code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) __UpperCamelCase : Optional[Any] = logging.getLogger() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ): lowerCAmelCase = {} lowerCAmelCase = os.path.join(_UpperCAmelCase , 'all_results.json' ) if os.path.exists(_UpperCAmelCase ): with open(_UpperCAmelCase , 'r' ) as f: lowerCAmelCase = json.load(_UpperCAmelCase ) else: raise ValueError(F'can\'t find {path}' ) return results __UpperCamelCase : Union[str, Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" import xla_spawn lowerCAmelCase = self.get_auto_remove_tmp_dir() lowerCAmelCase = F'\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(_snake_case , 'argv' , _snake_case ): lowerCAmelCase = time() xla_spawn.main() lowerCAmelCase = time() lowerCAmelCase = get_results(_snake_case ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_00 ) def UpperCamelCase__ ( self ): """simple docstring""" import xla_spawn lowerCAmelCase = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(_snake_case , 'argv' , _snake_case ): xla_spawn.main()
4
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , _snake_case=10_00 , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = range_bbox def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase = bbox[i, j, 3] lowerCAmelCase = bbox[i, j, 1] lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase = bbox[i, j, 2] lowerCAmelCase = bbox[i, j, 0] lowerCAmelCase = t lowerCAmelCase = tf.convert_to_tensor(_snake_case ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForMaskedLM(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForSequenceClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForTokenClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = True snake_case__ = 1_0 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFLayoutLMModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def _SCREAMING_SNAKE_CASE (): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off lowerCAmelCase = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowerCAmelCase = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the sequence output on [0, :3, :3] lowerCAmelCase = tf.convert_to_tensor( [[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _snake_case , atol=1E-3 ) ) # test the pooled output on [1, :3] lowerCAmelCase = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _snake_case , atol=1E-3 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar lowerCAmelCase = outputs.loss lowerCAmelCase = (2,) self.assertEqual(loss.shape , _snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = (2, 2) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the shape of the logits lowerCAmelCase = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _snake_case ) self.assertEqual(outputs.end_logits.shape , _snake_case )
4
1
"""simple docstring""" from __future__ import annotations import requests def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(_UpperCAmelCase ).json() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' lowerCAmelCase = requests.get(_UpperCAmelCase ).json()[:max_stories] return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = hackernews_top_stories(_UpperCAmelCase ) return "\n".join('* [{title}]({url})'.format(**_UpperCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
"""simple docstring""" import argparse import os import re import packaging.version __UpperCamelCase : Union[str, Any] = '''examples/''' __UpperCamelCase : str = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __UpperCamelCase : List[str] = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } __UpperCamelCase : Optional[int] = '''README.md''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ): with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.read() lowerCAmelCase ,lowerCAmelCase = REPLACE_PATTERNS[pattern] lowerCAmelCase = replace.replace('VERSION' , _UpperCAmelCase ) lowerCAmelCase = re_pattern.sub(_UpperCAmelCase , _UpperCAmelCase ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ): for folder, directories, fnames in os.walk(_UpperCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , pattern='examples' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not patch: update_version_in_examples(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = '🤗 Transformers currently provides the following architectures' lowerCAmelCase = '1. Want to contribute a new model?' with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.readlines() # Find the start of the list. lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): lowerCAmelCase = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): with open(REPLACE_FILES['init'] , 'r' ) as f: lowerCAmelCase = f.read() lowerCAmelCase = REPLACE_PATTERNS['init'][0].search(_UpperCAmelCase ).groups()[0] return packaging.version.parse(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple=False ): lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: lowerCAmelCase = default_version.base_version elif patch: lowerCAmelCase = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: lowerCAmelCase = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. lowerCAmelCase = input(F'Which version are you releasing? [{default_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = default_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase , patch=_UpperCAmelCase ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = get_version() lowerCAmelCase = F'{current_version.major}.{current_version.minor + 1}.0.dev0' lowerCAmelCase = current_version.base_version # Check with the user we got that right. lowerCAmelCase = input(F'Which version are we developing now? [{dev_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = dev_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __UpperCamelCase : Optional[int] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
4
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
4
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __UpperCamelCase : Optional[int] = pytest.mark.integration @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_snake_case ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() lowerCAmelCase = dset.map( lambda _snake_case , _snake_case : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_snake_case , keep_in_memory=_snake_case ) lowerCAmelCase = dset.add_faiss_index('vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_snake_case , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch lowerCAmelCase = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCAmelCase = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_snake_case ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertRaises(_snake_case , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCAmelCase = np.eye(5 , dtype=np.floataa )[::-1] lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) self.assertRaises(_snake_case , index.search_batch , queries[0] ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCAmelCase = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_snake_case ): lowerCAmelCase = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = faiss.IndexFlat(5 ) lowerCAmelCase = FaissIndex(custom_index=_snake_case ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: index.save(tmp_file.name ) lowerCAmelCase = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ): import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCAmelCase = 'index.faiss' lowerCAmelCase = F'mock://{index_name}' index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = Elasticsearch() lowerCAmelCase = {'acknowledged': True} lowerCAmelCase = ElasticSearchIndex(es_client=_snake_case ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case ) # batched queries with timeout lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case , request_timeout=30 ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case )
4
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( a__ , unittest.TestCase ): snake_case__ = DanceDiffusionPipeline snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_snake_case , use_timestep_embedding=_snake_case , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase = IPNDMScheduler() lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = DanceDiffusionPipeline(**_snake_case ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = pipe(**_snake_case ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_local() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
4
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a ( a__ , a__ , unittest.TestCase ): snake_case__ = IFInpaintingPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_dummy_components() def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
4
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class a : # setable values snake_case__ = None snake_case__ = None snake_case__ = None # sigma(t_i) @classmethod def UpperCamelCase__ ( cls ): """simple docstring""" return cls() @dataclass class a ( a__ ): snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 class a ( a__ , a__ ): @property def UpperCamelCase__ ( self ): """simple docstring""" return True @register_to_config def __init__( self , _snake_case = 0.02 , _snake_case = 1_00 , _snake_case = 1.007 , _snake_case = 80 , _snake_case = 0.05 , _snake_case = 50 , ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" return KarrasVeSchedulerState.create() def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = () ): """simple docstring""" lowerCAmelCase = jnp.arange(0 , _snake_case )[::-1].copy() lowerCAmelCase = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=_snake_case , schedule=jnp.array(_snake_case , dtype=jnp.floataa ) , timesteps=_snake_case , ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: lowerCAmelCase = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: lowerCAmelCase = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCAmelCase = random.split(_snake_case , num=1 ) lowerCAmelCase = self.config.s_noise * random.normal(key=_snake_case , shape=sample.shape ) lowerCAmelCase = sigma + gamma * sigma lowerCAmelCase = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = True , ): """simple docstring""" lowerCAmelCase = sample_hat + sigma_hat * model_output lowerCAmelCase = (sample_hat - pred_original_sample) / sigma_hat lowerCAmelCase = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_snake_case , derivative=_snake_case , state=_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = True , ): """simple docstring""" lowerCAmelCase = sample_prev + sigma_prev * model_output lowerCAmelCase = (sample_prev - pred_original_sample) / sigma_prev lowerCAmelCase = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_snake_case , derivative=_snake_case , state=_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" raise NotImplementedError()
4
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = self.vocab_size - 1 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , head_mask=_snake_case ) lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTLMHeadModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTDoubleHeadsModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = OpenAIGPTForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case__ = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=False ): """simple docstring""" lowerCAmelCase = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_snake_case , ) lowerCAmelCase = inputs_dict['labels'] lowerCAmelCase = inputs_dict['labels'] lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_snake_case , ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_snake_case ) return inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenAIGPTModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , n_embd=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = OpenAIGPTModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_torch class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(_snake_case ) lowerCAmelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=_snake_case ) # the president is lowerCAmelCase = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCAmelCase = model.generate(_snake_case , do_sample=_snake_case ) self.assertListEqual(output_ids[0].tolist() , _snake_case )
4
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Dict = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __UpperCamelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __UpperCamelCase : str = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=_UpperCAmelCase , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=_UpperCAmelCase , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=_UpperCAmelCase , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=_UpperCAmelCase , default='data/dump' , help='The dump file prefix.' ) lowerCAmelCase = parser.parse_args() logger.info(F'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": lowerCAmelCase = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `[CLS]` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCAmelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `<s>` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": lowerCAmelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` lowerCAmelCase = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(F'Loading text from {args.file_path}' ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: lowerCAmelCase = fp.readlines() logger.info('Start encoding' ) logger.info(F'{len(_UpperCAmelCase )} examples to process.' ) lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 1_0000 lowerCAmelCase = time.time() for text in data: lowerCAmelCase = F'{bos} {text.strip()} {sep}' lowerCAmelCase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) rslt.append(_UpperCAmelCase ) iter += 1 if iter % interval == 0: lowerCAmelCase = time.time() logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) lowerCAmelCase = time.time() logger.info('Finished binarization' ) logger.info(F'{len(_UpperCAmelCase )} examples processed.' ) lowerCAmelCase = F'{args.dump_file}.{args.tokenizer_name}.pickle' lowerCAmelCase = tokenizer.vocab_size if vocab_size < (1 << 16): lowerCAmelCase = [np.uintaa(_UpperCAmelCase ) for d in rslt] else: lowerCAmelCase = [np.intaa(_UpperCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'Dump to {dp_file}' ) with open(_UpperCAmelCase , 'wb' ) as handle: pickle.dump(rslt_ , _UpperCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
4
1
"""simple docstring""" class a : def __init__( self , _snake_case ): """simple docstring""" lowerCAmelCase = set_counts lowerCAmelCase = max(_snake_case ) lowerCAmelCase = len(_snake_case ) lowerCAmelCase = [1] * num_sets lowerCAmelCase = list(range(_snake_case ) ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.get_parent(_snake_case ) lowerCAmelCase = self.get_parent(_snake_case ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowerCAmelCase = 0 lowerCAmelCase = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowerCAmelCase = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowerCAmelCase = 0 lowerCAmelCase = src_parent lowerCAmelCase = self.set_counts[src_parent] lowerCAmelCase = max(self.max_set , _snake_case ) return True def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if self.parents[disj_set] == disj_set: return disj_set lowerCAmelCase = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
4
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''bert''' def __init__( self , _snake_case=3_05_22 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache lowerCAmelCase = classifier_dropout class a ( a__ ): @property def UpperCamelCase__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
4
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , _snake_case=10_00 , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = range_bbox def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase = bbox[i, j, 3] lowerCAmelCase = bbox[i, j, 1] lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase = bbox[i, j, 2] lowerCAmelCase = bbox[i, j, 0] lowerCAmelCase = t lowerCAmelCase = tf.convert_to_tensor(_snake_case ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForMaskedLM(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForSequenceClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForTokenClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = True snake_case__ = 1_0 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFLayoutLMModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def _SCREAMING_SNAKE_CASE (): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off lowerCAmelCase = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowerCAmelCase = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the sequence output on [0, :3, :3] lowerCAmelCase = tf.convert_to_tensor( [[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _snake_case , atol=1E-3 ) ) # test the pooled output on [1, :3] lowerCAmelCase = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _snake_case , atol=1E-3 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar lowerCAmelCase = outputs.loss lowerCAmelCase = (2,) self.assertEqual(loss.shape , _snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = (2, 2) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the shape of the logits lowerCAmelCase = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _snake_case ) self.assertEqual(outputs.end_logits.shape , _snake_case )
4
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( a__ , unittest.TestCase ): snake_case__ = DanceDiffusionPipeline snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_snake_case , use_timestep_embedding=_snake_case , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase = IPNDMScheduler() lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = DanceDiffusionPipeline(**_snake_case ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = pipe(**_snake_case ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_local() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
4
1
"""simple docstring""" from datetime import datetime as dt import os from github import Github __UpperCamelCase : Optional[Any] = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = Github(os.environ['GITHUB_TOKEN'] ) lowerCAmelCase = g.get_repo('huggingface/transformers' ) lowerCAmelCase = repo.get_issues(state='open' ) for issue in open_issues: lowerCAmelCase = sorted([comment for comment in issue.get_comments()] , key=lambda _UpperCAmelCase : i.created_at , reverse=_UpperCAmelCase ) lowerCAmelCase = comments[0] if len(_UpperCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='closed' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
4
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , use_stable_embedding=_snake_case , ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = OpenLlamaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = OpenLlamaModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , ) lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() # first forward pass lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , use_cache=_snake_case , ) lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , past_key_values=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) snake_case__ = (OpenLlamaForCausalLM,) if is_torch_available() else () snake_case__ = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenLlamaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase = type self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'single_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'multi_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = OpenLlamaModel(_snake_case ) original_model.to(_snake_case ) original_model.eval() lowerCAmelCase = original_model(_snake_case ).last_hidden_state lowerCAmelCase = original_model(_snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = {'type': scaling_type, 'factor': 10.0} lowerCAmelCase = OpenLlamaModel(_snake_case ) scaled_model.to(_snake_case ) scaled_model.eval() lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
4
1
"""simple docstring""" import qiskit def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : int ): lowerCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) lowerCAmelCase = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator lowerCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = half_adder(1, 1) print(f'''Half Adder Output Qubit Counts: {counts}''')
4
"""simple docstring""" from typing import Any class a : def __init__( self , _snake_case ): """simple docstring""" lowerCAmelCase = data lowerCAmelCase = None def __repr__( self ): """simple docstring""" return F'Node({self.data})' class a : def __init__( self ): """simple docstring""" lowerCAmelCase = None def __iter__( self ): """simple docstring""" lowerCAmelCase = self.head while node: yield node.data lowerCAmelCase = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(_snake_case ) for item in self] ) def __getitem__( self , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase = self.head for _ in range(_snake_case ): lowerCAmelCase = current.next lowerCAmelCase = data def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(len(self ) , _snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(0 , _snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase = Node(_snake_case ) if self.head is None: lowerCAmelCase = new_node elif index == 0: lowerCAmelCase = self.head # link new_node to head lowerCAmelCase = new_node else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = new_node def UpperCamelCase__ ( self ): # print every node data """simple docstring""" print(self ) def UpperCamelCase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def UpperCamelCase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def UpperCamelCase__ ( self , _snake_case = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase = self.head # default first node if index == 0: lowerCAmelCase = self.head.next else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = temp.next.next return delete_node.data def UpperCamelCase__ ( self ): """simple docstring""" return self.head is None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = None lowerCAmelCase = self.head while current: # Store the current node's next node. lowerCAmelCase = current.next # Make the current node's next point backwards lowerCAmelCase = prev # Make the previous node be the current node lowerCAmelCase = current # Make the current node the next node (to progress iteration) lowerCAmelCase = next_node # Return prev in order to put the head at the end lowerCAmelCase = prev def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = LinkedList() assert linked_list.is_empty() is True assert str(_UpperCAmelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_UpperCAmelCase ) == i linked_list.insert_nth(_UpperCAmelCase , i + 1 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_UpperCAmelCase ) == 9 assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(-8 , 1 ) ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = [ -9, 100, Node(7734_5112 ), 'dlrow olleH', 7, 5555, 0, -192.5_5555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase = LinkedList() for i in test_input: linked_list.insert_tail(_UpperCAmelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase = linked_list.delete_head() assert result == -9 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_UpperCAmelCase ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_UpperCAmelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _SCREAMING_SNAKE_CASE (): from doctest import testmod testmod() lowerCAmelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_UpperCAmelCase ) print('\nReading/changing Node data using indexing:' ) print(F'Element at Position 1: {linked_list[1]}' ) lowerCAmelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_UpperCAmelCase ) print(F'length of linked_list is : {len(_UpperCAmelCase )}' ) if __name__ == "__main__": main()
4
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[str] = '''▁''' __UpperCamelCase : Dict = {'''vocab_file''': '''sentencepiece.bpe.model'''} __UpperCamelCase : Optional[int] = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } __UpperCamelCase : Dict = { '''facebook/mbart-large-50-one-to-many-mmt''': 1024, } # fmt: off __UpperCamelCase : Any = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class a ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = ['''input_ids''', '''attention_mask'''] snake_case__ = [] snake_case__ = [] def __init__( self , _snake_case , _snake_case=None , _snake_case=None , _snake_case="</s>" , _snake_case="</s>" , _snake_case="<s>" , _snake_case="<unk>" , _snake_case="<pad>" , _snake_case="<mask>" , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_snake_case , tgt_lang=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase = 1 lowerCAmelCase = len(self.sp_model ) lowerCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_snake_case ) } lowerCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} lowerCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowerCAmelCase = src_lang if src_lang is not None else 'en_XX' lowerCAmelCase = self.lang_code_to_id[self._src_lang] lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCamelCase__ ( self ): """simple docstring""" return self._src_lang @src_lang.setter def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): """simple docstring""" lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , _snake_case ): """simple docstring""" lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.sp_model.encode(_snake_case , out_type=_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase = self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = [] lowerCAmelCase = '' lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_snake_case ) + token lowerCAmelCase = True lowerCAmelCase = [] else: current_sub_tokens.append(_snake_case ) lowerCAmelCase = False out_string += self.sp_model.decode(_snake_case ) return out_string.strip() def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , 'wb' ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,) def UpperCamelCase__ ( self , _snake_case , _snake_case = None , _snake_case = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) lowerCAmelCase = [1] * len(self.prefix_tokens ) lowerCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_snake_case )) + suffix_ones return prefix_ones + ([0] * len(_snake_case )) + ([0] * len(_snake_case )) + suffix_ones def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCAmelCase = src_lang lowerCAmelCase = self(_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , **_snake_case ) lowerCAmelCase = self.convert_tokens_to_ids(_snake_case ) lowerCAmelCase = tgt_lang_id return inputs def UpperCamelCase__ ( self , _snake_case , _snake_case = "en_XX" , _snake_case = None , _snake_case = "ro_RO" , **_snake_case , ): """simple docstring""" lowerCAmelCase = src_lang lowerCAmelCase = tgt_lang return super().prepare_seqaseq_batch(_snake_case , _snake_case , **_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase__ ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.lang_code_to_id[src_lang] lowerCAmelCase = [self.cur_lang_code_id] lowerCAmelCase = [self.eos_token_id] def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.lang_code_to_id[tgt_lang] lowerCAmelCase = [self.cur_lang_code_id] lowerCAmelCase = [self.eos_token_id]
4
"""simple docstring""" from __future__ import annotations import requests def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(_UpperCAmelCase ).json() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' lowerCAmelCase = requests.get(_UpperCAmelCase ).json()[:max_stories] return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = hackernews_top_stories(_UpperCAmelCase ) return "\n".join('* [{title}]({url})'.format(**_UpperCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
1
