UpperCamelCase__ ( self , _snake_case , _snake_case = True ):
"""simple docstring"""
lowerCAmelCase = self.encoder(_snake_case )
lowerCAmelCase = self.quant_conv(_snake_case )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=_snake_case )
@apply_forward_hook
def UpperCamelCase__ ( self , _snake_case , _snake_case = False , _snake_case = True ):
"""simple docstring"""
if not force_not_quantize:
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = self.quantize(_snake_case )
else:
lowerCAmelCase = h
lowerCAmelCase = self.post_quant_conv(_snake_case )
lowerCAmelCase = self.decoder(_snake_case , quant if self.config.norm_type == 'spatial' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case = True ):
"""simple docstring"""
lowerCAmelCase = sample
lowerCAmelCase = self.encode(_snake_case ).latents
lowerCAmelCase = self.decode(_snake_case ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=_snake_case )
| 4 |
"""simple docstring"""
import argparse
import logging
import pickle
import random
import time
import numpy as np
from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO
)
__UpperCamelCase : str = logging.getLogger(__name__)
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = argparse.ArgumentParser(
description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' )
parser.add_argument('--file_path' , type=_UpperCAmelCase , default='data/dump.txt' , help='The path to the data.' )
parser.add_argument('--tokenizer_type' , type=_UpperCAmelCase , default='bert' , choices=['bert', 'roberta', 'gpt2'] )
parser.add_argument('--tokenizer_name' , type=_UpperCAmelCase , default='bert-base-uncased' , help='The tokenizer to use.' )
parser.add_argument('--dump_file' , type=_UpperCAmelCase , default='data/dump' , help='The dump file prefix.' )
lowerCAmelCase = parser.parse_args()
logger.info(F'Loading Tokenizer ({args.tokenizer_name})' )
if args.tokenizer_type == "bert":
lowerCAmelCase = BertTokenizer.from_pretrained(args.tokenizer_name )
lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `[CLS]`
lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `[SEP]`
elif args.tokenizer_type == "roberta":
lowerCAmelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name )
lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `<s>`
lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `</s>`
elif args.tokenizer_type == "gpt2":
lowerCAmelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name )
lowerCAmelCase = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>`
lowerCAmelCase = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>`
logger.info(F'Loading text from {args.file_path}' )
with open(args.file_path , 'r' , encoding='utf8' ) as fp:
lowerCAmelCase = fp.readlines()
logger.info('Start encoding' )
logger.info(F'{len(_UpperCAmelCase )} examples to process.' )
lowerCAmelCase = []
lowerCAmelCase = 0
lowerCAmelCase = 1_0000
lowerCAmelCase = time.time()
for text in data:
lowerCAmelCase = F'{bos} {text.strip()} {sep}'
lowerCAmelCase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
rslt.append(_UpperCAmelCase )
iter += 1
if iter % interval == 0:
lowerCAmelCase = time.time()
logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' )
lowerCAmelCase = time.time()
logger.info('Finished binarization' )
logger.info(F'{len(_UpperCAmelCase )} examples processed.' )
lowerCAmelCase = F'{args.dump_file}.{args.tokenizer_name}.pickle'
lowerCAmelCase = tokenizer.vocab_size
if vocab_size < (1 << 16):
lowerCAmelCase = [np.uintaa(_UpperCAmelCase ) for d in rslt]
else:
lowerCAmelCase = [np.intaa(_UpperCAmelCase ) for d in rslt]
random.shuffle(rslt_ )
logger.info(F'Dump to {dp_file}' )
with open(_UpperCAmelCase , 'wb' ) as handle:
pickle.dump(rslt_ , _UpperCAmelCase , protocol=pickle.HIGHEST_PROTOCOL )
if __name__ == "__main__":
main()
| 4 | 1 |
"""simple docstring"""
__UpperCamelCase : str = '''
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
'''
__UpperCamelCase : List[str] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
__UpperCamelCase : Any = {
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 4 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
__UpperCamelCase : Tuple = {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''',
'''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''',
'''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''',
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json'''
),
'''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''',
'''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''',
'''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''',
'''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''',
'''cl-tohoku/bert-base-japanese-whole-word-masking''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json'''
),
'''cl-tohoku/bert-base-japanese-char''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json'''
),
'''cl-tohoku/bert-base-japanese-char-whole-word-masking''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json'''
),
'''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''',
# See all BERT models at https://huggingface.co/models?filter=bert
}
class a ( a__ ):
snake_case__ = '''bert'''
def __init__( self , _snake_case=3_05_22 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , _snake_case=None , **_snake_case , ):
"""simple docstring"""
super().__init__(pad_token_id=_snake_case , **_snake_case )
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_act
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = initializer_range
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = position_embedding_type
lowerCAmelCase = use_cache
lowerCAmelCase = classifier_dropout
class a ( a__ ):
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
if self.task == "multiple-choice":
lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
lowerCAmelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] )
| 4 | 1 |
"""simple docstring"""
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] ):
if isinstance(_UpperCAmelCase , collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class a :
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = np.abs((a - b) ).max()
self.assertLessEqual(_snake_case , _snake_case , F'Difference between torch and flax is {diff} (>= {tol}).' )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ):
"""simple docstring"""
lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(_snake_case , _snake_case )
lowerCAmelCase = FlaxVisionTextDualEncoderModel(_snake_case )
lowerCAmelCase = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case )
self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.get_vision_text_model(_snake_case , _snake_case )
lowerCAmelCase = {'vision_model': vision_model, 'text_model': text_model}
lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_snake_case )
lowerCAmelCase = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case )
self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.get_vision_text_model(_snake_case , _snake_case )
lowerCAmelCase = {'vision_model': vision_model, 'text_model': text_model}
lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_snake_case )
lowerCAmelCase = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case )
lowerCAmelCase = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_snake_case )
lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_pretrained(_snake_case )
lowerCAmelCase = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case )
lowerCAmelCase = after_output[0]
lowerCAmelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_snake_case , 1E-3 )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.get_vision_text_model(_snake_case , _snake_case )
lowerCAmelCase = {'vision_model': vision_model, 'text_model': text_model}
lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_snake_case )
lowerCAmelCase = model(
input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case , output_attentions=_snake_case )
lowerCAmelCase = output.vision_model_output.attentions
self.assertEqual(len(_snake_case ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
lowerCAmelCase = to_atuple(vision_model.config.image_size )
lowerCAmelCase = to_atuple(vision_model.config.patch_size )
lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
lowerCAmelCase = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
lowerCAmelCase = output.text_model_output.attentions
self.assertEqual(len(_snake_case ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
pt_model.to(_snake_case )
pt_model.eval()
# prepare inputs
lowerCAmelCase = inputs_dict
lowerCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
lowerCAmelCase = pt_model(**_snake_case ).to_tuple()
lowerCAmelCase = fx_model(**_snake_case ).to_tuple()
self.assertEqual(len(_snake_case ) , len(_snake_case ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(_snake_case , pt_output.numpy() , 4E-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(_snake_case )
lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_pretrained(_snake_case , from_pt=_snake_case )
lowerCAmelCase = fx_model_loaded(**_snake_case ).to_tuple()
self.assertEqual(len(_snake_case ) , len(_snake_case ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(_snake_case , pt_output.numpy() , 4E-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(_snake_case )
lowerCAmelCase = VisionTextDualEncoderModel.from_pretrained(_snake_case , from_flax=_snake_case )
pt_model_loaded.to(_snake_case )
pt_model_loaded.eval()
with torch.no_grad():
lowerCAmelCase = pt_model_loaded(**_snake_case ).to_tuple()
self.assertEqual(len(_snake_case ) , len(_snake_case ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(_snake_case , pt_output_loaded.numpy() , 4E-2 )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(_snake_case , _snake_case )
lowerCAmelCase = VisionTextDualEncoderModel(_snake_case )
lowerCAmelCase = FlaxVisionTextDualEncoderModel(_snake_case )
lowerCAmelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _snake_case )
lowerCAmelCase = fx_state
self.check_pt_flax_equivalence(_snake_case , _snake_case , _snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(_snake_case , _snake_case )
lowerCAmelCase = VisionTextDualEncoderModel(_snake_case )
lowerCAmelCase = FlaxVisionTextDualEncoderModel(_snake_case )
lowerCAmelCase = load_flax_weights_in_pytorch_model(_snake_case , fx_model.params )
self.check_pt_flax_equivalence(_snake_case , _snake_case , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
self.check_save_load(**_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**_snake_case )
@is_pt_flax_cross_test
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
lowerCAmelCase = config_inputs_dict.pop('vision_config' )
lowerCAmelCase = config_inputs_dict.pop('text_config' )
lowerCAmelCase = config_inputs_dict
self.check_equivalence_pt_to_flax(_snake_case , _snake_case , _snake_case )
self.check_equivalence_flax_to_pt(_snake_case , _snake_case , _snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.get_pretrained_model_and_inputs()
lowerCAmelCase = model_a(**_snake_case )
lowerCAmelCase = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(_snake_case )
lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_pretrained(_snake_case )
lowerCAmelCase = model_a(**_snake_case )
lowerCAmelCase = after_outputs[0]
lowerCAmelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_snake_case , 1E-5 )
@require_flax
class a ( a__ , unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-bert' , vision_from_pt=_snake_case , text_from_pt=_snake_case , )
lowerCAmelCase = 13
lowerCAmelCase = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
lowerCAmelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
lowerCAmelCase = random_attention_mask([batch_size, 4] )
lowerCAmelCase = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask}
return model, inputs
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = FlaxViTModel(_snake_case )
lowerCAmelCase = FlaxBertModel(_snake_case )
return vision_model, text_model
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = FlaxViTModelTester(self )
lowerCAmelCase = FlaxBertModelTester(self )
lowerCAmelCase = vit_model_tester.prepare_config_and_inputs()
lowerCAmelCase = bert_model_tester.prepare_config_and_inputs()
lowerCAmelCase ,lowerCAmelCase = vision_config_and_inputs
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class a ( a__ , unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'hf-internal-testing/tiny-random-clip' , 'hf-internal-testing/tiny-bert' , vision_from_pt=_snake_case , text_from_pt=_snake_case , )
lowerCAmelCase = 13
lowerCAmelCase = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
lowerCAmelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
lowerCAmelCase = random_attention_mask([batch_size, 4] )
lowerCAmelCase = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask}
return model, inputs
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = FlaxCLIPVisionModel(_snake_case )
lowerCAmelCase = FlaxBertModel(_snake_case )
return vision_model, text_model
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = FlaxCLIPVisionModelTester(self )
lowerCAmelCase = FlaxBertModelTester(self )
lowerCAmelCase = clip_model_tester.prepare_config_and_inputs()
lowerCAmelCase = bert_model_tester.prepare_config_and_inputs()
lowerCAmelCase ,lowerCAmelCase = vision_config_and_inputs
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class a ( unittest.TestCase ):
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' , logit_scale_init_value=1.0 )
lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' )
lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
lowerCAmelCase = processor(
text=['una foto di un gatto', 'una foto di un cane'] , images=_snake_case , padding=_snake_case , return_tensors='np' )
lowerCAmelCase = model(**_snake_case )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
lowerCAmelCase = np.array([[1.2_284_727, 0.3_104_122]] )
self.assertTrue(np.allclose(outputs.logits_per_image , _snake_case , atol=1E-3 ) )
| 4 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class a ( a__ , unittest.TestCase ):
snake_case__ = DanceDiffusionPipeline
snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS
snake_case__ = PipelineTesterMixin.required_optional_params - {
'''callback''',
'''latents''',
'''callback_steps''',
'''output_type''',
'''num_images_per_prompt''',
}
snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS
snake_case__ = False
snake_case__ = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase = UNetaDModel(
block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_snake_case , use_timestep_embedding=_snake_case , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , )
lowerCAmelCase = IPNDMScheduler()
lowerCAmelCase = {
'unet': unet,
'scheduler': scheduler,
}
return components
def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ):
"""simple docstring"""
if str(_snake_case ).startswith('mps' ):
lowerCAmelCase = torch.manual_seed(_snake_case )
else:
lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowerCAmelCase = {
'batch_size': 1,
'generator': generator,
'num_inference_steps': 4,
}
return inputs
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase = self.get_dummy_components()
lowerCAmelCase = DanceDiffusionPipeline(**_snake_case )
lowerCAmelCase = pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = self.get_dummy_inputs(_snake_case )
lowerCAmelCase = pipe(**_snake_case )
lowerCAmelCase = output.audios
lowerCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, components["unet"].sample_size)
lowerCAmelCase = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().test_save_load_local()
@skip_mps
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
@skip_mps
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().test_save_load_optional_components()
@skip_mps
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().test_attention_slicing_forward_pass()
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = torch_device
lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' )
lowerCAmelCase = pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 )
lowerCAmelCase = output.audios
lowerCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
lowerCAmelCase = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = torch_device
lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa )
lowerCAmelCase = pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 )
lowerCAmelCase = output.audios
lowerCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
lowerCAmelCase = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
| 4 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase : Optional[int] = logging.get_logger(__name__)
__UpperCamelCase : Dict = {
'''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''',
'''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''',
}
class a ( a__ ):
snake_case__ = '''markuplm'''
def __init__( self , _snake_case=3_05_22 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case=0 , _snake_case=2 , _snake_case=2_56 , _snake_case=10_24 , _snake_case=2_16 , _snake_case=10_01 , _snake_case=32 , _snake_case=50 , _snake_case="absolute" , _snake_case=True , _snake_case=None , **_snake_case , ):
"""simple docstring"""
super().__init__(
pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case , )
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_act
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = initializer_range
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = position_embedding_type
lowerCAmelCase = use_cache
lowerCAmelCase = classifier_dropout
# additional properties
lowerCAmelCase = max_depth
lowerCAmelCase = max_xpath_tag_unit_embeddings
lowerCAmelCase = max_xpath_subs_unit_embeddings
lowerCAmelCase = tag_pad_id
lowerCAmelCase = subs_pad_id
lowerCAmelCase = xpath_unit_hidden_size
| 4 |
"""simple docstring"""
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class a :
def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_input_mask
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_input_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
if self.use_token_type_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ ( self ):
"""simple docstring"""
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , use_stable_embedding=_snake_case , )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = OpenLlamaModel(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case )
lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = True
lowerCAmelCase = OpenLlamaModel(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , )
lowerCAmelCase = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , )
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = True
lowerCAmelCase = True
lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case )
model.to(_snake_case )
model.eval()
# first forward pass
lowerCAmelCase = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , use_cache=_snake_case , )
lowerCAmelCase = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 )
lowerCAmelCase = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0]
lowerCAmelCase = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , past_key_values=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0]
# select random slice
lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach()
lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class a ( a__ , a__ , a__ , unittest.TestCase ):
snake_case__ = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
snake_case__ = (OpenLlamaForCausalLM,) if is_torch_available() else ()
snake_case__ = (
{
'''feature-extraction''': OpenLlamaModel,
'''text-classification''': OpenLlamaForSequenceClassification,
'''text-generation''': OpenLlamaForCausalLM,
'''zero-shot''': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case__ = False
snake_case__ = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = OpenLlamaModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCAmelCase = type
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = 3
lowerCAmelCase = input_dict['input_ids']
lowerCAmelCase = input_ids.ne(1 ).to(_snake_case )
lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = 3
lowerCAmelCase = 'single_label_classification'
lowerCAmelCase = input_dict['input_ids']
lowerCAmelCase = input_ids.ne(1 ).to(_snake_case )
lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = 3
lowerCAmelCase = 'multi_label_classification'
lowerCAmelCase = input_dict['input_ids']
lowerCAmelCase = input_ids.ne(1 ).to(_snake_case )
lowerCAmelCase = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@parameterized.expand([('linear',), ('dynamic',)] )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = ids_tensor([1, 10] , config.vocab_size )
lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
lowerCAmelCase = OpenLlamaModel(_snake_case )
original_model.to(_snake_case )
original_model.eval()
lowerCAmelCase = original_model(_snake_case ).last_hidden_state
lowerCAmelCase = original_model(_snake_case ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
lowerCAmelCase = {'type': scaling_type, 'factor': 10.0}
lowerCAmelCase = OpenLlamaModel(_snake_case )
scaled_model.to(_snake_case )
scaled_model.eval()
lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state
lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
| 4 | 1 |
"""simple docstring"""
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class a :
def __init__( self , _snake_case , _snake_case=99 , _snake_case=13 , _snake_case=16 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=2 , _snake_case=32 , _snake_case=4 , _snake_case=4 , _snake_case=30 , _snake_case=0 , _snake_case=1 , _snake_case=2 , _snake_case=None , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = decoder_seq_length
# For common tests
lowerCAmelCase = self.decoder_seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_attention_mask
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = d_model
lowerCAmelCase = d_model
lowerCAmelCase = decoder_layers
lowerCAmelCase = decoder_layers
lowerCAmelCase = decoder_ffn_dim
lowerCAmelCase = decoder_attention_heads
lowerCAmelCase = decoder_attention_heads
lowerCAmelCase = eos_token_id
lowerCAmelCase = bos_token_id
lowerCAmelCase = pad_token_id
lowerCAmelCase = decoder_start_token_id
lowerCAmelCase = use_cache
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = None
lowerCAmelCase = decoder_seq_length
lowerCAmelCase = 2
lowerCAmelCase = 1
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_attention_mask:
lowerCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
lowerCAmelCase = TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = True
lowerCAmelCase = TrOCRDecoder(config=_snake_case ).to(_snake_case ).eval()
lowerCAmelCase = input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
lowerCAmelCase = model(_snake_case , use_cache=_snake_case )
lowerCAmelCase = model(_snake_case )
lowerCAmelCase = model(_snake_case , use_cache=_snake_case )
self.parent.assertTrue(len(_snake_case ) == len(_snake_case ) )
self.parent.assertTrue(len(_snake_case ) == len(_snake_case ) + 1 )
lowerCAmelCase = outputs['past_key_values']
# create hypothetical next token and extent to next_input_ids
lowerCAmelCase = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
lowerCAmelCase = model(_snake_case )['last_hidden_state']
lowerCAmelCase = model(_snake_case , past_key_values=_snake_case )['last_hidden_state']
# select random slice
lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
lowerCAmelCase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
lowerCAmelCase = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(_snake_case , _snake_case , atol=1E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = config_and_inputs
lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': attention_mask}
return config, inputs_dict
@require_torch
class a ( a__ , a__ , a__ , unittest.TestCase ):
snake_case__ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
snake_case__ = (TrOCRForCausalLM,) if is_torch_available() else ()
snake_case__ = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {}
snake_case__ = True
snake_case__ = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TrOCRStandaloneDecoderModelTester(self , is_training=_snake_case )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return
@unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :)
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
| 4 |
"""simple docstring"""
from typing import Any
class a :
def __init__( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = data
lowerCAmelCase = None
def __repr__( self ):
"""simple docstring"""
return F'Node({self.data})'
class a :
def __init__( self ):
"""simple docstring"""
lowerCAmelCase = None
def __iter__( self ):
"""simple docstring"""
lowerCAmelCase = self.head
while node:
yield node.data
lowerCAmelCase = node.next
def __len__( self ):
"""simple docstring"""
return sum(1 for _ in self )
def __repr__( self ):
"""simple docstring"""
return "->".join([str(_snake_case ) for item in self] )
def __getitem__( self , _snake_case ):
"""simple docstring"""
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self , _snake_case , _snake_case ):
"""simple docstring"""
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
lowerCAmelCase = self.head
for _ in range(_snake_case ):
lowerCAmelCase = current.next
lowerCAmelCase = data
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
self.insert_nth(len(self ) , _snake_case )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
self.insert_nth(0 , _snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
if not 0 <= index <= len(self ):
raise IndexError('list index out of range' )
lowerCAmelCase = Node(_snake_case )
if self.head is None:
lowerCAmelCase = new_node
elif index == 0:
lowerCAmelCase = self.head # link new_node to head
lowerCAmelCase = new_node
else:
lowerCAmelCase = self.head
for _ in range(index - 1 ):
lowerCAmelCase = temp.next
lowerCAmelCase = temp.next
lowerCAmelCase = new_node
def UpperCamelCase__ ( self ): # print every node data
"""simple docstring"""
print(self )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.delete_nth(0 )
def UpperCamelCase__ ( self ): # delete from tail
"""simple docstring"""
return self.delete_nth(len(self ) - 1 )
def UpperCamelCase__ ( self , _snake_case = 0 ):
"""simple docstring"""
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('List index out of range.' )
lowerCAmelCase = self.head # default first node
if index == 0:
lowerCAmelCase = self.head.next
else:
lowerCAmelCase = self.head
for _ in range(index - 1 ):
lowerCAmelCase = temp.next
lowerCAmelCase = temp.next
lowerCAmelCase = temp.next.next
return delete_node.data
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.head is None
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = None
lowerCAmelCase = self.head
while current:
# Store the current node's next node.
lowerCAmelCase = current.next
# Make the current node's next point backwards
lowerCAmelCase = prev
# Make the previous node be the current node
lowerCAmelCase = current
# Make the current node the next node (to progress iteration)
lowerCAmelCase = next_node
# Return prev in order to put the head at the end
lowerCAmelCase = prev
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = LinkedList()
assert linked_list.is_empty() is True
assert str(_UpperCAmelCase ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(_UpperCAmelCase ) == i
linked_list.insert_nth(_UpperCAmelCase , i + 1 )
assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(0 , 12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(_UpperCAmelCase ) == 9
assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
lowerCAmelCase = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(-8 , 1 ) )
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = [
-9,
100,
Node(7734_5112 ),
'dlrow olleH',
7,
5555,
0,
-192.5_5555,
'Hello, world!',
77.9,
Node(10 ),
None,
None,
12.20,
]
lowerCAmelCase = LinkedList()
for i in test_input:
linked_list.insert_tail(_UpperCAmelCase )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(_UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
lowerCAmelCase = linked_list.delete_head()
assert result == -9
assert (
str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
lowerCAmelCase = linked_list.delete_tail()
assert result == 12.2
assert (
str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
lowerCAmelCase = linked_list.delete_nth(10 )
assert result is None
assert (
str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('Hello again, world!' ) )
assert (
str(_UpperCAmelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(_UpperCAmelCase )
assert (
str(_UpperCAmelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(_UpperCAmelCase )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def _SCREAMING_SNAKE_CASE ():
from doctest import testmod
testmod()
lowerCAmelCase = LinkedList()
linked_list.insert_head(input('Inserting 1st at head ' ).strip() )
linked_list.insert_head(input('Inserting 2nd at head ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() )
linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
print('\nDelete head' )
linked_list.delete_head()
print('Delete tail' )
linked_list.delete_tail()
print('\nPrint list:' )
linked_list.print_list()
print('\nReverse linked list' )
linked_list.reverse()
print('\nPrint list:' )
linked_list.print_list()
print('\nString representation of linked list:' )
print(_UpperCAmelCase )
print('\nReading/changing Node data using indexing:' )
print(F'Element at Position 1: {linked_list[1]}' )
lowerCAmelCase = input('Enter New Value: ' ).strip()
print('New list:' )
print(_UpperCAmelCase )
print(F'length of linked_list is : {len(_UpperCAmelCase )}' )
if __name__ == "__main__":
main()
| 4 | 1 |
"""simple docstring"""
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
__UpperCamelCase : int = re.compile(R'''^(?P<major>\d+)''' R'''\.(?P<minor>\d+)''' R'''\.(?P<patch>\d+)$''')
@total_ordering
@dataclass
class a :
snake_case__ = 42
snake_case__ = None
snake_case__ = None
snake_case__ = None
snake_case__ = None
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = _str_to_version_tuple(self.version_str )
def __repr__( self ):
"""simple docstring"""
return F'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.major, self.minor, self.patch
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if isinstance(_snake_case , _snake_case ):
return Version(_snake_case )
elif isinstance(_snake_case , _snake_case ):
return other
raise TypeError(F'{other} (type {type(_snake_case )}) cannot be compared to version.' )
def __eq__( self , _snake_case ):
"""simple docstring"""
try:
lowerCAmelCase = self._validate_operand(_snake_case )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self._validate_operand(_snake_case )
return self.tuple < other.tuple
def __hash__( self ):
"""simple docstring"""
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def UpperCamelCase__ ( cls , _snake_case ):
"""simple docstring"""
lowerCAmelCase = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.version_str
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ):
lowerCAmelCase = _VERSION_REG.match(_UpperCAmelCase )
if not res:
raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' )
return tuple(int(_UpperCAmelCase ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ):
return ".".join(str(_UpperCAmelCase ) for v in version_tuple )
| 4 |
"""simple docstring"""
from __future__ import annotations
import requests
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
lowerCAmelCase = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty'
return requests.get(_UpperCAmelCase ).json()
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ):
lowerCAmelCase = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty'
lowerCAmelCase = requests.get(_UpperCAmelCase ).json()[:max_stories]
return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ):
lowerCAmelCase = hackernews_top_stories(_UpperCAmelCase )
return "\n".join('* [{title}]({url})'.format(**_UpperCAmelCase ) for story in stories )
if __name__ == "__main__":
print(hackernews_top_stories_as_markdown())
| 4 | 1 |
"""simple docstring"""
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all image processors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...image_processing_utils import ImageProcessingMixin
from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
__UpperCamelCase : Any = logging.get_logger(__name__)
__UpperCamelCase : List[str] = OrderedDict(
[
('''align''', '''EfficientNetImageProcessor'''),
('''beit''', '''BeitImageProcessor'''),
('''bit''', '''BitImageProcessor'''),
('''blip''', '''BlipImageProcessor'''),
('''blip-2''', '''BlipImageProcessor'''),
('''bridgetower''', '''BridgeTowerImageProcessor'''),
('''chinese_clip''', '''ChineseCLIPImageProcessor'''),
('''clip''', '''CLIPImageProcessor'''),
('''clipseg''', '''ViTImageProcessor'''),
('''conditional_detr''', '''ConditionalDetrImageProcessor'''),
('''convnext''', '''ConvNextImageProcessor'''),
('''convnextv2''', '''ConvNextImageProcessor'''),
('''cvt''', '''ConvNextImageProcessor'''),
('''data2vec-vision''', '''BeitImageProcessor'''),
('''deformable_detr''', '''DeformableDetrImageProcessor'''),
('''deit''', '''DeiTImageProcessor'''),
('''deta''', '''DetaImageProcessor'''),
('''detr''', '''DetrImageProcessor'''),
('''dinat''', '''ViTImageProcessor'''),
('''donut-swin''', '''DonutImageProcessor'''),
('''dpt''', '''DPTImageProcessor'''),
('''efficientformer''', '''EfficientFormerImageProcessor'''),
('''efficientnet''', '''EfficientNetImageProcessor'''),
('''flava''', '''FlavaImageProcessor'''),
('''focalnet''', '''BitImageProcessor'''),
('''git''', '''CLIPImageProcessor'''),
('''glpn''', '''GLPNImageProcessor'''),
('''groupvit''', '''CLIPImageProcessor'''),
('''imagegpt''', '''ImageGPTImageProcessor'''),
('''instructblip''', '''BlipImageProcessor'''),
('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''),
('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''),
('''levit''', '''LevitImageProcessor'''),
('''mask2former''', '''Mask2FormerImageProcessor'''),
('''maskformer''', '''MaskFormerImageProcessor'''),
('''mgp-str''', '''ViTImageProcessor'''),
('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''),
('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''),
('''mobilevit''', '''MobileViTImageProcessor'''),
('''mobilevit''', '''MobileViTImageProcessor'''),
('''mobilevitv2''', '''MobileViTImageProcessor'''),
('''nat''', '''ViTImageProcessor'''),
('''oneformer''', '''OneFormerImageProcessor'''),
('''owlvit''', '''OwlViTImageProcessor'''),
('''perceiver''', '''PerceiverImageProcessor'''),
('''pix2struct''', '''Pix2StructImageProcessor'''),
('''poolformer''', '''PoolFormerImageProcessor'''),
('''regnet''', '''ConvNextImageProcessor'''),
('''resnet''', '''ConvNextImageProcessor'''),
('''sam''', '''SamImageProcessor'''),
('''segformer''', '''SegformerImageProcessor'''),
('''swiftformer''', '''ViTImageProcessor'''),
('''swin''', '''ViTImageProcessor'''),
('''swin2sr''', '''Swin2SRImageProcessor'''),
('''swinv2''', '''ViTImageProcessor'''),
('''table-transformer''', '''DetrImageProcessor'''),
('''timesformer''', '''VideoMAEImageProcessor'''),
('''tvlt''', '''TvltImageProcessor'''),
('''upernet''', '''SegformerImageProcessor'''),
('''van''', '''ConvNextImageProcessor'''),
('''videomae''', '''VideoMAEImageProcessor'''),
('''vilt''', '''ViltImageProcessor'''),
('''vit''', '''ViTImageProcessor'''),
('''vit_hybrid''', '''ViTHybridImageProcessor'''),
('''vit_mae''', '''ViTImageProcessor'''),
('''vit_msn''', '''ViTImageProcessor'''),
('''xclip''', '''CLIPImageProcessor'''),
('''yolos''', '''YolosImageProcessor'''),
]
)
__UpperCamelCase : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items():
if class_name in extractors:
lowerCAmelCase = model_type_to_module_name(_UpperCAmelCase )
lowerCAmelCase = importlib.import_module(F'.{module_name}' , 'transformers.models' )
try:
return getattr(_UpperCAmelCase , _UpperCAmelCase )
except AttributeError:
continue
for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items():
if getattr(_UpperCAmelCase , '__name__' , _UpperCAmelCase ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
lowerCAmelCase = importlib.import_module('transformers' )
if hasattr(_UpperCAmelCase , _UpperCAmelCase ):
return getattr(_UpperCAmelCase , _UpperCAmelCase )
return None
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, os.PathLike] , _UpperCAmelCase : Optional[Union[str, os.PathLike]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[Dict[str, str]] = None , _UpperCAmelCase : Optional[Union[bool, str]] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , **_UpperCAmelCase : List[Any] , ):
lowerCAmelCase = get_file_from_repo(
_UpperCAmelCase , _UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , resume_download=_UpperCAmelCase , proxies=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , local_files_only=_UpperCAmelCase , )
if resolved_config_file is None:
logger.info(
'Could not locate the image processor configuration file, will try to use the model config instead.' )
return {}
with open(_UpperCAmelCase , encoding='utf-8' ) as reader:
return json.load(_UpperCAmelCase )
class a :
def __init__( self ):
"""simple docstring"""
raise EnvironmentError(
'AutoImageProcessor is designed to be instantiated '
'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' )
@classmethod
@replace_list_option_in_docstrings(_snake_case )
def UpperCamelCase__ ( cls , _snake_case , **_snake_case ):
"""simple docstring"""
lowerCAmelCase = kwargs.pop('config' , _snake_case )
lowerCAmelCase = kwargs.pop('trust_remote_code' , _snake_case )
lowerCAmelCase = True
lowerCAmelCase ,lowerCAmelCase = ImageProcessingMixin.get_image_processor_dict(_snake_case , **_snake_case )
lowerCAmelCase = config_dict.get('image_processor_type' , _snake_case )
lowerCAmelCase = None
if "AutoImageProcessor" in config_dict.get('auto_map' , {} ):
lowerCAmelCase = config_dict['auto_map']['AutoImageProcessor']
# If we still don't have the image processor class, check if we're loading from a previous feature extractor config
# and if so, infer the image processor class from there.
if image_processor_class is None and image_processor_auto_map is None:
lowerCAmelCase = config_dict.pop('feature_extractor_type' , _snake_case )
if feature_extractor_class is not None:
logger.warning(
'Could not find image processor class in the image processor config or the model config. Loading'
' based on pattern matching with the model\'s feature extractor configuration.' )
lowerCAmelCase = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' )
if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ):
lowerCAmelCase = config_dict['auto_map']['AutoFeatureExtractor']
lowerCAmelCase = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' )
logger.warning(
'Could not find image processor auto map in the image processor config or the model config.'
' Loading based on pattern matching with the model\'s feature extractor configuration.' )
# If we don't find the image processor class in the image processor config, let's try the model config.
if image_processor_class is None and image_processor_auto_map is None:
if not isinstance(_snake_case , _snake_case ):
lowerCAmelCase = AutoConfig.from_pretrained(_snake_case , **_snake_case )
# It could be in `config.image_processor_type``
lowerCAmelCase = getattr(_snake_case , 'image_processor_type' , _snake_case )
if hasattr(_snake_case , 'auto_map' ) and "AutoImageProcessor" in config.auto_map:
lowerCAmelCase = config.auto_map['AutoImageProcessor']
if image_processor_class is not None:
lowerCAmelCase = image_processor_class_from_name(_snake_case )
lowerCAmelCase = image_processor_auto_map is not None
lowerCAmelCase = image_processor_class is not None or type(_snake_case ) in IMAGE_PROCESSOR_MAPPING
lowerCAmelCase = resolve_trust_remote_code(
_snake_case , _snake_case , _snake_case , _snake_case )
if has_remote_code and trust_remote_code:
lowerCAmelCase = get_class_from_dynamic_module(
_snake_case , _snake_case , **_snake_case )
lowerCAmelCase = kwargs.pop('code_revision' , _snake_case )
if os.path.isdir(_snake_case ):
image_processor_class.register_for_auto_class()
return image_processor_class.from_dict(_snake_case , **_snake_case )
elif image_processor_class is not None:
return image_processor_class.from_dict(_snake_case , **_snake_case )
# Last try: we use the IMAGE_PROCESSOR_MAPPING.
elif type(_snake_case ) in IMAGE_PROCESSOR_MAPPING:
lowerCAmelCase = IMAGE_PROCESSOR_MAPPING[type(_snake_case )]
return image_processor_class.from_dict(_snake_case , **_snake_case )
raise ValueError(
F'Unrecognized image processor in {pretrained_model_name_or_path}. Should have a '
F'`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following '
F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}' )
@staticmethod
def UpperCamelCase__ ( _snake_case , _snake_case ):
"""simple docstring"""
IMAGE_PROCESSOR_MAPPING.register(_snake_case , _snake_case )
| 4 |
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ):
lowerCAmelCase = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowerCAmelCase = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
lowerCAmelCase = 4
lowerCAmelCase = 48
lowerCAmelCase = 'pixelshuffle_aux'
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowerCAmelCase = [6, 6, 6, 6]
lowerCAmelCase = 60
lowerCAmelCase = [6, 6, 6, 6]
lowerCAmelCase = 'pixelshuffledirect'
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowerCAmelCase = 4
lowerCAmelCase = 'nearest+conv'
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
lowerCAmelCase = 1
lowerCAmelCase = 1
lowerCAmelCase = 126
lowerCAmelCase = 7
lowerCAmelCase = 255.0
lowerCAmelCase = ''
return config
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ):
if "patch_embed.proj" in name and "layers" not in name:
lowerCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
lowerCAmelCase = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' )
if "layers" in name:
lowerCAmelCase = name.replace('layers' , 'encoder.stages' )
if "residual_group.blocks" in name:
lowerCAmelCase = name.replace('residual_group.blocks' , 'layers' )
if "attn.proj" in name:
lowerCAmelCase = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
lowerCAmelCase = name.replace('attn' , 'attention.self' )
if "norm1" in name:
lowerCAmelCase = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
lowerCAmelCase = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
lowerCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
lowerCAmelCase = name.replace('mlp.fc2' , 'output.dense' )
if "q_bias" in name:
lowerCAmelCase = name.replace('q_bias' , 'query.bias' )
if "k_bias" in name:
lowerCAmelCase = name.replace('k_bias' , 'key.bias' )
if "v_bias" in name:
lowerCAmelCase = name.replace('v_bias' , 'value.bias' )
if "cpb_mlp" in name:
lowerCAmelCase = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' )
if "patch_embed.proj" in name:
lowerCAmelCase = name.replace('patch_embed.proj' , 'patch_embed.projection' )
if name == "norm.weight":
lowerCAmelCase = 'layernorm.weight'
if name == "norm.bias":
lowerCAmelCase = 'layernorm.bias'
if "conv_first" in name:
lowerCAmelCase = name.replace('conv_first' , 'first_convolution' )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
lowerCAmelCase = name.replace('conv_last' , 'final_convolution' )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
lowerCAmelCase = name.replace('conv_before_upsample.0' , 'conv_before_upsample' )
if "upsample.0" in name:
lowerCAmelCase = name.replace('upsample.0' , 'upsample.convolution_0' )
if "upsample.2" in name:
lowerCAmelCase = name.replace('upsample.2' , 'upsample.convolution_1' )
lowerCAmelCase = 'upsample.' + name
elif config.upsampler == "pixelshuffledirect":
lowerCAmelCase = name.replace('upsample.0.weight' , 'upsample.conv.weight' )
lowerCAmelCase = name.replace('upsample.0.bias' , 'upsample.conv.bias' )
else:
pass
else:
lowerCAmelCase = 'swin2sr.' + name
return name
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict ):
for key in orig_state_dict.copy().keys():
lowerCAmelCase = orig_state_dict.pop(_UpperCAmelCase )
if "qkv" in key:
lowerCAmelCase = key.split('.' )
lowerCAmelCase = int(key_split[1] )
lowerCAmelCase = int(key_split[4] )
lowerCAmelCase = config.embed_dim
if "weight" in key:
lowerCAmelCase = val[:dim, :]
lowerCAmelCase = val[dim : dim * 2, :]
lowerCAmelCase = val[-dim:, :]
else:
lowerCAmelCase = val[:dim]
lowerCAmelCase = val[dim : dim * 2]
lowerCAmelCase = val[-dim:]
pass
else:
lowerCAmelCase = val
return orig_state_dict
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ):
lowerCAmelCase = get_config(_UpperCAmelCase )
lowerCAmelCase = SwinaSRForImageSuperResolution(_UpperCAmelCase )
model.eval()
lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' )
lowerCAmelCase = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase ,lowerCAmelCase = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase )
if len(_UpperCAmelCase ) > 0:
raise ValueError('Missing keys when converting: {}'.format(_UpperCAmelCase ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(F'Unexpected key {key} in state_dict' )
# verify values
lowerCAmelCase = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true'
lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' )
lowerCAmelCase = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
lowerCAmelCase = 126 if 'Jpeg' in checkpoint_url else 256
lowerCAmelCase = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
lowerCAmelCase = transforms(_UpperCAmelCase ).unsqueeze(0 )
if config.num_channels == 1:
lowerCAmelCase = pixel_values[:, 0, :, :].unsqueeze(1 )
lowerCAmelCase = model(_UpperCAmelCase )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
lowerCAmelCase = torch.Size([1, 3, 512, 512] )
lowerCAmelCase = torch.tensor(
[[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowerCAmelCase = torch.Size([1, 3, 1024, 1024] )
lowerCAmelCase = torch.tensor(
[[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
lowerCAmelCase = torch.Size([1, 3, 1024, 1024] )
lowerCAmelCase = torch.tensor(
[[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowerCAmelCase = torch.Size([1, 3, 512, 512] )
lowerCAmelCase = torch.tensor(
[[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowerCAmelCase = torch.Size([1, 3, 1024, 1024] )
lowerCAmelCase = torch.tensor(
[[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] )
assert (
outputs.reconstruction.shape == expected_shape
), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-3 )
print('Looks ok!' )
lowerCAmelCase = {
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': (
'swin2SR-classical-sr-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': (
'swin2SR-classical-sr-x4-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': (
'swin2SR-compressed-sr-x4-48'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': (
'swin2SR-lightweight-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': (
'swin2SR-realworld-sr-x4-64-bsrgan-psnr'
),
}
lowerCAmelCase = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(_UpperCAmelCase )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(_UpperCAmelCase )
if push_to_hub:
model.push_to_hub(F'caidas/{model_name}' )
processor.push_to_hub(F'caidas/{model_name}' )
if __name__ == "__main__":
__UpperCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''',
type=str,
help='''URL of the original Swin2SR checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''')
__UpperCamelCase : Optional[int] = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 4 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCamelCase : Optional[int] = {
'''configuration_xlm_roberta''': [
'''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''XLMRobertaConfig''',
'''XLMRobertaOnnxConfig''',
],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : List[Any] = ['''XLMRobertaTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[Any] = ['''XLMRobertaTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = [
'''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XLMRobertaForCausalLM''',
'''XLMRobertaForMaskedLM''',
'''XLMRobertaForMultipleChoice''',
'''XLMRobertaForQuestionAnswering''',
'''XLMRobertaForSequenceClassification''',
'''XLMRobertaForTokenClassification''',
'''XLMRobertaModel''',
'''XLMRobertaPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
'''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXLMRobertaForCausalLM''',
'''TFXLMRobertaForMaskedLM''',
'''TFXLMRobertaForMultipleChoice''',
'''TFXLMRobertaForQuestionAnswering''',
'''TFXLMRobertaForSequenceClassification''',
'''TFXLMRobertaForTokenClassification''',
'''TFXLMRobertaModel''',
'''TFXLMRobertaPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[Any] = [
'''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FlaxXLMRobertaForMaskedLM''',
'''FlaxXLMRobertaForCausalLM''',
'''FlaxXLMRobertaForMultipleChoice''',
'''FlaxXLMRobertaForQuestionAnswering''',
'''FlaxXLMRobertaForSequenceClassification''',
'''FlaxXLMRobertaForTokenClassification''',
'''FlaxXLMRobertaModel''',
'''FlaxXLMRobertaPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLMRobertaConfig,
XLMRobertaOnnxConfig,
)
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta import XLMRobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMRobertaForCausalLM,
XLMRobertaForMaskedLM,
XLMRobertaForMultipleChoice,
XLMRobertaForQuestionAnswering,
XLMRobertaForSequenceClassification,
XLMRobertaForTokenClassification,
XLMRobertaModel,
XLMRobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm_roberta import (
TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMRobertaForCausalLM,
TFXLMRobertaForMaskedLM,
TFXLMRobertaForMultipleChoice,
TFXLMRobertaForQuestionAnswering,
TFXLMRobertaForSequenceClassification,
TFXLMRobertaForTokenClassification,
TFXLMRobertaModel,
TFXLMRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xlm_roberta import (
FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxXLMRobertaForCausalLM,
FlaxXLMRobertaForMaskedLM,
FlaxXLMRobertaForMultipleChoice,
FlaxXLMRobertaForQuestionAnswering,
FlaxXLMRobertaForSequenceClassification,
FlaxXLMRobertaForTokenClassification,
FlaxXLMRobertaModel,
FlaxXLMRobertaPreTrainedModel,
)
else:
import sys
__UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
__UpperCamelCase : List[Any] = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class a ( a__ ):
snake_case__ = '''megatron-bert'''
def __init__( self , _snake_case=2_90_56 , _snake_case=10_24 , _snake_case=24 , _snake_case=16 , _snake_case=40_96 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , **_snake_case , ):
"""simple docstring"""
super().__init__(pad_token_id=_snake_case , **_snake_case )
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_act
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = initializer_range
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = position_embedding_type
lowerCAmelCase = use_cache
| 4 | 1 |
"""simple docstring"""
import importlib.metadata
import warnings
from copy import deepcopy
from packaging import version
from ..utils import logging
from .import_utils import is_accelerate_available, is_bitsandbytes_available
if is_bitsandbytes_available():
import bitsandbytes as bnb
import torch
import torch.nn as nn
from ..pytorch_utils import ConvaD
if is_accelerate_available():
from accelerate import init_empty_weights
from accelerate.utils import find_tied_parameters
__UpperCamelCase : Dict = logging.get_logger(__name__)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None ):
# Recurse if needed
if "." in tensor_name:
lowerCAmelCase = tensor_name.split('.' )
for split in splits[:-1]:
lowerCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase )
if new_module is None:
raise ValueError(F'{module} has no attribute {split}.' )
lowerCAmelCase = new_module
lowerCAmelCase = splits[-1]
if tensor_name not in module._parameters and tensor_name not in module._buffers:
raise ValueError(F'{module} does not have a parameter or a buffer named {tensor_name}.' )
lowerCAmelCase = tensor_name in module._buffers
lowerCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase )
if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None:
raise ValueError(F'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' )
lowerCAmelCase = False
lowerCAmelCase = False
if is_buffer or not is_bitsandbytes_available():
lowerCAmelCase = False
lowerCAmelCase = False
else:
lowerCAmelCase = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit )
lowerCAmelCase = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams )
if is_abit or is_abit:
lowerCAmelCase = module._parameters[tensor_name]
if param.device.type != "cuda":
if value is None:
lowerCAmelCase = old_value.to(_UpperCAmelCase )
elif isinstance(_UpperCAmelCase , torch.Tensor ):
lowerCAmelCase = value.to('cpu' )
if value.dtype == torch.inta:
lowerCAmelCase = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse(
'0.37.2' )
if not is_abit_serializable:
raise ValueError(
'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. '
'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' )
else:
lowerCAmelCase = torch.tensor(_UpperCAmelCase , device='cpu' )
# Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls , _UpperCAmelCase ) and fpaa_statistics is None:
lowerCAmelCase = new_value.T
lowerCAmelCase = old_value.__dict__
if is_abit:
lowerCAmelCase = bnb.nn.IntaParams(_UpperCAmelCase , requires_grad=_UpperCAmelCase , **_UpperCAmelCase ).to(_UpperCAmelCase )
elif is_abit:
lowerCAmelCase = bnb.nn.Paramsabit(_UpperCAmelCase , requires_grad=_UpperCAmelCase , **_UpperCAmelCase ).to(_UpperCAmelCase )
lowerCAmelCase = new_value
if fpaa_statistics is not None:
setattr(module.weight , 'SCB' , fpaa_statistics.to(_UpperCAmelCase ) )
else:
if value is None:
lowerCAmelCase = old_value.to(_UpperCAmelCase )
elif isinstance(_UpperCAmelCase , torch.Tensor ):
lowerCAmelCase = value.to(_UpperCAmelCase )
else:
lowerCAmelCase = torch.tensor(_UpperCAmelCase , device=_UpperCAmelCase )
if is_buffer:
lowerCAmelCase = new_value
else:
lowerCAmelCase = nn.Parameter(_UpperCAmelCase , requires_grad=old_value.requires_grad )
lowerCAmelCase = new_value
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Union[str, Any]=False ):
for name, module in model.named_children():
if current_key_name is None:
lowerCAmelCase = []
current_key_name.append(_UpperCAmelCase )
if (isinstance(_UpperCAmelCase , nn.Linear ) or isinstance(_UpperCAmelCase , _UpperCAmelCase )) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
if not any(key in '.'.join(_UpperCAmelCase ) for key in modules_to_not_convert ):
with init_empty_weights():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
lowerCAmelCase ,lowerCAmelCase = module.weight.shape
else:
lowerCAmelCase = module.in_features
lowerCAmelCase = module.out_features
if quantization_config.quantization_method() == "llm_int8":
lowerCAmelCase = bnb.nn.LinearabitLt(
_UpperCAmelCase , _UpperCAmelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , )
lowerCAmelCase = True
else:
if (
quantization_config.llm_inta_skip_modules is not None
and name in quantization_config.llm_inta_skip_modules
):
pass
else:
lowerCAmelCase = bnb.nn.Linearabit(
_UpperCAmelCase , _UpperCAmelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , )
lowerCAmelCase = True
# Store the module class in case we need to transpose the weight later
lowerCAmelCase = type(_UpperCAmelCase )
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(_UpperCAmelCase )
if len(list(module.children() ) ) > 0:
lowerCAmelCase ,lowerCAmelCase = _replace_with_bnb_linear(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , has_been_replaced=_UpperCAmelCase , )
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None ):
lowerCAmelCase = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert
lowerCAmelCase ,lowerCAmelCase = _replace_with_bnb_linear(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if not has_been_replaced:
logger.warning(
'You are loading your model in 8bit or 4bit but no linear modules were found in your model.'