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = tf.convert_to_tensor( [ [ 8.2_220_991, # 3rd highest value; idx. 0 -0.5_620_044, 5.23_229_752, 4.0_386_393, -6.8_798_378, -0.54_785_802, -3.2_012_153, 2.92_777_176, 1.88_171_953, 7.35_341_276, # 5th highest value; idx. 9 8.43_207_833, # 2nd highest value; idx. 10 -9.85_711_836, -5.96_209_236, -1.13_039_161, -7.1_115_294, -0.8_369_633, -5.3_186_408, 7.06_427_407, 0.81_369_344, -0.82_023_817, -5.9_179_796, 0.58_813_443, -6.99_778_438, 4.71_551_189, -0.18_771_637, 7.44_020_759, # 4th highest value; idx. 25 9.38_450_987, # 1st highest value; idx. 26 2.12_662_941, -9.32_562_038, 2.35_652_522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_425_518, 4.53_139_238, -5.57_510_464, -6.28_030_699, -7.19_529_503, -4.02_122_551, 1.39_337_037, -6.06_707_057, 1.59_480_517, -9.643_119, 0.03_907_799, 0.67_231_762, -8.88_206_726, 6.27_115_922, # 4th highest value; idx. 13 2.28_520_723, 4.82_767_506, 4.30_421_368, 8.8_275_313, # 2nd highest value; idx. 17 5.44_029_958, # 5th highest value; idx. 18 -4.4_735_794, 7.38_579_536, # 3rd highest value; idx. 20 -2.91_051_663, 2.61_946_077, -2.5_674_762, -9.48_959_302, -4.02_922_645, -1.35_416_918, 9.67_702_323, # 1st highest value; idx. 27 -5.89_478_553, 1.85_370_467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) lowerCAmelCase = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above lowerCAmelCase = tf.convert_to_tensor( [8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above lowerCAmelCase = tf_top_k_top_p_filtering(_snake_case , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) lowerCAmelCase = output[output != -float('inf' )] lowerCAmelCase = tf.cast( tf.where(tf.not_equal(_snake_case , tf.constant(-float('inf' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_snake_case , _snake_case , rtol=1E-12 ) tf.debugging.assert_equal(_snake_case , _snake_case ) @require_tf class a ( unittest.TestCase , a__ ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): snake_case__ = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase = 2 lowerCAmelCase = 2 class a ( tf.Module ): def __init__( self , _snake_case ): """simple docstring""" super(_snake_case , self ).__init__() lowerCAmelCase = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='input_ids' ), tf.TensorSpec((None, input_length) , tf.intaa , name='attention_mask' ), ) , jit_compile=_snake_case , ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.model.generate( input_ids=_snake_case , attention_mask=_snake_case , max_new_tokens=_snake_case , return_dict_in_generate=_snake_case , ) return {"sequences": outputs["sequences"]} lowerCAmelCase = [[2, 0], [1_02, 1_03]] lowerCAmelCase = [[1, 0], [1, 1]] lowerCAmelCase = DummyModel(model=_snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_snake_case , _snake_case , signatures={'serving_default': dummy_model.serving} ) lowerCAmelCase = tf.saved_model.load(_snake_case ).signatures['serving_default'] for batch_size in range(1 , len(_snake_case ) + 1 ): lowerCAmelCase = { 'input_ids': tf.constant(dummy_input_ids[:batch_size] ), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ), } lowerCAmelCase = serving_func(**_snake_case )['sequences'] lowerCAmelCase = test_model.generate(**_snake_case , max_new_tokens=_snake_case ) tf.debugging.assert_equal(_snake_case , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase = 1 lowerCAmelCase = 2 class a ( tf.Module ): def __init__( self , _snake_case ): """simple docstring""" super(_snake_case , self ).__init__() lowerCAmelCase = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='input_ids' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='attention_mask' ), ) , jit_compile=_snake_case , ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.model.generate( input_ids=_snake_case , attention_mask=_snake_case , max_new_tokens=_snake_case , return_dict_in_generate=_snake_case , ) return {"sequences": outputs["sequences"]} lowerCAmelCase = [[2], [1_02, 1_03]] lowerCAmelCase = [[1], [1, 1]] lowerCAmelCase = DummyModel(model=_snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_snake_case , _snake_case , signatures={'serving_default': dummy_model.serving} ) lowerCAmelCase = tf.saved_model.load(_snake_case ).signatures['serving_default'] for input_row in range(len(_snake_case ) ): lowerCAmelCase = { 'input_ids': tf.constant([dummy_input_ids[input_row]] ), 'attention_mask': tf.constant([dummy_attention_masks[input_row]] ), } lowerCAmelCase = serving_func(**_snake_case )['sequences'] lowerCAmelCase = test_model.generate(**_snake_case , max_new_tokens=_snake_case ) tf.debugging.assert_equal(_snake_case , _snake_case ) @slow @require_tensorflow_text def UpperCamelCase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small' , filename='spiece.model' , local_dir=_snake_case ) class a ( tf.keras.layers.Layer ): def __init__( self ): """simple docstring""" super().__init__() lowerCAmelCase = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_snake_case , 'spiece.model' ) , 'rb' ).read() ) lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' ) def UpperCamelCase__ ( self , _snake_case , *_snake_case , **_snake_case ): """simple docstring""" lowerCAmelCase = self.tokenizer.tokenize(_snake_case ) lowerCAmelCase ,lowerCAmelCase = text.pad_model_inputs( _snake_case , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) lowerCAmelCase = self.model.generate(input_ids=_snake_case , attention_mask=_snake_case ) return self.tokenizer.detokenize(_snake_case ) lowerCAmelCase = CompleteSentenceTransformer() lowerCAmelCase = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='inputs' ) lowerCAmelCase = complete_model(_snake_case ) lowerCAmelCase = tf.keras.Model(_snake_case , _snake_case ) keras_model.save(_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = { 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 10, 'temperature': 0.7, } lowerCAmelCase = 14 lowerCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase = 'Hello, my dog is cute and' lowerCAmelCase = tokenizer(_snake_case , return_tensors='tf' ) lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) lowerCAmelCase = model.generate(**_snake_case , eos_token_id=_snake_case , **_snake_case ) self.assertTrue(expectation == len(generated_tokens[0] ) ) lowerCAmelCase = [6_38, 1_98] with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) lowerCAmelCase = model.generate(**_snake_case , eos_token_id=_snake_case , **_snake_case ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowerCAmelCase = 'Hugging Face is a technology company based in New York and Paris.' lowerCAmelCase = bart_tokenizer(_snake_case , return_tensors='tf' ).input_ids lowerCAmelCase = TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowerCAmelCase = bart_model.generate(_snake_case ).numpy() class a ( a__ ): def UpperCamelCase__ ( self , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" return super().call(_snake_case , **_snake_case ) lowerCAmelCase = FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowerCAmelCase = bart_model.generate(_snake_case , foo='bar' ).numpy() self.assertTrue(np.array_equal(_snake_case , _snake_case ) ) class a ( bart_model.model.encoder.__class__ ): def UpperCamelCase__ ( self , _snake_case , **_snake_case ): """simple docstring""" return super().call(_snake_case , **_snake_case ) lowerCAmelCase = FakeEncoder(bart_model.config , bart_model.model.shared ) lowerCAmelCase = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) lowerCAmelCase = bart_model.generate(_snake_case ).numpy() with self.assertRaises(_snake_case ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_snake_case , foo='bar' )
4
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ): lowerCAmelCase = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 48 lowerCAmelCase = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 60 lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCAmelCase = 1 lowerCAmelCase = 1 lowerCAmelCase = 126 lowerCAmelCase = 7 lowerCAmelCase = 255.0 lowerCAmelCase = '' return config def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): if "patch_embed.proj" in name and "layers" not in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCAmelCase = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: lowerCAmelCase = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: lowerCAmelCase = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: lowerCAmelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCAmelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCAmelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCAmelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: lowerCAmelCase = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: lowerCAmelCase = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: lowerCAmelCase = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: lowerCAmelCase = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": lowerCAmelCase = 'layernorm.weight' if name == "norm.bias": lowerCAmelCase = 'layernorm.bias' if "conv_first" in name: lowerCAmelCase = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCAmelCase = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCAmelCase = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: lowerCAmelCase = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: lowerCAmelCase = name.replace('upsample.2' , 'upsample.convolution_1' ) lowerCAmelCase = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": lowerCAmelCase = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) lowerCAmelCase = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: lowerCAmelCase = 'swin2sr.' + name return name def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict ): for key in orig_state_dict.copy().keys(): lowerCAmelCase = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: lowerCAmelCase = key.split('.' ) lowerCAmelCase = int(key_split[1] ) lowerCAmelCase = int(key_split[4] ) lowerCAmelCase = config.embed_dim if "weight" in key: lowerCAmelCase = val[:dim, :] lowerCAmelCase = val[dim : dim * 2, :] lowerCAmelCase = val[-dim:, :] else: lowerCAmelCase = val[:dim] lowerCAmelCase = val[dim : dim * 2] lowerCAmelCase = val[-dim:] pass else: lowerCAmelCase = val return orig_state_dict def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ): lowerCAmelCase = get_config(_UpperCAmelCase ) lowerCAmelCase = SwinaSRForImageSuperResolution(_UpperCAmelCase ) model.eval() lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' ) lowerCAmelCase = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_UpperCAmelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowerCAmelCase = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) lowerCAmelCase = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCAmelCase = 126 if 'Jpeg' in checkpoint_url else 256 lowerCAmelCase = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowerCAmelCase = transforms(_UpperCAmelCase ).unsqueeze(0 ) if config.num_channels == 1: lowerCAmelCase = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCAmelCase = model(_UpperCAmelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-3 ) print('Looks ok!' ) lowerCAmelCase = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } lowerCAmelCase = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') __UpperCamelCase : Optional[int] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCamelCase : List[str] = None __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : Tuple = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase : str = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase : Optional[int] = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __UpperCamelCase : Optional[Any] = '''▁''' class a ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ['''input_ids''', '''attention_mask'''] snake_case__ = BarthezTokenizer def __init__( self , _snake_case=None , _snake_case=None , _snake_case="<s>" , _snake_case="</s>" , _snake_case="</s>" , _snake_case="<s>" , _snake_case="<unk>" , _snake_case="<pad>" , _snake_case="<mask>" , **_snake_case , ): """simple docstring""" lowerCAmelCase = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token super().__init__( _snake_case , tokenizer_file=_snake_case , bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , **_snake_case , ) lowerCAmelCase = vocab_file lowerCAmelCase = False if not self.vocab_file else True def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ): copyfile(self.vocab_file , _snake_case ) return (out_vocab_file,)
4
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''megatron-bert''' def __init__( self , _snake_case=2_90_56 , _snake_case=10_24 , _snake_case=24 , _snake_case=16 , _snake_case=40_96 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache
4
1
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __UpperCamelCase : Optional[Any] = logging.get_logger('''transformers.models.speecht5''') def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict ): hf_model.apply_weight_norm() lowerCAmelCase = checkpoint['input_conv.weight_g'] lowerCAmelCase = checkpoint['input_conv.weight_v'] lowerCAmelCase = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase = checkpoint[F'upsamples.{i}.1.weight_g'] lowerCAmelCase = checkpoint[F'upsamples.{i}.1.weight_v'] lowerCAmelCase = checkpoint[F'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_g'] lowerCAmelCase = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_v'] lowerCAmelCase = checkpoint[F'blocks.{i}.convs1.{j}.1.bias'] lowerCAmelCase = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_g'] lowerCAmelCase = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_v'] lowerCAmelCase = checkpoint[F'blocks.{i}.convs2.{j}.1.bias'] lowerCAmelCase = checkpoint['output_conv.1.weight_g'] lowerCAmelCase = checkpoint['output_conv.1.weight_v'] lowerCAmelCase = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , ): if config_path is not None: lowerCAmelCase = SpeechTaHifiGanConfig.from_pretrained(_UpperCAmelCase ) else: lowerCAmelCase = SpeechTaHifiGanConfig() lowerCAmelCase = SpeechTaHifiGan(_UpperCAmelCase ) lowerCAmelCase = torch.load(_UpperCAmelCase ) load_weights(orig_checkpoint['model']['generator'] , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = np.load(_UpperCAmelCase ) lowerCAmelCase = stats[0].reshape(-1 ) lowerCAmelCase = stats[1].reshape(-1 ) lowerCAmelCase = torch.from_numpy(_UpperCAmelCase ).float() lowerCAmelCase = torch.from_numpy(_UpperCAmelCase ).float() model.save_pretrained(_UpperCAmelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
4
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
4
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class a ( a__ ): snake_case__ = '''beit''' def __init__( self , _snake_case=81_92 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=2_24 , _snake_case=16 , _snake_case=3 , _snake_case=False , _snake_case=False , _snake_case=False , _snake_case=False , _snake_case=0.1 , _snake_case=0.1 , _snake_case=True , _snake_case=[3, 5, 7, 11] , _snake_case=[1, 2, 3, 6] , _snake_case=True , _snake_case=0.4 , _snake_case=2_56 , _snake_case=1 , _snake_case=False , _snake_case=2_55 , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = use_mask_token lowerCAmelCase = use_absolute_position_embeddings lowerCAmelCase = use_relative_position_bias lowerCAmelCase = use_shared_relative_position_bias lowerCAmelCase = layer_scale_init_value lowerCAmelCase = drop_path_rate lowerCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) lowerCAmelCase = out_indices lowerCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) lowerCAmelCase = use_auxiliary_head lowerCAmelCase = auxiliary_loss_weight lowerCAmelCase = auxiliary_channels lowerCAmelCase = auxiliary_num_convs lowerCAmelCase = auxiliary_concat_input lowerCAmelCase = semantic_loss_ignore_index class a ( a__ ): snake_case__ = version.parse('''1.11''' ) @property def UpperCamelCase__ ( self ): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return 1E-4
4
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class a ( a__ ): snake_case__ = 42 class a ( a__ , a__ ): @register_to_config def __init__( self , _snake_case = 3 , _snake_case = 3 , _snake_case = ("DownEncoderBlock2D",) , _snake_case = ("UpDecoderBlock2D",) , _snake_case = (64,) , _snake_case = 1 , _snake_case = "silu" , _snake_case = 3 , _snake_case = 32 , _snake_case = 2_56 , _snake_case = 32 , _snake_case = None , _snake_case = 0.18_215 , _snake_case = "group" , ): """simple docstring""" super().__init__() # pass init params to Encoder lowerCAmelCase = Encoder( in_channels=_snake_case , out_channels=_snake_case , down_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , double_z=_snake_case , ) lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 ) lowerCAmelCase = VectorQuantizer(_snake_case , _snake_case , beta=0.25 , remap=_snake_case , sane_index_shape=_snake_case ) lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 ) # pass init params to Decoder lowerCAmelCase = Decoder( in_channels=_snake_case , out_channels=_snake_case , up_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , norm_type=_snake_case , ) @apply_forward_hook def UpperCamelCase__ ( self , _snake_case , _snake_case = True ): """simple docstring""" lowerCAmelCase = self.encoder(_snake_case ) lowerCAmelCase = self.quant_conv(_snake_case ) if not return_dict: return (h,) return VQEncoderOutput(latents=_snake_case ) @apply_forward_hook def UpperCamelCase__ ( self , _snake_case , _snake_case = False , _snake_case = True ): """simple docstring""" if not force_not_quantize: lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = self.quantize(_snake_case ) else: lowerCAmelCase = h lowerCAmelCase = self.post_quant_conv(_snake_case ) lowerCAmelCase = self.decoder(_snake_case , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case = True ): """simple docstring""" lowerCAmelCase = sample lowerCAmelCase = self.encode(_snake_case ).latents lowerCAmelCase = self.decode(_snake_case ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_snake_case )
4
1
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCamelCase : int = '''pt''' elif is_tf_available(): __UpperCamelCase : Optional[Any] = '''tf''' else: __UpperCamelCase : int = '''jax''' class a ( a__ , unittest.TestCase ): snake_case__ = ByTaTokenizer snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return ByTaTokenizer.from_pretrained('google/byt5-small' ) def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case=False , _snake_case=20 , _snake_case=5 ): """simple docstring""" lowerCAmelCase = [] for i in range(len(_snake_case ) ): try: lowerCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=_snake_case ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCAmelCase = list(filter(lambda _snake_case : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _snake_case ) ) lowerCAmelCase = list(filter(lambda _snake_case : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_snake_case ) , _snake_case ) ) if max_length is not None and len(_snake_case ) > max_length: lowerCAmelCase = toks[:max_length] if min_length is not None and len(_snake_case ) < min_length and len(_snake_case ) > 0: while len(_snake_case ) < min_length: lowerCAmelCase = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase = [t[0] for t in toks] # Ensure consistency lowerCAmelCase = tokenizer.decode(_snake_case , clean_up_tokenization_spaces=_snake_case ) if " " not in output_txt and len(_snake_case ) > 1: lowerCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_snake_case ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_snake_case ) ) if with_prefix_space: lowerCAmelCase = ' ' + output_txt lowerCAmelCase = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) return output_txt, output_ids def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.ta_base_tokenizer lowerCAmelCase = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) lowerCAmelCase = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.ta_base_tokenizer lowerCAmelCase = 'Unicode €.' lowerCAmelCase = tokenizer(_snake_case ) lowerCAmelCase = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['input_ids'] , _snake_case ) # decoding lowerCAmelCase = tokenizer.decode(_snake_case ) self.assertEqual(_snake_case , 'Unicode €.</s>' ) lowerCAmelCase = tokenizer('e è é ê ë' ) lowerCAmelCase = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['input_ids'] , _snake_case ) # decoding lowerCAmelCase = tokenizer.decode(_snake_case ) self.assertEqual(_snake_case , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.ta_base_tokenizer lowerCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off lowerCAmelCase = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on lowerCAmelCase = tokenizer(_snake_case , padding=_snake_case , return_tensors=_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) if FRAMEWORK != "jax": lowerCAmelCase = list(batch.input_ids.numpy()[0] ) else: lowerCAmelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_snake_case , _snake_case ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.ta_base_tokenizer lowerCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCAmelCase = tokenizer(_snake_case , padding=_snake_case , return_tensors=_snake_case ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _snake_case ) self.assertIn('attention_mask' , _snake_case ) self.assertNotIn('decoder_input_ids' , _snake_case ) self.assertNotIn('decoder_attention_mask' , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.ta_base_tokenizer lowerCAmelCase = [ 'Summary of the text.', 'Another summary.', ] lowerCAmelCase = tokenizer( text_target=_snake_case , max_length=32 , padding='max_length' , truncation=_snake_case , return_tensors=_snake_case ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.ta_base_tokenizer lowerCAmelCase = ['A long paragraph for summarization. </s>'] lowerCAmelCase = ['Summary of the text. </s>'] # fmt: off lowerCAmelCase = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] lowerCAmelCase = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on lowerCAmelCase = tokenizer(_snake_case , text_target=_snake_case ) self.assertEqual(_snake_case , batch['input_ids'][0] ) self.assertEqual(_snake_case , batch['labels'][0] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = ' He is very happy, UNwant\u00E9d,running' lowerCAmelCase = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) tokenizer.save_pretrained(_snake_case ) lowerCAmelCase = tokenizer.__class__.from_pretrained(_snake_case ) lowerCAmelCase = after_tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) shutil.rmtree(_snake_case ) lowerCAmelCase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) lowerCAmelCase = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) lowerCAmelCase = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) tokenizer.save_pretrained(_snake_case ) lowerCAmelCase = tokenizer.__class__.from_pretrained(_snake_case ) lowerCAmelCase = after_tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCAmelCase = tokenizer.__class__.from_pretrained(_snake_case , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_snake_case ) with open(os.path.join(_snake_case , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: lowerCAmelCase = json.load(_snake_case ) with open(os.path.join(_snake_case , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: lowerCAmelCase = json.load(_snake_case ) lowerCAmelCase = [F'<extra_id_{i}>' for i in range(1_25 )] lowerCAmelCase = added_tokens_extra_ids + [ 'an_additional_special_token' ] lowerCAmelCase = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_snake_case , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_snake_case , _snake_case ) with open(os.path.join(_snake_case , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_snake_case , _snake_case ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCAmelCase = tokenizer_class.from_pretrained( _snake_case , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCAmelCase = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_snake_case )] lowerCAmelCase = tokenizer_class.from_pretrained( _snake_case , additional_special_tokens=_snake_case , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_snake_case ) lowerCAmelCase = tokenizer_class.from_pretrained(_snake_case ) self.assertTrue(tokenizer.decode([2_55] ) == '' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_tokenizers(fast=_snake_case , do_lower_case=_snake_case ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): lowerCAmelCase = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] lowerCAmelCase = tokenizer.convert_tokens_to_string(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): lowerCAmelCase = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] lowerCAmelCase = 0 lowerCAmelCase = tokenizer.convert_ids_to_tokens( _snake_case , skip_special_tokens=_snake_case ) for attr in attributes_list: setattr(_snake_case , attr + '_id' , _snake_case ) self.assertEqual(getattr(_snake_case , _snake_case ) , _snake_case ) self.assertEqual(getattr(_snake_case , attr + '_id' ) , _snake_case ) setattr(_snake_case , attr + '_id' , _snake_case ) self.assertEqual(getattr(_snake_case , _snake_case ) , _snake_case ) self.assertEqual(getattr(_snake_case , attr + '_id' ) , _snake_case ) setattr(_snake_case , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(_snake_case , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(_snake_case , 'additional_special_tokens_ids' ) , [] ) setattr(_snake_case , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_snake_case , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_snake_case , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
4
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping __UpperCamelCase : Optional[Any] = tuple[int, int] class a : def __init__( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = vertices lowerCAmelCase = { (min(_snake_case ), max(_snake_case )): weight for edge, weight in edges.items() } def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase = weight def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Graph({min(self.vertices )} , {} ) lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase = edge lowerCAmelCase = weight subgraph.add_edge(_snake_case , _snake_case ) return subgraph def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "p107_network.txt" ): lowerCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) ) lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = {} lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 with open(_UpperCAmelCase ) as f: lowerCAmelCase = f.read().strip().split('\n' ) lowerCAmelCase = [line.split(',' ) for line in data] for edgea in range(1 , len(_UpperCAmelCase ) ): for edgea in range(_UpperCAmelCase ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase = Graph(set(range(len(_UpperCAmelCase ) ) ) , _UpperCAmelCase ) lowerCAmelCase = graph.prims_algorithm() lowerCAmelCase = sum(graph.edges.values() ) lowerCAmelCase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
4
1
"""simple docstring""" from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar __UpperCamelCase : int = TypeVar('''T''') def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): return (position - 1) // 2 def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): return (2 * position) + 1 def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): return (2 * position) + 2 class a ( Generic[T] ): def __init__( self ): """simple docstring""" lowerCAmelCase = [] lowerCAmelCase = {} lowerCAmelCase = 0 def __len__( self ): """simple docstring""" return self.elements def __repr__( self ): """simple docstring""" return str(self.heap ) def UpperCamelCase__ ( self ): """simple docstring""" return self.elements == 0 def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" self.heap.append((elem, weight) ) lowerCAmelCase = self.elements self.elements += 1 self._bubble_up(_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) lowerCAmelCase ,lowerCAmelCase = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: lowerCAmelCase ,lowerCAmelCase = self.heap[0] self._bubble_down(_snake_case ) return elem def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.position_map[elem] lowerCAmelCase = (elem, weight) if position > 0: lowerCAmelCase = get_parent_position(_snake_case ) lowerCAmelCase ,lowerCAmelCase = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_snake_case ) else: self._bubble_down(_snake_case ) else: self._bubble_down(_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.position_map[elem] if curr_pos == 0: return None lowerCAmelCase = get_parent_position(_snake_case ) lowerCAmelCase ,lowerCAmelCase = self.heap[curr_pos] lowerCAmelCase ,lowerCAmelCase = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_snake_case , _snake_case ) return self._bubble_up(_snake_case ) return None def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.position_map[elem] lowerCAmelCase ,lowerCAmelCase = self.heap[curr_pos] lowerCAmelCase = get_child_left_position(_snake_case ) lowerCAmelCase = get_child_right_position(_snake_case ) if child_left_position < self.elements and child_right_position < self.elements: lowerCAmelCase ,lowerCAmelCase = self.heap[child_left_position] lowerCAmelCase ,lowerCAmelCase = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_snake_case , _snake_case ) return self._bubble_down(_snake_case ) if child_left_position < self.elements: lowerCAmelCase ,lowerCAmelCase = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_snake_case , _snake_case ) return self._bubble_down(_snake_case ) else: return None if child_right_position < self.elements: lowerCAmelCase ,lowerCAmelCase = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_snake_case , _snake_case ) return self._bubble_down(_snake_case ) return None def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.heap[nodea_pos][0] lowerCAmelCase = self.heap[nodea_pos][0] lowerCAmelCase ,lowerCAmelCase = ( self.heap[nodea_pos], self.heap[nodea_pos], ) lowerCAmelCase = nodea_pos lowerCAmelCase = nodea_pos class a ( Generic[T] ): def __init__( self ): """simple docstring""" lowerCAmelCase = {} lowerCAmelCase = 0 def __repr__( self ): """simple docstring""" return str(self.connections ) def __len__( self ): """simple docstring""" return self.nodes def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if node not in self.connections: lowerCAmelCase = {} self.nodes += 1 def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" self.add_node(_snake_case ) self.add_node(_snake_case ) lowerCAmelCase = weight lowerCAmelCase = weight def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : GraphUndirectedWeighted[T] , ): lowerCAmelCase = {node: maxsize for node in graph.connections} lowerCAmelCase = {node: None for node in graph.connections} lowerCAmelCase = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_UpperCAmelCase , _UpperCAmelCase ) if priority_queue.is_empty(): return dist, parent # initialization lowerCAmelCase = priority_queue.extract_min() lowerCAmelCase = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCAmelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_UpperCAmelCase , dist[neighbour] ) lowerCAmelCase = node # running prim's algorithm while not priority_queue.is_empty(): lowerCAmelCase = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCAmelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_UpperCAmelCase , dist[neighbour] ) lowerCAmelCase = node return dist, parent
4
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCAmelCase )] ) lowerCAmelCase = np.array(_UpperCAmelCase ) lowerCAmelCase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCAmelCase ) ) , x.transpose() ) , _UpperCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = (1, 2, 1) lowerCAmelCase = (1, 1, 0, 7) lowerCAmelCase = SARIMAX( _UpperCAmelCase , exog=_UpperCAmelCase , order=_UpperCAmelCase , seasonal_order=_UpperCAmelCase ) lowerCAmelCase = model.fit(disp=_UpperCAmelCase , maxiter=600 , method='nm' ) lowerCAmelCase = model_fit.predict(1 , len(_UpperCAmelCase ) , exog=[test_match] ) return result[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = regressor.predict(_UpperCAmelCase ) return y_pred[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ): train_user.sort() lowerCAmelCase = np.percentile(_UpperCAmelCase , 25 ) lowerCAmelCase = np.percentile(_UpperCAmelCase , 75 ) lowerCAmelCase = qa - qa lowerCAmelCase = qa - (iqr * 0.1) return low_lim def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : float ): lowerCAmelCase = 0 lowerCAmelCase = 0 for i in list_vote: if i > actual_result: lowerCAmelCase = not_safe + 1 else: if abs(abs(_UpperCAmelCase ) - abs(_UpperCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __UpperCamelCase : Optional[Any] = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] __UpperCamelCase : Any = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) __UpperCamelCase : Dict = Normalizer().fit_transform(data_input_df.values) # split data __UpperCamelCase : Dict = normalize_df[:, 2].tolist() __UpperCamelCase : Union[str, Any] = normalize_df[:, 0].tolist() __UpperCamelCase : List[str] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __UpperCamelCase : Optional[int] = normalize_df[:, [1, 2]].tolist() __UpperCamelCase : Tuple = x[: len(x) - 1] __UpperCamelCase : Any = x[len(x) - 1 :] # for linear regression & sarimax __UpperCamelCase : str = total_date[: len(total_date) - 1] __UpperCamelCase : Union[str, Any] = total_user[: len(total_user) - 1] __UpperCamelCase : List[Any] = total_match[: len(total_match) - 1] __UpperCamelCase : Optional[Any] = total_date[len(total_date) - 1 :] __UpperCamelCase : str = total_user[len(total_user) - 1 :] __UpperCamelCase : str = total_match[len(total_match) - 1 :] # voting system with forecasting __UpperCamelCase : Any = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __UpperCamelCase : List[str] = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('''Today\'s data is {not_str}safe.''')
4
1
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ): lowerCAmelCase = torch.exp(_UpperCAmelCase ) lowerCAmelCase = torch.sum(_UpperCAmelCase , dim=1 ) # sum of exp(x_i) lowerCAmelCase = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(_UpperCAmelCase ) - B / A class a ( nn.Module ): def __init__( self , _snake_case ): """simple docstring""" super().__init__() lowerCAmelCase = config.output_attentions lowerCAmelCase = config.output_hidden_states lowerCAmelCase = nn.ModuleList([BertLayer(_snake_case ) for _ in range(config.num_hidden_layers )] ) lowerCAmelCase = nn.ModuleList([BertHighway(_snake_case ) for _ in range(config.num_hidden_layers )] ) lowerCAmelCase = [-1 for _ in range(config.num_hidden_layers )] def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if (type(_snake_case ) is float) or (type(_snake_case ) is int): for i in range(len(self.early_exit_entropy ) ): lowerCAmelCase = x else: lowerCAmelCase = x def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , ): """simple docstring""" lowerCAmelCase = () lowerCAmelCase = () lowerCAmelCase = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: lowerCAmelCase = all_hidden_states + (hidden_states,) lowerCAmelCase = layer_module( _snake_case , _snake_case , head_mask[i] , _snake_case , _snake_case ) lowerCAmelCase = layer_outputs[0] if self.output_attentions: lowerCAmelCase = all_attentions + (layer_outputs[1],) lowerCAmelCase = (hidden_states,) if self.output_hidden_states: lowerCAmelCase = current_outputs + (all_hidden_states,) if self.output_attentions: lowerCAmelCase = current_outputs + (all_attentions,) lowerCAmelCase = self.highway[i](_snake_case ) # logits, pooled_output if not self.training: lowerCAmelCase = highway_exit[0] lowerCAmelCase = entropy(_snake_case ) lowerCAmelCase = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy lowerCAmelCase = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: lowerCAmelCase = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(_snake_case , i + 1 ) else: lowerCAmelCase = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: lowerCAmelCase = all_hidden_states + (hidden_states,) lowerCAmelCase = (hidden_states,) if self.output_hidden_states: lowerCAmelCase = outputs + (all_hidden_states,) if self.output_attentions: lowerCAmelCase = outputs + (all_attentions,) lowerCAmelCase = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( '''The Bert Model transformer with early exiting (DeeBERT). ''' , a__ , ) class a ( a__ ): def __init__( self , _snake_case ): """simple docstring""" super().__init__(_snake_case ) lowerCAmelCase = config lowerCAmelCase = BertEmbeddings(_snake_case ) lowerCAmelCase = DeeBertEncoder(_snake_case ) lowerCAmelCase = BertPooler(_snake_case ) self.init_weights() def UpperCamelCase__ ( self ): """simple docstring""" self.encoder.init_highway_pooler(self.pooler ) def UpperCamelCase__ ( self ): """simple docstring""" return self.embeddings.word_embeddings def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = value def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(_snake_case ) @add_start_docstrings_to_model_forward(_snake_case ) def UpperCamelCase__ ( self , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: lowerCAmelCase = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) lowerCAmelCase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase = torch.ones(_snake_case , device=_snake_case ) if encoder_attention_mask is None: lowerCAmelCase = torch.ones(_snake_case , device=_snake_case ) if token_type_ids is None: lowerCAmelCase = torch.zeros(_snake_case , dtype=torch.long , device=_snake_case ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase = self.get_extended_attention_mask(_snake_case , _snake_case , _snake_case ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: lowerCAmelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: lowerCAmelCase = encoder_attention_mask[:, None, None, :] lowerCAmelCase = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility lowerCAmelCase = (1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase = self.get_head_mask(_snake_case , self.config.num_hidden_layers ) lowerCAmelCase = self.embeddings( input_ids=_snake_case , position_ids=_snake_case , token_type_ids=_snake_case , inputs_embeds=_snake_case ) lowerCAmelCase = self.encoder( _snake_case , attention_mask=_snake_case , head_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) lowerCAmelCase = encoder_outputs[0] lowerCAmelCase = self.pooler(_snake_case ) lowerCAmelCase = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class a ( a__ ): def __init__( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = message lowerCAmelCase = exit_layer # start from 1! class a ( nn.Module ): def __init__( self , _snake_case ): """simple docstring""" super().__init__() lowerCAmelCase = BertPooler(_snake_case ) lowerCAmelCase = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase = nn.Linear(config.hidden_size , config.num_labels ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = encoder_outputs[0] lowerCAmelCase = self.pooler(_snake_case ) # "return" pooler_output # BertModel lowerCAmelCase = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification lowerCAmelCase = bmodel_output[1] lowerCAmelCase = self.dropout(_snake_case ) lowerCAmelCase = self.classifier(_snake_case ) return logits, pooled_output @add_start_docstrings( '''Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. ''' , a__ , ) class a ( a__ ): def __init__( self , _snake_case ): """simple docstring""" super().__init__(_snake_case ) lowerCAmelCase = config.num_labels lowerCAmelCase = config.num_hidden_layers lowerCAmelCase = DeeBertModel(_snake_case ) lowerCAmelCase = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(_snake_case ) def UpperCamelCase__ ( self , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=-1 , _snake_case=False , ): """simple docstring""" lowerCAmelCase = self.num_layers try: lowerCAmelCase = self.bert( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , position_ids=_snake_case , head_mask=_snake_case , inputs_embeds=_snake_case , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits lowerCAmelCase = outputs[1] lowerCAmelCase = self.dropout(_snake_case ) lowerCAmelCase = self.classifier(_snake_case ) lowerCAmelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowerCAmelCase = e.message lowerCAmelCase = e.exit_layer lowerCAmelCase = outputs[0] if not self.training: lowerCAmelCase = entropy(_snake_case ) lowerCAmelCase = [] lowerCAmelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression lowerCAmelCase = MSELoss() lowerCAmelCase = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase = CrossEntropyLoss() lowerCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits lowerCAmelCase = [] for highway_exit in outputs[-1]: lowerCAmelCase = highway_exit[0] if not self.training: highway_logits_all.append(_snake_case ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression lowerCAmelCase = MSELoss() lowerCAmelCase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase = CrossEntropyLoss() lowerCAmelCase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_snake_case ) if train_highway: lowerCAmelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: lowerCAmelCase = (loss,) + outputs if not self.training: lowerCAmelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowerCAmelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
4
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=_UpperCAmelCase , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=_UpperCAmelCase , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=_UpperCAmelCase , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=_UpperCAmelCase , default=0 , help='cuda_id.' , ) lowerCAmelCase = parser.parse_args() return args def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ): if not len(_UpperCAmelCase ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) lowerCAmelCase ,lowerCAmelCase = imgs[0].size lowerCAmelCase = Image.new('RGB' , size=(cols * w, rows * h) ) lowerCAmelCase ,lowerCAmelCase = grid.size for i, img in enumerate(_UpperCAmelCase ): grid.paste(_UpperCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]="robotic cat with wings" , _UpperCAmelCase : Optional[int]=7.5 , _UpperCAmelCase : Dict=50 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=42 , ): lowerCAmelCase = torch.Generator(pipeline.device ).manual_seed(_UpperCAmelCase ) lowerCAmelCase = pipeline( _UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , ).images lowerCAmelCase = int(math.sqrt(_UpperCAmelCase ) ) lowerCAmelCase = image_grid(_UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __UpperCamelCase : Optional[Any] = parse_args() # Load models and create wrapper for stable diffusion __UpperCamelCase : List[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') __UpperCamelCase : str = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') __UpperCamelCase : Optional[int] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') __UpperCamelCase : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') __UpperCamelCase : Tuple = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __UpperCamelCase : Union[str, Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): __UpperCamelCase : Dict = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: __UpperCamelCase : Dict = unet.to(torch.device('''cuda''', args.cuda_id)) __UpperCamelCase : Optional[Any] = pipeline.to(unet.device) __UpperCamelCase ,__UpperCamelCase : List[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) __UpperCamelCase : int = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
4
1
"""simple docstring""" from __future__ import annotations from math import ceil, floor, sqrt def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 200_0000 ): lowerCAmelCase = [0] lowerCAmelCase = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target lowerCAmelCase = 0 # the area corresponding to the grid that gives the product closest to target lowerCAmelCase = 0 # an estimate of b, using the quadratic formula lowerCAmelCase = 42 # the largest integer less than b_estimate lowerCAmelCase = 42 # the largest integer less than b_estimate lowerCAmelCase = 42 # the triangle number corresponding to b_floor lowerCAmelCase = 42 # the triangle number corresponding to b_ceil lowerCAmelCase = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): lowerCAmelCase = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 lowerCAmelCase = floor(_UpperCAmelCase ) lowerCAmelCase = ceil(_UpperCAmelCase ) lowerCAmelCase = triangle_numbers[b_floor] lowerCAmelCase = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): lowerCAmelCase = triangle_b_first_guess * triangle_a lowerCAmelCase = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): lowerCAmelCase = triangle_b_second_guess * triangle_a lowerCAmelCase = idx_a * b_ceil return area if __name__ == "__main__": print(f'''{solution() = }''')
4
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : List[int] ): lowerCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ), F'{len(_UpperCAmelCase )} != {len(_UpperCAmelCase )}' dest_layers.load_state_dict(layers_to_copy.state_dict() ) __UpperCamelCase : Optional[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } __UpperCamelCase : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ): try: lowerCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first' F' {n_student}' ) return list(range(_UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ): if n_student > n_teacher: raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' ) elif n_teacher == n_student: return list(range(_UpperCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, PreTrainedModel] , _UpperCAmelCase : Union[str, Path] = "student" , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ): lowerCAmelCase = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(_UpperCAmelCase , _UpperCAmelCase ): AutoTokenizer.from_pretrained(_UpperCAmelCase ).save_pretrained(_UpperCAmelCase ) # purely for convenience lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).eval() else: assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), F'teacher must be a model or string got type {type(_UpperCAmelCase )}' lowerCAmelCase = teacher.config.to_diff_dict() try: lowerCAmelCase ,lowerCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: lowerCAmelCase = teacher_e if d is None: lowerCAmelCase = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): lowerCAmelCase ,lowerCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: lowerCAmelCase ,lowerCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: lowerCAmelCase = teacher_e if d is None: lowerCAmelCase = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(_UpperCAmelCase ) # Copy weights lowerCAmelCase = teacher.config_class(**_UpperCAmelCase ) lowerCAmelCase = AutoModelForSeqaSeqLM.from_config(_UpperCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. lowerCAmelCase = student.load_state_dict(teacher.state_dict() , strict=_UpperCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save lowerCAmelCase ,lowerCAmelCase = list(range(_UpperCAmelCase ) ), list(range(_UpperCAmelCase ) ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to' F' {save_path}' ) student.save_pretrained(_UpperCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase ) if d_layers_to_copy is None: lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase ) try: if hasattr( _UpperCAmelCase , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _UpperCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _UpperCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _UpperCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _UpperCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , _UpperCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , _UpperCAmelCase ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' ) lowerCAmelCase = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(_UpperCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
4
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : Dict = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class a ( a__ ): snake_case__ = '''gpt_bigcode''' snake_case__ = ['''past_key_values'''] snake_case__ = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _snake_case=5_02_57 , _snake_case=10_24 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=None , _snake_case="gelu_pytorch_tanh" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=0.1 , _snake_case=1E-5 , _snake_case=0.02 , _snake_case=True , _snake_case=True , _snake_case=5_02_56 , _snake_case=5_02_56 , _snake_case=True , _snake_case=True , _snake_case=True , **_snake_case , ): """simple docstring""" lowerCAmelCase = vocab_size lowerCAmelCase = n_positions lowerCAmelCase = n_embd lowerCAmelCase = n_layer lowerCAmelCase = n_head lowerCAmelCase = n_inner lowerCAmelCase = activation_function lowerCAmelCase = resid_pdrop lowerCAmelCase = embd_pdrop lowerCAmelCase = attn_pdrop lowerCAmelCase = layer_norm_epsilon lowerCAmelCase = initializer_range lowerCAmelCase = scale_attn_weights lowerCAmelCase = use_cache lowerCAmelCase = attention_softmax_in_fpaa lowerCAmelCase = scale_attention_softmax_in_fpaa lowerCAmelCase = multi_query lowerCAmelCase = bos_token_id lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case )
4
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Dict = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
1
"""simple docstring""" import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets __UpperCamelCase : List[Any] = datasets.logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = '''\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } ''' __UpperCamelCase : Optional[int] = '''\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project\'s README at https://github.com/google-research/bleurt#readme for more information. ''' __UpperCamelCase : Optional[Any] = ''' BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: \'scores\': List of scores. Examples: >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> bleurt = datasets.load_metric("bleurt") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results["scores"]]) [1.03, 1.04] ''' __UpperCamelCase : str = { '''bleurt-tiny-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip''', '''bleurt-tiny-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip''', '''bleurt-base-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip''', '''bleurt-base-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip''', '''bleurt-large-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip''', '''bleurt-large-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip''', '''BLEURT-20-D3''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip''', '''BLEURT-20-D6''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip''', '''BLEURT-20-D12''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip''', '''BLEURT-20''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip''', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/google-research/bleurt' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/bleurt'] , reference_urls=['https://github.com/google-research/bleurt', 'https://arxiv.org/abs/2004.04696'] , ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if self.config_name == "default": logger.warning( 'Using default BLEURT-Base checkpoint for sequence maximum length 128. ' 'You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').' ) lowerCAmelCase = 'bleurt-base-128' if self.config_name.lower() in CHECKPOINT_URLS: lowerCAmelCase = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: lowerCAmelCase = self.config_name.upper() else: raise KeyError( F'{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}' ) # download the model checkpoint specified by self.config_name and set up the scorer lowerCAmelCase = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) lowerCAmelCase = score.BleurtScorer(os.path.join(_snake_case , _snake_case ) ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.scorer.score(references=_snake_case , candidates=_snake_case ) return {"scores": scores}
4
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ): lowerCAmelCase = 0.00 lowerCAmelCase = 0 for resistor in resistors: if resistor <= 0: lowerCAmelCase = F'Resistor at index {index} has a negative or zero value!' raise ValueError(_UpperCAmelCase ) first_sum += 1 / float(_UpperCAmelCase ) index += 1 return 1 / first_sum def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ): lowerCAmelCase = 0.00 lowerCAmelCase = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowerCAmelCase = F'Resistor at index {index} has a negative value!' raise ValueError(_UpperCAmelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
4
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Optional[Any] = { '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''', # See all GLPN models at https://huggingface.co/models?filter=glpn } class a ( a__ ): snake_case__ = '''glpn''' def __init__( self , _snake_case=3 , _snake_case=4 , _snake_case=[2, 2, 2, 2] , _snake_case=[8, 4, 2, 1] , _snake_case=[32, 64, 1_60, 2_56] , _snake_case=[7, 3, 3, 3] , _snake_case=[4, 2, 2, 2] , _snake_case=[1, 2, 5, 8] , _snake_case=[4, 4, 4, 4] , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=0.1 , _snake_case=1E-6 , _snake_case=64 , _snake_case=10 , _snake_case=-1 , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = num_channels lowerCAmelCase = num_encoder_blocks lowerCAmelCase = depths lowerCAmelCase = sr_ratios lowerCAmelCase = hidden_sizes lowerCAmelCase = patch_sizes lowerCAmelCase = strides lowerCAmelCase = mlp_ratios lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = drop_path_rate lowerCAmelCase = layer_norm_eps lowerCAmelCase = decoder_hidden_size lowerCAmelCase = max_depth lowerCAmelCase = head_in_index
4
1
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase ,lowerCAmelCase = analyze_text(_UpperCAmelCase ) lowerCAmelCase = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. lowerCAmelCase = sum(single_char_strings.values() ) # one length string lowerCAmelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCAmelCase = single_char_strings[ch] lowerCAmelCase = my_str / all_sum my_fir_sum += prob * math.loga(_UpperCAmelCase ) # entropy formula. # print entropy print(F'{round(-1 * my_fir_sum ):.1f}' ) # two len string lowerCAmelCase = sum(two_char_strings.values() ) lowerCAmelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCAmelCase = cha + cha if sequence in two_char_strings: lowerCAmelCase = two_char_strings[sequence] lowerCAmelCase = int(_UpperCAmelCase ) / all_sum my_sec_sum += prob * math.loga(_UpperCAmelCase ) # print second entropy print(F'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(F'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = Counter() # type: ignore lowerCAmelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_UpperCAmelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def _SCREAMING_SNAKE_CASE (): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
4
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , _snake_case=10_00 , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = range_bbox def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase = bbox[i, j, 3] lowerCAmelCase = bbox[i, j, 1] lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase = bbox[i, j, 2] lowerCAmelCase = bbox[i, j, 0] lowerCAmelCase = t lowerCAmelCase = tf.convert_to_tensor(_snake_case ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForMaskedLM(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForSequenceClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForTokenClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = True snake_case__ = 1_0 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFLayoutLMModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def _SCREAMING_SNAKE_CASE (): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off lowerCAmelCase = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowerCAmelCase = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the sequence output on [0, :3, :3] lowerCAmelCase = tf.convert_to_tensor( [[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _snake_case , atol=1E-3 ) ) # test the pooled output on [1, :3] lowerCAmelCase = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _snake_case , atol=1E-3 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar lowerCAmelCase = outputs.loss lowerCAmelCase = (2,) self.assertEqual(loss.shape , _snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = (2, 2) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the shape of the logits lowerCAmelCase = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _snake_case ) self.assertEqual(outputs.end_logits.shape , _snake_case )
4
1
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a__ ) class a ( a__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization snake_case__ = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case__ = Features({'''text''': Value('''string''' )} ) snake_case__ = Features({'''summary''': Value('''string''' )} ) snake_case__ = "text" snake_case__ = "summary" @property def UpperCamelCase__ ( self ): """simple docstring""" return {self.text_column: "text", self.summary_column: "summary"}
4
"""simple docstring""" import argparse import os import re import packaging.version __UpperCamelCase : Union[str, Any] = '''examples/''' __UpperCamelCase : str = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __UpperCamelCase : List[str] = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } __UpperCamelCase : Optional[int] = '''README.md''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ): with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.read() lowerCAmelCase ,lowerCAmelCase = REPLACE_PATTERNS[pattern] lowerCAmelCase = replace.replace('VERSION' , _UpperCAmelCase ) lowerCAmelCase = re_pattern.sub(_UpperCAmelCase , _UpperCAmelCase ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ): for folder, directories, fnames in os.walk(_UpperCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , pattern='examples' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not patch: update_version_in_examples(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = '🤗 Transformers currently provides the following architectures' lowerCAmelCase = '1. Want to contribute a new model?' with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.readlines() # Find the start of the list. lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): lowerCAmelCase = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): with open(REPLACE_FILES['init'] , 'r' ) as f: lowerCAmelCase = f.read() lowerCAmelCase = REPLACE_PATTERNS['init'][0].search(_UpperCAmelCase ).groups()[0] return packaging.version.parse(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple=False ): lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: lowerCAmelCase = default_version.base_version elif patch: lowerCAmelCase = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: lowerCAmelCase = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. lowerCAmelCase = input(F'Which version are you releasing? [{default_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = default_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase , patch=_UpperCAmelCase ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = get_version() lowerCAmelCase = F'{current_version.major}.{current_version.minor + 1}.0.dev0' lowerCAmelCase = current_version.base_version # Check with the user we got that right. lowerCAmelCase = input(F'Which version are we developing now? [{dev_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = dev_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __UpperCamelCase : Optional[int] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