' Please double check your model architecture, or submit an issue on github if you think this is'
' a bug.' )
return model
def _SCREAMING_SNAKE_CASE (*_UpperCAmelCase : List[Any] , **_UpperCAmelCase : str ):
warnings.warn(
'`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , _UpperCAmelCase , )
return replace_with_bnb_linear(*_UpperCAmelCase , **_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (*_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Optional[int] ):
warnings.warn(
'`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , _UpperCAmelCase , )
return set_module_quantized_tensor_to_device(*_UpperCAmelCase , **_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
lowerCAmelCase = deepcopy(_UpperCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
tied_model.tie_weights()
lowerCAmelCase = find_tied_parameters(_UpperCAmelCase )
# For compatibility with Accelerate < 0.18
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
lowerCAmelCase = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
lowerCAmelCase = sum(_UpperCAmelCase , [] )
lowerCAmelCase = len(_UpperCAmelCase ) > 0
# Check if it is a base model
lowerCAmelCase = not hasattr(_UpperCAmelCase , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
lowerCAmelCase = list(model.named_children() )
lowerCAmelCase = [list_modules[-1][0]]
# add last module together with tied weights
lowerCAmelCase = set(_UpperCAmelCase ) - set(_UpperCAmelCase )
lowerCAmelCase = list(set(_UpperCAmelCase ) ) + list(_UpperCAmelCase )
# remove ".weight" from the keys
lowerCAmelCase = ['.weight', '.bias']
lowerCAmelCase = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
lowerCAmelCase = name.replace(_UpperCAmelCase , '' )
filtered_module_names.append(_UpperCAmelCase )
return filtered_module_names
| 4 |
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
return " ".join(input_str.split()[::-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 | 1 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm import create_model
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import BitConfig, BitForImageClassification, BitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCamelCase : str = logging.get_logger(__name__)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple ):
lowerCAmelCase = 'huggingface/label-files'
lowerCAmelCase = 'imagenet-1k-id2label.json'
lowerCAmelCase = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) , 'r' ) )
lowerCAmelCase = {int(_UpperCAmelCase ): v for k, v in idalabel.items()}
lowerCAmelCase = {v: k for k, v in idalabel.items()}
lowerCAmelCase = 'std_conv' if 'bit' in model_name else False
# note that when using BiT as backbone for ViT-hybrid checkpoints,
# one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same",
# config.conv_layer = "std_conv_same"
lowerCAmelCase = BitConfig(
conv_layer=_UpperCAmelCase , num_labels=1000 , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase , )
return config
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple ):
if "stem.conv" in name:
lowerCAmelCase = name.replace('stem.conv' , 'bit.embedder.convolution' )
if "blocks" in name:
lowerCAmelCase = name.replace('blocks' , 'layers' )
if "head.fc" in name:
lowerCAmelCase = name.replace('head.fc' , 'classifier.1' )
if name.startswith('norm' ):
lowerCAmelCase = 'bit.' + name
if "bit" not in name and "classifier" not in name:
lowerCAmelCase = 'bit.encoder.' + name
return name
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw )
return im
@torch.no_grad()
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str=False ):
lowerCAmelCase = get_config(_UpperCAmelCase )
# load original model from timm
lowerCAmelCase = create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase )
timm_model.eval()
# load state_dict of original model
lowerCAmelCase = timm_model.state_dict()
for key in state_dict.copy().keys():
lowerCAmelCase = state_dict.pop(_UpperCAmelCase )
lowerCAmelCase = val.squeeze() if 'head' in key else val
# load HuggingFace model
lowerCAmelCase = BitForImageClassification(_UpperCAmelCase )
model.eval()
model.load_state_dict(_UpperCAmelCase )
# create image processor
lowerCAmelCase = create_transform(**resolve_data_config({} , model=_UpperCAmelCase ) )
lowerCAmelCase = transform.transforms
lowerCAmelCase = {
'bilinear': PILImageResampling.BILINEAR,
'bicubic': PILImageResampling.BICUBIC,
'nearest': PILImageResampling.NEAREST,
}
lowerCAmelCase = BitImageProcessor(
do_resize=_UpperCAmelCase , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_UpperCAmelCase , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=_UpperCAmelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
lowerCAmelCase = prepare_img()
lowerCAmelCase = transform(_UpperCAmelCase ).unsqueeze(0 )
lowerCAmelCase = processor(_UpperCAmelCase , return_tensors='pt' ).pixel_values
# verify pixel values
assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase )
# verify logits
with torch.no_grad():
lowerCAmelCase = model(_UpperCAmelCase )
lowerCAmelCase = outputs.logits
print('Logits:' , logits[0, :3] )
print('Predicted class:' , model.config.idalabel[logits.argmax(-1 ).item()] )
lowerCAmelCase = timm_model(_UpperCAmelCase )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(_UpperCAmelCase , outputs.logits , atol=1e-3 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase )
print(F'Saving model {model_name} and processor to {pytorch_dump_folder_path}' )
model.save_pretrained(_UpperCAmelCase )
processor.save_pretrained(_UpperCAmelCase )
if push_to_hub:
print(F'Pushing model {model_name} and processor to the hub' )
model.push_to_hub(F'ybelkada/{model_name}' )
processor.push_to_hub(F'ybelkada/{model_name}' )
if __name__ == "__main__":
__UpperCamelCase : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''resnetv2_50x1_bitm''',
type=str,
help='''Name of the BiT timm model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model to the hub.''',
)
__UpperCamelCase : Optional[int] = parser.parse_args()
convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 4 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class a ( a__ ):
snake_case__ = 42
class a ( a__ , a__ ):
@register_to_config
def __init__( self , _snake_case = 3 , _snake_case = 3 , _snake_case = ("DownEncoderBlock2D",) , _snake_case = ("UpDecoderBlock2D",) , _snake_case = (64,) , _snake_case = 1 , _snake_case = "silu" , _snake_case = 3 , _snake_case = 32 , _snake_case = 2_56 , _snake_case = 32 , _snake_case = None , _snake_case = 0.18_215 , _snake_case = "group" , ):
"""simple docstring"""
super().__init__()
# pass init params to Encoder
lowerCAmelCase = Encoder(
in_channels=_snake_case , out_channels=_snake_case , down_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , double_z=_snake_case , )
lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels
lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 )
lowerCAmelCase = VectorQuantizer(_snake_case , _snake_case , beta=0.25 , remap=_snake_case , sane_index_shape=_snake_case )
lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 )
# pass init params to Decoder
lowerCAmelCase = Decoder(
in_channels=_snake_case , out_channels=_snake_case , up_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , norm_type=_snake_case , )
@apply_forward_hook
def UpperCamelCase__ ( self , _snake_case , _snake_case = True ):
"""simple docstring"""
lowerCAmelCase = self.encoder(_snake_case )
lowerCAmelCase = self.quant_conv(_snake_case )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=_snake_case )
@apply_forward_hook
def UpperCamelCase__ ( self , _snake_case , _snake_case = False , _snake_case = True ):
"""simple docstring"""
if not force_not_quantize:
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = self.quantize(_snake_case )
else:
lowerCAmelCase = h
lowerCAmelCase = self.post_quant_conv(_snake_case )
lowerCAmelCase = self.decoder(_snake_case , quant if self.config.norm_type == 'spatial' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case = True ):
"""simple docstring"""
lowerCAmelCase = sample
lowerCAmelCase = self.encode(_snake_case ).latents
lowerCAmelCase = self.decode(_snake_case ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=_snake_case )
| 4 | 1 |
"""simple docstring"""
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = torch.nn.Linear(10 , 10 )
lowerCAmelCase = torch.optim.SGD(model.parameters() , 0.1 )
lowerCAmelCase = Accelerator()
lowerCAmelCase = accelerator.prepare(_snake_case )
try:
pickle.loads(pickle.dumps(_snake_case ) )
except Exception as e:
self.fail(F'Accelerated optimizer pickling failed with {e}' )
AcceleratorState._reset_state()
| 4 |
"""simple docstring"""
from __future__ import annotations
import os
from collections.abc import Mapping
__UpperCamelCase : Optional[Any] = tuple[int, int]
class a :
def __init__( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = vertices
lowerCAmelCase = {
(min(_snake_case ), max(_snake_case )): weight for edge, weight in edges.items()
}
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
lowerCAmelCase = weight
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = Graph({min(self.vertices )} , {} )
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
while len(subgraph.vertices ) < len(self.vertices ):
lowerCAmelCase = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
lowerCAmelCase = edge
lowerCAmelCase = weight
subgraph.add_edge(_snake_case , _snake_case )
return subgraph
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "p107_network.txt" ):
lowerCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) )
lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = {}
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
with open(_UpperCAmelCase ) as f:
lowerCAmelCase = f.read().strip().split('\n' )
lowerCAmelCase = [line.split(',' ) for line in data]
for edgea in range(1 , len(_UpperCAmelCase ) ):
for edgea in range(_UpperCAmelCase ):
if adjaceny_matrix[edgea][edgea] != "-":
lowerCAmelCase = int(adjaceny_matrix[edgea][edgea] )
lowerCAmelCase = Graph(set(range(len(_UpperCAmelCase ) ) ) , _UpperCAmelCase )
lowerCAmelCase = graph.prims_algorithm()
lowerCAmelCase = sum(graph.edges.values() )
lowerCAmelCase = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(f'''{solution() = }''')
| 4 | 1 |
"""simple docstring"""
import unittest
from transformers.testing_utils import CaptureStdout
from transformers.tools.python_interpreter import evaluate
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] ):
return x + 2
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'x = 3'
lowerCAmelCase = {}
lowerCAmelCase = evaluate(_snake_case , {} , state=_snake_case )
assert result == 3
self.assertDictEqual(_snake_case , {'x': 3} )
lowerCAmelCase = 'x = y'
lowerCAmelCase = {'y': 5}
lowerCAmelCase = evaluate(_snake_case , {} , state=_snake_case )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(_snake_case , {'x': 5, 'y': 5} )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'y = add_two(x)'
lowerCAmelCase = {'x': 3}
lowerCAmelCase = evaluate(_snake_case , {'add_two': add_two} , state=_snake_case )
assert result == 5
self.assertDictEqual(_snake_case , {'x': 3, 'y': 5} )
# Won't work without the tool
with CaptureStdout() as out:
lowerCAmelCase = evaluate(_snake_case , {} , state=_snake_case )
assert result is None
assert "tried to execute add_two" in out.out
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'x = 3'
lowerCAmelCase = {}
lowerCAmelCase = evaluate(_snake_case , {} , state=_snake_case )
assert result == 3
self.assertDictEqual(_snake_case , {'x': 3} )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'test_dict = {\'x\': x, \'y\': add_two(x)}'
lowerCAmelCase = {'x': 3}
lowerCAmelCase = evaluate(_snake_case , {'add_two': add_two} , state=_snake_case )
self.assertDictEqual(_snake_case , {'x': 3, 'y': 5} )
self.assertDictEqual(_snake_case , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'x = 3\ny = 5'
lowerCAmelCase = {}
lowerCAmelCase = evaluate(_snake_case , {} , state=_snake_case )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(_snake_case , {'x': 3, 'y': 5} )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'text = f\'This is x: {x}.\''
lowerCAmelCase = {'x': 3}
lowerCAmelCase = evaluate(_snake_case , {} , state=_snake_case )
# evaluate returns the value of the last assignment.
assert result == "This is x: 3."
self.assertDictEqual(_snake_case , {'x': 3, 'text': 'This is x: 3.'} )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'if x <= 3:\n y = 2\nelse:\n y = 5'
lowerCAmelCase = {'x': 3}
lowerCAmelCase = evaluate(_snake_case , {} , state=_snake_case )
# evaluate returns the value of the last assignment.
assert result == 2
self.assertDictEqual(_snake_case , {'x': 3, 'y': 2} )
lowerCAmelCase = {'x': 8}
lowerCAmelCase = evaluate(_snake_case , {} , state=_snake_case )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(_snake_case , {'x': 8, 'y': 5} )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'test_list = [x, add_two(x)]'
lowerCAmelCase = {'x': 3}
lowerCAmelCase = evaluate(_snake_case , {'add_two': add_two} , state=_snake_case )
self.assertListEqual(_snake_case , [3, 5] )
self.assertDictEqual(_snake_case , {'x': 3, 'test_list': [3, 5]} )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'y = x'
lowerCAmelCase = {'x': 3}
lowerCAmelCase = evaluate(_snake_case , {} , state=_snake_case )
assert result == 3
self.assertDictEqual(_snake_case , {'x': 3, 'y': 3} )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'test_list = [x, add_two(x)]\ntest_list[1]'
lowerCAmelCase = {'x': 3}
lowerCAmelCase = evaluate(_snake_case , {'add_two': add_two} , state=_snake_case )
assert result == 5
self.assertDictEqual(_snake_case , {'x': 3, 'test_list': [3, 5]} )
lowerCAmelCase = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']'
lowerCAmelCase = {'x': 3}
lowerCAmelCase = evaluate(_snake_case , {'add_two': add_two} , state=_snake_case )
assert result == 5
self.assertDictEqual(_snake_case , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'x = 0\nfor i in range(3):\n x = i'
lowerCAmelCase = {}
lowerCAmelCase = evaluate(_snake_case , {'range': range} , state=_snake_case )
assert result == 2
self.assertDictEqual(_snake_case , {'x': 2, 'i': 2} )
| 4 |
"""simple docstring"""
import numpy as np
import pandas as pd
from sklearn.preprocessing import Normalizer
from sklearn.svm import SVR
from statsmodels.tsa.statespace.sarimax import SARIMAX
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ):
lowerCAmelCase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCAmelCase )] )
lowerCAmelCase = np.array(_UpperCAmelCase )
lowerCAmelCase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCAmelCase ) ) , x.transpose() ) , _UpperCAmelCase )
return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ):
lowerCAmelCase = (1, 2, 1)
lowerCAmelCase = (1, 1, 0, 7)
lowerCAmelCase = SARIMAX(
_UpperCAmelCase , exog=_UpperCAmelCase , order=_UpperCAmelCase , seasonal_order=_UpperCAmelCase )
lowerCAmelCase = model.fit(disp=_UpperCAmelCase , maxiter=600 , method='nm' )
lowerCAmelCase = model_fit.predict(1 , len(_UpperCAmelCase ) , exog=[test_match] )
return result[0]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ):
lowerCAmelCase = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 )
regressor.fit(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = regressor.predict(_UpperCAmelCase )
return y_pred[0]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ):
train_user.sort()
lowerCAmelCase = np.percentile(_UpperCAmelCase , 25 )
lowerCAmelCase = np.percentile(_UpperCAmelCase , 75 )
lowerCAmelCase = qa - qa
lowerCAmelCase = qa - (iqr * 0.1)
return low_lim
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : float ):
lowerCAmelCase = 0
lowerCAmelCase = 0
for i in list_vote:
if i > actual_result:
lowerCAmelCase = not_safe + 1
else:
if abs(abs(_UpperCAmelCase ) - abs(_UpperCAmelCase ) ) <= 0.1:
safe += 1
else:
not_safe += 1
return safe > not_safe
if __name__ == "__main__":
# data_input_df = pd.read_csv("ex_data.csv", header=None)
__UpperCamelCase : Optional[Any] = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]]
__UpperCamelCase : Any = pd.DataFrame(
data_input, columns=['''total_user''', '''total_even''', '''days''']
)
__UpperCamelCase : Dict = Normalizer().fit_transform(data_input_df.values)
# split data
__UpperCamelCase : Dict = normalize_df[:, 2].tolist()
__UpperCamelCase : Union[str, Any] = normalize_df[:, 0].tolist()
__UpperCamelCase : List[str] = normalize_df[:, 1].tolist()
# for svr (input variable = total date and total match)
__UpperCamelCase : Optional[int] = normalize_df[:, [1, 2]].tolist()
__UpperCamelCase : Tuple = x[: len(x) - 1]
__UpperCamelCase : Any = x[len(x) - 1 :]
# for linear regression & sarimax
__UpperCamelCase : str = total_date[: len(total_date) - 1]
__UpperCamelCase : Union[str, Any] = total_user[: len(total_user) - 1]
__UpperCamelCase : List[Any] = total_match[: len(total_match) - 1]
__UpperCamelCase : Optional[Any] = total_date[len(total_date) - 1 :]
__UpperCamelCase : str = total_user[len(total_user) - 1 :]
__UpperCamelCase : str = total_match[len(total_match) - 1 :]
# voting system with forecasting
__UpperCamelCase : Any = [
linear_regression_prediction(
trn_date, trn_user, trn_match, tst_date, tst_match
),
sarimax_predictor(trn_user, trn_match, tst_match),
support_vector_regressor(x_train, x_test, trn_user),
]
# check the safety of today's data
__UpperCamelCase : List[str] = '''''' if data_safety_checker(res_vote, tst_user) else '''not '''
print('''Today\'s data is {not_str}safe.''')