4
1
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(a__ ) class a ( a__ ): def __init__( self , *_snake_case , **_snake_case ): """simple docstring""" super().__init__(*_snake_case , **_snake_case ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCamelCase__ ( self , _snake_case=None , _snake_case=None , _snake_case=None ): """simple docstring""" lowerCAmelCase = {} lowerCAmelCase = {} if prompt is not None: lowerCAmelCase = prompt if generate_kwargs is not None: lowerCAmelCase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowerCAmelCase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) lowerCAmelCase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _snake_case , **_snake_case ): """simple docstring""" return super().__call__(_snake_case , **_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" lowerCAmelCase = load_image(_snake_case ) if prompt is not None: if not isinstance(_snake_case , _snake_case ): raise ValueError( F'Received an invalid text input, got - {type(_snake_case )} - but expected a single string. ' 'Note also that one single text can be provided for conditional image to text generation.' ) lowerCAmelCase = self.model.config.model_type if model_type == "git": lowerCAmelCase = self.image_processor(images=_snake_case , return_tensors=self.framework ) lowerCAmelCase = self.tokenizer(text=_snake_case , add_special_tokens=_snake_case ).input_ids lowerCAmelCase = [self.tokenizer.cls_token_id] + input_ids lowerCAmelCase = torch.tensor(_snake_case ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": lowerCAmelCase = self.image_processor(images=_snake_case , header_text=_snake_case , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowerCAmelCase = self.image_processor(images=_snake_case , return_tensors=self.framework ) lowerCAmelCase = self.tokenizer(_snake_case , return_tensors=self.framework ) model_inputs.update(_snake_case ) else: raise ValueError(F'Model type {model_type} does not support conditional text generation' ) else: lowerCAmelCase = self.image_processor(images=_snake_case , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowerCAmelCase = None return model_inputs def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , _snake_case ) and all(x is None for x in model_inputs['input_ids'] ) ): lowerCAmelCase = None if generate_kwargs is None: lowerCAmelCase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowerCAmelCase = model_inputs.pop(self.model.main_input_name ) lowerCAmelCase = self.model.generate(_snake_case , **_snake_case , **_snake_case ) return model_outputs def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = [] for output_ids in model_outputs: lowerCAmelCase = { 'generated_text': self.tokenizer.decode( _snake_case , skip_special_tokens=_snake_case , ) } records.append(_snake_case ) return records
4
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __UpperCamelCase : Optional[int] = pytest.mark.integration @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_snake_case ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() lowerCAmelCase = dset.map( lambda _snake_case , _snake_case : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_snake_case , keep_in_memory=_snake_case ) lowerCAmelCase = dset.add_faiss_index('vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_snake_case , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch lowerCAmelCase = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCAmelCase = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_snake_case ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertRaises(_snake_case , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCAmelCase = np.eye(5 , dtype=np.floataa )[::-1] lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) self.assertRaises(_snake_case , index.search_batch , queries[0] ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCAmelCase = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_snake_case ): lowerCAmelCase = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = faiss.IndexFlat(5 ) lowerCAmelCase = FaissIndex(custom_index=_snake_case ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: index.save(tmp_file.name ) lowerCAmelCase = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ): import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCAmelCase = 'index.faiss' lowerCAmelCase = F'mock://{index_name}' index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = Elasticsearch() lowerCAmelCase = {'acknowledged': True} lowerCAmelCase = ElasticSearchIndex(es_client=_snake_case ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case ) # batched queries with timeout lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case , request_timeout=30 ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case )
4
1
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ): # Load checkpoint lowerCAmelCase = torch.load(_UpperCAmelCase , map_location='cpu' ) lowerCAmelCase = chkpt['model'] # We have the base model one level deeper than the original XLM repository lowerCAmelCase = {} for k, v in state_dict.items(): if "pred_layer" in k: lowerCAmelCase = v else: lowerCAmelCase = v lowerCAmelCase = chkpt['params'] lowerCAmelCase = {n: v for n, v in config.items() if not isinstance(_UpperCAmelCase , (torch.FloatTensor, numpy.ndarray) )} lowerCAmelCase = chkpt['dico_word2id'] lowerCAmelCase = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model lowerCAmelCase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowerCAmelCase = pytorch_dump_folder_path + '/' + CONFIG_NAME lowerCAmelCase = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCAmelCase , indent=2 ) + '\n' ) print(F'Save vocab file to {pytorch_config_dump_path}' ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCAmelCase , indent=2 ) + '\n' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __UpperCamelCase : List[Any] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
4
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a ( a__ , a__ , unittest.TestCase ): snake_case__ = IFInpaintingPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_dummy_components() def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
4
1
"""simple docstring""" from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def _SCREAMING_SNAKE_CASE (): lowerCAmelCase ,lowerCAmelCase = 9, 14 # noqa: F841 lowerCAmelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCAmelCase = defaultdict(_UpperCAmelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCAmelCase = mst(_UpperCAmelCase ) lowerCAmelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCAmelCase = tuple(answer[:2] ) lowerCAmelCase = tuple(edge[::-1] ) assert edge in result or reverse in result
4
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = self.vocab_size - 1 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , head_mask=_snake_case ) lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTLMHeadModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTDoubleHeadsModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = OpenAIGPTForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case__ = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=False ): """simple docstring""" lowerCAmelCase = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_snake_case , ) lowerCAmelCase = inputs_dict['labels'] lowerCAmelCase = inputs_dict['labels'] lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_snake_case , ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_snake_case ) return inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenAIGPTModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , n_embd=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = OpenAIGPTModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_torch class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(_snake_case ) lowerCAmelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=_snake_case ) # the president is lowerCAmelCase = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCAmelCase = model.generate(_snake_case , do_sample=_snake_case ) self.assertListEqual(output_ids[0].tolist() , _snake_case )
4
1
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a ( a__ , unittest.TestCase ): snake_case__ = None snake_case__ = BloomTokenizerFast snake_case__ = BloomTokenizerFast snake_case__ = True snake_case__ = False snake_case__ = '''tokenizer_file''' snake_case__ = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] lowerCAmelCase = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] lowerCAmelCase = tokenizer.batch_encode_plus(_snake_case )['input_ids'] self.assertListEqual(_snake_case , _snake_case ) lowerCAmelCase = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def UpperCamelCase__ ( self , _snake_case=6 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowerCAmelCase = 'This is a simple input' lowerCAmelCase = ['This is a simple input 1', 'This is a simple input 2'] lowerCAmelCase = ('This is a simple input', 'This is a pair') lowerCAmelCase = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(_snake_case , max_length=_snake_case ) tokenizer_r.encode_plus(_snake_case , max_length=_snake_case ) tokenizer_r.batch_encode_plus(_snake_case , max_length=_snake_case ) tokenizer_r.encode(_snake_case , max_length=_snake_case ) tokenizer_r.batch_encode_plus(_snake_case , max_length=_snake_case ) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding' ) lowerCAmelCase = None # Hotfixing padding = None self.assertRaises(_snake_case , tokenizer_r.encode , _snake_case , max_length=_snake_case , padding='max_length' ) # Simple input self.assertRaises(_snake_case , tokenizer_r.encode_plus , _snake_case , max_length=_snake_case , padding='max_length' ) # Simple input self.assertRaises( _snake_case , tokenizer_r.batch_encode_plus , _snake_case , max_length=_snake_case , padding='max_length' , ) # Pair input self.assertRaises(_snake_case , tokenizer_r.encode , _snake_case , max_length=_snake_case , padding='max_length' ) # Pair input self.assertRaises(_snake_case , tokenizer_r.encode_plus , _snake_case , max_length=_snake_case , padding='max_length' ) # Pair input self.assertRaises( _snake_case , tokenizer_r.batch_encode_plus , _snake_case , max_length=_snake_case , padding='max_length' , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = load_dataset('xnli' , 'all_languages' , split='test' , streaming=_snake_case ) lowerCAmelCase = next(iter(_snake_case ) )['premise'] # pick up one data lowerCAmelCase = list(sample_data.values() ) lowerCAmelCase = list(map(tokenizer.encode , _snake_case ) ) lowerCAmelCase = [tokenizer.decode(_snake_case , clean_up_tokenization_spaces=_snake_case ) for x in output_tokens] self.assertListEqual(_snake_case , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
4
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __UpperCamelCase : str = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=_UpperCAmelCase , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=_UpperCAmelCase , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=_UpperCAmelCase , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=_UpperCAmelCase , default='data/dump' , help='The dump file prefix.' ) lowerCAmelCase = parser.parse_args() logger.info(F'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": lowerCAmelCase = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `[CLS]` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCAmelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `<s>` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": lowerCAmelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` lowerCAmelCase = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(F'Loading text from {args.file_path}' ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: lowerCAmelCase = fp.readlines() logger.info('Start encoding' ) logger.info(F'{len(_UpperCAmelCase )} examples to process.' ) lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 1_0000 lowerCAmelCase = time.time() for text in data: lowerCAmelCase = F'{bos} {text.strip()} {sep}' lowerCAmelCase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) rslt.append(_UpperCAmelCase ) iter += 1 if iter % interval == 0: lowerCAmelCase = time.time() logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) lowerCAmelCase = time.time() logger.info('Finished binarization' ) logger.info(F'{len(_UpperCAmelCase )} examples processed.' ) lowerCAmelCase = F'{args.dump_file}.{args.tokenizer_name}.pickle' lowerCAmelCase = tokenizer.vocab_size if vocab_size < (1 << 16): lowerCAmelCase = [np.uintaa(_UpperCAmelCase ) for d in rslt] else: lowerCAmelCase = [np.intaa(_UpperCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'Dump to {dp_file}' ) with open(_UpperCAmelCase , 'wb' ) as handle: pickle.dump(rslt_ , _UpperCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
4
1
"""simple docstring""" from __future__ import annotations class a : def __init__( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = text, pattern lowerCAmelCase ,lowerCAmelCase = len(_snake_case ), len(_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = [] for i in range(self.textLen - self.patLen + 1 ): lowerCAmelCase = self.mismatch_in_text(_snake_case ) if mismatch_index == -1: positions.append(_snake_case ) else: lowerCAmelCase = self.match_in_pattern(self.text[mismatch_index] ) lowerCAmelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __UpperCamelCase : int = '''ABAABA''' __UpperCamelCase : List[str] = '''AB''' __UpperCamelCase : Any = BoyerMooreSearch(text, pattern) __UpperCamelCase : List[Any] = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
4
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''bert''' def __init__( self , _snake_case=3_05_22 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache lowerCAmelCase = classifier_dropout class a ( a__ ): @property def UpperCamelCase__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
4
1
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : int = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __UpperCamelCase : Dict = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } __UpperCamelCase : str = {'''facebook/blenderbot-3B''': 128} class a ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ['''input_ids''', '''attention_mask'''] snake_case__ = BlenderbotTokenizer def __init__( self , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case="replace" , _snake_case="<s>" , _snake_case="</s>" , _snake_case="</s>" , _snake_case="<s>" , _snake_case="<unk>" , _snake_case="<pad>" , _snake_case="<mask>" , _snake_case=False , _snake_case=True , **_snake_case , ): """simple docstring""" super().__init__( _snake_case , _snake_case , tokenizer_file=_snake_case , errors=_snake_case , bos_token=_snake_case , eos_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , unk_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case , **_snake_case , ) lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _snake_case ) != add_prefix_space: lowerCAmelCase = getattr(_snake_case , pre_tok_state.pop('type' ) ) lowerCAmelCase = add_prefix_space lowerCAmelCase = pre_tok_class(**_snake_case ) lowerCAmelCase = add_prefix_space lowerCAmelCase = 'post_processor' lowerCAmelCase = getattr(self.backend_tokenizer , _snake_case , _snake_case ) if tokenizer_component_instance: lowerCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase = tuple(state['sep'] ) if "cls" in state: lowerCAmelCase = tuple(state['cls'] ) lowerCAmelCase = False if state.get('add_prefix_space' , _snake_case ) != add_prefix_space: lowerCAmelCase = add_prefix_space lowerCAmelCase = True if state.get('trim_offsets' , _snake_case ) != trim_offsets: lowerCAmelCase = trim_offsets lowerCAmelCase = True if changes_to_apply: lowerCAmelCase = getattr(_snake_case , state.pop('type' ) ) lowerCAmelCase = component_class(**_snake_case ) setattr(self.backend_tokenizer , _snake_case , _snake_case ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCamelCase__ ( self ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else value lowerCAmelCase = value def UpperCamelCase__ ( self , *_snake_case , **_snake_case ): """simple docstring""" lowerCAmelCase = kwargs.get('is_split_into_words' , _snake_case ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_snake_case , **_snake_case ) def UpperCamelCase__ ( self , *_snake_case , **_snake_case ): """simple docstring""" lowerCAmelCase = kwargs.get('is_split_into_words' , _snake_case ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*_snake_case , **_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" return token_ids_a + [self.eos_token_id] def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(_snake_case ) lowerCAmelCase = ' '.join(_snake_case ) lowerCAmelCase = self.encode(_snake_case ) if len(_snake_case ) > self.model_max_length: lowerCAmelCase = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
4
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( a__ , unittest.TestCase ): snake_case__ = DanceDiffusionPipeline snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_snake_case , use_timestep_embedding=_snake_case , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase = IPNDMScheduler() lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = DanceDiffusionPipeline(**_snake_case ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = pipe(**_snake_case ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_local() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
4
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Optional[Any] = {'''vocab_file''': '''spiece.model'''} __UpperCamelCase : int = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } __UpperCamelCase : str = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) __UpperCamelCase : Any = 0 __UpperCamelCase : str = 1 __UpperCamelCase : List[Any] = 2 __UpperCamelCase : Dict = 3 __UpperCamelCase : Dict = 4 class a ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = '''left''' def __init__( self , _snake_case , _snake_case=False , _snake_case=True , _snake_case=False , _snake_case="<s>" , _snake_case="</s>" , _snake_case="<unk>" , _snake_case="<sep>" , _snake_case="<pad>" , _snake_case="<cls>" , _snake_case="<mask>" , _snake_case=["<eop>", "<eod>"] , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_snake_case , remove_space=_snake_case , keep_accents=_snake_case , bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , additional_special_tokens=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) lowerCAmelCase = 3 lowerCAmelCase = do_lower_case lowerCAmelCase = remove_space lowerCAmelCase = keep_accents lowerCAmelCase = vocab_file lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.sp_model ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , _snake_case ): """simple docstring""" lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if self.remove_space: lowerCAmelCase = ' '.join(inputs.strip().split() ) else: lowerCAmelCase = inputs lowerCAmelCase = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: lowerCAmelCase = unicodedata.normalize('NFKD' , _snake_case ) lowerCAmelCase = ''.join([c for c in outputs if not unicodedata.combining(_snake_case )] ) if self.do_lower_case: lowerCAmelCase = outputs.lower() return outputs def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.preprocess_text(_snake_case ) lowerCAmelCase = self.sp_model.encode(_snake_case , out_type=_snake_case ) lowerCAmelCase = [] for piece in pieces: if len(_snake_case ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_snake_case , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCAmelCase = cur_pieces[1:] else: lowerCAmelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_snake_case ) else: new_pieces.append(_snake_case ) return new_pieces def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.sp_model.PieceToId(_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.sp_model.IdToPiece(_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip() return out_string def UpperCamelCase__ ( self , _snake_case , _snake_case = False , _snake_case = None , _snake_case = True , **_snake_case , ): """simple docstring""" lowerCAmelCase = kwargs.pop('use_source_tokenizer' , _snake_case ) lowerCAmelCase = self.convert_ids_to_tokens(_snake_case , skip_special_tokens=_snake_case ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCAmelCase = [] lowerCAmelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_snake_case ) ) lowerCAmelCase = [] sub_texts.append(_snake_case ) else: current_sub_text.append(_snake_case ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_snake_case ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens lowerCAmelCase = ''.join(_snake_case ) lowerCAmelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCAmelCase = self.clean_up_tokenization(_snake_case ) return clean_text else: return text def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCamelCase__ ( self , _snake_case , _snake_case = None , _snake_case = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) if token_ids_a is not None: return ([0] * len(_snake_case )) + [1] + ([0] * len(_snake_case )) + [1, 1] return ([0] * len(_snake_case )) + [1, 1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , 'wb' ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
4
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , use_stable_embedding=_snake_case , ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = OpenLlamaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = OpenLlamaModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , ) lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() # first forward pass lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , use_cache=_snake_case , ) lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , past_key_values=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) snake_case__ = (OpenLlamaForCausalLM,) if is_torch_available() else () snake_case__ = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenLlamaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase = type self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'single_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'multi_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = OpenLlamaModel(_snake_case ) original_model.to(_snake_case ) original_model.eval() lowerCAmelCase = original_model(_snake_case ).last_hidden_state lowerCAmelCase = original_model(_snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = {'type': scaling_type, 'factor': 10.0} lowerCAmelCase = OpenLlamaModel(_snake_case ) scaled_model.to(_snake_case ) scaled_model.eval() lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
4
1
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black __UpperCamelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __UpperCamelCase : List[str] = ''' def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states ''' class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , 'models/bert/' ) ) lowerCAmelCase = self.transformer_dir shutil.copy( os.path.join(_snake_case , 'src/transformers/models/bert/modeling_bert.py' ) , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py' ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'src/transformers' shutil.rmtree(self.transformer_dir ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case=None ): """simple docstring""" lowerCAmelCase = comment + F'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: lowerCAmelCase = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result lowerCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) lowerCAmelCase = black.format_str(_snake_case , mode=_snake_case ) lowerCAmelCase = os.path.join(self.transformer_dir , 'new_code.py' ) with open(_snake_case , 'w' , newline='\n' ) as f: f.write(_snake_case ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_snake_case ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_snake_case ) with open(_snake_case , 'r' ) as f: self.assertTrue(f.read() , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' ) self.assertEqual(_snake_case , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , _snake_case , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , _snake_case ) , ) # Copy consistency with a really long name lowerCAmelCase = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}' , F'{long_class_name}LMPredictionHead' , re.sub('Bert' , _snake_case , _snake_case ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , _snake_case , overwrite_result=re.sub('Bert' , 'TestModel' , _snake_case ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = check_copies.LOCALIZED_READMES['README_zh-hans.md'] lowerCAmelCase = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) lowerCAmelCase = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) lowerCAmelCase = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) lowerCAmelCase ,lowerCAmelCase = check_copies.convert_to_localized_md( _snake_case , _snake_case , localized_readme['format_model_list'] ) self.assertFalse(_snake_case ) self.assertEqual(_snake_case , _snake_case ) lowerCAmelCase ,lowerCAmelCase = check_copies.convert_to_localized_md( _snake_case , _snake_case , localized_readme['format_model_list'] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_snake_case ) lowerCAmelCase = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) lowerCAmelCase = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) lowerCAmelCase = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) lowerCAmelCase ,lowerCAmelCase = check_copies.convert_to_localized_md( _snake_case , _snake_case , localized_readme['format_model_list'] ) # Check if the model link is synchronized. self.assertEqual(_snake_case , _snake_case )
4
"""simple docstring""" from typing import Any class a : def __init__( self , _snake_case ): """simple docstring""" lowerCAmelCase = data lowerCAmelCase = None def __repr__( self ): """simple docstring""" return F'Node({self.data})' class a : def __init__( self ): """simple docstring""" lowerCAmelCase = None def __iter__( self ): """simple docstring""" lowerCAmelCase = self.head while node: yield node.data lowerCAmelCase = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(_snake_case ) for item in self] ) def __getitem__( self , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase = self.head for _ in range(_snake_case ): lowerCAmelCase = current.next lowerCAmelCase = data def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(len(self ) , _snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(0 , _snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase = Node(_snake_case ) if self.head is None: lowerCAmelCase = new_node elif index == 0: lowerCAmelCase = self.head # link new_node to head lowerCAmelCase = new_node else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = new_node def UpperCamelCase__ ( self ): # print every node data """simple docstring""" print(self ) def UpperCamelCase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def UpperCamelCase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def UpperCamelCase__ ( self , _snake_case = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase = self.head # default first node if index == 0: lowerCAmelCase = self.head.next else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = temp.next.next return delete_node.data def UpperCamelCase__ ( self ): """simple docstring""" return self.head is None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = None lowerCAmelCase = self.head while current: # Store the current node's next node. lowerCAmelCase = current.next # Make the current node's next point backwards lowerCAmelCase = prev # Make the previous node be the current node lowerCAmelCase = current # Make the current node the next node (to progress iteration) lowerCAmelCase = next_node # Return prev in order to put the head at the end lowerCAmelCase = prev def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = LinkedList() assert linked_list.is_empty() is True assert str(_UpperCAmelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_UpperCAmelCase ) == i linked_list.insert_nth(_UpperCAmelCase , i + 1 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_UpperCAmelCase ) == 9 assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(-8 , 1 ) ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = [ -9, 100, Node(7734_5112 ), 'dlrow olleH', 7, 5555, 0, -192.5_5555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase = LinkedList() for i in test_input: linked_list.insert_tail(_UpperCAmelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase = linked_list.delete_head() assert result == -9 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_UpperCAmelCase ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_UpperCAmelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _SCREAMING_SNAKE_CASE (): from doctest import testmod testmod() lowerCAmelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_UpperCAmelCase ) print('\nReading/changing Node data using indexing:' ) print(F'Element at Position 1: {linked_list[1]}' ) lowerCAmelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_UpperCAmelCase ) print(F'length of linked_list is : {len(_UpperCAmelCase )}' ) if __name__ == "__main__": main()
4
1
"""simple docstring""" from __future__ import annotations __UpperCamelCase : List[str] = '''#''' class a : def __init__( self ): """simple docstring""" lowerCAmelCase = {} def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self._trie for char in text: if char not in trie: lowerCAmelCase = {} lowerCAmelCase = trie[char] lowerCAmelCase = True def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self._trie for char in prefix: if char in trie: lowerCAmelCase = trie[char] else: return [] return self._elements(_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = [] for c, v in d.items(): lowerCAmelCase = [' '] if c == END else [(c + s) for s in self._elements(_snake_case )] result.extend(_snake_case ) return tuple(_snake_case ) __UpperCamelCase : Optional[int] = Trie() __UpperCamelCase : List[Any] = ('''depart''', '''detergent''', '''daring''', '''dog''', '''deer''', '''deal''') for word in words: trie.insert_word(word) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = trie.find_word(_UpperCAmelCase ) return tuple(string + word for word in suffixes ) def _SCREAMING_SNAKE_CASE (): print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
4
"""simple docstring""" from __future__ import annotations import requests def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(_UpperCAmelCase ).json() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' lowerCAmelCase = requests.get(_UpperCAmelCase ).json()[:max_stories] return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = hackernews_top_stories(_UpperCAmelCase ) return "\n".join('* [{title}]({url})'.format(**_UpperCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
1
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class a ( a__ , a__ , a__ ): snake_case__ = [r'''h\.\d+\.attn\.bias''', r'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self , _snake_case , _snake_case , _snake_case = None , _snake_case = 5_02_57 , _snake_case = 10_24 , _snake_case = 7_68 , _snake_case = 12 , _snake_case = 12 , _snake_case = None , _snake_case = "gelu_new" , _snake_case = 0.1 , _snake_case = 0.1 , _snake_case = 0.1 , _snake_case = 1E-5 , _snake_case = 0.02 , _snake_case = True , _snake_case = True , _snake_case = False , _snake_case = False , ): """simple docstring""" super().__init__() lowerCAmelCase = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and' F' `n_embd`: {n_embd} are not equal.' ) lowerCAmelCase = prefix_inner_dim lowerCAmelCase = prefix_hidden_dim lowerCAmelCase = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCAmelCase = ( nn.Linear(self.prefix_hidden_dim , _snake_case ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCAmelCase = GPTaConfig( vocab_size=_snake_case , n_positions=_snake_case , n_embd=_snake_case , n_layer=_snake_case , n_head=_snake_case , n_inner=_snake_case , activation_function=_snake_case , resid_pdrop=_snake_case , embd_pdrop=_snake_case , attn_pdrop=_snake_case , layer_norm_epsilon=_snake_case , initializer_range=_snake_case , scale_attn_weights=_snake_case , use_cache=_snake_case , scale_attn_by_inverse_layer_idx=_snake_case , reorder_and_upcast_attn=_snake_case , ) lowerCAmelCase = GPTaLMHeadModel(_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = None , _snake_case = None , ): """simple docstring""" lowerCAmelCase = self.transformer.transformer.wte(_snake_case ) lowerCAmelCase = self.encode_prefix(_snake_case ) lowerCAmelCase = self.decode_prefix(_snake_case ) lowerCAmelCase = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: lowerCAmelCase = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) lowerCAmelCase = torch.cat((dummy_token, input_ids) , dim=1 ) lowerCAmelCase = self.transformer(inputs_embeds=_snake_case , labels=_snake_case , attention_mask=_snake_case ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" return torch.zeros(_snake_case , self.prefix_length , dtype=torch.intaa , device=_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.encode_prefix(_snake_case ) @torch.no_grad() def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = torch.split(_snake_case , 1 , dim=0 ) lowerCAmelCase = [] lowerCAmelCase = [] for feature in features: lowerCAmelCase = self.decode_prefix(feature.to(_snake_case ) ) # back to the clip feature # Only support beam search for now lowerCAmelCase ,lowerCAmelCase = self.generate_beam( input_embeds=_snake_case , device=_snake_case , eos_token_id=_snake_case ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) lowerCAmelCase = torch.stack(_snake_case ) lowerCAmelCase = torch.stack(_snake_case ) return generated_tokens, generated_seq_lengths @torch.no_grad() def UpperCamelCase__ ( self , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case = 5 , _snake_case = 67 , _snake_case = 1.0 , _snake_case = None , ): """simple docstring""" lowerCAmelCase = eos_token_id lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = torch.ones(_snake_case , device=_snake_case , dtype=torch.int ) lowerCAmelCase = torch.zeros(_snake_case , device=_snake_case , dtype=torch.bool ) if input_embeds is not None: lowerCAmelCase = input_embeds else: lowerCAmelCase = self.transformer.transformer.wte(_snake_case ) for i in range(_snake_case ): lowerCAmelCase = self.transformer(inputs_embeds=_snake_case ) lowerCAmelCase = outputs.logits lowerCAmelCase = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) lowerCAmelCase = logits.softmax(-1 ).log() if scores is None: lowerCAmelCase ,lowerCAmelCase = logits.topk(_snake_case , -1 ) lowerCAmelCase = generated.expand(_snake_case , *generated.shape[1:] ) lowerCAmelCase ,lowerCAmelCase = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: lowerCAmelCase = next_tokens else: lowerCAmelCase = tokens.expand(_snake_case , *tokens.shape[1:] ) lowerCAmelCase = torch.cat((tokens, next_tokens) , dim=1 ) else: lowerCAmelCase = -float(np.inf ) lowerCAmelCase = 0 lowerCAmelCase = scores[:, None] + logits seq_lengths[~is_stopped] += 1 lowerCAmelCase = scores_sum / seq_lengths[:, None] lowerCAmelCase ,lowerCAmelCase = scores_sum_average.view(-1 ).topk(_snake_case , -1 ) lowerCAmelCase = next_tokens // scores_sum.shape[1] lowerCAmelCase = seq_lengths[next_tokens_source] lowerCAmelCase = next_tokens % scores_sum.shape[1] lowerCAmelCase = next_tokens.unsqueeze(1 ) lowerCAmelCase = tokens[next_tokens_source] lowerCAmelCase = torch.cat((tokens, next_tokens) , dim=1 ) lowerCAmelCase = generated[next_tokens_source] lowerCAmelCase = scores_sum_average * seq_lengths lowerCAmelCase = is_stopped[next_tokens_source] lowerCAmelCase = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) lowerCAmelCase = torch.cat((generated, next_token_embed) , dim=1 ) lowerCAmelCase = is_stopped + next_tokens.eq(_snake_case ).squeeze() if is_stopped.all(): break lowerCAmelCase = scores / seq_lengths lowerCAmelCase = scores.argsort(descending=_snake_case ) # tokens tensors are already padded to max_seq_length lowerCAmelCase = [tokens[i] for i in order] lowerCAmelCase = torch.stack(_snake_case , dim=0 ) lowerCAmelCase = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
4
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ): lowerCAmelCase = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 48 lowerCAmelCase = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 60 lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCAmelCase = 1 lowerCAmelCase = 1 lowerCAmelCase = 126 lowerCAmelCase = 7 lowerCAmelCase = 255.0 lowerCAmelCase = '' return config def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): if "patch_embed.proj" in name and "layers" not in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCAmelCase = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: lowerCAmelCase = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: lowerCAmelCase = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: lowerCAmelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCAmelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCAmelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCAmelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: lowerCAmelCase = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: lowerCAmelCase = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: lowerCAmelCase = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: lowerCAmelCase = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": lowerCAmelCase = 'layernorm.weight' if name == "norm.bias": lowerCAmelCase = 'layernorm.bias' if "conv_first" in name: lowerCAmelCase = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCAmelCase = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCAmelCase = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: lowerCAmelCase = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: lowerCAmelCase = name.replace('upsample.2' , 'upsample.convolution_1' ) lowerCAmelCase = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": lowerCAmelCase = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) lowerCAmelCase = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: lowerCAmelCase = 'swin2sr.' + name return name def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict ): for key in orig_state_dict.copy().keys(): lowerCAmelCase = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: lowerCAmelCase = key.split('.' ) lowerCAmelCase = int(key_split[1] ) lowerCAmelCase = int(key_split[4] ) lowerCAmelCase = config.embed_dim if "weight" in key: lowerCAmelCase = val[:dim, :] lowerCAmelCase = val[dim : dim * 2, :] lowerCAmelCase = val[-dim:, :] else: lowerCAmelCase = val[:dim] lowerCAmelCase = val[dim : dim * 2] lowerCAmelCase = val[-dim:] pass else: lowerCAmelCase = val return orig_state_dict def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ): lowerCAmelCase = get_config(_UpperCAmelCase ) lowerCAmelCase = SwinaSRForImageSuperResolution(_UpperCAmelCase ) model.eval() lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' ) lowerCAmelCase = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_UpperCAmelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowerCAmelCase = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) lowerCAmelCase = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCAmelCase = 126 if 'Jpeg' in checkpoint_url else 256 lowerCAmelCase = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowerCAmelCase = transforms(_UpperCAmelCase ).unsqueeze(0 ) if config.num_channels == 1: lowerCAmelCase = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCAmelCase = model(_UpperCAmelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-3 ) print('Looks ok!' ) lowerCAmelCase = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } lowerCAmelCase = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') __UpperCamelCase : Optional[int] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
1
"""simple docstring""" # Algorithm for the pigeonhole sorting def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = min(_UpperCAmelCase ) # min() finds the minimum value lowerCAmelCase = max(_UpperCAmelCase ) # max() finds the maximum value lowerCAmelCase = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size lowerCAmelCase = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. lowerCAmelCase = 0 for count in range(_UpperCAmelCase ): while holes[count] > 0: holes[count] -= 1 lowerCAmelCase = count + min_val i += 1 def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_UpperCAmelCase ) print('Sorted order is:' , ' '.join(_UpperCAmelCase ) ) if __name__ == "__main__": main()
4
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''megatron-bert''' def __init__( self , _snake_case=2_90_56 , _snake_case=10_24 , _snake_case=24 , _snake_case=16 , _snake_case=40_96 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache
4
1
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCamelCase : Union[str, Any] = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
4
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Optional[Any] = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class a ( a__ ): snake_case__ = 42 class a ( a__ , a__ ): @register_to_config def __init__( self , _snake_case = 3 , _snake_case = 3 , _snake_case = ("DownEncoderBlock2D",) , _snake_case = ("UpDecoderBlock2D",) , _snake_case = (64,) , _snake_case = 1 , _snake_case = "silu" , _snake_case = 3 , _snake_case = 32 , _snake_case = 2_56 , _snake_case = 32 , _snake_case = None , _snake_case = 0.18_215 , _snake_case = "group" , ): """simple docstring""" super().__init__() # pass init params to Encoder lowerCAmelCase = Encoder( in_channels=_snake_case , out_channels=_snake_case , down_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , double_z=_snake_case , ) lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 ) lowerCAmelCase = VectorQuantizer(_snake_case , _snake_case , beta=0.25 , remap=_snake_case , sane_index_shape=_snake_case ) lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 ) # pass init params to Decoder lowerCAmelCase = Decoder( in_channels=_snake_case , out_channels=_snake_case , up_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , norm_type=_snake_case , ) @apply_forward_hook def UpperCamelCase__ ( self , _snake_case , _snake_case = True ): """simple docstring""" lowerCAmelCase = self.encoder(_snake_case ) lowerCAmelCase = self.quant_conv(_snake_case ) if not return_dict: return (h,) return VQEncoderOutput(latents=_snake_case ) @apply_forward_hook def UpperCamelCase__ ( self , _snake_case , _snake_case = False , _snake_case = True ): """simple docstring""" if not force_not_quantize: lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = self.quantize(_snake_case ) else: lowerCAmelCase = h lowerCAmelCase = self.post_quant_conv(_snake_case ) lowerCAmelCase = self.decoder(_snake_case , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case = True ): """simple docstring""" lowerCAmelCase = sample lowerCAmelCase = self.encode(_snake_case ).latents lowerCAmelCase = self.decode(_snake_case ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_snake_case )
4
1
"""simple docstring""" import math import os import sys def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = '' try: with open(_UpperCAmelCase , 'rb' ) as binary_file: lowerCAmelCase = binary_file.read() for dat in data: lowerCAmelCase = F'{dat:08b}' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[str, str] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : str ): lexicon.pop(_UpperCAmelCase ) lowerCAmelCase = last_match_id if math.loga(_UpperCAmelCase ).is_integer(): for curr_key in lexicon: lowerCAmelCase = '0' + lexicon[curr_key] lowerCAmelCase = bin(_UpperCAmelCase )[2:] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = {'0': '0', '1': '1'} lowerCAmelCase ,lowerCAmelCase = '', '' lowerCAmelCase = len(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowerCAmelCase = lexicon[curr_string] result += last_match_id add_key_to_lexicon(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) index += 1 lowerCAmelCase = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": lowerCAmelCase = lexicon[curr_string] result += last_match_id return result def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = os.path.getsize(_UpperCAmelCase ) lowerCAmelCase = bin(_UpperCAmelCase )[2:] lowerCAmelCase = len(_UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = 8 try: with open(_UpperCAmelCase , 'wb' ) as opened_file: lowerCAmelCase = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(_UpperCAmelCase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = read_file_binary(_UpperCAmelCase ) lowerCAmelCase = compress_data(_UpperCAmelCase ) lowerCAmelCase = add_file_length(_UpperCAmelCase , _UpperCAmelCase ) write_file_binary(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
4
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping __UpperCamelCase : Optional[Any] = tuple[int, int] class a : def __init__( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = vertices lowerCAmelCase = { (min(_snake_case ), max(_snake_case )): weight for edge, weight in edges.items() } def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase = weight def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Graph({min(self.vertices )} , {} ) lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase = edge lowerCAmelCase = weight subgraph.add_edge(_snake_case , _snake_case ) return subgraph def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "p107_network.txt" ): lowerCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) ) lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = {} lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 with open(_UpperCAmelCase ) as f: lowerCAmelCase = f.read().strip().split('\n' ) lowerCAmelCase = [line.split(',' ) for line in data] for edgea in range(1 , len(_UpperCAmelCase ) ): for edgea in range(_UpperCAmelCase ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase = Graph(set(range(len(_UpperCAmelCase ) ) ) , _UpperCAmelCase ) lowerCAmelCase = graph.prims_algorithm() lowerCAmelCase = sum(graph.edges.values() ) lowerCAmelCase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
4
1
"""simple docstring""" import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCamelCase : int = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] ): lowerCAmelCase = set() lowerCAmelCase = [] def parse_line(_UpperCAmelCase : str ): for line in fp: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCAmelCase = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(_UpperCAmelCase ) > 0: lowerCAmelCase = '\n'.join(_UpperCAmelCase ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(_UpperCAmelCase ) buffer.clear() continue else: lowerCAmelCase = line.strip() buffer.append(_UpperCAmelCase ) if from_gh: for filename in os.listdir(_UpperCAmelCase ): lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) else: try: with zipfile.ZipFile(_UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with z.open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ): lowerCAmelCase = set() lowerCAmelCase = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for p in os.listdir(_UpperCAmelCase ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_UpperCAmelCase , _UpperCAmelCase ) ) return selected_warnings if __name__ == "__main__": def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] ): return values.split(',' ) __UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Optional[Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCamelCase : Optional[Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCamelCase : Any = extract_warnings(args.output_dir, args.targets) __UpperCamelCase : Tuple = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
4
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCAmelCase )] ) lowerCAmelCase = np.array(_UpperCAmelCase ) lowerCAmelCase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCAmelCase ) ) , x.transpose() ) , _UpperCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = (1, 2, 1) lowerCAmelCase = (1, 1, 0, 7) lowerCAmelCase = SARIMAX( _UpperCAmelCase , exog=_UpperCAmelCase , order=_UpperCAmelCase , seasonal_order=_UpperCAmelCase ) lowerCAmelCase = model.fit(disp=_UpperCAmelCase , maxiter=600 , method='nm' ) lowerCAmelCase = model_fit.predict(1 , len(_UpperCAmelCase ) , exog=[test_match] ) return result[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = regressor.predict(_UpperCAmelCase ) return y_pred[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ): train_user.sort() lowerCAmelCase = np.percentile(_UpperCAmelCase , 25 ) lowerCAmelCase = np.percentile(_UpperCAmelCase , 75 ) lowerCAmelCase = qa - qa lowerCAmelCase = qa - (iqr * 0.1) return low_lim def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : float ): lowerCAmelCase = 0 lowerCAmelCase = 0 for i in list_vote: if i > actual_result: lowerCAmelCase = not_safe + 1 else: if abs(abs(_UpperCAmelCase ) - abs(_UpperCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __UpperCamelCase : Optional[Any] = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] __UpperCamelCase : Any = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) __UpperCamelCase : Dict = Normalizer().fit_transform(data_input_df.values) # split data __UpperCamelCase : Dict = normalize_df[:, 2].tolist() __UpperCamelCase : Union[str, Any] = normalize_df[:, 0].tolist() __UpperCamelCase : List[str] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __UpperCamelCase : Optional[int] = normalize_df[:, [1, 2]].tolist() __UpperCamelCase : Tuple = x[: len(x) - 1] __UpperCamelCase : Any = x[len(x) - 1 :] # for linear regression & sarimax __UpperCamelCase : str = total_date[: len(total_date) - 1] __UpperCamelCase : Union[str, Any] = total_user[: len(total_user) - 1] __UpperCamelCase : List[Any] = total_match[: len(total_match) - 1] __UpperCamelCase : Optional[Any] = total_date[len(total_date) - 1 :] __UpperCamelCase : str = total_user[len(total_user) - 1 :] __UpperCamelCase : str = total_match[len(total_match) - 1 :] # voting system with forecasting __UpperCamelCase : Any = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __UpperCamelCase : List[str] = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('''Today\'s data is {not_str}safe.''')