| 4 | 1 |
"""simple docstring"""
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
ControlNetModel,
DDIMScheduler,
StableDiffusionControlNetImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
)
enable_full_determinism()
class a ( a__ , a__ , a__ , unittest.TestCase ):
snake_case__ = StableDiffusionControlNetImgaImgPipeline
snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''}
snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
snake_case__ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} )
snake_case__ = IMAGE_TO_IMAGE_IMAGE_PARAMS
def UpperCamelCase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
torch.manual_seed(0 )
lowerCAmelCase = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
torch.manual_seed(0 )
lowerCAmelCase = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , )
torch.manual_seed(0 )
lowerCAmelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
torch.manual_seed(0 )
lowerCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
lowerCAmelCase = CLIPTextModel(_snake_case )
lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
lowerCAmelCase = {
'unet': unet,
'controlnet': controlnet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ):
"""simple docstring"""
if str(_snake_case ).startswith('mps' ):
lowerCAmelCase = torch.manual_seed(_snake_case )
else:
lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowerCAmelCase = 2
lowerCAmelCase = randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , )
lowerCAmelCase = floats_tensor(control_image.shape , rng=random.Random(_snake_case ) ).to(_snake_case )
lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase = Image.fromarray(np.uinta(_snake_case ) ).convert('RGB' ).resize((64, 64) )
lowerCAmelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
'image': image,
'control_image': control_image,
}
return inputs
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_inference_batch_single_identical(expected_max_diff=2E-3 )
class a ( a__ , a__ , unittest.TestCase ):
snake_case__ = StableDiffusionControlNetImgaImgPipeline
snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''}
snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
snake_case__ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
def UpperCamelCase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
torch.manual_seed(0 )
def init_weights(_snake_case ):
if isinstance(_snake_case , torch.nn.Convad ):
torch.nn.init.normal(m.weight )
m.bias.data.fill_(1.0 )
lowerCAmelCase = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
controlneta.controlnet_down_blocks.apply(_snake_case )
torch.manual_seed(0 )
lowerCAmelCase = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
controlneta.controlnet_down_blocks.apply(_snake_case )
torch.manual_seed(0 )
lowerCAmelCase = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , )
torch.manual_seed(0 )
lowerCAmelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
torch.manual_seed(0 )
lowerCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
lowerCAmelCase = CLIPTextModel(_snake_case )
lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
lowerCAmelCase = MultiControlNetModel([controlneta, controlneta] )
lowerCAmelCase = {
'unet': unet,
'controlnet': controlnet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ):
"""simple docstring"""
if str(_snake_case ).startswith('mps' ):
lowerCAmelCase = torch.manual_seed(_snake_case )
else:
lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowerCAmelCase = 2
lowerCAmelCase = [
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ),
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ),
]
lowerCAmelCase = floats_tensor(control_image[0].shape , rng=random.Random(_snake_case ) ).to(_snake_case )
lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase = Image.fromarray(np.uinta(_snake_case ) ).convert('RGB' ).resize((64, 64) )
lowerCAmelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
'image': image,
'control_image': control_image,
}
return inputs
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.get_dummy_components()
lowerCAmelCase = self.pipeline_class(**_snake_case )
pipe.to(_snake_case )
lowerCAmelCase = 10.0
lowerCAmelCase = 4
lowerCAmelCase = self.get_dummy_inputs(_snake_case )
lowerCAmelCase = steps
lowerCAmelCase = scale
lowerCAmelCase = pipe(**_snake_case )[0]
lowerCAmelCase = self.get_dummy_inputs(_snake_case )
lowerCAmelCase = steps
lowerCAmelCase = scale
lowerCAmelCase = pipe(**_snake_case , control_guidance_start=0.1 , control_guidance_end=0.2 )[0]
lowerCAmelCase = self.get_dummy_inputs(_snake_case )
lowerCAmelCase = steps
lowerCAmelCase = scale
lowerCAmelCase = pipe(**_snake_case , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0]
lowerCAmelCase = self.get_dummy_inputs(_snake_case )
lowerCAmelCase = steps
lowerCAmelCase = scale
lowerCAmelCase = pipe(**_snake_case , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0]
# make sure that all outputs are different
assert np.sum(np.abs(output_a - output_a ) ) > 1E-3
assert np.sum(np.abs(output_a - output_a ) ) > 1E-3
assert np.sum(np.abs(output_a - output_a ) ) > 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_inference_batch_single_identical(expected_max_diff=2E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.get_dummy_components()
lowerCAmelCase = self.pipeline_class(**_snake_case )
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
with tempfile.TemporaryDirectory() as tmpdir:
try:
# save_pretrained is not implemented for Multi-ControlNet
pipe.save_pretrained(_snake_case )
except NotImplementedError:
pass
@slow
@require_torch_gpu
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' )
lowerCAmelCase = StableDiffusionControlNetImgaImgPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' , safety_checker=_snake_case , controlnet=_snake_case )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 )
lowerCAmelCase = 'evil space-punk bird'
lowerCAmelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((5_12, 5_12) )
lowerCAmelCase = load_image(
'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((5_12, 5_12) )
lowerCAmelCase = pipe(
_snake_case , _snake_case , control_image=_snake_case , generator=_snake_case , output_type='np' , num_inference_steps=50 , strength=0.6 , )
lowerCAmelCase = output.images[0]
assert image.shape == (5_12, 5_12, 3)
lowerCAmelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' )
assert np.abs(expected_image - image ).max() < 9E-2
| 4 |
"""simple docstring"""
import argparse
import math
import os
import torch
from neural_compressor.utils.pytorch import load
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument(
'-m' , '--pretrained_model_name_or_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , )
parser.add_argument(
'-c' , '--caption' , type=_UpperCAmelCase , default='robotic cat with wings' , help='Text used to generate images.' , )
parser.add_argument(
'-n' , '--images_num' , type=_UpperCAmelCase , default=4 , help='How much images to generate.' , )
parser.add_argument(
'-s' , '--seed' , type=_UpperCAmelCase , default=42 , help='Seed for random process.' , )
parser.add_argument(
'-ci' , '--cuda_id' , type=_UpperCAmelCase , default=0 , help='cuda_id.' , )
lowerCAmelCase = parser.parse_args()
return args
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ):
if not len(_UpperCAmelCase ) == rows * cols:
raise ValueError('The specified number of rows and columns are not correct.' )
lowerCAmelCase ,lowerCAmelCase = imgs[0].size
lowerCAmelCase = Image.new('RGB' , size=(cols * w, rows * h) )
lowerCAmelCase ,lowerCAmelCase = grid.size
for i, img in enumerate(_UpperCAmelCase ):
grid.paste(_UpperCAmelCase , box=(i % cols * w, i // cols * h) )
return grid
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]="robotic cat with wings" , _UpperCAmelCase : Optional[int]=7.5 , _UpperCAmelCase : Dict=50 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=42 , ):
lowerCAmelCase = torch.Generator(pipeline.device ).manual_seed(_UpperCAmelCase )
lowerCAmelCase = pipeline(
_UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , ).images
lowerCAmelCase = int(math.sqrt(_UpperCAmelCase ) )
lowerCAmelCase = image_grid(_UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows )
return grid, images
__UpperCamelCase : Optional[Any] = parse_args()
# Load models and create wrapper for stable diffusion
__UpperCamelCase : List[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''')
__UpperCamelCase : str = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''')
__UpperCamelCase : Optional[int] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''')
__UpperCamelCase : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''')
__UpperCamelCase : Tuple = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer
)
__UpperCamelCase : Union[str, Any] = lambda images, clip_input: (images, False)
if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')):
__UpperCamelCase : Dict = load(args.pretrained_model_name_or_path, model=unet)
unet.eval()
setattr(pipeline, '''unet''', unet)
else:
__UpperCamelCase : Dict = unet.to(torch.device('''cuda''', args.cuda_id))
__UpperCamelCase : Optional[Any] = pipeline.to(unet.device)
__UpperCamelCase ,__UpperCamelCase : List[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed)
grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split()))))
__UpperCamelCase : int = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split()))
os.makedirs(dirname, exist_ok=True)
for idx, image in enumerate(images):
image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
| 4 | 1 |
"""simple docstring"""
def _SCREAMING_SNAKE_CASE ():
return 1
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
return 0 if x < 0 else two_pence(x - 2 ) + one_pence()
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
return 0 if x < 0 else five_pence(x - 5 ) + two_pence(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
return 0 if x < 0 else two_pound(x - 200 ) + one_pound(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 200 ):
return two_pound(_UpperCAmelCase )
if __name__ == "__main__":
print(solution(int(input().strip())))
| 4 |
"""simple docstring"""
import warnings
from pathlib import Path
from typing import List, Tuple, Union
import fire
from torch import nn
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel
from transformers.utils import logging
__UpperCamelCase : List[Any] = logging.get_logger(__name__)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : List[int] ):
lowerCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] )
assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ), F'{len(_UpperCAmelCase )} != {len(_UpperCAmelCase )}'
dest_layers.load_state_dict(layers_to_copy.state_dict() )
__UpperCamelCase : Optional[Any] = {
# maps num layers in teacher -> num_layers in student -> which teacher layers to copy.
# 12: bart, 16: pegasus, 6: marian/Helsinki-NLP
12: {
1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher
2: [0, 6],
3: [0, 6, 11],
4: [0, 4, 8, 11],
6: [0, 2, 4, 7, 9, 11],
9: [0, 1, 2, 4, 5, 7, 9, 10, 11],
12: list(range(12)),
},
16: { # maps num layers in student -> which teacher layers to copy
1: [0],
2: [0, 15],
3: [0, 8, 15],
4: [0, 5, 10, 15],
6: [0, 3, 6, 9, 12, 15],
8: [0, 2, 4, 6, 8, 10, 12, 15],
9: [0, 1, 3, 5, 7, 9, 11, 13, 15],
12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15],
16: list(range(16)),
},
6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))},
}
__UpperCamelCase : int = {
# maps num layers in student -> which teacher layers to copy.
6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]},
12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]},
16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]},
}
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ):
try:
lowerCAmelCase = LAYERS_TO_COPY[n_teacher][n_student]
return val
except KeyError:
if n_student != n_teacher:
warnings.warn(
F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first'
F' {n_student}' )
return list(range(_UpperCAmelCase ) )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ):
if n_student > n_teacher:
raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' )
elif n_teacher == n_student:
return list(range(_UpperCAmelCase ) )
elif n_student == 1:
return [n_teacher - 1]
else:
return LAYERS_TO_SUPERVISE[n_teacher][n_student]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, PreTrainedModel] , _UpperCAmelCase : Union[str, Path] = "student" , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ):
lowerCAmelCase = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.'
assert (e is not None) or (d is not None), _msg
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
AutoTokenizer.from_pretrained(_UpperCAmelCase ).save_pretrained(_UpperCAmelCase ) # purely for convenience
lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).eval()
else:
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), F'teacher must be a model or string got type {type(_UpperCAmelCase )}'
lowerCAmelCase = teacher.config.to_diff_dict()
try:
lowerCAmelCase ,lowerCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers
if e is None:
lowerCAmelCase = teacher_e
if d is None:
lowerCAmelCase = teacher_d
init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} )
except AttributeError: # T5
if hasattr(teacher.config , 'num_encoder_layers' ):
lowerCAmelCase ,lowerCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers
else:
lowerCAmelCase ,lowerCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers
if e is None:
lowerCAmelCase = teacher_e
if d is None:
lowerCAmelCase = teacher_d
if hasattr(teacher.config , 'num_encoder_layers' ):
init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} )
else:
init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} )
# Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs
init_kwargs.update(_UpperCAmelCase )
# Copy weights
lowerCAmelCase = teacher.config_class(**_UpperCAmelCase )
lowerCAmelCase = AutoModelForSeqaSeqLM.from_config(_UpperCAmelCase )
# Start by copying the full teacher state dict this will copy the first N teacher layers to the student.
lowerCAmelCase = student.load_state_dict(teacher.state_dict() , strict=_UpperCAmelCase )
assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys.
if copy_first_teacher_layers: # Our copying is done. We just log and save
lowerCAmelCase ,lowerCAmelCase = list(range(_UpperCAmelCase ) ), list(range(_UpperCAmelCase ) )
logger.info(
F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to'
F' {save_path}' )
student.save_pretrained(_UpperCAmelCase )
return student, e_layers_to_copy, d_layers_to_copy
# Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer.
if e_layers_to_copy is None:
lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase )
if d_layers_to_copy is None:
lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase )
try:
if hasattr(
_UpperCAmelCase , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers
copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _UpperCAmelCase )
copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _UpperCAmelCase )
else:
copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _UpperCAmelCase )
copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _UpperCAmelCase )
except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block
copy_layers(teacher.encoder.block , student.encoder.block , _UpperCAmelCase )
copy_layers(teacher.decoder.block , student.decoder.block , _UpperCAmelCase )
logger.info(
F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' )
lowerCAmelCase = {
'teacher_type': teacher.config.model_type,
'copied_encoder_layers': e_layers_to_copy,
'copied_decoder_layers': d_layers_to_copy,
}
student.save_pretrained(_UpperCAmelCase )
# Save information about copying for easier reproducibility
return student, e_layers_to_copy, d_layers_to_copy
if __name__ == "__main__":
fire.Fire(create_student_by_copying_alternating_layers)
| 4 | 1 |
"""simple docstring"""
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = ArgumentParser(
description=(
'PyTorch TPU distributed training launch '
'helper utility that will spawn up '
'multiple distributed processes'
) )
# Optional arguments for the launch helper
parser.add_argument('--num_cores' , type=_UpperCAmelCase , default=1 , help='Number of TPU cores to use (1 or 8).' )
# positional
parser.add_argument(
'training_script' , type=_UpperCAmelCase , help=(
'The full path to the single TPU training '
'program/script to be launched in parallel, '
'followed by all the arguments for the '
'training script'
) , )
# rest from the training program
parser.add_argument('training_script_args' , nargs=_UpperCAmelCase )
return parser.parse_args()
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = parse_args()
# Import training_script as a module.
lowerCAmelCase = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
lowerCAmelCase = script_fpath.stem
lowerCAmelCase = importlib.import_module(_UpperCAmelCase )
# Patch sys.argv
lowerCAmelCase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 4 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__UpperCamelCase : Dict = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = ['''LayoutXLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Any = ['''LayoutXLMTokenizerFast''']
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
__UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 | 1 |
"""simple docstring"""
from __future__ import annotations
import math
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : float , _UpperCAmelCase : int ):
lowerCAmelCase = u
for i in range(1 , _UpperCAmelCase ):
lowerCAmelCase = temp * (u - i)
return temp
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = int(input('enter the numbers of values: ' ) )
lowerCAmelCase = []
for _ in range(_UpperCAmelCase ):
y.append([] )
for i in range(_UpperCAmelCase ):
for j in range(_UpperCAmelCase ):
y[i].append(_UpperCAmelCase )
lowerCAmelCase = 0
print('enter the values of parameters in a list: ' )
lowerCAmelCase = list(map(_UpperCAmelCase , input().split() ) )
print('enter the values of corresponding parameters: ' )
for i in range(_UpperCAmelCase ):
lowerCAmelCase = float(input() )
lowerCAmelCase = int(input('enter the value to interpolate: ' ) )
lowerCAmelCase = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , _UpperCAmelCase ):
for j in range(n - i ):
lowerCAmelCase = y[j + 1][i - 1] - y[j][i - 1]
lowerCAmelCase = y[0][0]
for i in range(1 , _UpperCAmelCase ):
summ += (ucal(_UpperCAmelCase , _UpperCAmelCase ) * y[0][i]) / math.factorial(_UpperCAmelCase )
print(F'the value at {value} is {summ}' )
if __name__ == "__main__":
main()
| 4 |
"""simple docstring"""
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ):
lowerCAmelCase = 0.00
lowerCAmelCase = 0
for resistor in resistors:
if resistor <= 0:
lowerCAmelCase = F'Resistor at index {index} has a negative or zero value!'
raise ValueError(_UpperCAmelCase )
first_sum += 1 / float(_UpperCAmelCase )
index += 1
return 1 / first_sum
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ):
lowerCAmelCase = 0.00
lowerCAmelCase = 0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
lowerCAmelCase = F'Resistor at index {index} has a negative value!'
raise ValueError(_UpperCAmelCase )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 | 1 |
"""simple docstring"""
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class a :
def __init__( self , _snake_case , _snake_case=3 , _snake_case=32 , _snake_case=3 , _snake_case=10 , _snake_case=[10, 20, 30, 40] , _snake_case=[1, 1, 2, 1] , _snake_case=True , _snake_case=True , _snake_case="relu" , _snake_case=3 , _snake_case=None , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = image_size
lowerCAmelCase = num_channels
lowerCAmelCase = embeddings_size
lowerCAmelCase = hidden_sizes
lowerCAmelCase = depths
lowerCAmelCase = is_training
lowerCAmelCase = use_labels
lowerCAmelCase = hidden_act
lowerCAmelCase = num_labels
lowerCAmelCase = scope
lowerCAmelCase = len(_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels )
lowerCAmelCase = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ ( self ):
"""simple docstring"""
return ResNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFResNetModel(config=_snake_case )
lowerCAmelCase = model(_snake_case )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = TFResNetForImageClassification(_snake_case )
lowerCAmelCase = model(_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = config_and_inputs
lowerCAmelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class a ( a__ , a__ , unittest.TestCase ):
snake_case__ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
snake_case__ = (
{'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification}
if is_tf_available()
else {}
)
snake_case__ = False
snake_case__ = False
snake_case__ = False
snake_case__ = False
snake_case__ = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFResNetModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase__ ( self ):
"""simple docstring"""
return
@unittest.skip(reason='ResNet does not use inputs_embeds' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@unittest.skip(reason='ResNet does not support input and output embeddings' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase = model_class(_snake_case )
lowerCAmelCase = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase = [*signature.parameters.keys()]
lowerCAmelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
def check_hidden_states_output(_snake_case , _snake_case , _snake_case ):
lowerCAmelCase = model_class(_snake_case )
lowerCAmelCase = model(**self._prepare_for_class(_snake_case , _snake_case ) )
lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowerCAmelCase = self.model_tester.num_stages
self.assertEqual(len(_snake_case ) , expected_num_stages + 1 )
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = ['basic', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
lowerCAmelCase = layer_type
lowerCAmelCase = True
check_hidden_states_output(_snake_case , _snake_case , _snake_case )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCAmelCase = True
check_hidden_states_output(_snake_case , _snake_case , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = TFResNetModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class a ( unittest.TestCase ):
@cached_property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
lowerCAmelCase = self.default_image_processor
lowerCAmelCase = prepare_img()
lowerCAmelCase = image_processor(images=_snake_case , return_tensors='tf' )
# forward pass
lowerCAmelCase = model(**_snake_case )
# verify the logits
lowerCAmelCase = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape , _snake_case )
lowerCAmelCase = tf.constant([-11.1_069, -9.7_877, -8.3_777] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _snake_case , atol=1E-4 ) )
| 4 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase : List[str] = logging.get_logger(__name__)
__UpperCamelCase : Tuple = {
'''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''',
# See all GLPN models at https://huggingface.co/models?filter=glpn
}
class a ( a__ ):
snake_case__ = '''glpn'''
def __init__( self , _snake_case=3 , _snake_case=4 , _snake_case=[2, 2, 2, 2] , _snake_case=[8, 4, 2, 1] , _snake_case=[32, 64, 1_60, 2_56] , _snake_case=[7, 3, 3, 3] , _snake_case=[4, 2, 2, 2] , _snake_case=[1, 2, 5, 8] , _snake_case=[4, 4, 4, 4] , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=0.1 , _snake_case=1E-6 , _snake_case=64 , _snake_case=10 , _snake_case=-1 , **_snake_case , ):
"""simple docstring"""
super().__init__(**_snake_case )
lowerCAmelCase = num_channels
lowerCAmelCase = num_encoder_blocks
lowerCAmelCase = depths
lowerCAmelCase = sr_ratios
lowerCAmelCase = hidden_sizes
lowerCAmelCase = patch_sizes
lowerCAmelCase = strides
lowerCAmelCase = mlp_ratios
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = initializer_range
lowerCAmelCase = drop_path_rate
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = decoder_hidden_size
lowerCAmelCase = max_depth
lowerCAmelCase = head_in_index
| 4 | 1 |
"""simple docstring"""
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
__UpperCamelCase : List[str] = [
'''cross_validation.py''',
'''gradient_accumulation.py''',
'''local_sgd.py''',
'''multi_process_metrics.py''',
'''memory.py''',
'''automatic_gradient_accumulation.py''',
'''fsdp_with_peak_mem_tracking.py''',
'''deepspeed_with_config_support.py''',
'''megatron_lm_gpt_pretraining.py''',
]
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = None , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = None
lowerCAmelCase = os.path.abspath(os.path.join('examples' , 'by_feature' ) )
lowerCAmelCase = os.path.abspath('examples' )
for item in os.listdir(_snake_case ):
if item not in EXCLUDE_EXAMPLES:
lowerCAmelCase = os.path.join(_snake_case , _snake_case )
if os.path.isfile(_snake_case ) and ".py" in item_path:
with self.subTest(
tested_script=_snake_case , feature_script=_snake_case , tested_section='main()' if parser_only else 'training_function()' , ):
lowerCAmelCase = compare_against_test(
os.path.join(_snake_case , _snake_case ) , _snake_case , _snake_case , _snake_case )
lowerCAmelCase = '\n'.join(_snake_case )
if special_strings is not None:
for string in special_strings:
lowerCAmelCase = diff.replace(_snake_case , '' )
self.assertEqual(_snake_case , '' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.one_complete_example('complete_nlp_example.py' , _snake_case )
self.one_complete_example('complete_nlp_example.py' , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = os.path.abspath(os.path.join('examples' , 'cv_example.py' ) )
lowerCAmelCase = [
' ' * 16 + '{\n\n',
' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n',
' ' * 20 + '"f1": eval_metric["f1"],\n\n',
' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n',
' ' * 20 + '"epoch": epoch,\n\n',
' ' * 16 + '},\n\n',
' ' * 16 + 'step=epoch,\n',
' ' * 12,
' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n',
]
self.one_complete_example('complete_cv_example.py' , _snake_case , _snake_case , _snake_case )
self.one_complete_example('complete_cv_example.py' , _snake_case , _snake_case , _snake_case )
@mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} )
class a ( a__ ):
snake_case__ = False
@classmethod
def UpperCamelCase__ ( cls ):
"""simple docstring"""
super().setUpClass()
lowerCAmelCase = tempfile.mkdtemp()
lowerCAmelCase = os.path.join(cls._tmpdir , 'default_config.yml' )
write_basic_config(save_location=cls.configPath )
lowerCAmelCase = ['accelerate', 'launch', '--config_file', cls.configPath]
@classmethod
def UpperCamelCase__ ( cls ):
"""simple docstring"""
super().tearDownClass()
shutil.rmtree(cls._tmpdir )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0' ) ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split()
lowerCAmelCase = run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2' ) ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split()
lowerCAmelCase = run_command(self._launch_args + testargs , return_stdout=_snake_case )
self.assertNotIn('epoch 0:' , _snake_case )
self.assertIn('epoch 1:' , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split()
lowerCAmelCase = run_command(self._launch_args + testargs , return_stdout=_snake_case )
if torch.cuda.is_available():
lowerCAmelCase = torch.cuda.device_count()
else:
lowerCAmelCase = 1
if num_processes > 1:
self.assertNotIn('epoch 0:' , _snake_case )
self.assertIn('epoch 1:' , _snake_case )
else:
self.assertIn('epoch 0:' , _snake_case )
self.assertIn('epoch 1:' , _snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split()
with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'} ):
lowerCAmelCase = run_command(self._launch_args + testargs , return_stdout=_snake_case )
lowerCAmelCase = re.findall('({.+})' , _snake_case )
lowerCAmelCase = [r for r in results if 'accuracy' in r][-1]
lowerCAmelCase = ast.literal_eval(_snake_case )
self.assertGreaterEqual(results['accuracy'] , 0.75 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ['examples/by_feature/multi_process_metrics.py']
run_command(self._launch_args + testargs )
@require_trackers
@mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )
def UpperCamelCase__ ( self ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdir:
lowerCAmelCase = F'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(_snake_case , 'tracking' ) ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ['examples/by_feature/gradient_accumulation.py']
run_command(self._launch_args + testargs )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ['examples/by_feature/local_sgd.py']
run_command(self._launch_args + testargs )
| 4 |
"""simple docstring"""
from __future__ import annotations
import unittest
import numpy as np
from transformers import LayoutLMConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.layoutlm.modeling_tf_layoutlm import (
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMForMaskedLM,
TFLayoutLMForQuestionAnswering,
TFLayoutLMForSequenceClassification,
TFLayoutLMForTokenClassification,
TFLayoutLMModel,
)
class a :
def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , _snake_case=10_00 , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_input_mask
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
lowerCAmelCase = range_bbox
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# convert bbox to numpy since TF does not support item assignment
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
lowerCAmelCase = bbox[i, j, 3]
lowerCAmelCase = bbox[i, j, 1]
lowerCAmelCase = t
if bbox[i, j, 2] < bbox[i, j, 0]:
lowerCAmelCase = bbox[i, j, 2]
lowerCAmelCase = bbox[i, j, 0]
lowerCAmelCase = t
lowerCAmelCase = tf.convert_to_tensor(_snake_case )
lowerCAmelCase = None
if self.use_input_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
if self.use_token_type_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = LayoutLMConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMModel(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , token_type_ids=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForMaskedLM(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = TFLayoutLMForSequenceClassification(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = TFLayoutLMForTokenClassification(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForQuestionAnswering(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {
'input_ids': input_ids,
'bbox': bbox,
'token_type_ids': token_type_ids,
'attention_mask': input_mask,
}
return config, inputs_dict
@require_tf
class a ( a__ , a__ , unittest.TestCase ):
snake_case__ = (
(
TFLayoutLMModel,
TFLayoutLMForMaskedLM,
TFLayoutLMForTokenClassification,
TFLayoutLMForSequenceClassification,
TFLayoutLMForQuestionAnswering,
)
if is_tf_available()
else ()
)
snake_case__ = (
{
'''feature-extraction''': TFLayoutLMModel,
'''fill-mask''': TFLayoutLMForMaskedLM,
'''text-classification''': TFLayoutLMForSequenceClassification,
'''token-classification''': TFLayoutLMForTokenClassification,
'''zero-shot''': TFLayoutLMForSequenceClassification,
}
if is_tf_available()
else {}
)
snake_case__ = False
snake_case__ = True
snake_case__ = 1_0
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = TFLayoutLMModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
@unittest.skip('Onnx compliancy broke with TF 2.10' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def _SCREAMING_SNAKE_CASE ():
# Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on:
# fmt: off
lowerCAmelCase = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231
lowerCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231
lowerCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231
lowerCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231
# these are sequence labels (i.e. at the token level)
lowerCAmelCase = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231
# fmt: on
return input_ids, attention_mask, bbox, token_type_ids, labels
@require_tf
class a ( unittest.TestCase ):
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
# test the sequence output on [0, :3, :3]
lowerCAmelCase = tf.convert_to_tensor(
[[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]] , )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _snake_case , atol=1E-3 ) )
# test the pooled output on [1, :3]
lowerCAmelCase = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552] )
self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _snake_case , atol=1E-3 ) )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
lowerCAmelCase = model(
input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=tf.convert_to_tensor([1, 1] ) , )
# test whether we get a loss as a scalar
lowerCAmelCase = outputs.loss
lowerCAmelCase = (2,)
self.assertEqual(loss.shape , _snake_case )
# test the shape of the logits
lowerCAmelCase = outputs.logits
lowerCAmelCase = (2, 2)
self.assertEqual(logits.shape , _snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
lowerCAmelCase = model(
input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case )
# test the shape of the logits
lowerCAmelCase = outputs.logits
lowerCAmelCase = tf.convert_to_tensor((2, 25, 13) )
self.assertEqual(logits.shape , _snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
# test the shape of the logits
lowerCAmelCase = tf.convert_to_tensor((2, 25) )
self.assertEqual(outputs.start_logits.shape , _snake_case )
self.assertEqual(outputs.end_logits.shape , _snake_case )
| 4 | 1 |
"""simple docstring"""
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
__UpperCamelCase : Optional[Any] = 200
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
__UpperCamelCase : Dict = 50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
__UpperCamelCase : Optional[int] = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1000))
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] )
return (item, float(_UpperCAmelCase ))
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = random.randint(0 , len(_UpperCAmelCase ) - 1 )
lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:]
lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] ):
lowerCAmelCase = list(_UpperCAmelCase )
if random.uniform(0 , 1 ) < MUTATION_PROBABILITY:
lowerCAmelCase = random.choice(_UpperCAmelCase )
return "".join(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : tuple[str, float] , _UpperCAmelCase : list[tuple[str, float]] , _UpperCAmelCase : list[str] , ):
lowerCAmelCase = []
# Generate more children proportionally to the fitness score.
lowerCAmelCase = int(parent_a[1] * 100 ) + 1
lowerCAmelCase = 10 if child_n >= 10 else child_n
for _ in range(_UpperCAmelCase ):
lowerCAmelCase = population_score[random.randint(0 , _UpperCAmelCase )][0]
lowerCAmelCase ,lowerCAmelCase = crossover(parent_a[0] , _UpperCAmelCase )
# Append new string to the population list.
pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) )
pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) )
return pop
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] , _UpperCAmelCase : bool = True ):
# Verify if N_POPULATION is bigger than N_SELECTED
if N_POPULATION < N_SELECTED:
lowerCAmelCase = F'{N_POPULATION} must be bigger than {N_SELECTED}'
raise ValueError(_UpperCAmelCase )
# Verify that the target contains no genes besides the ones inside genes variable.
lowerCAmelCase = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
lowerCAmelCase = F'{not_in_genes_list} is not in genes list, evolution cannot converge'
raise ValueError(_UpperCAmelCase )
# Generate random starting population.
lowerCAmelCase = []
for _ in range(_UpperCAmelCase ):
population.append(''.join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) )
# Just some logs to know what the algorithms is doing.
lowerCAmelCase ,lowerCAmelCase = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(_UpperCAmelCase )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
lowerCAmelCase = [evaluate(_UpperCAmelCase , _UpperCAmelCase ) for item in population]
# Check if there is a matching evolution.
lowerCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'\nGeneration: {generation}'
F'\nTotal Population:{total_population}'
F'\nBest score: {population_score[0][1]}'
F'\nBest string: {population_score[0][0]}' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
lowerCAmelCase = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(_UpperCAmelCase )
# Normalize population score to be between 0 and 1.
lowerCAmelCase = [
(item, score / len(_UpperCAmelCase )) for item, score in population_score
]
# This is selection
for i in range(_UpperCAmelCase ):
population.extend(select(population_score[int(_UpperCAmelCase )] , _UpperCAmelCase , _UpperCAmelCase ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(_UpperCAmelCase ) > N_POPULATION:
break
if __name__ == "__main__":
__UpperCamelCase : List[Any] = (
'''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!'''
)
__UpperCamelCase : str = list(
''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm'''
'''nopqrstuvwxyz.,;!?+-*#@^\'รจรฉรฒร โฌรน=)(&%$ยฃ/\\'''
)
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase : Any = basic(target_str, genes_list)
print(
f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}'''
)
| 4 |
"""simple docstring"""
import argparse
import os
import re
import packaging.version
__UpperCamelCase : Union[str, Any] = '''examples/'''
__UpperCamelCase : str = {
'''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''),
'''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''),
'''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''),
'''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''),
}
__UpperCamelCase : List[str] = {
'''init''': '''src/transformers/__init__.py''',
'''setup''': '''setup.py''',
}
__UpperCamelCase : Optional[int] = '''README.md'''
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ):
with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f:
lowerCAmelCase = f.read()
lowerCAmelCase ,lowerCAmelCase = REPLACE_PATTERNS[pattern]
lowerCAmelCase = replace.replace('VERSION' , _UpperCAmelCase )
lowerCAmelCase = re_pattern.sub(_UpperCAmelCase , _UpperCAmelCase )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ):
for folder, directories, fnames in os.walk(_UpperCAmelCase ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('research_projects' )
if "legacy" in directories:
directories.remove('legacy' )
for fname in fnames:
if fname.endswith('.py' ):
update_version_in_file(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , pattern='examples' )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict=False ):
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if not patch:
update_version_in_examples(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = '๐ค Transformers currently provides the following architectures'
lowerCAmelCase = '1. Want to contribute a new model?'
with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f:
lowerCAmelCase = f.readlines()
# Find the start of the list.
lowerCAmelCase = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
lowerCAmelCase = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('1.' ):
lowerCAmelCase = lines[index].replace(
'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , )
index += 1
with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE ():
with open(REPLACE_FILES['init'] , 'r' ) as f:
lowerCAmelCase = f.read()
lowerCAmelCase = REPLACE_PATTERNS['init'][0].search(_UpperCAmelCase ).groups()[0]
return packaging.version.parse(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple=False ):
lowerCAmelCase = get_version()
if patch and default_version.is_devrelease:
raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' )
if default_version.is_devrelease:
lowerCAmelCase = default_version.base_version
elif patch:
lowerCAmelCase = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}'
else:
lowerCAmelCase = F'{default_version.major}.{default_version.minor + 1}.0'
# Now let's ask nicely if that's the right one.
lowerCAmelCase = input(F'Which version are you releasing? [{default_version}]' )
if len(_UpperCAmelCase ) == 0:
lowerCAmelCase = default_version
print(F'Updating version to {version}.' )
global_version_update(_UpperCAmelCase , patch=_UpperCAmelCase )
if not patch:
print('Cleaning main README, don\'t forget to run `make fix-copies`.' )
clean_main_ref_in_model_list()
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = get_version()
lowerCAmelCase = F'{current_version.major}.{current_version.minor + 1}.0.dev0'
lowerCAmelCase = current_version.base_version
# Check with the user we got that right.
lowerCAmelCase = input(F'Which version are we developing now? [{dev_version}]' )
if len(_UpperCAmelCase ) == 0:
lowerCAmelCase = dev_version
print(F'Updating version to {version}.' )
global_version_update(_UpperCAmelCase )
print('Cleaning main README, don\'t forget to run `make fix-copies`.' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
__UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''')
parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''')
__UpperCamelCase : Optional[int] = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('''Nothing to do after a patch :-)''')
else:
post_release_work()
| 4 | 1 |
"""simple docstring"""
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
__UpperCamelCase : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''')
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : tuple , _UpperCAmelCase : Path , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=False , ):
output_path.parent.mkdir(parents=_UpperCAmelCase , exist_ok=_UpperCAmelCase )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
_UpperCAmelCase , _UpperCAmelCase , f=output_path.as_posix() , input_names=_UpperCAmelCase , output_names=_UpperCAmelCase , dynamic_axes=_UpperCAmelCase , do_constant_folding=_UpperCAmelCase , use_external_data_format=_UpperCAmelCase , enable_onnx_checker=_UpperCAmelCase , opset_version=_UpperCAmelCase , )
else:
export(
_UpperCAmelCase , _UpperCAmelCase , f=output_path.as_posix() , input_names=_UpperCAmelCase , output_names=_UpperCAmelCase , dynamic_axes=_UpperCAmelCase , do_constant_folding=_UpperCAmelCase , opset_version=_UpperCAmelCase , )
@torch.no_grad()
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : bool = False ):
lowerCAmelCase = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
lowerCAmelCase = 'cuda'
elif fpaa and not torch.cuda.is_available():
raise ValueError('`float16` model export is only supported on GPUs with CUDA' )
else:
lowerCAmelCase = 'cpu'
lowerCAmelCase = Path(_UpperCAmelCase )
# VAE DECODER
lowerCAmelCase = AutoencoderKL.from_pretrained(model_path + '/vae' )
lowerCAmelCase = vae_decoder.config.latent_channels
# forward only through the decoder part
lowerCAmelCase = vae_decoder.decode
onnx_export(
_UpperCAmelCase , model_args=(
torch.randn(1 , _UpperCAmelCase , 25 , 25 ).to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ),
False,
) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={
'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'},
} , opset=_UpperCAmelCase , )
del vae_decoder
if __name__ == "__main__":
__UpperCamelCase : Any = argparse.ArgumentParser()
parser.add_argument(
'''--model_path''',
type=str,
required=True,
help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''',
)
parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''')
parser.add_argument(
'''--opset''',
default=14,
type=int,
help='''The version of the ONNX operator set to use.''',
)
parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''')
__UpperCamelCase : int = parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print('''SD: Done: ONNX''')
| 4 |
"""simple docstring"""
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
__UpperCamelCase : Optional[int] = pytest.mark.integration
@require_faiss
class a ( a__ ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_snake_case ) for x in np.arange(30 ).tolist()]} )
return dset
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = self._create_dummy_dataset()
lowerCAmelCase = dset.map(
lambda _snake_case , _snake_case : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_snake_case , keep_in_memory=_snake_case )
lowerCAmelCase = dset.add_faiss_index('vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT )
lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
dset.drop_index('vecs' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , )
lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file:
dset.save_faiss_index('vecs' , tmp_file.name )
dset.load_faiss_index('vecs2' , tmp_file.name )
os.unlink(tmp_file.name )
lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' )
dset.drop_index('vecs' )
self.assertRaises(_snake_case , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
from elasticsearch import Elasticsearch
lowerCAmelCase = self._create_dummy_dataset()
with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(
'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:
lowerCAmelCase = {'acknowledged': True}
mocked_bulk.return_value([(True, None)] * 30 )
lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 29}]}}
lowerCAmelCase = Elasticsearch()
dset.add_elasticsearch_index('filename' , es_client=_snake_case )
lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('filename' , 'my_name-train_29' )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
@require_faiss
class a ( a__ ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
lowerCAmelCase = np.zeros(5 , dtype=np.floataa )
lowerCAmelCase = 1
lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case )
self.assertRaises(_snake_case , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
lowerCAmelCase = np.eye(5 , dtype=np.floataa )[::-1]
lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case )
self.assertRaises(_snake_case , index.search_batch , queries[0] )
lowerCAmelCase = [scores[0] for scores in total_scores]
lowerCAmelCase = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_snake_case ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = FaissIndex(string_factory='Flat' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
lowerCAmelCase = FaissIndex(string_factory='LSH' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(_snake_case ):
lowerCAmelCase = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = faiss.IndexFlat(5 )
lowerCAmelCase = FaissIndex(custom_index=_snake_case )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def UpperCamelCase__ ( self ):
"""simple docstring"""
import faiss
lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file:
index.save(tmp_file.name )
lowerCAmelCase = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
lowerCAmelCase = np.zeros(5 , dtype=np.floataa )
lowerCAmelCase = 1
lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ):
import faiss
lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
lowerCAmelCase = 'index.faiss'
lowerCAmelCase = F'mock://{index_name}'
index.save(_UpperCAmelCase , storage_options=mockfs.storage_options )
lowerCAmelCase = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options )
lowerCAmelCase = np.zeros(5 , dtype=np.floataa )
lowerCAmelCase = 1
lowerCAmelCase ,lowerCAmelCase = index.search(_UpperCAmelCase )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class a ( a__ ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
from elasticsearch import Elasticsearch
with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(
'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:
lowerCAmelCase = Elasticsearch()
lowerCAmelCase = {'acknowledged': True}
lowerCAmelCase = ElasticSearchIndex(es_client=_snake_case )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(['foo', 'bar', 'foobar'] )
# single query
lowerCAmelCase = 'foo'
lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
lowerCAmelCase = 'foo'
lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
lowerCAmelCase = ['foo', 'bar', 'foobar']
lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case )
lowerCAmelCase = [scores[0] for scores in total_scores]
lowerCAmelCase = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_snake_case ) , 0 )
self.assertListEqual([1, 1, 1] , _snake_case )
# batched queries with timeout
lowerCAmelCase = ['foo', 'bar', 'foobar']
lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case , request_timeout=30 )
lowerCAmelCase = [scores[0] for scores in total_scores]
lowerCAmelCase = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_snake_case ) , 0 )
self.assertListEqual([1, 1, 1] , _snake_case )
| 4 | 1 |
"""simple docstring"""
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__UpperCamelCase : Tuple = logging.get_logger(__name__)
__UpperCamelCase : Optional[int] = '''โ'''
__UpperCamelCase : str = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''}
__UpperCamelCase : Tuple = {
'''sentencepiece_model_file''': '''sentencepiece.bpe.model''',
'''vocab_file''': '''vocab.txt''',
}
__UpperCamelCase : Tuple = {
'''vocab_file''': {
'''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''',
'''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''',
},
'''sentencepiece_model_file''': {
'''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''',
'''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''',
},
}
__UpperCamelCase : Dict = {
'''ernie-m-base''': 514,
'''ernie-m-large''': 514,
}
__UpperCamelCase : Dict = {
'''ernie-m-base''': {'''do_lower_case''': False},
'''ernie-m-large''': {'''do_lower_case''': False},
}
class a ( a__ ):
snake_case__ = ["input_ids"]
snake_case__ = VOCAB_FILES_NAMES
snake_case__ = PRETRAINED_INIT_CONFIGURATION
snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ = PRETRAINED_VOCAB_FILES_MAP
snake_case__ = RESOURCE_FILES_NAMES
def __init__( self , _snake_case , _snake_case=None , _snake_case=False , _snake_case="utf8" , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case = None , **_snake_case , ):
"""simple docstring"""
lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , vocab_file=_snake_case , encoding=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , )
lowerCAmelCase = do_lower_case
lowerCAmelCase = sentencepiece_model_ckpt
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_snake_case )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
lowerCAmelCase = self.load_vocab(filepath=_snake_case )
else:
lowerCAmelCase = {self.sp_model.id_to_piece(_snake_case ): id for id in range(self.sp_model.get_piece_size() )}
lowerCAmelCase = {v: k for k, v in self.vocab.items()}
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if text is None:
return None
lowerCAmelCase = self.tokenize(_snake_case )
lowerCAmelCase ,lowerCAmelCase = '', []
for i, ch in enumerate(_snake_case ):
if ch in self.SP_CHAR_MAPPING:
lowerCAmelCase = self.SP_CHAR_MAPPING.get(_snake_case )
else:
lowerCAmelCase = unicodedata.normalize('NFKC' , _snake_case )
if self.is_whitespace(_snake_case ):
continue
normalized_text += ch
char_mapping.extend([i] * len(_snake_case ) )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = normalized_text, [], 0
if self.do_lower_case:
lowerCAmelCase = text.lower()
for token in split_tokens:
if token[:1] == "โ":
lowerCAmelCase = token[1:]
lowerCAmelCase = text[offset:].index(_snake_case ) + offset
lowerCAmelCase = start + len(_snake_case )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
lowerCAmelCase = end
return token_mapping
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return len(self.vocab )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self ):
"""simple docstring"""
lowerCAmelCase = self.__dict__.copy()
lowerCAmelCase = None
return state
def __setstate__( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
lowerCAmelCase = {}
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return "".join((self.SP_CHAR_MAPPING.get(_snake_case , _snake_case ) for c in text) )
def UpperCamelCase__ ( self , _snake_case , _snake_case=False , _snake_case=64 , _snake_case=0.1 ):
"""simple docstring"""
if self.sp_model_kwargs.get('enable_sampling' ) is True:
lowerCAmelCase = True
if self.sp_model_kwargs.get('alpha' ) is not None:
lowerCAmelCase = self.sp_model_kwargs.get('alpha' )
if self.sp_model_kwargs.get('nbest_size' ) is not None:
lowerCAmelCase = self.sp_model_kwargs.get('nbest_size' )
if not enable_sampling:
lowerCAmelCase = self.sp_model.EncodeAsPieces(_snake_case )
else:
lowerCAmelCase = self.sp_model.SampleEncodeAsPieces(_snake_case , _snake_case , _snake_case )
lowerCAmelCase = []
for pi, piece in enumerate(_snake_case ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(_snake_case ) and pi != 0:
new_pieces.append(_snake_case )
continue
else:
continue
lowerCAmelCase = 0
for i, chunk in enumerate(_snake_case ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(_snake_case ) or self.is_punct(_snake_case ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(_snake_case )
lowerCAmelCase = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
lowerCAmelCase = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
lowerCAmelCase = i
if len(_snake_case ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip()
return out_string
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.convert_ids_to_tokens(_snake_case )
lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip()
return out_string
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return self.reverse_vocab.get(_snake_case , self.unk_token )
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
lowerCAmelCase = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case=False ):
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1]
return [1] + ([0] * len(_snake_case )) + [1]
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
if token_ids_a is None:
# [CLS] X [SEP]
return (len(_snake_case ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(_snake_case ) + 1) + [1] * (len(_snake_case ) + 3)
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if "\u4e00" <= char <= "\u9fff":
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if char in ",;:.?!~๏ผ๏ผ๏ผใ๏ผ๏ผใใใใ":
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(_snake_case ) == 1:
lowerCAmelCase = unicodedata.category(_snake_case )
if cat == "Zs":
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = {}
with io.open(_snake_case , 'r' , encoding='utf-8' ) as f:
for index, line in enumerate(_snake_case ):
lowerCAmelCase = line.rstrip('\n' )
lowerCAmelCase = int(_snake_case )
return token_to_idx
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = 0
if os.path.isdir(_snake_case ):
lowerCAmelCase = os.path.join(
_snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
else:
lowerCAmelCase = (filename_prefix + '-' if filename_prefix else '') + save_directory
with open(_snake_case , 'w' , encoding='utf-8' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda _snake_case : kv[1] ):
if index != token_index:
logger.warning(
F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'
' Please check that the vocabulary is not corrupted!' )
lowerCAmelCase = token_index
writer.write(token + '\n' )
index += 1
lowerCAmelCase = os.path.join(_snake_case , 'sentencepiece.bpe.model' )
with open(_snake_case , 'wb' ) as fi:
lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(_snake_case )
return (vocab_file,)
| 4 |
"""simple docstring"""
import random
import unittest
import torch
from diffusers import IFInpaintingPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class a ( a__ , a__ , unittest.TestCase ):
snake_case__ = IFInpaintingPipeline
snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''}
snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
snake_case__ = PipelineTesterMixin.required_optional_params - {'''latents'''}
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self._get_dummy_components()
def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ):
"""simple docstring"""
if str(_snake_case ).startswith('mps' ):
lowerCAmelCase = torch.manual_seed(_snake_case )
else:
lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case )
lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case )
lowerCAmelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1E-1 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_save_load_local()
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 4 | 1 |
"""simple docstring"""
import argparse
from copy import deepcopy
import numpy as np
from datasets import ClassLabel, DatasetDict, load_dataset
from evaluate import load
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
Trainer,
TrainerCallback,
TrainingArguments,
set_seed,
)
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument('--model_ckpt' , type=_UpperCAmelCase , default='microsoft/unixcoder-base-nine' )
parser.add_argument('--num_epochs' , type=_UpperCAmelCase , default=5 )
parser.add_argument('--batch_size' , type=_UpperCAmelCase , default=6 )
parser.add_argument('--gradient_accumulation_steps' , type=_UpperCAmelCase , default=1 )
parser.add_argument('--freeze' , type=_UpperCAmelCase , default=_UpperCAmelCase )
parser.add_argument('--learning_rate' , type=_UpperCAmelCase , default=5e-4 )
parser.add_argument('--seed' , type=_UpperCAmelCase , default=0 )
parser.add_argument('--lr_scheduler_type' , type=_UpperCAmelCase , default='cosine' )
parser.add_argument('--num_warmup_steps' , type=_UpperCAmelCase , default=10 )
parser.add_argument('--weight_decay' , type=_UpperCAmelCase , default=0.01 )
parser.add_argument('--output_dir' , type=_UpperCAmelCase , default='./results' )
return parser.parse_args()
__UpperCamelCase : Tuple = load('''accuracy''')
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ):
lowerCAmelCase ,lowerCAmelCase = eval_pred
lowerCAmelCase = np.argmax(_UpperCAmelCase , axis=1 )
return metric.compute(predictions=_UpperCAmelCase , references=_UpperCAmelCase )
class a ( a__ ):
def __init__( self , _snake_case ):
"""simple docstring"""
super().__init__()
lowerCAmelCase = trainer
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , **_snake_case ):
"""simple docstring"""
if control.should_evaluate:
lowerCAmelCase = deepcopy(_snake_case )
self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='train' )
return control_copy
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = get_args()
set_seed(args.seed )
lowerCAmelCase = load_dataset('codeparrot/codecomplex' , split='train' )
lowerCAmelCase = dataset.train_test_split(test_size=0.2 )
lowerCAmelCase = train_test['test'].train_test_split(test_size=0.5 )
lowerCAmelCase = DatasetDict(
{
'train': train_test['train'],
'test': test_validation['train'],
'valid': test_validation['test'],
} )
print('Loading tokenizer and model' )
lowerCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt )
lowerCAmelCase = tokenizer.eos_token
lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 )
lowerCAmelCase = model.config.eos_token_id
if args.freeze:
for param in model.roberta.parameters():
lowerCAmelCase = False
lowerCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['train']['complexity'] ) ) )
def tokenize(_UpperCAmelCase : Optional[Any] ):
lowerCAmelCase = tokenizer(example['src'] , truncation=_UpperCAmelCase , max_length=1024 )
lowerCAmelCase = labels.straint(example['complexity'] )
return {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"label": label,
}
lowerCAmelCase = train_test_validation.map(
_UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=train_test_validation['train'].column_names , )
lowerCAmelCase = DataCollatorWithPadding(tokenizer=_UpperCAmelCase )
lowerCAmelCase = TrainingArguments(
output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='epoch' , save_strategy='epoch' , logging_strategy='epoch' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='accuracy' , run_name='complexity-java' , report_to='wandb' , )
lowerCAmelCase = Trainer(
model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] , eval_dataset=tokenized_datasets['valid'] , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , compute_metrics=_UpperCAmelCase , )
print('Training...' )
trainer.add_callback(CustomCallback(_UpperCAmelCase ) )
trainer.train()
if __name__ == "__main__":
main()
| 4 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class a :
def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
lowerCAmelCase = self.vocab_size - 1
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_token_type_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTModel(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , head_mask=_snake_case )
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case )
lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTLMHeadModel(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTDoubleHeadsModel(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = OpenAIGPTForSequenceClassification(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {
'input_ids': input_ids,
'token_type_ids': token_type_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_torch
class a ( a__ , a__ , a__ , unittest.TestCase ):
snake_case__ = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
snake_case__ = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
snake_case__ = (
{
'''feature-extraction''': OpenAIGPTModel,
'''text-classification''': OpenAIGPTForSequenceClassification,
'''text-generation''': OpenAIGPTLMHeadModel,
'''zero-shot''': OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=False ):
"""simple docstring"""
lowerCAmelCase = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
lowerCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_snake_case , )
lowerCAmelCase = inputs_dict['labels']
lowerCAmelCase = inputs_dict['labels']
lowerCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_snake_case , )
lowerCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_snake_case )
return inputs_dict
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , n_embd=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = OpenAIGPTModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
@require_torch
class a ( unittest.TestCase ):
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' )
model.to(_snake_case )
lowerCAmelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=_snake_case ) # the president is
lowerCAmelCase = [
4_81,
47_35,
5_44,
2_46,
9_63,
8_70,
7_62,
2_39,
2_44,
4_04_77,
2_44,
2_49,
7_19,
8_81,
4_87,
5_44,
2_40,
2_44,
6_03,
4_81,
] # the president is a very good man. " \n " i\'m sure he is, " said the
lowerCAmelCase = model.generate(_snake_case , do_sample=_snake_case )
self.assertListEqual(output_ids[0].tolist() , _snake_case )
| 4 | 1 |
"""simple docstring"""