4
1
"""simple docstring""" class a : def __init__( self , _snake_case ): """simple docstring""" lowerCAmelCase = size lowerCAmelCase = [0] * size lowerCAmelCase = [0] * size @staticmethod def UpperCamelCase__ ( _snake_case ): """simple docstring""" return index | (index + 1) @staticmethod def UpperCamelCase__ ( _snake_case ): """simple docstring""" return (index & (index + 1)) - 1 def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = value while index < self.size: lowerCAmelCase = self.get_prev(_snake_case ) + 1 if current_left_border == index: lowerCAmelCase = value else: lowerCAmelCase = max(_snake_case , _snake_case , _snake_case ) lowerCAmelCase = self.get_next(_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" right -= 1 # Because of right is exclusive lowerCAmelCase = 0 while left <= right: lowerCAmelCase = self.get_prev(_snake_case ) if left <= current_left: lowerCAmelCase = max(_snake_case , self.tree[right] ) lowerCAmelCase = current_left else: lowerCAmelCase = max(_snake_case , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
4
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=_UpperCAmelCase , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=_UpperCAmelCase , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=_UpperCAmelCase , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=_UpperCAmelCase , default=0 , help='cuda_id.' , ) lowerCAmelCase = parser.parse_args() return args def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ): if not len(_UpperCAmelCase ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) lowerCAmelCase ,lowerCAmelCase = imgs[0].size lowerCAmelCase = Image.new('RGB' , size=(cols * w, rows * h) ) lowerCAmelCase ,lowerCAmelCase = grid.size for i, img in enumerate(_UpperCAmelCase ): grid.paste(_UpperCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]="robotic cat with wings" , _UpperCAmelCase : Optional[int]=7.5 , _UpperCAmelCase : Dict=50 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=42 , ): lowerCAmelCase = torch.Generator(pipeline.device ).manual_seed(_UpperCAmelCase ) lowerCAmelCase = pipeline( _UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , ).images lowerCAmelCase = int(math.sqrt(_UpperCAmelCase ) ) lowerCAmelCase = image_grid(_UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __UpperCamelCase : Optional[Any] = parse_args() # Load models and create wrapper for stable diffusion __UpperCamelCase : List[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') __UpperCamelCase : str = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') __UpperCamelCase : Optional[int] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') __UpperCamelCase : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') __UpperCamelCase : Tuple = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __UpperCamelCase : Union[str, Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): __UpperCamelCase : Dict = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: __UpperCamelCase : Dict = unet.to(torch.device('''cuda''', args.cuda_id)) __UpperCamelCase : Optional[Any] = pipeline.to(unet.device) __UpperCamelCase ,__UpperCamelCase : List[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) __UpperCamelCase : int = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
4
1
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : List[int] ): lowerCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ), F'{len(_UpperCAmelCase )} != {len(_UpperCAmelCase )}' dest_layers.load_state_dict(layers_to_copy.state_dict() ) __UpperCamelCase : Optional[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } __UpperCamelCase : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ): try: lowerCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first' F' {n_student}' ) return list(range(_UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ): if n_student > n_teacher: raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' ) elif n_teacher == n_student: return list(range(_UpperCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, PreTrainedModel] , _UpperCAmelCase : Union[str, Path] = "student" , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ): lowerCAmelCase = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(_UpperCAmelCase , _UpperCAmelCase ): AutoTokenizer.from_pretrained(_UpperCAmelCase ).save_pretrained(_UpperCAmelCase ) # purely for convenience lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).eval() else: assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), F'teacher must be a model or string got type {type(_UpperCAmelCase )}' lowerCAmelCase = teacher.config.to_diff_dict() try: lowerCAmelCase ,lowerCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: lowerCAmelCase = teacher_e if d is None: lowerCAmelCase = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): lowerCAmelCase ,lowerCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: lowerCAmelCase ,lowerCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: lowerCAmelCase = teacher_e if d is None: lowerCAmelCase = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(_UpperCAmelCase ) # Copy weights lowerCAmelCase = teacher.config_class(**_UpperCAmelCase ) lowerCAmelCase = AutoModelForSeqaSeqLM.from_config(_UpperCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. lowerCAmelCase = student.load_state_dict(teacher.state_dict() , strict=_UpperCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save lowerCAmelCase ,lowerCAmelCase = list(range(_UpperCAmelCase ) ), list(range(_UpperCAmelCase ) ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to' F' {save_path}' ) student.save_pretrained(_UpperCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase ) if d_layers_to_copy is None: lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase ) try: if hasattr( _UpperCAmelCase , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _UpperCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _UpperCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _UpperCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _UpperCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , _UpperCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , _UpperCAmelCase ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' ) lowerCAmelCase = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(_UpperCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
4
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : List[int] ): lowerCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ), F'{len(_UpperCAmelCase )} != {len(_UpperCAmelCase )}' dest_layers.load_state_dict(layers_to_copy.state_dict() ) __UpperCamelCase : Optional[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } __UpperCamelCase : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ): try: lowerCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first' F' {n_student}' ) return list(range(_UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ): if n_student > n_teacher: raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' ) elif n_teacher == n_student: return list(range(_UpperCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, PreTrainedModel] , _UpperCAmelCase : Union[str, Path] = "student" , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ): lowerCAmelCase = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(_UpperCAmelCase , _UpperCAmelCase ): AutoTokenizer.from_pretrained(_UpperCAmelCase ).save_pretrained(_UpperCAmelCase ) # purely for convenience lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).eval() else: assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), F'teacher must be a model or string got type {type(_UpperCAmelCase )}' lowerCAmelCase = teacher.config.to_diff_dict() try: lowerCAmelCase ,lowerCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: lowerCAmelCase = teacher_e if d is None: lowerCAmelCase = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): lowerCAmelCase ,lowerCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: lowerCAmelCase ,lowerCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: lowerCAmelCase = teacher_e if d is None: lowerCAmelCase = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(_UpperCAmelCase ) # Copy weights lowerCAmelCase = teacher.config_class(**_UpperCAmelCase ) lowerCAmelCase = AutoModelForSeqaSeqLM.from_config(_UpperCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. lowerCAmelCase = student.load_state_dict(teacher.state_dict() , strict=_UpperCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save lowerCAmelCase ,lowerCAmelCase = list(range(_UpperCAmelCase ) ), list(range(_UpperCAmelCase ) ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to' F' {save_path}' ) student.save_pretrained(_UpperCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase ) if d_layers_to_copy is None: lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase ) try: if hasattr( _UpperCAmelCase , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _UpperCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _UpperCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _UpperCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _UpperCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , _UpperCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , _UpperCAmelCase ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' ) lowerCAmelCase = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(_UpperCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
4
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class a ( a__ ): def __init__( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = dataset lowerCAmelCase = process lowerCAmelCase = params def __len__( self ): """simple docstring""" return len(self.dataset ) def __getitem__( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.dataset[i] lowerCAmelCase = self.process(_snake_case , **self.params ) return processed class a ( a__ ): def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case=None ): """simple docstring""" lowerCAmelCase = loader lowerCAmelCase = infer lowerCAmelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether lowerCAmelCase = None lowerCAmelCase = loader_batch_size # Internal bookkeeping lowerCAmelCase = None lowerCAmelCase = None def __len__( self ): """simple docstring""" return len(self.loader ) def __iter__( self ): """simple docstring""" lowerCAmelCase = iter(self.loader ) return self def UpperCamelCase__ ( self ): """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice lowerCAmelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) lowerCAmelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(_snake_case , _snake_case ): # Convert ModelOutput to tuple first lowerCAmelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_snake_case , _snake_case ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around lowerCAmelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowerCAmelCase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowerCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. lowerCAmelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 lowerCAmelCase = self._loader_batch_data.__class__(_snake_case ) self._loader_batch_index += 1 return result def UpperCamelCase__ ( self ): """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch lowerCAmelCase = next(self.iterator ) lowerCAmelCase = self.infer(_snake_case , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_snake_case , torch.Tensor ): lowerCAmelCase = processed else: lowerCAmelCase = list(processed.keys() )[0] lowerCAmelCase = processed[key] if isinstance(_snake_case , _snake_case ): lowerCAmelCase = len(_snake_case ) else: lowerCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowerCAmelCase = observed_batch_size # Setting internal index to unwrap the batch lowerCAmelCase = processed lowerCAmelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class a ( a__ ): def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case=None ): """simple docstring""" super().__init__(_snake_case , _snake_case , _snake_case ) def __iter__( self ): """simple docstring""" lowerCAmelCase = iter(self.loader ) lowerCAmelCase = None return self def UpperCamelCase__ ( self ): """simple docstring""" if self.subiterator is None: lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item lowerCAmelCase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) lowerCAmelCase = next(self.subiterator ) return processed class a ( a__ ): def __iter__( self ): """simple docstring""" lowerCAmelCase = iter(self.loader ) return self def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = False lowerCAmelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: lowerCAmelCase = self.loader_batch_item() lowerCAmelCase = item.pop('is_last' ) accumulator.append(_snake_case ) if is_last: return accumulator while not is_last: lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_snake_case , torch.Tensor ): lowerCAmelCase = processed else: lowerCAmelCase = list(processed.keys() )[0] lowerCAmelCase = processed[key] if isinstance(_snake_case , _snake_case ): lowerCAmelCase = len(_snake_case ) else: lowerCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowerCAmelCase = observed_batch_size lowerCAmelCase = processed lowerCAmelCase = 0 while self._loader_batch_index < self.loader_batch_size: lowerCAmelCase = self.loader_batch_item() lowerCAmelCase = item.pop('is_last' ) accumulator.append(_snake_case ) if is_last: return accumulator else: lowerCAmelCase = processed lowerCAmelCase = item.pop('is_last' ) accumulator.append(_snake_case ) return accumulator class a ( a__ ): def __init__( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = dataset lowerCAmelCase = key def __len__( self ): """simple docstring""" return len(self.dataset ) def __getitem__( self , _snake_case ): """simple docstring""" return self.dataset[i][self.key] class a ( a__ ): def __init__( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = dataset lowerCAmelCase = keya lowerCAmelCase = keya def __len__( self ): """simple docstring""" return len(self.dataset ) def __getitem__( self , _snake_case ): """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
4
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Dict = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
1
"""simple docstring""" class a : def __init__( self , _snake_case ): """simple docstring""" lowerCAmelCase = arr.split(',' ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = [int(self.array[0] )] * len(self.array ) lowerCAmelCase = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): lowerCAmelCase = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) lowerCAmelCase = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": __UpperCamelCase : Dict = input('''please input some numbers:''') __UpperCamelCase : List[str] = SubArray(whole_array) __UpperCamelCase : Union[str, Any] = array.solve_sub_array() print(('''the results is:''', re))
4
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ): lowerCAmelCase = 0.00 lowerCAmelCase = 0 for resistor in resistors: if resistor <= 0: lowerCAmelCase = F'Resistor at index {index} has a negative or zero value!' raise ValueError(_UpperCAmelCase ) first_sum += 1 / float(_UpperCAmelCase ) index += 1 return 1 / first_sum def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ): lowerCAmelCase = 0.00 lowerCAmelCase = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowerCAmelCase = F'Resistor at index {index} has a negative value!' raise ValueError(_UpperCAmelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
4
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''bert''' def __init__( self , _snake_case=3_05_22 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache lowerCAmelCase = classifier_dropout class a ( a__ ): @property def UpperCamelCase__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
4
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''', # See all GLPN models at https://huggingface.co/models?filter=glpn } class a ( a__ ): snake_case__ = '''glpn''' def __init__( self , _snake_case=3 , _snake_case=4 , _snake_case=[2, 2, 2, 2] , _snake_case=[8, 4, 2, 1] , _snake_case=[32, 64, 1_60, 2_56] , _snake_case=[7, 3, 3, 3] , _snake_case=[4, 2, 2, 2] , _snake_case=[1, 2, 5, 8] , _snake_case=[4, 4, 4, 4] , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=0.1 , _snake_case=1E-6 , _snake_case=64 , _snake_case=10 , _snake_case=-1 , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = num_channels lowerCAmelCase = num_encoder_blocks lowerCAmelCase = depths lowerCAmelCase = sr_ratios lowerCAmelCase = hidden_sizes lowerCAmelCase = patch_sizes lowerCAmelCase = strides lowerCAmelCase = mlp_ratios lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = drop_path_rate lowerCAmelCase = layer_norm_eps lowerCAmelCase = decoder_hidden_size lowerCAmelCase = max_depth lowerCAmelCase = head_in_index
4
1
"""simple docstring""" from typing import Any class a : def __init__( self , _snake_case ): """simple docstring""" lowerCAmelCase = data lowerCAmelCase = None def __repr__( self ): """simple docstring""" return F'Node({self.data})' class a : def __init__( self ): """simple docstring""" lowerCAmelCase = None def __iter__( self ): """simple docstring""" lowerCAmelCase = self.head while node: yield node.data lowerCAmelCase = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(_snake_case ) for item in self] ) def __getitem__( self , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase = self.head for _ in range(_snake_case ): lowerCAmelCase = current.next lowerCAmelCase = data def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(len(self ) , _snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(0 , _snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase = Node(_snake_case ) if self.head is None: lowerCAmelCase = new_node elif index == 0: lowerCAmelCase = self.head # link new_node to head lowerCAmelCase = new_node else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = new_node def UpperCamelCase__ ( self ): # print every node data """simple docstring""" print(self ) def UpperCamelCase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def UpperCamelCase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def UpperCamelCase__ ( self , _snake_case = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase = self.head # default first node if index == 0: lowerCAmelCase = self.head.next else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = temp.next.next return delete_node.data def UpperCamelCase__ ( self ): """simple docstring""" return self.head is None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = None lowerCAmelCase = self.head while current: # Store the current node's next node. lowerCAmelCase = current.next # Make the current node's next point backwards lowerCAmelCase = prev # Make the previous node be the current node lowerCAmelCase = current # Make the current node the next node (to progress iteration) lowerCAmelCase = next_node # Return prev in order to put the head at the end lowerCAmelCase = prev def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = LinkedList() assert linked_list.is_empty() is True assert str(_UpperCAmelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_UpperCAmelCase ) == i linked_list.insert_nth(_UpperCAmelCase , i + 1 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_UpperCAmelCase ) == 9 assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(-8 , 1 ) ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = [ -9, 100, Node(7734_5112 ), 'dlrow olleH', 7, 5555, 0, -192.5_5555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase = LinkedList() for i in test_input: linked_list.insert_tail(_UpperCAmelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase = linked_list.delete_head() assert result == -9 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_UpperCAmelCase ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_UpperCAmelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _SCREAMING_SNAKE_CASE (): from doctest import testmod testmod() lowerCAmelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_UpperCAmelCase ) print('\nReading/changing Node data using indexing:' ) print(F'Element at Position 1: {linked_list[1]}' ) lowerCAmelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_UpperCAmelCase ) print(F'length of linked_list is : {len(_UpperCAmelCase )}' ) if __name__ == "__main__": main()
4
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , _snake_case=10_00 , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = range_bbox def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase = bbox[i, j, 3] lowerCAmelCase = bbox[i, j, 1] lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase = bbox[i, j, 2] lowerCAmelCase = bbox[i, j, 0] lowerCAmelCase = t lowerCAmelCase = tf.convert_to_tensor(_snake_case ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForMaskedLM(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForSequenceClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForTokenClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = True snake_case__ = 1_0 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFLayoutLMModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def _SCREAMING_SNAKE_CASE (): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off lowerCAmelCase = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowerCAmelCase = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the sequence output on [0, :3, :3] lowerCAmelCase = tf.convert_to_tensor( [[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _snake_case , atol=1E-3 ) ) # test the pooled output on [1, :3] lowerCAmelCase = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _snake_case , atol=1E-3 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar lowerCAmelCase = outputs.loss lowerCAmelCase = (2,) self.assertEqual(loss.shape , _snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = (2, 2) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the shape of the logits lowerCAmelCase = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _snake_case ) self.assertEqual(outputs.end_logits.shape , _snake_case )
4
1
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple ): return 1.0 / (1.0 + np.exp(-_outputs )) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ): lowerCAmelCase = np.max(_outputs , axis=-1 , keepdims=_UpperCAmelCase ) lowerCAmelCase = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_UpperCAmelCase ) class a ( a__ ): snake_case__ = '''sigmoid''' snake_case__ = '''softmax''' snake_case__ = '''none''' @add_end_docstrings( a__ , r''' return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. ''' , ) class a ( a__ ): snake_case__ = False snake_case__ = ClassificationFunction.NONE def __init__( self , **_snake_case ): """simple docstring""" super().__init__(**_snake_case ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def UpperCamelCase__ ( self , _snake_case=None , _snake_case=None , _snake_case="" , **_snake_case ): """simple docstring""" lowerCAmelCase = tokenizer_kwargs lowerCAmelCase = {} if hasattr(self.model.config , 'return_all_scores' ) and return_all_scores is None: lowerCAmelCase = self.model.config.return_all_scores if isinstance(_snake_case , _snake_case ) or top_k is None: lowerCAmelCase = top_k lowerCAmelCase = False elif return_all_scores is not None: warnings.warn( '`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of' ' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.' , _snake_case , ) if return_all_scores: lowerCAmelCase = None else: lowerCAmelCase = 1 if isinstance(_snake_case , _snake_case ): lowerCAmelCase = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: lowerCAmelCase = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *_snake_case , **_snake_case ): """simple docstring""" lowerCAmelCase = super().__call__(*_snake_case , **_snake_case ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. lowerCAmelCase = 'top_k' not in kwargs if isinstance(args[0] , _snake_case ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def UpperCamelCase__ ( self , _snake_case , **_snake_case ): """simple docstring""" lowerCAmelCase = self.framework if isinstance(_snake_case , _snake_case ): return self.tokenizer(**_snake_case , return_tensors=_snake_case , **_snake_case ) elif isinstance(_snake_case , _snake_case ) and len(_snake_case ) == 1 and isinstance(inputs[0] , _snake_case ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=_snake_case , **_snake_case ) elif isinstance(_snake_case , _snake_case ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( 'The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a' ' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' ) return self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.model(**_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case=1 , _snake_case=True ): """simple docstring""" if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: lowerCAmelCase = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: lowerCAmelCase = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , 'function_to_apply' ) and function_to_apply is None: lowerCAmelCase = self.model.config.function_to_apply else: lowerCAmelCase = ClassificationFunction.NONE lowerCAmelCase = model_outputs['logits'][0] lowerCAmelCase = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: lowerCAmelCase = sigmoid(_snake_case ) elif function_to_apply == ClassificationFunction.SOFTMAX: lowerCAmelCase = softmax(_snake_case ) elif function_to_apply == ClassificationFunction.NONE: lowerCAmelCase = outputs else: raise ValueError(F'Unrecognized `function_to_apply` argument: {function_to_apply}' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} lowerCAmelCase = [ {'label': self.model.config.idalabel[i], 'score': score.item()} for i, score in enumerate(_snake_case ) ] if not _legacy: dict_scores.sort(key=lambda _snake_case : x["score"] , reverse=_snake_case ) if top_k is not None: lowerCAmelCase = dict_scores[:top_k] return dict_scores
4
"""simple docstring""" import argparse import os import re import packaging.version __UpperCamelCase : Union[str, Any] = '''examples/''' __UpperCamelCase : str = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __UpperCamelCase : List[str] = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } __UpperCamelCase : Optional[int] = '''README.md''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ): with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.read() lowerCAmelCase ,lowerCAmelCase = REPLACE_PATTERNS[pattern] lowerCAmelCase = replace.replace('VERSION' , _UpperCAmelCase ) lowerCAmelCase = re_pattern.sub(_UpperCAmelCase , _UpperCAmelCase ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ): for folder, directories, fnames in os.walk(_UpperCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , pattern='examples' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not patch: update_version_in_examples(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = '🤗 Transformers currently provides the following architectures' lowerCAmelCase = '1. Want to contribute a new model?' with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.readlines() # Find the start of the list. lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): lowerCAmelCase = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): with open(REPLACE_FILES['init'] , 'r' ) as f: lowerCAmelCase = f.read() lowerCAmelCase = REPLACE_PATTERNS['init'][0].search(_UpperCAmelCase ).groups()[0] return packaging.version.parse(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple=False ): lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: lowerCAmelCase = default_version.base_version elif patch: lowerCAmelCase = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: lowerCAmelCase = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. lowerCAmelCase = input(F'Which version are you releasing? [{default_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = default_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase , patch=_UpperCAmelCase ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = get_version() lowerCAmelCase = F'{current_version.major}.{current_version.minor + 1}.0.dev0' lowerCAmelCase = current_version.base_version # Check with the user we got that right. lowerCAmelCase = input(F'Which version are we developing now? [{dev_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = dev_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __UpperCamelCase : Optional[int] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
4
1
"""simple docstring""" from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Any ): lowerCAmelCase = k_size // 2 lowerCAmelCase ,lowerCAmelCase = mgrid[0 - center : k_size - center, 0 - center : k_size - center] lowerCAmelCase = 1 / (2 * pi * sigma) * exp(-(square(_UpperCAmelCase ) + square(_UpperCAmelCase )) / (2 * square(_UpperCAmelCase )) ) return g def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] ): lowerCAmelCase ,lowerCAmelCase = image.shape[0], image.shape[1] # dst image height and width lowerCAmelCase = height - k_size + 1 lowerCAmelCase = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows lowerCAmelCase = zeros((dst_height * dst_width, k_size * k_size) ) lowerCAmelCase = 0 for i, j in product(range(_UpperCAmelCase ) , range(_UpperCAmelCase ) ): lowerCAmelCase = ravel(image[i : i + k_size, j : j + k_size] ) lowerCAmelCase = window row += 1 # turn the kernel into shape(k*k, 1) lowerCAmelCase = gen_gaussian_kernel(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = ravel(_UpperCAmelCase ) # reshape and get the dst image lowerCAmelCase = dot(_UpperCAmelCase , _UpperCAmelCase ).reshape(_UpperCAmelCase , _UpperCAmelCase ).astype(_UpperCAmelCase ) return dst if __name__ == "__main__": # read original image __UpperCamelCase : Tuple = imread(R'''../image_data/lena.jpg''') # turn image in gray scale value __UpperCamelCase : int = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __UpperCamelCase : Optional[Any] = gaussian_filter(gray, 3, sigma=1) __UpperCamelCase : Tuple = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