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets,
# U and V such that every edge (u, v) either connects a vertex from U to V or a vertex
# from V to U. In other words, for every edge (u, v), either u belongs to U and v to V,
# or u belongs to V and v to U. We can also say that there is no edge that connects
# vertices of same set.
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
lowerCAmelCase = [False] * len(_UpperCAmelCase )
lowerCAmelCase = [-1] * len(_UpperCAmelCase )
def dfs(_UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ):
lowerCAmelCase = True
lowerCAmelCase = c
for u in graph[v]:
if not visited[u]:
dfs(_UpperCAmelCase , 1 - c )
for i in range(len(_UpperCAmelCase ) ):
if not visited[i]:
dfs(_UpperCAmelCase , 0 )
for i in range(len(_UpperCAmelCase ) ):
for j in graph[i]:
if color[i] == color[j]:
return False
return True
# Adjacency list of graph
__UpperCamelCase : Dict = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []}
print(check_bipartite_dfs(graph))
| 4 |
"""simple docstring"""
import argparse
import logging
import pickle
import random
import time
import numpy as np
from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO
)
__UpperCamelCase : str = logging.getLogger(__name__)
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = argparse.ArgumentParser(
description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' )
parser.add_argument('--file_path' , type=_UpperCAmelCase , default='data/dump.txt' , help='The path to the data.' )
parser.add_argument('--tokenizer_type' , type=_UpperCAmelCase , default='bert' , choices=['bert', 'roberta', 'gpt2'] )
parser.add_argument('--tokenizer_name' , type=_UpperCAmelCase , default='bert-base-uncased' , help='The tokenizer to use.' )
parser.add_argument('--dump_file' , type=_UpperCAmelCase , default='data/dump' , help='The dump file prefix.' )
lowerCAmelCase = parser.parse_args()
logger.info(F'Loading Tokenizer ({args.tokenizer_name})' )
if args.tokenizer_type == "bert":
lowerCAmelCase = BertTokenizer.from_pretrained(args.tokenizer_name )
lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `[CLS]`
lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `[SEP]`
elif args.tokenizer_type == "roberta":
lowerCAmelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name )
lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `<s>`
lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `</s>`
elif args.tokenizer_type == "gpt2":
lowerCAmelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name )
lowerCAmelCase = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>`
lowerCAmelCase = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>`
logger.info(F'Loading text from {args.file_path}' )
with open(args.file_path , 'r' , encoding='utf8' ) as fp:
lowerCAmelCase = fp.readlines()
logger.info('Start encoding' )
logger.info(F'{len(_UpperCAmelCase )} examples to process.' )
lowerCAmelCase = []
lowerCAmelCase = 0
lowerCAmelCase = 1_0000
lowerCAmelCase = time.time()
for text in data:
lowerCAmelCase = F'{bos} {text.strip()} {sep}'
lowerCAmelCase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
rslt.append(_UpperCAmelCase )
iter += 1
if iter % interval == 0:
lowerCAmelCase = time.time()
logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' )
lowerCAmelCase = time.time()
logger.info('Finished binarization' )
logger.info(F'{len(_UpperCAmelCase )} examples processed.' )
lowerCAmelCase = F'{args.dump_file}.{args.tokenizer_name}.pickle'
lowerCAmelCase = tokenizer.vocab_size
if vocab_size < (1 << 16):
lowerCAmelCase = [np.uintaa(_UpperCAmelCase ) for d in rslt]
else:
lowerCAmelCase = [np.intaa(_UpperCAmelCase ) for d in rslt]
random.shuffle(rslt_ )
logger.info(F'Dump to {dp_file}' )
with open(_UpperCAmelCase , 'wb' ) as handle:
pickle.dump(rslt_ , _UpperCAmelCase , protocol=pickle.HIGHEST_PROTOCOL )
if __name__ == "__main__":
main()
| 4 | 1 |
"""simple docstring"""
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class a ( unittest.TestCase ):
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = FlaxMTaForConditionalGeneration.from_pretrained('google/mt5-small' )
lowerCAmelCase = AutoTokenizer.from_pretrained('google/mt5-small' )
lowerCAmelCase = tokenizer('Hello there' , return_tensors='np' ).input_ids
lowerCAmelCase = tokenizer('Hi I am' , return_tensors='np' ).input_ids
lowerCAmelCase = shift_tokens_right(_snake_case , model.config.pad_token_id , model.config.decoder_start_token_id )
lowerCAmelCase = model(_snake_case , decoder_input_ids=_snake_case ).logits
lowerCAmelCase = optax.softmax_cross_entropy(_snake_case , onehot(_snake_case , logits.shape[-1] ) ).mean()
lowerCAmelCase = -(labels.shape[-1] * loss.item())
lowerCAmelCase = -84.9_127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 4 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
__UpperCamelCase : Tuple = {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''',
'''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''',
'''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''',
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json'''
),
'''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''',
'''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''',
'''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''',
'''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''',
'''cl-tohoku/bert-base-japanese-whole-word-masking''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json'''
),
'''cl-tohoku/bert-base-japanese-char''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json'''
),
'''cl-tohoku/bert-base-japanese-char-whole-word-masking''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json'''
),
'''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''',
# See all BERT models at https://huggingface.co/models?filter=bert
}
class a ( a__ ):
snake_case__ = '''bert'''
def __init__( self , _snake_case=3_05_22 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , _snake_case=None , **_snake_case , ):
"""simple docstring"""
super().__init__(pad_token_id=_snake_case , **_snake_case )
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_act
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = initializer_range
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = position_embedding_type
lowerCAmelCase = use_cache
lowerCAmelCase = classifier_dropout
class a ( a__ ):
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
if self.task == "multiple-choice":
lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
lowerCAmelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] )
| 4 | 1 |
"""simple docstring"""
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ):
lowerCAmelCase = []
lowerCAmelCase ,lowerCAmelCase = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
lowerCAmelCase = result + left + right
return input_list
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ):
if len(_UpperCAmelCase ) <= 1:
return input_list
lowerCAmelCase = list(_UpperCAmelCase )
# iteration for two-way merging
lowerCAmelCase = 2
while p <= len(_UpperCAmelCase ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ):
lowerCAmelCase = i
lowerCAmelCase = i + p - 1
lowerCAmelCase = (low + high + 1) // 2
lowerCAmelCase = merge(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# final merge of last two parts
if p * 2 >= len(_UpperCAmelCase ):
lowerCAmelCase = i
lowerCAmelCase = merge(_UpperCAmelCase , 0 , _UpperCAmelCase , len(_UpperCAmelCase ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
__UpperCamelCase : Union[str, Any] = input('''Enter numbers separated by a comma:\n''').strip()
if user_input == "":
__UpperCamelCase : Tuple = []
else:
__UpperCamelCase : List[Any] = [int(item.strip()) for item in user_input.split(''',''')]
print(iter_merge_sort(unsorted))
| 4 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class a ( a__ , unittest.TestCase ):
snake_case__ = DanceDiffusionPipeline
snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS
snake_case__ = PipelineTesterMixin.required_optional_params - {
'''callback''',
'''latents''',
'''callback_steps''',
'''output_type''',
'''num_images_per_prompt''',
}
snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS
snake_case__ = False
snake_case__ = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase = UNetaDModel(
block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_snake_case , use_timestep_embedding=_snake_case , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , )
lowerCAmelCase = IPNDMScheduler()
lowerCAmelCase = {
'unet': unet,
'scheduler': scheduler,
}
return components
def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ):
"""simple docstring"""
if str(_snake_case ).startswith('mps' ):
lowerCAmelCase = torch.manual_seed(_snake_case )
else:
lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowerCAmelCase = {
'batch_size': 1,
'generator': generator,
'num_inference_steps': 4,
}
return inputs
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase = self.get_dummy_components()
lowerCAmelCase = DanceDiffusionPipeline(**_snake_case )
lowerCAmelCase = pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = self.get_dummy_inputs(_snake_case )
lowerCAmelCase = pipe(**_snake_case )
lowerCAmelCase = output.audios
lowerCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, components["unet"].sample_size)
lowerCAmelCase = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().test_save_load_local()
@skip_mps
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
@skip_mps
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().test_save_load_optional_components()
@skip_mps
def UpperCamelCase__ ( self ):
"""simple docstring"""
return super().test_attention_slicing_forward_pass()
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = torch_device
lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' )
lowerCAmelCase = pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 )
lowerCAmelCase = output.audios
lowerCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
lowerCAmelCase = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = torch_device
lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa )
lowerCAmelCase = pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 )
lowerCAmelCase = output.audios
lowerCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
lowerCAmelCase = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
| 4 | 1 |
"""simple docstring"""
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ):
lowerCAmelCase = 0.00
lowerCAmelCase = 0
for resistor in resistors:
if resistor <= 0:
lowerCAmelCase = F'Resistor at index {index} has a negative or zero value!'
raise ValueError(_UpperCAmelCase )
first_sum += 1 / float(_UpperCAmelCase )
index += 1
return 1 / first_sum
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ):
lowerCAmelCase = 0.00
lowerCAmelCase = 0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
lowerCAmelCase = F'Resistor at index {index} has a negative value!'
raise ValueError(_UpperCAmelCase )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 |
"""simple docstring"""
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class a :
def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_input_mask
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_input_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
if self.use_token_type_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ ( self ):
"""simple docstring"""
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , use_stable_embedding=_snake_case , )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = OpenLlamaModel(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case )
lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = True
lowerCAmelCase = OpenLlamaModel(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , )
lowerCAmelCase = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , )
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = True
lowerCAmelCase = True
lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case )
model.to(_snake_case )
model.eval()
# first forward pass
lowerCAmelCase = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , use_cache=_snake_case , )
lowerCAmelCase = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 )
lowerCAmelCase = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0]
lowerCAmelCase = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , past_key_values=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0]
# select random slice
lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach()
lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class a ( a__ , a__ , a__ , unittest.TestCase ):
snake_case__ = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
snake_case__ = (OpenLlamaForCausalLM,) if is_torch_available() else ()
snake_case__ = (
{
'''feature-extraction''': OpenLlamaModel,
'''text-classification''': OpenLlamaForSequenceClassification,
'''text-generation''': OpenLlamaForCausalLM,
'''zero-shot''': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case__ = False
snake_case__ = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = OpenLlamaModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCAmelCase = type
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = 3
lowerCAmelCase = input_dict['input_ids']
lowerCAmelCase = input_ids.ne(1 ).to(_snake_case )
lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = 3
lowerCAmelCase = 'single_label_classification'
lowerCAmelCase = input_dict['input_ids']
lowerCAmelCase = input_ids.ne(1 ).to(_snake_case )
lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = 3
lowerCAmelCase = 'multi_label_classification'
lowerCAmelCase = input_dict['input_ids']
lowerCAmelCase = input_ids.ne(1 ).to(_snake_case )
lowerCAmelCase = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@parameterized.expand([('linear',), ('dynamic',)] )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = ids_tensor([1, 10] , config.vocab_size )
lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
lowerCAmelCase = OpenLlamaModel(_snake_case )
original_model.to(_snake_case )
original_model.eval()
lowerCAmelCase = original_model(_snake_case ).last_hidden_state
lowerCAmelCase = original_model(_snake_case ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
lowerCAmelCase = {'type': scaling_type, 'factor': 10.0}
lowerCAmelCase = OpenLlamaModel(_snake_case )
scaled_model.to(_snake_case )
scaled_model.eval()
lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state
lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
| 4 | 1 |
"""simple docstring"""
import math_equivalence # From: git+https://github.com/hendrycks/math.git
import datasets
__UpperCamelCase : Any = '''\
@article{hendrycksmath2021,
title={Measuring Mathematical Problem Solving With the MATH Dataset},
author={Dan Hendrycks
and Collin Burns
and Saurav Kadavath
and Akul Arora
and Steven Basart
and Eric Tang
and Dawn Song
and Jacob Steinhardt},
journal={arXiv preprint arXiv:2103.03874},
year={2021}
}
'''
__UpperCamelCase : str = '''\
This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.
It first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.
'''
__UpperCamelCase : Union[str, Any] = R'''
Calculates accuracy after canonicalizing inputs.
Args:
predictions: list of predictions to score. Each prediction
is a string that contains natural language and LaTex.
references: list of reference for each prediction. Each
reference is a string that contains natural language
and LaTex.
Returns:
accuracy: accuracy after canonicalizing inputs
(e.g., converting "1/2" to "\\frac{1}{2}")
Examples:
>>> metric = datasets.load_metric("competition_math")
>>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])
>>> print(results)
{\'accuracy\': 1.0}
'''
@datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a ( datasets.Metric ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' ),
'references': datasets.Value('string' ),
} ) , homepage='https://github.com/hendrycks/math' , codebase_urls=['https://github.com/hendrycks/math'] , )
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = 0.0
for i, j in zip(_snake_case , _snake_case ):
n_correct += 1.0 if math_equivalence.is_equiv(_snake_case , _snake_case ) else 0.0
lowerCAmelCase = n_correct / len(_snake_case )
return {
"accuracy": accuracy,
}
| 4 |
"""simple docstring"""
from typing import Any
class a :
def __init__( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = data
lowerCAmelCase = None
def __repr__( self ):
"""simple docstring"""
return F'Node({self.data})'
class a :
def __init__( self ):
"""simple docstring"""
lowerCAmelCase = None
def __iter__( self ):
"""simple docstring"""
lowerCAmelCase = self.head
while node:
yield node.data
lowerCAmelCase = node.next
def __len__( self ):
"""simple docstring"""
return sum(1 for _ in self )
def __repr__( self ):
"""simple docstring"""
return "->".join([str(_snake_case ) for item in self] )
def __getitem__( self , _snake_case ):
"""simple docstring"""
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self , _snake_case , _snake_case ):
"""simple docstring"""
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
lowerCAmelCase = self.head
for _ in range(_snake_case ):
lowerCAmelCase = current.next
lowerCAmelCase = data
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
self.insert_nth(len(self ) , _snake_case )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
self.insert_nth(0 , _snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
if not 0 <= index <= len(self ):
raise IndexError('list index out of range' )
lowerCAmelCase = Node(_snake_case )
if self.head is None:
lowerCAmelCase = new_node
elif index == 0:
lowerCAmelCase = self.head # link new_node to head
lowerCAmelCase = new_node
else:
lowerCAmelCase = self.head
for _ in range(index - 1 ):
lowerCAmelCase = temp.next
lowerCAmelCase = temp.next
lowerCAmelCase = new_node
def UpperCamelCase__ ( self ): # print every node data
"""simple docstring"""
print(self )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.delete_nth(0 )
def UpperCamelCase__ ( self ): # delete from tail
"""simple docstring"""
return self.delete_nth(len(self ) - 1 )
def UpperCamelCase__ ( self , _snake_case = 0 ):
"""simple docstring"""
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('List index out of range.' )
lowerCAmelCase = self.head # default first node
if index == 0:
lowerCAmelCase = self.head.next
else:
lowerCAmelCase = self.head
for _ in range(index - 1 ):
lowerCAmelCase = temp.next
lowerCAmelCase = temp.next
lowerCAmelCase = temp.next.next
return delete_node.data
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.head is None
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = None
lowerCAmelCase = self.head
while current:
# Store the current node's next node.
lowerCAmelCase = current.next
# Make the current node's next point backwards
lowerCAmelCase = prev
# Make the previous node be the current node
lowerCAmelCase = current
# Make the current node the next node (to progress iteration)
lowerCAmelCase = next_node
# Return prev in order to put the head at the end
lowerCAmelCase = prev
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = LinkedList()
assert linked_list.is_empty() is True
assert str(_UpperCAmelCase ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(_UpperCAmelCase ) == i
linked_list.insert_nth(_UpperCAmelCase , i + 1 )
assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(0 , 12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(_UpperCAmelCase ) == 9
assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
lowerCAmelCase = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(-8 , 1 ) )
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = [
-9,
100,
Node(7734_5112 ),
'dlrow olleH',
7,
5555,
0,
-192.5_5555,
'Hello, world!',
77.9,
Node(10 ),
None,
None,
12.20,
]
lowerCAmelCase = LinkedList()
for i in test_input:
linked_list.insert_tail(_UpperCAmelCase )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(_UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
lowerCAmelCase = linked_list.delete_head()
assert result == -9
assert (
str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
lowerCAmelCase = linked_list.delete_tail()
assert result == 12.2
assert (
str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
lowerCAmelCase = linked_list.delete_nth(10 )
assert result is None
assert (
str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('Hello again, world!' ) )
assert (
str(_UpperCAmelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(_UpperCAmelCase )
assert (
str(_UpperCAmelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(_UpperCAmelCase )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def _SCREAMING_SNAKE_CASE ():
from doctest import testmod
testmod()
lowerCAmelCase = LinkedList()
linked_list.insert_head(input('Inserting 1st at head ' ).strip() )
linked_list.insert_head(input('Inserting 2nd at head ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() )
linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
print('\nDelete head' )
linked_list.delete_head()
print('Delete tail' )
linked_list.delete_tail()
print('\nPrint list:' )
linked_list.print_list()
print('\nReverse linked list' )
linked_list.reverse()
print('\nPrint list:' )
linked_list.print_list()
print('\nString representation of linked list:' )
print(_UpperCAmelCase )
print('\nReading/changing Node data using indexing:' )
print(F'Element at Position 1: {linked_list[1]}' )
lowerCAmelCase = input('Enter New Value: ' ).strip()
print('New list:' )
print(_UpperCAmelCase )
print(F'length of linked_list is : {len(_UpperCAmelCase )}' )
if __name__ == "__main__":
main()
| 4 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class a ( unittest.TestCase ):
def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=4 , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_attention_mask
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_choices
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_attention_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
if self.use_token_type_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = config_and_inputs
lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
@require_flax
class a ( a__ , unittest.TestCase ):
snake_case__ = True
snake_case__ = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = FlaxRoFormerModelTester(self )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_class_name in self.all_model_classes:
lowerCAmelCase = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=_snake_case )
lowerCAmelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(_snake_case )
@require_flax
class a ( unittest.TestCase ):
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' )
lowerCAmelCase = jnp.array([[0, 1, 2, 3, 4, 5]] )
lowerCAmelCase = model(_snake_case )[0]
lowerCAmelCase = 5_00_00
lowerCAmelCase = (1, 6, vocab_size)
self.assertEqual(output.shape , _snake_case )
lowerCAmelCase = jnp.array(
[[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , _snake_case , atol=1E-4 ) )
| 4 |
"""simple docstring"""
from __future__ import annotations
import requests
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
lowerCAmelCase = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty'
return requests.get(_UpperCAmelCase ).json()
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ):
lowerCAmelCase = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty'
lowerCAmelCase = requests.get(_UpperCAmelCase ).json()[:max_stories]
return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ):
lowerCAmelCase = hackernews_top_stories(_UpperCAmelCase )
return "\n".join('* [{title}]({url})'.format(**_UpperCAmelCase ) for story in stories )
if __name__ == "__main__":
print(hackernews_top_stories_as_markdown())
| 4 | 1 |
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
__UpperCamelCase : Optional[int] = logging.get_logger(__name__)
__UpperCamelCase : Union[str, Any] = {
'''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''',
}
class a ( a__ ):
snake_case__ = '''instructblip_vision_model'''
def __init__( self , _snake_case=14_08 , _snake_case=61_44 , _snake_case=39 , _snake_case=16 , _snake_case=2_24 , _snake_case=14 , _snake_case="gelu" , _snake_case=1E-6 , _snake_case=0.0 , _snake_case=1E-10 , _snake_case=True , **_snake_case , ):
"""simple docstring"""
super().__init__(**_snake_case )
lowerCAmelCase = hidden_size
lowerCAmelCase = intermediate_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = patch_size
lowerCAmelCase = image_size
lowerCAmelCase = initializer_range
lowerCAmelCase = attention_dropout
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = hidden_act
lowerCAmelCase = qkv_bias
@classmethod
def UpperCamelCase__ ( cls , _snake_case , **_snake_case ):
"""simple docstring"""
cls._set_token_in_kwargs(_snake_case )
lowerCAmelCase ,lowerCAmelCase = cls.get_config_dict(_snake_case , **_snake_case )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
lowerCAmelCase = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(_snake_case , **_snake_case )
class a ( a__ ):
snake_case__ = '''instructblip_qformer'''
def __init__( self , _snake_case=3_05_22 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=2 , _snake_case=14_08 , **_snake_case , ):
"""simple docstring"""
super().__init__(pad_token_id=_snake_case , **_snake_case )
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_act
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = initializer_range
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = position_embedding_type
lowerCAmelCase = cross_attention_frequency
lowerCAmelCase = encoder_hidden_size
@classmethod
def UpperCamelCase__ ( cls , _snake_case , **_snake_case ):
"""simple docstring"""
cls._set_token_in_kwargs(_snake_case )
lowerCAmelCase ,lowerCAmelCase = cls.get_config_dict(_snake_case , **_snake_case )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
lowerCAmelCase = config_dict['qformer_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(_snake_case , **_snake_case )
class a ( a__ ):
snake_case__ = '''instructblip'''
snake_case__ = True
def __init__( self , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=32 , **_snake_case ):
"""simple docstring"""
super().__init__(**_snake_case )
if vision_config is None:
lowerCAmelCase = {}
logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' )
if qformer_config is None:
lowerCAmelCase = {}
logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' )
if text_config is None:
lowerCAmelCase = {}
logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' )
lowerCAmelCase = InstructBlipVisionConfig(**_snake_case )
lowerCAmelCase = InstructBlipQFormerConfig(**_snake_case )
lowerCAmelCase = text_config['model_type'] if 'model_type' in text_config else 'opt'
lowerCAmelCase = CONFIG_MAPPING[text_model_type](**_snake_case )
lowerCAmelCase = self.text_config.tie_word_embeddings
lowerCAmelCase = self.text_config.is_encoder_decoder
lowerCAmelCase = num_query_tokens
lowerCAmelCase = self.vision_config.hidden_size
lowerCAmelCase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
lowerCAmelCase = 1.0
lowerCAmelCase = 0.02
@classmethod
def UpperCamelCase__ ( cls , _snake_case , _snake_case , _snake_case , **_snake_case , ):
"""simple docstring"""
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_snake_case , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = copy.deepcopy(self.__dict__ )
lowerCAmelCase = self.vision_config.to_dict()
lowerCAmelCase = self.qformer_config.to_dict()
lowerCAmelCase = self.text_config.to_dict()
lowerCAmelCase = self.__class__.model_type
return output
| 4 |
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ):
lowerCAmelCase = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowerCAmelCase = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
lowerCAmelCase = 4
lowerCAmelCase = 48
lowerCAmelCase = 'pixelshuffle_aux'
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowerCAmelCase = [6, 6, 6, 6]
lowerCAmelCase = 60
lowerCAmelCase = [6, 6, 6, 6]
lowerCAmelCase = 'pixelshuffledirect'
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowerCAmelCase = 4
lowerCAmelCase = 'nearest+conv'
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
lowerCAmelCase = 1
lowerCAmelCase = 1
lowerCAmelCase = 126
lowerCAmelCase = 7
lowerCAmelCase = 255.0
lowerCAmelCase = ''
return config
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ):
if "patch_embed.proj" in name and "layers" not in name:
lowerCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
lowerCAmelCase = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' )
if "layers" in name:
lowerCAmelCase = name.replace('layers' , 'encoder.stages' )
if "residual_group.blocks" in name:
lowerCAmelCase = name.replace('residual_group.blocks' , 'layers' )
if "attn.proj" in name:
lowerCAmelCase = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
lowerCAmelCase = name.replace('attn' , 'attention.self' )
if "norm1" in name:
lowerCAmelCase = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
lowerCAmelCase = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
lowerCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
lowerCAmelCase = name.replace('mlp.fc2' , 'output.dense' )
if "q_bias" in name:
lowerCAmelCase = name.replace('q_bias' , 'query.bias' )
if "k_bias" in name:
lowerCAmelCase = name.replace('k_bias' , 'key.bias' )
if "v_bias" in name:
lowerCAmelCase = name.replace('v_bias' , 'value.bias' )
if "cpb_mlp" in name:
lowerCAmelCase = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' )
if "patch_embed.proj" in name:
lowerCAmelCase = name.replace('patch_embed.proj' , 'patch_embed.projection' )
if name == "norm.weight":
lowerCAmelCase = 'layernorm.weight'
if name == "norm.bias":
lowerCAmelCase = 'layernorm.bias'
if "conv_first" in name:
lowerCAmelCase = name.replace('conv_first' , 'first_convolution' )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
lowerCAmelCase = name.replace('conv_last' , 'final_convolution' )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
lowerCAmelCase = name.replace('conv_before_upsample.0' , 'conv_before_upsample' )
if "upsample.0" in name:
lowerCAmelCase = name.replace('upsample.0' , 'upsample.convolution_0' )
if "upsample.2" in name:
lowerCAmelCase = name.replace('upsample.2' , 'upsample.convolution_1' )
lowerCAmelCase = 'upsample.' + name
elif config.upsampler == "pixelshuffledirect":
lowerCAmelCase = name.replace('upsample.0.weight' , 'upsample.conv.weight' )
lowerCAmelCase = name.replace('upsample.0.bias' , 'upsample.conv.bias' )
else:
pass
else:
lowerCAmelCase = 'swin2sr.' + name
return name
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict ):
for key in orig_state_dict.copy().keys():
lowerCAmelCase = orig_state_dict.pop(_UpperCAmelCase )
if "qkv" in key:
lowerCAmelCase = key.split('.' )
lowerCAmelCase = int(key_split[1] )
lowerCAmelCase = int(key_split[4] )
lowerCAmelCase = config.embed_dim
if "weight" in key:
lowerCAmelCase = val[:dim, :]
lowerCAmelCase = val[dim : dim * 2, :]
lowerCAmelCase = val[-dim:, :]
else:
lowerCAmelCase = val[:dim]
lowerCAmelCase = val[dim : dim * 2]
lowerCAmelCase = val[-dim:]
pass
else:
lowerCAmelCase = val
return orig_state_dict
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ):
lowerCAmelCase = get_config(_UpperCAmelCase )
lowerCAmelCase = SwinaSRForImageSuperResolution(_UpperCAmelCase )
model.eval()
lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' )
lowerCAmelCase = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase ,lowerCAmelCase = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase )
if len(_UpperCAmelCase ) > 0:
raise ValueError('Missing keys when converting: {}'.format(_UpperCAmelCase ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(F'Unexpected key {key} in state_dict' )
# verify values
lowerCAmelCase = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true'
lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' )
lowerCAmelCase = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
lowerCAmelCase = 126 if 'Jpeg' in checkpoint_url else 256
lowerCAmelCase = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
lowerCAmelCase = transforms(_UpperCAmelCase ).unsqueeze(0 )
if config.num_channels == 1:
lowerCAmelCase = pixel_values[:, 0, :, :].unsqueeze(1 )
lowerCAmelCase = model(_UpperCAmelCase )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
lowerCAmelCase = torch.Size([1, 3, 512, 512] )
lowerCAmelCase = torch.tensor(
[[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowerCAmelCase = torch.Size([1, 3, 1024, 1024] )
lowerCAmelCase = torch.tensor(
[[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
lowerCAmelCase = torch.Size([1, 3, 1024, 1024] )
lowerCAmelCase = torch.tensor(
[[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowerCAmelCase = torch.Size([1, 3, 512, 512] )
lowerCAmelCase = torch.tensor(
[[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowerCAmelCase = torch.Size([1, 3, 1024, 1024] )
lowerCAmelCase = torch.tensor(
[[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] )
assert (
outputs.reconstruction.shape == expected_shape
), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-3 )
print('Looks ok!' )
lowerCAmelCase = {
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': (
'swin2SR-classical-sr-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': (
'swin2SR-classical-sr-x4-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': (
'swin2SR-compressed-sr-x4-48'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': (
'swin2SR-lightweight-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': (
'swin2SR-realworld-sr-x4-64-bsrgan-psnr'
),
}
lowerCAmelCase = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(_UpperCAmelCase )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(_UpperCAmelCase )
if push_to_hub:
model.push_to_hub(F'caidas/{model_name}' )
processor.push_to_hub(F'caidas/{model_name}' )
if __name__ == "__main__":
__UpperCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''',
type=str,
help='''URL of the original Swin2SR checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''')
__UpperCamelCase : Optional[int] = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 4 | 1 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
__UpperCamelCase : Optional[int] = logging.get_logger(__name__)
__UpperCamelCase : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__UpperCamelCase : Dict = {
'''vocab_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''',
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-german-cased''': (
'''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'''
),
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
},
}
__UpperCamelCase : Union[str, Any] = {
'''distilbert-base-uncased''': 512,
'''distilbert-base-uncased-distilled-squad''': 512,
'''distilbert-base-cased''': 512,
'''distilbert-base-cased-distilled-squad''': 512,
'''distilbert-base-german-cased''': 512,
'''distilbert-base-multilingual-cased''': 512,
}
__UpperCamelCase : Union[str, Any] = {
'''distilbert-base-uncased''': {'''do_lower_case''': True},
'''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True},
'''distilbert-base-cased''': {'''do_lower_case''': False},
'''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False},
'''distilbert-base-german-cased''': {'''do_lower_case''': False},
'''distilbert-base-multilingual-cased''': {'''do_lower_case''': False},
}
class a ( a__ ):
snake_case__ = VOCAB_FILES_NAMES
snake_case__ = PRETRAINED_VOCAB_FILES_MAP
snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ = PRETRAINED_INIT_CONFIGURATION
snake_case__ = ['''input_ids''', '''attention_mask''']
snake_case__ = DistilBertTokenizer
def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ):
"""simple docstring"""
super().__init__(
_snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , )
lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , _snake_case ) != do_lower_case
or normalizer_state.get('strip_accents' , _snake_case ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , _snake_case ) != tokenize_chinese_chars
):
lowerCAmelCase = getattr(_snake_case , normalizer_state.pop('type' ) )
lowerCAmelCase = do_lower_case
lowerCAmelCase = strip_accents
lowerCAmelCase = tokenize_chinese_chars
lowerCAmelCase = normalizer_class(**_snake_case )
lowerCAmelCase = do_lower_case
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case )
return tuple(_snake_case )
| 4 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
__UpperCamelCase : List[Any] = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class a ( a__ ):
snake_case__ = '''megatron-bert'''
def __init__( self , _snake_case=2_90_56 , _snake_case=10_24 , _snake_case=24 , _snake_case=16 , _snake_case=40_96 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , **_snake_case , ):
"""simple docstring"""
super().__init__(pad_token_id=_snake_case , **_snake_case )
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_act
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = initializer_range
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = position_embedding_type
lowerCAmelCase = use_cache
| 4 | 1 |
"""simple docstring"""
import os
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = os.path.dirname(os.path.realpath(_UpperCAmelCase ) )
lowerCAmelCase = os.path.join(_UpperCAmelCase , 'triangle.txt' )
with open(_UpperCAmelCase ) as f:
lowerCAmelCase = f.readlines()
lowerCAmelCase = []
for line in triangle:
lowerCAmelCase = []
for number in line.strip().split(' ' ):
numbers_from_line.append(int(_UpperCAmelCase ) )
a.append(_UpperCAmelCase )
for i in range(1 , len(_UpperCAmelCase ) ):
for j in range(len(a[i] ) ):
lowerCAmelCase = a[i - 1][j] if j != len(a[i - 1] ) else 0
lowerCAmelCase = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(_UpperCAmelCase , _UpperCAmelCase )
return max(a[-1] )
if __name__ == "__main__":
print(solution())
| 4 |
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
return " ".join(input_str.split()[::-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 | 1 |
"""simple docstring"""
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant โ (H bar), speed of light C, value of
# Pi and the function
__UpperCamelCase : Any = 1.054_571_817e-34 # unit of โ : J * s
__UpperCamelCase : List[Any] = 3e8 # unit of c : m * s^-1
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ):
if (force, area, distance).count(0 ) != 1:
raise ValueError('One and only one argument must be 0' )
if force < 0:
raise ValueError('Magnitude of force can not be negative' )
if distance < 0:
raise ValueError('Distance can not be negative' )
if area < 0:
raise ValueError('Area can not be negative' )
if force == 0:
lowerCAmelCase = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
240 * (distance) ** 4
)
return {"force": force}
elif area == 0:
lowerCAmelCase = (240 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
lowerCAmelCase = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError('One and only one argument must be 0' )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class a ( a__ ):
snake_case__ = 42
class a ( a__ , a__ ):
@register_to_config
def __init__( self , _snake_case = 3 , _snake_case = 3 , _snake_case = ("DownEncoderBlock2D",) , _snake_case = ("UpDecoderBlock2D",) , _snake_case = (64,) , _snake_case = 1 , _snake_case = "silu" , _snake_case = 3 , _snake_case = 32 , _snake_case = 2_56 , _snake_case = 32 , _snake_case = None , _snake_case = 0.18_215 , _snake_case = "group" , ):
"""simple docstring"""
super().__init__()
# pass init params to Encoder
lowerCAmelCase = Encoder(
in_channels=_snake_case , out_channels=_snake_case , down_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , double_z=_snake_case , )
lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels
lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 )
lowerCAmelCase = VectorQuantizer(_snake_case , _snake_case , beta=0.25 , remap=_snake_case , sane_index_shape=_snake_case )
lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 )
# pass init params to Decoder
lowerCAmelCase = Decoder(
in_channels=_snake_case , out_channels=_snake_case , up_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , norm_type=_snake_case , )
@apply_forward_hook
def UpperCamelCase__ ( self , _snake_case , _snake_case = True ):
"""simple docstring"""
lowerCAmelCase = self.encoder(_snake_case )
lowerCAmelCase = self.quant_conv(_snake_case )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=_snake_case )
@apply_forward_hook
def UpperCamelCase__ ( self , _snake_case , _snake_case = False , _snake_case = True ):
"""simple docstring"""
if not force_not_quantize:
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = self.quantize(_snake_case )
else:
lowerCAmelCase = h
lowerCAmelCase = self.post_quant_conv(_snake_case )
lowerCAmelCase = self.decoder(_snake_case , quant if self.config.norm_type == 'spatial' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case = True ):
"""simple docstring"""
lowerCAmelCase = sample
lowerCAmelCase = self.encode(_snake_case ).latents
lowerCAmelCase = self.decode(_snake_case ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=_snake_case )
| 4 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__UpperCamelCase : List[Any] = logging.get_logger(__name__)
class a ( a__ ):
snake_case__ = ['''pixel_values''']
def __init__( self , _snake_case = True , _snake_case = None , _snake_case = None , _snake_case = PILImageResampling.BILINEAR , _snake_case = True , _snake_case = 1 / 2_55 , _snake_case = True , _snake_case = None , _snake_case = None , **_snake_case , ):
"""simple docstring"""
super().__init__(**_snake_case )
lowerCAmelCase = size if size is not None else {'shortest_edge': 3_84}
lowerCAmelCase = get_size_dict(_snake_case , default_to_square=_snake_case )
lowerCAmelCase = do_resize
lowerCAmelCase = size
# Default value set here for backwards compatibility where the value in config is None
lowerCAmelCase = crop_pct if crop_pct is not None else 2_24 / 2_56
lowerCAmelCase = resample
lowerCAmelCase = do_rescale
lowerCAmelCase = rescale_factor
lowerCAmelCase = do_normalize
lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case = PILImageResampling.BICUBIC , _snake_case = None , **_snake_case , ):
"""simple docstring"""
lowerCAmelCase = get_size_dict(_snake_case , default_to_square=_snake_case )
if "shortest_edge" not in size:
raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' )
lowerCAmelCase = size['shortest_edge']
if shortest_edge < 3_84:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
lowerCAmelCase = int(shortest_edge / crop_pct )
lowerCAmelCase = get_resize_output_image_size(_snake_case , size=_snake_case , default_to_square=_snake_case )
lowerCAmelCase = resize(image=_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=_snake_case , size=(shortest_edge, shortest_edge) , data_format=_snake_case , **_snake_case )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
_snake_case , size=(shortest_edge, shortest_edge) , resample=_snake_case , data_format=_snake_case , **_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case , ):
"""simple docstring"""
return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case = None , **_snake_case , ):
"""simple docstring"""
return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = ChannelDimension.FIRST , **_snake_case , ):
"""simple docstring"""
lowerCAmelCase = do_resize if do_resize is not None else self.do_resize
lowerCAmelCase = crop_pct if crop_pct is not None else self.crop_pct
lowerCAmelCase = resample if resample is not None else self.resample
lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
lowerCAmelCase = image_mean if image_mean is not None else self.image_mean
lowerCAmelCase = image_std if image_std is not None else self.image_std
lowerCAmelCase = size if size is not None else self.size
lowerCAmelCase = get_size_dict(_snake_case , default_to_square=_snake_case )
lowerCAmelCase = make_list_of_images(_snake_case )
if not valid_images(_snake_case ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_resize and size["shortest_edge"] < 3_84 and crop_pct is None:
raise ValueError('crop_pct must be specified if size < 384.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
lowerCAmelCase = [to_numpy_array(_snake_case ) for image in images]
if do_resize:
lowerCAmelCase = [self.resize(image=_snake_case , size=_snake_case , crop_pct=_snake_case , resample=_snake_case ) for image in images]
if do_rescale:
lowerCAmelCase = [self.rescale(image=_snake_case , scale=_snake_case ) for image in images]
if do_normalize:
lowerCAmelCase = [self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case ) for image in images]
lowerCAmelCase = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images]
lowerCAmelCase = {'pixel_values': images}
return BatchFeature(data=_snake_case , tensor_type=_snake_case )
| 4 |
"""simple docstring"""
from __future__ import annotations
import os
from collections.abc import Mapping
__UpperCamelCase : Optional[Any] = tuple[int, int]
class a :
def __init__( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = vertices
lowerCAmelCase = {
(min(_snake_case ), max(_snake_case )): weight for edge, weight in edges.items()
}
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
lowerCAmelCase = weight
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = Graph({min(self.vertices )} , {} )
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
while len(subgraph.vertices ) < len(self.vertices ):
lowerCAmelCase = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
lowerCAmelCase = edge
lowerCAmelCase = weight
subgraph.add_edge(_snake_case , _snake_case )
return subgraph
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "p107_network.txt" ):
lowerCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) )
lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = {}
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
with open(_UpperCAmelCase ) as f:
lowerCAmelCase = f.read().strip().split('\n' )
lowerCAmelCase = [line.split(',' ) for line in data]
for edgea in range(1 , len(_UpperCAmelCase ) ):
for edgea in range(_UpperCAmelCase ):
if adjaceny_matrix[edgea][edgea] != "-":
lowerCAmelCase = int(adjaceny_matrix[edgea][edgea] )
lowerCAmelCase = Graph(set(range(len(_UpperCAmelCase ) ) ) , _UpperCAmelCase )
lowerCAmelCase = graph.prims_algorithm()
lowerCAmelCase = sum(graph.edges.values() )
lowerCAmelCase = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(f'''{solution() = }''')
| 4 | 1 |
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ):
lowerCAmelCase = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowerCAmelCase = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
lowerCAmelCase = 4
lowerCAmelCase = 48
lowerCAmelCase = 'pixelshuffle_aux'
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowerCAmelCase = [6, 6, 6, 6]
lowerCAmelCase = 60
lowerCAmelCase = [6, 6, 6, 6]
lowerCAmelCase = 'pixelshuffledirect'
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowerCAmelCase = 4
lowerCAmelCase = 'nearest+conv'
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
lowerCAmelCase = 1
lowerCAmelCase = 1
lowerCAmelCase = 126
lowerCAmelCase = 7
lowerCAmelCase = 255.0
lowerCAmelCase = ''
return config
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ):
if "patch_embed.proj" in name and "layers" not in name:
lowerCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
lowerCAmelCase = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' )
if "layers" in name:
lowerCAmelCase = name.replace('layers' , 'encoder.stages' )
if "residual_group.blocks" in name:
lowerCAmelCase = name.replace('residual_group.blocks' , 'layers' )
if "attn.proj" in name:
lowerCAmelCase = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
lowerCAmelCase = name.replace('attn' , 'attention.self' )
if "norm1" in name:
lowerCAmelCase = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
lowerCAmelCase = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
lowerCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
lowerCAmelCase = name.replace('mlp.fc2' , 'output.dense' )
if "q_bias" in name:
lowerCAmelCase = name.replace('q_bias' , 'query.bias' )
if "k_bias" in name:
lowerCAmelCase = name.replace('k_bias' , 'key.bias' )
if "v_bias" in name:
lowerCAmelCase = name.replace('v_bias' , 'value.bias' )
if "cpb_mlp" in name:
lowerCAmelCase = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' )
if "patch_embed.proj" in name:
lowerCAmelCase = name.replace('patch_embed.proj' , 'patch_embed.projection' )
if name == "norm.weight":
lowerCAmelCase = 'layernorm.weight'
if name == "norm.bias":
lowerCAmelCase = 'layernorm.bias'
if "conv_first" in name:
lowerCAmelCase = name.replace('conv_first' , 'first_convolution' )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
lowerCAmelCase = name.replace('conv_last' , 'final_convolution' )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
lowerCAmelCase = name.replace('conv_before_upsample.0' , 'conv_before_upsample' )
if "upsample.0" in name:
lowerCAmelCase = name.replace('upsample.0' , 'upsample.convolution_0' )
if "upsample.2" in name:
lowerCAmelCase = name.replace('upsample.2' , 'upsample.convolution_1' )
lowerCAmelCase = 'upsample.' + name
elif config.upsampler == "pixelshuffledirect":
lowerCAmelCase = name.replace('upsample.0.weight' , 'upsample.conv.weight' )
lowerCAmelCase = name.replace('upsample.0.bias' , 'upsample.conv.bias' )
else:
pass
else:
lowerCAmelCase = 'swin2sr.' + name
return name
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict ):
for key in orig_state_dict.copy().keys():
lowerCAmelCase = orig_state_dict.pop(_UpperCAmelCase )
if "qkv" in key:
lowerCAmelCase = key.split('.' )
lowerCAmelCase = int(key_split[1] )
lowerCAmelCase = int(key_split[4] )
lowerCAmelCase = config.embed_dim
if "weight" in key:
lowerCAmelCase = val[:dim, :]
lowerCAmelCase = val[dim : dim * 2, :]
lowerCAmelCase = val[-dim:, :]
else:
lowerCAmelCase = val[:dim]
lowerCAmelCase = val[dim : dim * 2]
lowerCAmelCase = val[-dim:]
pass
else:
lowerCAmelCase = val
return orig_state_dict
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ):
lowerCAmelCase = get_config(_UpperCAmelCase )
lowerCAmelCase = SwinaSRForImageSuperResolution(_UpperCAmelCase )
model.eval()
lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' )
lowerCAmelCase = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase ,lowerCAmelCase = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase )
if len(_UpperCAmelCase ) > 0:
raise ValueError('Missing keys when converting: {}'.format(_UpperCAmelCase ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(F'Unexpected key {key} in state_dict' )
# verify values
lowerCAmelCase = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true'
lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' )
lowerCAmelCase = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
lowerCAmelCase = 126 if 'Jpeg' in checkpoint_url else 256
lowerCAmelCase = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
lowerCAmelCase = transforms(_UpperCAmelCase ).unsqueeze(0 )
if config.num_channels == 1:
lowerCAmelCase = pixel_values[:, 0, :, :].unsqueeze(1 )
lowerCAmelCase = model(_UpperCAmelCase )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
lowerCAmelCase = torch.Size([1, 3, 512, 512] )
lowerCAmelCase = torch.tensor(
[[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowerCAmelCase = torch.Size([1, 3, 1024, 1024] )
lowerCAmelCase = torch.tensor(
[[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
lowerCAmelCase = torch.Size([1, 3, 1024, 1024] )
lowerCAmelCase = torch.tensor(
[[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowerCAmelCase = torch.Size([1, 3, 512, 512] )
lowerCAmelCase = torch.tensor(
[[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowerCAmelCase = torch.Size([1, 3, 1024, 1024] )
lowerCAmelCase = torch.tensor(
[[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] )
assert (
outputs.reconstruction.shape == expected_shape
), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-3 )
print('Looks ok!' )
lowerCAmelCase = {
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': (
'swin2SR-classical-sr-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': (
'swin2SR-classical-sr-x4-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': (
'swin2SR-compressed-sr-x4-48'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': (
'swin2SR-lightweight-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': (
'swin2SR-realworld-sr-x4-64-bsrgan-psnr'
),
}
lowerCAmelCase = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(_UpperCAmelCase )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(_UpperCAmelCase )
if push_to_hub:
model.push_to_hub(F'caidas/{model_name}' )
processor.push_to_hub(F'caidas/{model_name}' )
if __name__ == "__main__":
__UpperCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''',
type=str,
help='''URL of the original Swin2SR checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''')
__UpperCamelCase : Optional[int] = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 4 |
"""simple docstring"""
import numpy as np
import pandas as pd
from sklearn.preprocessing import Normalizer
from sklearn.svm import SVR
from statsmodels.tsa.statespace.sarimax import SARIMAX
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ):
lowerCAmelCase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCAmelCase )] )
lowerCAmelCase = np.array(_UpperCAmelCase )
lowerCAmelCase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCAmelCase ) ) , x.transpose() ) , _UpperCAmelCase )
return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ):
lowerCAmelCase = (1, 2, 1)
lowerCAmelCase = (1, 1, 0, 7)
lowerCAmelCase = SARIMAX(
_UpperCAmelCase , exog=_UpperCAmelCase , order=_UpperCAmelCase , seasonal_order=_UpperCAmelCase )
lowerCAmelCase = model.fit(disp=_UpperCAmelCase , maxiter=600 , method='nm' )
lowerCAmelCase = model_fit.predict(1 , len(_UpperCAmelCase ) , exog=[test_match] )
return result[0]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ):
lowerCAmelCase = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 )
regressor.fit(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = regressor.predict(_UpperCAmelCase )
return y_pred[0]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ):
train_user.sort()
lowerCAmelCase = np.percentile(_UpperCAmelCase , 25 )
lowerCAmelCase = np.percentile(_UpperCAmelCase , 75 )
lowerCAmelCase = qa - qa
lowerCAmelCase = qa - (iqr * 0.1)
return low_lim
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : float ):
lowerCAmelCase = 0
lowerCAmelCase = 0
for i in list_vote:
if i > actual_result:
lowerCAmelCase = not_safe + 1
else:
if abs(abs(_UpperCAmelCase ) - abs(_UpperCAmelCase ) ) <= 0.1:
safe += 1
else:
not_safe += 1
return safe > not_safe
if __name__ == "__main__":
# data_input_df = pd.read_csv("ex_data.csv", header=None)
__UpperCamelCase : Optional[Any] = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]]
__UpperCamelCase : Any = pd.DataFrame(
data_input, columns=['''total_user''', '''total_even''', '''days''']
)
__UpperCamelCase : Dict = Normalizer().fit_transform(data_input_df.values)
# split data
__UpperCamelCase : Dict = normalize_df[:, 2].tolist()
__UpperCamelCase : Union[str, Any] = normalize_df[:, 0].tolist()
__UpperCamelCase : List[str] = normalize_df[:, 1].tolist()
# for svr (input variable = total date and total match)
__UpperCamelCase : Optional[int] = normalize_df[:, [1, 2]].tolist()
__UpperCamelCase : Tuple = x[: len(x) - 1]
__UpperCamelCase : Any = x[len(x) - 1 :]
# for linear regression & sarimax
__UpperCamelCase : str = total_date[: len(total_date) - 1]
__UpperCamelCase : Union[str, Any] = total_user[: len(total_user) - 1]
__UpperCamelCase : List[Any] = total_match[: len(total_match) - 1]
__UpperCamelCase : Optional[Any] = total_date[len(total_date) - 1 :]
__UpperCamelCase : str = total_user[len(total_user) - 1 :]
__UpperCamelCase : str = total_match[len(total_match) - 1 :]
# voting system with forecasting
__UpperCamelCase : Any = [
linear_regression_prediction(
trn_date, trn_user, trn_match, tst_date, tst_match
),
sarimax_predictor(trn_user, trn_match, tst_match),
support_vector_regressor(x_train, x_test, trn_user),
]
# check the safety of today's data
__UpperCamelCase : List[str] = '''''' if data_safety_checker(res_vote, tst_user) else '''not '''
print('''Today\'s data is {not_str}safe.''')