4
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __UpperCamelCase : Optional[int] = pytest.mark.integration @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_snake_case ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() lowerCAmelCase = dset.map( lambda _snake_case , _snake_case : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_snake_case , keep_in_memory=_snake_case ) lowerCAmelCase = dset.add_faiss_index('vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_snake_case , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch lowerCAmelCase = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCAmelCase = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_snake_case ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertRaises(_snake_case , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCAmelCase = np.eye(5 , dtype=np.floataa )[::-1] lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) self.assertRaises(_snake_case , index.search_batch , queries[0] ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCAmelCase = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_snake_case ): lowerCAmelCase = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = faiss.IndexFlat(5 ) lowerCAmelCase = FaissIndex(custom_index=_snake_case ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: index.save(tmp_file.name ) lowerCAmelCase = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ): import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCAmelCase = 'index.faiss' lowerCAmelCase = F'mock://{index_name}' index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = Elasticsearch() lowerCAmelCase = {'acknowledged': True} lowerCAmelCase = ElasticSearchIndex(es_client=_snake_case ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case ) # batched queries with timeout lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case , request_timeout=30 ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case )
4
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Optional[int] = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __UpperCamelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a ( a__ , a__ , unittest.TestCase ): snake_case__ = IFInpaintingPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_dummy_components() def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
4
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[str] = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class a ( a__ ): snake_case__ = '''marian''' snake_case__ = ['''past_key_values'''] snake_case__ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , _snake_case=5_81_01 , _snake_case=None , _snake_case=10_24 , _snake_case=12 , _snake_case=40_96 , _snake_case=16 , _snake_case=12 , _snake_case=40_96 , _snake_case=16 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=True , _snake_case=True , _snake_case="gelu" , _snake_case=10_24 , _snake_case=0.1 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=5_81_00 , _snake_case=False , _snake_case=5_81_00 , _snake_case=0 , _snake_case=0 , _snake_case=True , **_snake_case , ): """simple docstring""" lowerCAmelCase = vocab_size lowerCAmelCase = decoder_vocab_size or vocab_size lowerCAmelCase = max_position_embeddings lowerCAmelCase = d_model lowerCAmelCase = encoder_ffn_dim lowerCAmelCase = encoder_layers lowerCAmelCase = encoder_attention_heads lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = encoder_layerdrop lowerCAmelCase = decoder_layerdrop lowerCAmelCase = use_cache lowerCAmelCase = encoder_layers lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=_snake_case , eos_token_id=_snake_case , is_encoder_decoder=_snake_case , decoder_start_token_id=_snake_case , forced_eos_token_id=_snake_case , **_snake_case , ) class a ( a__ ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def UpperCamelCase__ ( self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: lowerCAmelCase = {0: 'batch'} lowerCAmelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowerCAmelCase = {0: 'batch', 1: 'decoder_sequence'} lowerCAmelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_snake_case , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCAmelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: lowerCAmelCase ,lowerCAmelCase = self.num_layers for i in range(_snake_case ): lowerCAmelCase = {0: 'batch', 2: 'past_sequence + sequence'} lowerCAmelCase = {0: 'batch', 2: 'past_sequence + sequence'} else: lowerCAmelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def UpperCamelCase__ ( self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase = super().outputs else: lowerCAmelCase = super(_snake_case , self ).outputs if self.use_past: lowerCAmelCase ,lowerCAmelCase = self.num_layers for i in range(_snake_case ): lowerCAmelCase = {0: 'batch', 2: 'past_sequence + sequence'} lowerCAmelCase = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def UpperCamelCase__ ( self , _snake_case , _snake_case = -1 , _snake_case = -1 , _snake_case = False , _snake_case = None , ): """simple docstring""" lowerCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) # Generate decoder inputs lowerCAmelCase = seq_length if not self.use_past else 1 lowerCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) lowerCAmelCase = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} lowerCAmelCase = dict(**_snake_case , **_snake_case ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowerCAmelCase ,lowerCAmelCase = common_inputs['input_ids'].shape lowerCAmelCase = common_inputs['decoder_input_ids'].shape[1] lowerCAmelCase ,lowerCAmelCase = self.num_attention_heads lowerCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCAmelCase = decoder_seq_length + 3 lowerCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCAmelCase = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(_snake_case , _snake_case )] , dim=1 ) lowerCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCAmelCase ,lowerCAmelCase = self.num_layers lowerCAmelCase = min(_snake_case , _snake_case ) lowerCAmelCase = max(_snake_case , _snake_case ) - min_num_layers lowerCAmelCase = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(_snake_case ): common_inputs["past_key_values"].append( ( torch.zeros(_snake_case ), torch.zeros(_snake_case ), torch.zeros(_snake_case ), torch.zeros(_snake_case ), ) ) # TODO: test this. lowerCAmelCase = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(_snake_case , _snake_case ): common_inputs["past_key_values"].append((torch.zeros(_snake_case ), torch.zeros(_snake_case )) ) return common_inputs def UpperCamelCase__ ( self , _snake_case , _snake_case = -1 , _snake_case = -1 , _snake_case = False , _snake_case = None , ): """simple docstring""" lowerCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowerCAmelCase ,lowerCAmelCase = common_inputs['input_ids'].shape # Not using the same length for past_key_values lowerCAmelCase = seqlen + 2 lowerCAmelCase ,lowerCAmelCase = self.num_layers lowerCAmelCase ,lowerCAmelCase = self.num_attention_heads lowerCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCAmelCase = common_inputs['attention_mask'].dtype lowerCAmelCase = torch.cat( [common_inputs['attention_mask'], torch.ones(_snake_case , _snake_case , dtype=_snake_case )] , dim=1 ) lowerCAmelCase = [ (torch.zeros(_snake_case ), torch.zeros(_snake_case )) for _ in range(_snake_case ) ] return common_inputs def UpperCamelCase__ ( self , _snake_case , _snake_case = -1 , _snake_case = -1 , _snake_case = False , _snake_case = None , ): """simple docstring""" lowerCAmelCase = compute_effective_axis_dimension( _snake_case , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCAmelCase = tokenizer.num_special_tokens_to_add(_snake_case ) lowerCAmelCase = compute_effective_axis_dimension( _snake_case , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_snake_case ) # Generate dummy inputs according to compute batch and sequence lowerCAmelCase = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCAmelCase = dict(tokenizer(_snake_case , return_tensors=_snake_case ) ) return common_inputs def UpperCamelCase__ ( self , _snake_case , _snake_case = -1 , _snake_case = -1 , _snake_case = False , _snake_case = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _snake_case , batch_size=_snake_case , seq_length=_snake_case , is_pair=_snake_case , framework=_snake_case ) else: lowerCAmelCase = self._generate_dummy_inputs_for_causal_lm( _snake_case , batch_size=_snake_case , seq_length=_snake_case , is_pair=_snake_case , framework=_snake_case ) return common_inputs def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase = super()._flatten_past_key_values_(_snake_case , _snake_case , _snake_case , _snake_case ) else: lowerCAmelCase = super(_snake_case , self )._flatten_past_key_values_( _snake_case , _snake_case , _snake_case , _snake_case ) @property def UpperCamelCase__ ( self ): """simple docstring""" return 1E-4
4
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = self.vocab_size - 1 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , head_mask=_snake_case ) lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTLMHeadModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTDoubleHeadsModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = OpenAIGPTForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case__ = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=False ): """simple docstring""" lowerCAmelCase = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_snake_case , ) lowerCAmelCase = inputs_dict['labels'] lowerCAmelCase = inputs_dict['labels'] lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_snake_case , ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_snake_case ) return inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenAIGPTModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , n_embd=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = OpenAIGPTModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_torch class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(_snake_case ) lowerCAmelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=_snake_case ) # the president is lowerCAmelCase = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCAmelCase = model.generate(_snake_case , do_sample=_snake_case ) self.assertListEqual(output_ids[0].tolist() , _snake_case )
4
1
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class a ( a__ ): snake_case__ = 0 snake_case__ = False snake_case__ = 3.0 class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=_snake_case ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = GradScalerKwargs(init_scale=10_24 , growth_factor=2 ) AcceleratorState._reset_state() lowerCAmelCase = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) lowerCAmelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 20_00 ) self.assertEqual(scaler._enabled , _snake_case ) @require_multi_gpu def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(_snake_case , env=os.environ.copy() ) if __name__ == "__main__": __UpperCamelCase : List[str] = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) __UpperCamelCase : Optional[Any] = Accelerator(kwargs_handlers=[ddp_scaler]) __UpperCamelCase : Dict = torch.nn.Linear(100, 200) __UpperCamelCase : Optional[Any] = accelerator.prepare(model) # Check the values changed in kwargs __UpperCamelCase : Dict = '''''' __UpperCamelCase : Tuple = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
4
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __UpperCamelCase : str = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=_UpperCAmelCase , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=_UpperCAmelCase , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=_UpperCAmelCase , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=_UpperCAmelCase , default='data/dump' , help='The dump file prefix.' ) lowerCAmelCase = parser.parse_args() logger.info(F'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": lowerCAmelCase = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `[CLS]` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCAmelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `<s>` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": lowerCAmelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` lowerCAmelCase = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(F'Loading text from {args.file_path}' ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: lowerCAmelCase = fp.readlines() logger.info('Start encoding' ) logger.info(F'{len(_UpperCAmelCase )} examples to process.' ) lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 1_0000 lowerCAmelCase = time.time() for text in data: lowerCAmelCase = F'{bos} {text.strip()} {sep}' lowerCAmelCase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) rslt.append(_UpperCAmelCase ) iter += 1 if iter % interval == 0: lowerCAmelCase = time.time() logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) lowerCAmelCase = time.time() logger.info('Finished binarization' ) logger.info(F'{len(_UpperCAmelCase )} examples processed.' ) lowerCAmelCase = F'{args.dump_file}.{args.tokenizer_name}.pickle' lowerCAmelCase = tokenizer.vocab_size if vocab_size < (1 << 16): lowerCAmelCase = [np.uintaa(_UpperCAmelCase ) for d in rslt] else: lowerCAmelCase = [np.intaa(_UpperCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'Dump to {dp_file}' ) with open(_UpperCAmelCase , 'wb' ) as handle: pickle.dump(rslt_ , _UpperCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
4
1
"""simple docstring""" from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __UpperCamelCase : Any = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] ): return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : np.ndarray , _UpperCAmelCase : Optional[str] , _UpperCAmelCase : Optional[str] = None ): lowerCAmelCase = tesseract_config if tesseract_config is not None else '' # apply OCR lowerCAmelCase = to_pil_image(_UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase = pil_image.size lowerCAmelCase = pytesseract.image_to_data(_UpperCAmelCase , lang=_UpperCAmelCase , output_type='dict' , config=_UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates lowerCAmelCase = [idx for idx, word in enumerate(_UpperCAmelCase ) if not word.strip()] lowerCAmelCase = [word for idx, word in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] lowerCAmelCase = [coord for idx, coord in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] lowerCAmelCase = [coord for idx, coord in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] lowerCAmelCase = [coord for idx, coord in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] lowerCAmelCase = [coord for idx, coord in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCAmelCase = [] for x, y, w, h in zip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowerCAmelCase = [x, y, x + w, y + h] actual_boxes.append(_UpperCAmelCase ) # finally, normalize the bounding boxes lowerCAmelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class a ( a__ ): snake_case__ = ['''pixel_values'''] def __init__( self , _snake_case = True , _snake_case = None , _snake_case = PILImageResampling.BILINEAR , _snake_case = True , _snake_case = None , _snake_case = "" , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = size if size is not None else {'height': 2_24, 'width': 2_24} lowerCAmelCase = get_size_dict(_snake_case ) lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = resample lowerCAmelCase = apply_ocr lowerCAmelCase = ocr_lang lowerCAmelCase = tesseract_config def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = PILImageResampling.BILINEAR , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowerCAmelCase = (size['height'], size['width']) return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = ChannelDimension.FIRST , **_snake_case , ): """simple docstring""" lowerCAmelCase = do_resize if do_resize is not None else self.do_resize lowerCAmelCase = size if size is not None else self.size lowerCAmelCase = get_size_dict(_snake_case ) lowerCAmelCase = resample if resample is not None else self.resample lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCAmelCase = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) # All transformations expect numpy arrays. lowerCAmelCase = [to_numpy_array(_snake_case ) for image in images] if apply_ocr: requires_backends(self , 'pytesseract' ) lowerCAmelCase = [] lowerCAmelCase = [] for image in images: lowerCAmelCase ,lowerCAmelCase = apply_tesseract(_snake_case , _snake_case , _snake_case ) words_batch.append(_snake_case ) boxes_batch.append(_snake_case ) if do_resize: lowerCAmelCase = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) lowerCAmelCase = [flip_channel_order(_snake_case ) for image in images] lowerCAmelCase = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] lowerCAmelCase = BatchFeature(data={'pixel_values': images} , tensor_type=_snake_case ) if apply_ocr: lowerCAmelCase = words_batch lowerCAmelCase = boxes_batch return data
4
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''bert''' def __init__( self , _snake_case=3_05_22 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache lowerCAmelCase = classifier_dropout class a ( a__ ): @property def UpperCamelCase__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
4
1
"""simple docstring""" import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): __UpperCamelCase : Tuple = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) __UpperCamelCase : Union[str, Any] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } __UpperCamelCase : Dict = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' __UpperCamelCase : List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' __UpperCamelCase : Any = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } __UpperCamelCase : int = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' __UpperCamelCase : Dict = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) __UpperCamelCase : int = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' __UpperCamelCase : int = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) __UpperCamelCase : Tuple = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' __UpperCamelCase : int = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' __UpperCamelCase : List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' __UpperCamelCase : Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' __UpperCamelCase : int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' __UpperCamelCase : Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' __UpperCamelCase : Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' __UpperCamelCase : Optional[int] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' __UpperCamelCase : Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' __UpperCamelCase : int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' __UpperCamelCase : str = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' __UpperCamelCase : str = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' __UpperCamelCase : Optional[int] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' __UpperCamelCase : Union[str, Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' __UpperCamelCase : str = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' __UpperCamelCase : List[Any] = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' __UpperCamelCase : Tuple = '''''' __UpperCamelCase : Optional[int] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' __UpperCamelCase : List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' __UpperCamelCase : Optional[Any] = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] ): assert ReadMe.from_string(_UpperCAmelCase , _UpperCAmelCase ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ): with pytest.raises(_UpperCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): lowerCAmelCase = ReadMe.from_string(_UpperCAmelCase , _UpperCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] ): with pytest.raises(_UpperCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(_UpperCAmelCase , _UpperCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): ReadMe.from_string(_UpperCAmelCase , _UpperCAmelCase , suppress_parsing_errors=_UpperCAmelCase ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ): with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase = Path(_UpperCAmelCase ) / 'README.md' with open(_UpperCAmelCase , 'w+' ) as readme_file: readme_file.write(_UpperCAmelCase ) lowerCAmelCase = ReadMe.from_readme(_UpperCAmelCase , _UpperCAmelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : int ): with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase = Path(_UpperCAmelCase ) / 'README.md' with open(_UpperCAmelCase , 'w+' ) as readme_file: readme_file.write(_UpperCAmelCase ) lowerCAmelCase = expected_error.format(path=_UpperCAmelCase ) with pytest.raises(_UpperCAmelCase , match=re.escape(_UpperCAmelCase ) ): lowerCAmelCase = ReadMe.from_readme(_UpperCAmelCase , _UpperCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Any ): with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase = Path(_UpperCAmelCase ) / 'README.md' with open(_UpperCAmelCase , 'w+' ) as readme_file: readme_file.write(_UpperCAmelCase ) lowerCAmelCase = expected_error.format(path=_UpperCAmelCase ) with pytest.raises(_UpperCAmelCase , match=re.escape(_UpperCAmelCase ) ): ReadMe.from_readme(_UpperCAmelCase , _UpperCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] ): with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase = Path(_UpperCAmelCase ) / 'README.md' with open(_UpperCAmelCase , 'w+' ) as readme_file: readme_file.write(_UpperCAmelCase ) ReadMe.from_readme(_UpperCAmelCase , _UpperCAmelCase , suppress_parsing_errors=_UpperCAmelCase )
4
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( a__ , unittest.TestCase ): snake_case__ = DanceDiffusionPipeline snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_snake_case , use_timestep_embedding=_snake_case , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase = IPNDMScheduler() lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = DanceDiffusionPipeline(**_snake_case ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = pipe(**_snake_case ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_local() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
4
1
"""simple docstring""" import os def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "input.txt" ): with open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) as input_file: lowerCAmelCase = [ [int(_UpperCAmelCase ) for element in line.split(',' )] for line in input_file.readlines() ] lowerCAmelCase = len(_UpperCAmelCase ) lowerCAmelCase = len(matrix[0] ) lowerCAmelCase = [[-1 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): lowerCAmelCase = matrix[i][0] for j in range(1 , _UpperCAmelCase ): for i in range(_UpperCAmelCase ): lowerCAmelCase = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _UpperCAmelCase ): lowerCAmelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowerCAmelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
4
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , use_stable_embedding=_snake_case , ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = OpenLlamaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = OpenLlamaModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , ) lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() # first forward pass lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , use_cache=_snake_case , ) lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , past_key_values=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) snake_case__ = (OpenLlamaForCausalLM,) if is_torch_available() else () snake_case__ = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenLlamaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase = type self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'single_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'multi_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = OpenLlamaModel(_snake_case ) original_model.to(_snake_case ) original_model.eval() lowerCAmelCase = original_model(_snake_case ).last_hidden_state lowerCAmelCase = original_model(_snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = {'type': scaling_type, 'factor': 10.0} lowerCAmelCase = OpenLlamaModel(_snake_case ) scaled_model.to(_snake_case ) scaled_model.eval() lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
4
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , use_stable_embedding=_snake_case , ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = OpenLlamaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = OpenLlamaModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , ) lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() # first forward pass lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , use_cache=_snake_case , ) lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , past_key_values=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) snake_case__ = (OpenLlamaForCausalLM,) if is_torch_available() else () snake_case__ = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenLlamaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase = type self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'single_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'multi_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = OpenLlamaModel(_snake_case ) original_model.to(_snake_case ) original_model.eval() lowerCAmelCase = original_model(_snake_case ).last_hidden_state lowerCAmelCase = original_model(_snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = {'type': scaling_type, 'factor': 10.0} lowerCAmelCase = OpenLlamaModel(_snake_case ) scaled_model.to(_snake_case ) scaled_model.eval() lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
4
"""simple docstring""" from typing import Any class a : def __init__( self , _snake_case ): """simple docstring""" lowerCAmelCase = data lowerCAmelCase = None def __repr__( self ): """simple docstring""" return F'Node({self.data})' class a : def __init__( self ): """simple docstring""" lowerCAmelCase = None def __iter__( self ): """simple docstring""" lowerCAmelCase = self.head while node: yield node.data lowerCAmelCase = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(_snake_case ) for item in self] ) def __getitem__( self , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase = self.head for _ in range(_snake_case ): lowerCAmelCase = current.next lowerCAmelCase = data def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(len(self ) , _snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(0 , _snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase = Node(_snake_case ) if self.head is None: lowerCAmelCase = new_node elif index == 0: lowerCAmelCase = self.head # link new_node to head lowerCAmelCase = new_node else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = new_node def UpperCamelCase__ ( self ): # print every node data """simple docstring""" print(self ) def UpperCamelCase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def UpperCamelCase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def UpperCamelCase__ ( self , _snake_case = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase = self.head # default first node if index == 0: lowerCAmelCase = self.head.next else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = temp.next.next return delete_node.data def UpperCamelCase__ ( self ): """simple docstring""" return self.head is None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = None lowerCAmelCase = self.head while current: # Store the current node's next node. lowerCAmelCase = current.next # Make the current node's next point backwards lowerCAmelCase = prev # Make the previous node be the current node lowerCAmelCase = current # Make the current node the next node (to progress iteration) lowerCAmelCase = next_node # Return prev in order to put the head at the end lowerCAmelCase = prev def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = LinkedList() assert linked_list.is_empty() is True assert str(_UpperCAmelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_UpperCAmelCase ) == i linked_list.insert_nth(_UpperCAmelCase , i + 1 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_UpperCAmelCase ) == 9 assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(-8 , 1 ) ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = [ -9, 100, Node(7734_5112 ), 'dlrow olleH', 7, 5555, 0, -192.5_5555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase = LinkedList() for i in test_input: linked_list.insert_tail(_UpperCAmelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase = linked_list.delete_head() assert result == -9 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_UpperCAmelCase ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_UpperCAmelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _SCREAMING_SNAKE_CASE (): from doctest import testmod testmod() lowerCAmelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_UpperCAmelCase ) print('\nReading/changing Node data using indexing:' ) print(F'Element at Position 1: {linked_list[1]}' ) lowerCAmelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_UpperCAmelCase ) print(F'length of linked_list is : {len(_UpperCAmelCase )}' ) if __name__ == "__main__": main()