| 4 | 1 |
"""simple docstring"""
import argparse
import os
import re
import packaging.version
__UpperCamelCase : Union[str, Any] = '''examples/'''
__UpperCamelCase : str = {
'''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''),
'''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''),
'''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''),
'''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''),
}
__UpperCamelCase : List[str] = {
'''init''': '''src/transformers/__init__.py''',
'''setup''': '''setup.py''',
}
__UpperCamelCase : Optional[int] = '''README.md'''
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ):
with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f:
lowerCAmelCase = f.read()
lowerCAmelCase ,lowerCAmelCase = REPLACE_PATTERNS[pattern]
lowerCAmelCase = replace.replace('VERSION' , _UpperCAmelCase )
lowerCAmelCase = re_pattern.sub(_UpperCAmelCase , _UpperCAmelCase )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ):
for folder, directories, fnames in os.walk(_UpperCAmelCase ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('research_projects' )
if "legacy" in directories:
directories.remove('legacy' )
for fname in fnames:
if fname.endswith('.py' ):
update_version_in_file(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , pattern='examples' )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict=False ):
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if not patch:
update_version_in_examples(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = '๐ค Transformers currently provides the following architectures'
lowerCAmelCase = '1. Want to contribute a new model?'
with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f:
lowerCAmelCase = f.readlines()
# Find the start of the list.
lowerCAmelCase = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
lowerCAmelCase = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('1.' ):
lowerCAmelCase = lines[index].replace(
'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , )
index += 1
with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE ():
with open(REPLACE_FILES['init'] , 'r' ) as f:
lowerCAmelCase = f.read()
lowerCAmelCase = REPLACE_PATTERNS['init'][0].search(_UpperCAmelCase ).groups()[0]
return packaging.version.parse(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple=False ):
lowerCAmelCase = get_version()
if patch and default_version.is_devrelease:
raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' )
if default_version.is_devrelease:
lowerCAmelCase = default_version.base_version
elif patch:
lowerCAmelCase = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}'
else:
lowerCAmelCase = F'{default_version.major}.{default_version.minor + 1}.0'
# Now let's ask nicely if that's the right one.
lowerCAmelCase = input(F'Which version are you releasing? [{default_version}]' )
if len(_UpperCAmelCase ) == 0:
lowerCAmelCase = default_version
print(F'Updating version to {version}.' )
global_version_update(_UpperCAmelCase , patch=_UpperCAmelCase )
if not patch:
print('Cleaning main README, don\'t forget to run `make fix-copies`.' )
clean_main_ref_in_model_list()
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = get_version()
lowerCAmelCase = F'{current_version.major}.{current_version.minor + 1}.0.dev0'
lowerCAmelCase = current_version.base_version
# Check with the user we got that right.
lowerCAmelCase = input(F'Which version are we developing now? [{dev_version}]' )
if len(_UpperCAmelCase ) == 0:
lowerCAmelCase = dev_version
print(F'Updating version to {version}.' )
global_version_update(_UpperCAmelCase )
print('Cleaning main README, don\'t forget to run `make fix-copies`.' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
__UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''')
parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''')
__UpperCamelCase : Optional[int] = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('''Nothing to do after a patch :-)''')
else:
post_release_work()
| 4 |
"""simple docstring"""
import argparse
import math
import os
import torch
from neural_compressor.utils.pytorch import load
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument(
'-m' , '--pretrained_model_name_or_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , )
parser.add_argument(
'-c' , '--caption' , type=_UpperCAmelCase , default='robotic cat with wings' , help='Text used to generate images.' , )
parser.add_argument(
'-n' , '--images_num' , type=_UpperCAmelCase , default=4 , help='How much images to generate.' , )
parser.add_argument(
'-s' , '--seed' , type=_UpperCAmelCase , default=42 , help='Seed for random process.' , )
parser.add_argument(
'-ci' , '--cuda_id' , type=_UpperCAmelCase , default=0 , help='cuda_id.' , )
lowerCAmelCase = parser.parse_args()
return args
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ):
if not len(_UpperCAmelCase ) == rows * cols:
raise ValueError('The specified number of rows and columns are not correct.' )
lowerCAmelCase ,lowerCAmelCase = imgs[0].size
lowerCAmelCase = Image.new('RGB' , size=(cols * w, rows * h) )
lowerCAmelCase ,lowerCAmelCase = grid.size
for i, img in enumerate(_UpperCAmelCase ):
grid.paste(_UpperCAmelCase , box=(i % cols * w, i // cols * h) )
return grid
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]="robotic cat with wings" , _UpperCAmelCase : Optional[int]=7.5 , _UpperCAmelCase : Dict=50 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=42 , ):
lowerCAmelCase = torch.Generator(pipeline.device ).manual_seed(_UpperCAmelCase )
lowerCAmelCase = pipeline(
_UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , ).images
lowerCAmelCase = int(math.sqrt(_UpperCAmelCase ) )
lowerCAmelCase = image_grid(_UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows )
return grid, images
__UpperCamelCase : Optional[Any] = parse_args()
# Load models and create wrapper for stable diffusion
__UpperCamelCase : List[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''')
__UpperCamelCase : str = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''')
__UpperCamelCase : Optional[int] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''')
__UpperCamelCase : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''')
__UpperCamelCase : Tuple = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer
)
__UpperCamelCase : Union[str, Any] = lambda images, clip_input: (images, False)
if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')):
__UpperCamelCase : Dict = load(args.pretrained_model_name_or_path, model=unet)
unet.eval()
setattr(pipeline, '''unet''', unet)
else:
__UpperCamelCase : Dict = unet.to(torch.device('''cuda''', args.cuda_id))
__UpperCamelCase : Optional[Any] = pipeline.to(unet.device)
__UpperCamelCase ,__UpperCamelCase : List[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed)
grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split()))))
__UpperCamelCase : int = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split()))
os.makedirs(dirname, exist_ok=True)
for idx, image in enumerate(images):
image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
| 4 | 1 |
"""simple docstring"""
from collections.abc import Callable
import numpy as np
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Callable , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ):
lowerCAmelCase = int(np.ceil((x_end - xa) / step_size ) )
lowerCAmelCase = np.zeros((n + 1,) )
lowerCAmelCase = ya
lowerCAmelCase = xa
for k in range(_UpperCAmelCase ):
lowerCAmelCase = y[k] + step_size * ode_func(_UpperCAmelCase , y[k] )
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 |
"""simple docstring"""
import warnings
from pathlib import Path
from typing import List, Tuple, Union
import fire
from torch import nn
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel
from transformers.utils import logging
__UpperCamelCase : List[Any] = logging.get_logger(__name__)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : List[int] ):
lowerCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] )
assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ), F'{len(_UpperCAmelCase )} != {len(_UpperCAmelCase )}'
dest_layers.load_state_dict(layers_to_copy.state_dict() )
__UpperCamelCase : Optional[Any] = {
# maps num layers in teacher -> num_layers in student -> which teacher layers to copy.
# 12: bart, 16: pegasus, 6: marian/Helsinki-NLP
12: {
1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher
2: [0, 6],
3: [0, 6, 11],
4: [0, 4, 8, 11],
6: [0, 2, 4, 7, 9, 11],
9: [0, 1, 2, 4, 5, 7, 9, 10, 11],
12: list(range(12)),
},
16: { # maps num layers in student -> which teacher layers to copy
1: [0],
2: [0, 15],
3: [0, 8, 15],
4: [0, 5, 10, 15],
6: [0, 3, 6, 9, 12, 15],
8: [0, 2, 4, 6, 8, 10, 12, 15],
9: [0, 1, 3, 5, 7, 9, 11, 13, 15],
12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15],
16: list(range(16)),
},
6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))},
}
__UpperCamelCase : int = {
# maps num layers in student -> which teacher layers to copy.
6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]},
12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]},
16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]},
}
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ):
try:
lowerCAmelCase = LAYERS_TO_COPY[n_teacher][n_student]
return val
except KeyError:
if n_student != n_teacher:
warnings.warn(
F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first'
F' {n_student}' )
return list(range(_UpperCAmelCase ) )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ):
if n_student > n_teacher:
raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' )
elif n_teacher == n_student:
return list(range(_UpperCAmelCase ) )
elif n_student == 1:
return [n_teacher - 1]
else:
return LAYERS_TO_SUPERVISE[n_teacher][n_student]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, PreTrainedModel] , _UpperCAmelCase : Union[str, Path] = "student" , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ):
lowerCAmelCase = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.'
assert (e is not None) or (d is not None), _msg
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
AutoTokenizer.from_pretrained(_UpperCAmelCase ).save_pretrained(_UpperCAmelCase ) # purely for convenience
lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).eval()
else:
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), F'teacher must be a model or string got type {type(_UpperCAmelCase )}'
lowerCAmelCase = teacher.config.to_diff_dict()
try:
lowerCAmelCase ,lowerCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers
if e is None:
lowerCAmelCase = teacher_e
if d is None:
lowerCAmelCase = teacher_d
init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} )
except AttributeError: # T5
if hasattr(teacher.config , 'num_encoder_layers' ):
lowerCAmelCase ,lowerCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers
else:
lowerCAmelCase ,lowerCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers
if e is None:
lowerCAmelCase = teacher_e
if d is None:
lowerCAmelCase = teacher_d
if hasattr(teacher.config , 'num_encoder_layers' ):
init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} )
else:
init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} )
# Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs
init_kwargs.update(_UpperCAmelCase )
# Copy weights
lowerCAmelCase = teacher.config_class(**_UpperCAmelCase )
lowerCAmelCase = AutoModelForSeqaSeqLM.from_config(_UpperCAmelCase )
# Start by copying the full teacher state dict this will copy the first N teacher layers to the student.
lowerCAmelCase = student.load_state_dict(teacher.state_dict() , strict=_UpperCAmelCase )
assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys.
if copy_first_teacher_layers: # Our copying is done. We just log and save
lowerCAmelCase ,lowerCAmelCase = list(range(_UpperCAmelCase ) ), list(range(_UpperCAmelCase ) )
logger.info(
F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to'
F' {save_path}' )
student.save_pretrained(_UpperCAmelCase )
return student, e_layers_to_copy, d_layers_to_copy
# Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer.
if e_layers_to_copy is None:
lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase )
if d_layers_to_copy is None:
lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase )
try:
if hasattr(
_UpperCAmelCase , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers
copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _UpperCAmelCase )
copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _UpperCAmelCase )
else:
copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _UpperCAmelCase )
copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _UpperCAmelCase )
except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block
copy_layers(teacher.encoder.block , student.encoder.block , _UpperCAmelCase )
copy_layers(teacher.decoder.block , student.decoder.block , _UpperCAmelCase )
logger.info(
F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' )
lowerCAmelCase = {
'teacher_type': teacher.config.model_type,
'copied_encoder_layers': e_layers_to_copy,
'copied_decoder_layers': d_layers_to_copy,
}
student.save_pretrained(_UpperCAmelCase )
# Save information about copying for easier reproducibility
return student, e_layers_to_copy, d_layers_to_copy
if __name__ == "__main__":
fire.Fire(create_student_by_copying_alternating_layers)
| 4 | 1 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class a ( a__ , unittest.TestCase ):
snake_case__ = DiTPipeline
snake_case__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
snake_case__ = PipelineTesterMixin.required_optional_params - {
'''latents''',
'''num_images_per_prompt''',
'''callback''',
'''callback_steps''',
}
snake_case__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
snake_case__ = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase = TransformeraDModel(
sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_snake_case , activation_fn='gelu-approximate' , num_embeds_ada_norm=10_00 , norm_type='ada_norm_zero' , norm_elementwise_affine=_snake_case , )
lowerCAmelCase = AutoencoderKL()
lowerCAmelCase = DDIMScheduler()
lowerCAmelCase = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler}
return components
def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ):
"""simple docstring"""
if str(_snake_case ).startswith('mps' ):
lowerCAmelCase = torch.manual_seed(_snake_case )
else:
lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowerCAmelCase = {
'class_labels': [1],
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'cpu'
lowerCAmelCase = self.get_dummy_components()
lowerCAmelCase = self.pipeline_class(**_snake_case )
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = self.get_dummy_inputs(_snake_case )
lowerCAmelCase = pipe(**_snake_case ).images
lowerCAmelCase = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 16, 16, 3) )
lowerCAmelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] )
lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_snake_case , 1E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_inference_batch_single_identical(relax_max_difference=_snake_case , expected_max_diff=1E-3 )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
@require_torch_gpu
@slow
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' )
pipe.to('cuda' )
lowerCAmelCase = ['vase', 'umbrella', 'white shark', 'white wolf']
lowerCAmelCase = pipe.get_label_ids(_snake_case )
lowerCAmelCase = pipe(_snake_case , generator=_snake_case , num_inference_steps=40 , output_type='np' ).images
for word, image in zip(_snake_case , _snake_case ):
lowerCAmelCase = load_numpy(
F'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' )
assert np.abs((expected_image - image).max() ) < 1E-2
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' )
lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to('cuda' )
lowerCAmelCase = ['vase', 'umbrella']
lowerCAmelCase = pipe.get_label_ids(_snake_case )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(_snake_case , generator=_snake_case , num_inference_steps=25 , output_type='np' ).images
for word, image in zip(_snake_case , _snake_case ):
lowerCAmelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
F'/dit/{word}_512.npy' )
assert np.abs((expected_image - image).max() ) < 1E-1
| 4 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__UpperCamelCase : Dict = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = ['''LayoutXLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Any = ['''LayoutXLMTokenizerFast''']
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
__UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
__UpperCamelCase : Union[str, Any] = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[Any] = ['''GPTSw3Tokenizer''']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_swa import GPTSwaTokenizer
else:
import sys
__UpperCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 |
"""simple docstring"""
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ):
lowerCAmelCase = 0.00
lowerCAmelCase = 0
for resistor in resistors:
if resistor <= 0:
lowerCAmelCase = F'Resistor at index {index} has a negative or zero value!'
raise ValueError(_UpperCAmelCase )
first_sum += 1 / float(_UpperCAmelCase )
index += 1
return 1 / first_sum
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ):
lowerCAmelCase = 0.00
lowerCAmelCase = 0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
lowerCAmelCase = F'Resistor at index {index} has a negative value!'
raise ValueError(_UpperCAmelCase )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 | 1 |
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class a ( a__ ):
snake_case__ = '''SpeechT5FeatureExtractor'''
snake_case__ = '''SpeechT5Tokenizer'''
def __init__( self , _snake_case , _snake_case ):
"""simple docstring"""
super().__init__(_snake_case , _snake_case )
def __call__( self , *_snake_case , **_snake_case ):
"""simple docstring"""
lowerCAmelCase = kwargs.pop('audio' , _snake_case )
lowerCAmelCase = kwargs.pop('text' , _snake_case )
lowerCAmelCase = kwargs.pop('text_target' , _snake_case )
lowerCAmelCase = kwargs.pop('audio_target' , _snake_case )
lowerCAmelCase = kwargs.pop('sampling_rate' , _snake_case )
if audio is not None and text is not None:
raise ValueError(
'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' )
if audio_target is not None and text_target is not None:
raise ValueError(
'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' )
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' )
if audio is not None:
lowerCAmelCase = self.feature_extractor(_snake_case , *_snake_case , sampling_rate=_snake_case , **_snake_case )
elif text is not None:
lowerCAmelCase = self.tokenizer(_snake_case , **_snake_case )
else:
lowerCAmelCase = None
if audio_target is not None:
lowerCAmelCase = self.feature_extractor(audio_target=_snake_case , *_snake_case , sampling_rate=_snake_case , **_snake_case )
lowerCAmelCase = targets['input_values']
elif text_target is not None:
lowerCAmelCase = self.tokenizer(_snake_case , **_snake_case )
lowerCAmelCase = targets['input_ids']
else:
lowerCAmelCase = None
if inputs is None:
return targets
if targets is not None:
lowerCAmelCase = labels
lowerCAmelCase = targets.get('attention_mask' )
if decoder_attention_mask is not None:
lowerCAmelCase = decoder_attention_mask
return inputs
def UpperCamelCase__ ( self , *_snake_case , **_snake_case ):
"""simple docstring"""
lowerCAmelCase = kwargs.pop('input_values' , _snake_case )
lowerCAmelCase = kwargs.pop('input_ids' , _snake_case )
lowerCAmelCase = kwargs.pop('labels' , _snake_case )
if input_values is not None and input_ids is not None:
raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' )
if input_values is None and input_ids is None and labels is None:
raise ValueError(
'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' )
if input_values is not None:
lowerCAmelCase = self.feature_extractor.pad(_snake_case , *_snake_case , **_snake_case )
elif input_ids is not None:
lowerCAmelCase = self.tokenizer.pad(_snake_case , **_snake_case )
else:
lowerCAmelCase = None
if labels is not None:
if "input_ids" in labels or (isinstance(_snake_case , _snake_case ) and "input_ids" in labels[0]):
lowerCAmelCase = self.tokenizer.pad(_snake_case , **_snake_case )
lowerCAmelCase = targets['input_ids']
else:
lowerCAmelCase = self.feature_extractor.feature_size
lowerCAmelCase = self.feature_extractor.num_mel_bins
lowerCAmelCase = self.feature_extractor.pad(_snake_case , *_snake_case , **_snake_case )
lowerCAmelCase = feature_size_hack
lowerCAmelCase = targets['input_values']
else:
lowerCAmelCase = None
if inputs is None:
return targets
if targets is not None:
lowerCAmelCase = labels
lowerCAmelCase = targets.get('attention_mask' )
if decoder_attention_mask is not None:
lowerCAmelCase = decoder_attention_mask
return inputs
def UpperCamelCase__ ( self , *_snake_case , **_snake_case ):
"""simple docstring"""
return self.tokenizer.batch_decode(*_snake_case , **_snake_case )
def UpperCamelCase__ ( self , *_snake_case , **_snake_case ):
"""simple docstring"""
return self.tokenizer.decode(*_snake_case , **_snake_case )
| 4 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase : List[str] = logging.get_logger(__name__)
__UpperCamelCase : Tuple = {
'''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''',
# See all GLPN models at https://huggingface.co/models?filter=glpn
}
class a ( a__ ):
snake_case__ = '''glpn'''
def __init__( self , _snake_case=3 , _snake_case=4 , _snake_case=[2, 2, 2, 2] , _snake_case=[8, 4, 2, 1] , _snake_case=[32, 64, 1_60, 2_56] , _snake_case=[7, 3, 3, 3] , _snake_case=[4, 2, 2, 2] , _snake_case=[1, 2, 5, 8] , _snake_case=[4, 4, 4, 4] , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=0.1 , _snake_case=1E-6 , _snake_case=64 , _snake_case=10 , _snake_case=-1 , **_snake_case , ):
"""simple docstring"""
super().__init__(**_snake_case )
lowerCAmelCase = num_channels
lowerCAmelCase = num_encoder_blocks
lowerCAmelCase = depths
lowerCAmelCase = sr_ratios
lowerCAmelCase = hidden_sizes
lowerCAmelCase = patch_sizes
lowerCAmelCase = strides
lowerCAmelCase = mlp_ratios
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = initializer_range
lowerCAmelCase = drop_path_rate
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = decoder_hidden_size
lowerCAmelCase = max_depth
lowerCAmelCase = head_in_index
| 4 | 1 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.