4
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
4
"""simple docstring""" from __future__ import annotations import requests def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(_UpperCAmelCase ).json() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' lowerCAmelCase = requests.get(_UpperCAmelCase ).json()[:max_stories] return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = hackernews_top_stories(_UpperCAmelCase ) return "\n".join('* [{title}]({url})'.format(**_UpperCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : List[Any] = {'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ): lowerCAmelCase = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 48 lowerCAmelCase = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 60 lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCAmelCase = 1 lowerCAmelCase = 1 lowerCAmelCase = 126 lowerCAmelCase = 7 lowerCAmelCase = 255.0 lowerCAmelCase = '' return config def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): if "patch_embed.proj" in name and "layers" not in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCAmelCase = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: lowerCAmelCase = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: lowerCAmelCase = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: lowerCAmelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCAmelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCAmelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCAmelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: lowerCAmelCase = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: lowerCAmelCase = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: lowerCAmelCase = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: lowerCAmelCase = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": lowerCAmelCase = 'layernorm.weight' if name == "norm.bias": lowerCAmelCase = 'layernorm.bias' if "conv_first" in name: lowerCAmelCase = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCAmelCase = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCAmelCase = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: lowerCAmelCase = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: lowerCAmelCase = name.replace('upsample.2' , 'upsample.convolution_1' ) lowerCAmelCase = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": lowerCAmelCase = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) lowerCAmelCase = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: lowerCAmelCase = 'swin2sr.' + name return name def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict ): for key in orig_state_dict.copy().keys(): lowerCAmelCase = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: lowerCAmelCase = key.split('.' ) lowerCAmelCase = int(key_split[1] ) lowerCAmelCase = int(key_split[4] ) lowerCAmelCase = config.embed_dim if "weight" in key: lowerCAmelCase = val[:dim, :] lowerCAmelCase = val[dim : dim * 2, :] lowerCAmelCase = val[-dim:, :] else: lowerCAmelCase = val[:dim] lowerCAmelCase = val[dim : dim * 2] lowerCAmelCase = val[-dim:] pass else: lowerCAmelCase = val return orig_state_dict def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ): lowerCAmelCase = get_config(_UpperCAmelCase ) lowerCAmelCase = SwinaSRForImageSuperResolution(_UpperCAmelCase ) model.eval() lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' ) lowerCAmelCase = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_UpperCAmelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowerCAmelCase = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) lowerCAmelCase = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCAmelCase = 126 if 'Jpeg' in checkpoint_url else 256 lowerCAmelCase = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowerCAmelCase = transforms(_UpperCAmelCase ).unsqueeze(0 ) if config.num_channels == 1: lowerCAmelCase = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCAmelCase = model(_UpperCAmelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-3 ) print('Looks ok!' ) lowerCAmelCase = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } lowerCAmelCase = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') __UpperCamelCase : Optional[int] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
1
"""simple docstring""" import math def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : float , _UpperCAmelCase : float ): if ( not isinstance(_UpperCAmelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * power_factor def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : float , _UpperCAmelCase : float ): if ( not isinstance(_UpperCAmelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
4
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''megatron-bert''' def __init__( self , _snake_case=2_90_56 , _snake_case=10_24 , _snake_case=24 , _snake_case=16 , _snake_case=40_96 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache
4
1
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __UpperCamelCase : Optional[int] = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] __UpperCamelCase : str = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] __UpperCamelCase : str = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) __UpperCamelCase : List[str] = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) __UpperCamelCase : Union[str, Any] = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ): for tf_name, hf_name in patterns: lowerCAmelCase = k.replace(_UpperCAmelCase , _UpperCAmelCase ) return k def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict , _UpperCAmelCase : dict ): lowerCAmelCase = BigBirdPegasusConfig(**_UpperCAmelCase ) lowerCAmelCase = BigBirdPegasusForConditionalGeneration(_UpperCAmelCase ) lowerCAmelCase = torch_model.state_dict() lowerCAmelCase = {} # separating decoder weights lowerCAmelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} lowerCAmelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): lowerCAmelCase = [k.endswith(_UpperCAmelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCAmelCase ): continue lowerCAmelCase = DECODER_PATTERNS lowerCAmelCase = rename_state_dict_key(_UpperCAmelCase , _UpperCAmelCase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): lowerCAmelCase = v.T lowerCAmelCase = torch.from_numpy(_UpperCAmelCase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): lowerCAmelCase = [k.endswith(_UpperCAmelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCAmelCase ): continue lowerCAmelCase = REMAINING_PATTERNS lowerCAmelCase = rename_state_dict_key(_UpperCAmelCase , _UpperCAmelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): lowerCAmelCase = v.T lowerCAmelCase = torch.from_numpy(_UpperCAmelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' lowerCAmelCase = mapping['model.embed_positions.weight'] lowerCAmelCase = mapping.pop('model.embed_positions.weight' ) lowerCAmelCase ,lowerCAmelCase = torch_model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) lowerCAmelCase = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ): lowerCAmelCase = tf.train.list_variables(_UpperCAmelCase ) lowerCAmelCase = {} lowerCAmelCase = ['global_step'] for name, shape in tqdm(_UpperCAmelCase , desc='converting tf checkpoint to dict' ): lowerCAmelCase = any(pat in name for pat in ignore_name ) if skip_key: continue lowerCAmelCase = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = array return tf_weights def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : dict ): lowerCAmelCase = get_tf_weights_as_numpy(_UpperCAmelCase ) lowerCAmelCase = convert_bigbird_pegasus(_UpperCAmelCase , _UpperCAmelCase ) torch_model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') __UpperCamelCase : Optional[int] = parser.parse_args() __UpperCamelCase : Optional[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
4
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
4
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class a ( metaclass=a__ ): snake_case__ = ['''flax''', '''transformers'''] def __init__( self , *_snake_case , **_snake_case ): """simple docstring""" requires_backends(self , ['flax', 'transformers'] ) @classmethod def UpperCamelCase__ ( cls , *_snake_case , **_snake_case ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) @classmethod def UpperCamelCase__ ( cls , *_snake_case , **_snake_case ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) class a ( metaclass=a__ ): snake_case__ = ['''flax''', '''transformers'''] def __init__( self , *_snake_case , **_snake_case ): """simple docstring""" requires_backends(self , ['flax', 'transformers'] ) @classmethod def UpperCamelCase__ ( cls , *_snake_case , **_snake_case ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) @classmethod def UpperCamelCase__ ( cls , *_snake_case , **_snake_case ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) class a ( metaclass=a__ ): snake_case__ = ['''flax''', '''transformers'''] def __init__( self , *_snake_case , **_snake_case ): """simple docstring""" requires_backends(self , ['flax', 'transformers'] ) @classmethod def UpperCamelCase__ ( cls , *_snake_case , **_snake_case ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) @classmethod def UpperCamelCase__ ( cls , *_snake_case , **_snake_case ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) class a ( metaclass=a__ ): snake_case__ = ['''flax''', '''transformers'''] def __init__( self , *_snake_case , **_snake_case ): """simple docstring""" requires_backends(self , ['flax', 'transformers'] ) @classmethod def UpperCamelCase__ ( cls , *_snake_case , **_snake_case ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) @classmethod def UpperCamelCase__ ( cls , *_snake_case , **_snake_case ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] )
4
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class a ( a__ ): snake_case__ = 42 class a ( a__ , a__ ): @register_to_config def __init__( self , _snake_case = 3 , _snake_case = 3 , _snake_case = ("DownEncoderBlock2D",) , _snake_case = ("UpDecoderBlock2D",) , _snake_case = (64,) , _snake_case = 1 , _snake_case = "silu" , _snake_case = 3 , _snake_case = 32 , _snake_case = 2_56 , _snake_case = 32 , _snake_case = None , _snake_case = 0.18_215 , _snake_case = "group" , ): """simple docstring""" super().__init__() # pass init params to Encoder lowerCAmelCase = Encoder( in_channels=_snake_case , out_channels=_snake_case , down_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , double_z=_snake_case , ) lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 ) lowerCAmelCase = VectorQuantizer(_snake_case , _snake_case , beta=0.25 , remap=_snake_case , sane_index_shape=_snake_case ) lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 ) # pass init params to Decoder lowerCAmelCase = Decoder( in_channels=_snake_case , out_channels=_snake_case , up_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , norm_type=_snake_case , ) @apply_forward_hook def UpperCamelCase__ ( self , _snake_case , _snake_case = True ): """simple docstring""" lowerCAmelCase = self.encoder(_snake_case ) lowerCAmelCase = self.quant_conv(_snake_case ) if not return_dict: return (h,) return VQEncoderOutput(latents=_snake_case ) @apply_forward_hook def UpperCamelCase__ ( self , _snake_case , _snake_case = False , _snake_case = True ): """simple docstring""" if not force_not_quantize: lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = self.quantize(_snake_case ) else: lowerCAmelCase = h lowerCAmelCase = self.post_quant_conv(_snake_case ) lowerCAmelCase = self.decoder(_snake_case , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case = True ): """simple docstring""" lowerCAmelCase = sample lowerCAmelCase = self.encode(_snake_case ).latents lowerCAmelCase = self.decode(_snake_case ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_snake_case )
4
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a ( unittest.TestCase ): @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.dummy_uncond_unet lowerCAmelCase = ScoreSdeVeScheduler() lowerCAmelCase = ScoreSdeVePipeline(unet=_snake_case , scheduler=_snake_case ) sde_ve.to(_snake_case ) sde_ve.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=_snake_case ).images lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=_snake_case , return_dict=_snake_case )[ 0 ] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'google/ncsnpp-church-256' lowerCAmelCase = UNetaDModel.from_pretrained(_snake_case ) lowerCAmelCase = ScoreSdeVeScheduler.from_pretrained(_snake_case ) lowerCAmelCase = ScoreSdeVePipeline(unet=_snake_case , scheduler=_snake_case ) sde_ve.to(_snake_case ) sde_ve.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sde_ve(num_inference_steps=10 , output_type='numpy' , generator=_snake_case ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) lowerCAmelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
4
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping __UpperCamelCase : Optional[Any] = tuple[int, int] class a : def __init__( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = vertices lowerCAmelCase = { (min(_snake_case ), max(_snake_case )): weight for edge, weight in edges.items() } def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase = weight def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Graph({min(self.vertices )} , {} ) lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase = edge lowerCAmelCase = weight subgraph.add_edge(_snake_case , _snake_case ) return subgraph def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "p107_network.txt" ): lowerCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) ) lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = {} lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 with open(_UpperCAmelCase ) as f: lowerCAmelCase = f.read().strip().split('\n' ) lowerCAmelCase = [line.split(',' ) for line in data] for edgea in range(1 , len(_UpperCAmelCase ) ): for edgea in range(_UpperCAmelCase ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase = Graph(set(range(len(_UpperCAmelCase ) ) ) , _UpperCAmelCase ) lowerCAmelCase = graph.prims_algorithm() lowerCAmelCase = sum(graph.edges.values() ) lowerCAmelCase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
4
1
"""simple docstring""" from __future__ import annotations from cmath import sqrt def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ): if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) lowerCAmelCase = b * b - 4 * a * c lowerCAmelCase = (-b + sqrt(_UpperCAmelCase )) / (2 * a) lowerCAmelCase = (-b - sqrt(_UpperCAmelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase ,lowerCAmelCase = quadratic_roots(a=5 , b=6 , c=1 ) print(F'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
4
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCAmelCase )] ) lowerCAmelCase = np.array(_UpperCAmelCase ) lowerCAmelCase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCAmelCase ) ) , x.transpose() ) , _UpperCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = (1, 2, 1) lowerCAmelCase = (1, 1, 0, 7) lowerCAmelCase = SARIMAX( _UpperCAmelCase , exog=_UpperCAmelCase , order=_UpperCAmelCase , seasonal_order=_UpperCAmelCase ) lowerCAmelCase = model.fit(disp=_UpperCAmelCase , maxiter=600 , method='nm' ) lowerCAmelCase = model_fit.predict(1 , len(_UpperCAmelCase ) , exog=[test_match] ) return result[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = regressor.predict(_UpperCAmelCase ) return y_pred[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ): train_user.sort() lowerCAmelCase = np.percentile(_UpperCAmelCase , 25 ) lowerCAmelCase = np.percentile(_UpperCAmelCase , 75 ) lowerCAmelCase = qa - qa lowerCAmelCase = qa - (iqr * 0.1) return low_lim def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : float ): lowerCAmelCase = 0 lowerCAmelCase = 0 for i in list_vote: if i > actual_result: lowerCAmelCase = not_safe + 1 else: if abs(abs(_UpperCAmelCase ) - abs(_UpperCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __UpperCamelCase : Optional[Any] = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] __UpperCamelCase : Any = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) __UpperCamelCase : Dict = Normalizer().fit_transform(data_input_df.values) # split data __UpperCamelCase : Dict = normalize_df[:, 2].tolist() __UpperCamelCase : Union[str, Any] = normalize_df[:, 0].tolist() __UpperCamelCase : List[str] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __UpperCamelCase : Optional[int] = normalize_df[:, [1, 2]].tolist() __UpperCamelCase : Tuple = x[: len(x) - 1] __UpperCamelCase : Any = x[len(x) - 1 :] # for linear regression & sarimax __UpperCamelCase : str = total_date[: len(total_date) - 1] __UpperCamelCase : Union[str, Any] = total_user[: len(total_user) - 1] __UpperCamelCase : List[Any] = total_match[: len(total_match) - 1] __UpperCamelCase : Optional[Any] = total_date[len(total_date) - 1 :] __UpperCamelCase : str = total_user[len(total_user) - 1 :] __UpperCamelCase : str = total_match[len(total_match) - 1 :] # voting system with forecasting __UpperCamelCase : Any = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __UpperCamelCase : List[str] = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('''Today\'s data is {not_str}safe.''')
4
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : int ): return int((input_a, input_a).count(1 ) != 0 ) def _SCREAMING_SNAKE_CASE (): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
4
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=_UpperCAmelCase , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=_UpperCAmelCase , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=_UpperCAmelCase , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=_UpperCAmelCase , default=0 , help='cuda_id.' , ) lowerCAmelCase = parser.parse_args() return args def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ): if not len(_UpperCAmelCase ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) lowerCAmelCase ,lowerCAmelCase = imgs[0].size lowerCAmelCase = Image.new('RGB' , size=(cols * w, rows * h) ) lowerCAmelCase ,lowerCAmelCase = grid.size for i, img in enumerate(_UpperCAmelCase ): grid.paste(_UpperCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]="robotic cat with wings" , _UpperCAmelCase : Optional[int]=7.5 , _UpperCAmelCase : Dict=50 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=42 , ): lowerCAmelCase = torch.Generator(pipeline.device ).manual_seed(_UpperCAmelCase ) lowerCAmelCase = pipeline( _UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , ).images lowerCAmelCase = int(math.sqrt(_UpperCAmelCase ) ) lowerCAmelCase = image_grid(_UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __UpperCamelCase : Optional[Any] = parse_args() # Load models and create wrapper for stable diffusion __UpperCamelCase : List[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') __UpperCamelCase : str = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') __UpperCamelCase : Optional[int] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') __UpperCamelCase : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') __UpperCamelCase : Tuple = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __UpperCamelCase : Union[str, Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): __UpperCamelCase : Dict = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: __UpperCamelCase : Dict = unet.to(torch.device('''cuda''', args.cuda_id)) __UpperCamelCase : Optional[Any] = pipeline.to(unet.device) __UpperCamelCase ,__UpperCamelCase : List[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) __UpperCamelCase : int = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
4
1
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers __UpperCamelCase : Optional[int] = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) lowerCAmelCase = os.path.join(_UpperCAmelCase , 'words.txt' ) lowerCAmelCase = '' with open(_UpperCAmelCase ) as f: lowerCAmelCase = f.readline() lowerCAmelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] lowerCAmelCase = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
4
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : List[int] ): lowerCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ), F'{len(_UpperCAmelCase )} != {len(_UpperCAmelCase )}' dest_layers.load_state_dict(layers_to_copy.state_dict() ) __UpperCamelCase : Optional[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } __UpperCamelCase : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ): try: lowerCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first' F' {n_student}' ) return list(range(_UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ): if n_student > n_teacher: raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' ) elif n_teacher == n_student: return list(range(_UpperCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, PreTrainedModel] , _UpperCAmelCase : Union[str, Path] = "student" , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ): lowerCAmelCase = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(_UpperCAmelCase , _UpperCAmelCase ): AutoTokenizer.from_pretrained(_UpperCAmelCase ).save_pretrained(_UpperCAmelCase ) # purely for convenience lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).eval() else: assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), F'teacher must be a model or string got type {type(_UpperCAmelCase )}' lowerCAmelCase = teacher.config.to_diff_dict() try: lowerCAmelCase ,lowerCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: lowerCAmelCase = teacher_e if d is None: lowerCAmelCase = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): lowerCAmelCase ,lowerCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: lowerCAmelCase ,lowerCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: lowerCAmelCase = teacher_e if d is None: lowerCAmelCase = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(_UpperCAmelCase ) # Copy weights lowerCAmelCase = teacher.config_class(**_UpperCAmelCase ) lowerCAmelCase = AutoModelForSeqaSeqLM.from_config(_UpperCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. lowerCAmelCase = student.load_state_dict(teacher.state_dict() , strict=_UpperCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save lowerCAmelCase ,lowerCAmelCase = list(range(_UpperCAmelCase ) ), list(range(_UpperCAmelCase ) ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to' F' {save_path}' ) student.save_pretrained(_UpperCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase ) if d_layers_to_copy is None: lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase ) try: if hasattr( _UpperCAmelCase , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _UpperCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _UpperCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _UpperCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _UpperCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , _UpperCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , _UpperCAmelCase ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' ) lowerCAmelCase = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(_UpperCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
4
1
"""simple docstring""" import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __UpperCamelCase : Any = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any=2 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 2 ): def get_dataset(_UpperCAmelCase : Optional[int] ): lowerCAmelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(_UpperCAmelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) lowerCAmelCase = get_dataset(_UpperCAmelCase ) lowerCAmelCase = get_dataset(_UpperCAmelCase ) lowerCAmelCase = DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , batch_size=_UpperCAmelCase , num_workers=4 ) lowerCAmelCase = DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , batch_size=_UpperCAmelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : int=None ): lowerCAmelCase = [] for epoch in range(_UpperCAmelCase ): # Train quickly model.train() for batch in dataloader: lowerCAmelCase ,lowerCAmelCase = batch lowerCAmelCase = model(_UpperCAmelCase ) lowerCAmelCase = torch.nn.functional.mse_loss(_UpperCAmelCase , _UpperCAmelCase ) accelerator.backward(_UpperCAmelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class a ( nn.Module ): def __init__( self ): """simple docstring""" super().__init__() lowerCAmelCase = nn.Parameter(torch.randn(1 ) ) lowerCAmelCase = nn.Parameter(torch.randn(1 ) ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return x * self.a + self.b class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCAmelCase = DummyModel() lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) lowerCAmelCase ,lowerCAmelCase = dummy_dataloaders() lowerCAmelCase = ProjectConfiguration(total_limit=1 , project_dir=_snake_case , automatic_checkpoint_naming=_snake_case ) # Train baseline lowerCAmelCase = Accelerator(project_config=_snake_case ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = accelerator.prepare( _snake_case , _snake_case , _snake_case , _snake_case ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def UpperCamelCase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCAmelCase = DummyModel() lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) lowerCAmelCase ,lowerCAmelCase = dummy_dataloaders() # Train baseline lowerCAmelCase = Accelerator() lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = accelerator.prepare( _snake_case , _snake_case , _snake_case , _snake_case ) # Save initial lowerCAmelCase = os.path.join(_snake_case , 'initial' ) accelerator.save_state(_snake_case ) ((lowerCAmelCase) ,(lowerCAmelCase)) = model.a.item(), model.b.item() lowerCAmelCase = optimizer.state_dict() lowerCAmelCase = train(3 , _snake_case , _snake_case , _snake_case , _snake_case ) ((lowerCAmelCase) ,(lowerCAmelCase)) = model.a.item(), model.b.item() lowerCAmelCase = optimizer.state_dict() # Train partially set_seed(42 ) lowerCAmelCase = DummyModel() lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) lowerCAmelCase ,lowerCAmelCase = dummy_dataloaders() lowerCAmelCase = Accelerator() lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = accelerator.prepare( _snake_case , _snake_case , _snake_case , _snake_case ) accelerator.load_state(_snake_case ) ((lowerCAmelCase) ,(lowerCAmelCase)) = model.a.item(), model.b.item() lowerCAmelCase = optimizer.state_dict() self.assertEqual(_snake_case , _snake_case ) self.assertEqual(_snake_case , _snake_case ) self.assertEqual(_snake_case , _snake_case ) lowerCAmelCase = train(2 , _snake_case , _snake_case , _snake_case , _snake_case ) # Save everything lowerCAmelCase = os.path.join(_snake_case , 'checkpoint' ) accelerator.save_state(_snake_case ) # Load everything back in and make sure all states work accelerator.load_state(_snake_case ) test_rands += train(1 , _snake_case , _snake_case , _snake_case , _snake_case ) ((lowerCAmelCase) ,(lowerCAmelCase)) = model.a.item(), model.b.item() lowerCAmelCase = optimizer.state_dict() self.assertEqual(_snake_case , _snake_case ) self.assertEqual(_snake_case , _snake_case ) self.assertEqual(_snake_case , _snake_case ) self.assertEqual(_snake_case , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCAmelCase = DummyModel() lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) lowerCAmelCase ,lowerCAmelCase = dummy_dataloaders() lowerCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=_snake_case ) # Train baseline lowerCAmelCase = Accelerator(project_dir=_snake_case , project_config=_snake_case ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = accelerator.prepare( _snake_case , _snake_case , _snake_case , _snake_case ) # Save initial accelerator.save_state() ((lowerCAmelCase) ,(lowerCAmelCase)) = model.a.item(), model.b.item() lowerCAmelCase = optimizer.state_dict() lowerCAmelCase = train(3 , _snake_case , _snake_case , _snake_case , _snake_case ) ((lowerCAmelCase) ,(lowerCAmelCase)) = model.a.item(), model.b.item() lowerCAmelCase = optimizer.state_dict() # Train partially set_seed(42 ) lowerCAmelCase = DummyModel() lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) lowerCAmelCase ,lowerCAmelCase = dummy_dataloaders() lowerCAmelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=_snake_case ) lowerCAmelCase = Accelerator(project_dir=_snake_case , project_config=_snake_case ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = accelerator.prepare( _snake_case , _snake_case , _snake_case , _snake_case ) accelerator.load_state(os.path.join(_snake_case , 'checkpoints' , 'checkpoint_0' ) ) ((lowerCAmelCase) ,(lowerCAmelCase)) = model.a.item(), model.b.item() lowerCAmelCase = optimizer.state_dict() self.assertEqual(_snake_case , _snake_case ) self.assertEqual(_snake_case , _snake_case ) self.assertEqual(_snake_case , _snake_case ) lowerCAmelCase = train(2 , _snake_case , _snake_case , _snake_case , _snake_case ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_snake_case , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , _snake_case , _snake_case , _snake_case , _snake_case ) ((lowerCAmelCase) ,(lowerCAmelCase)) = model.a.item(), model.b.item() lowerCAmelCase = optimizer.state_dict() self.assertEqual(_snake_case , _snake_case ) self.assertEqual(_snake_case , _snake_case ) self.assertEqual(_snake_case , _snake_case ) self.assertEqual(_snake_case , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch.tensor([1, 2, 3] ) lowerCAmelCase = torch.tensor([2, 3, 4] ) lowerCAmelCase = DummyModel() lowerCAmelCase = torch.optim.Adam(net.parameters() ) lowerCAmelCase = Accelerator() with self.assertRaises(_snake_case ) as ve: accelerator.register_for_checkpointing(_snake_case , _snake_case , _snake_case , _snake_case ) lowerCAmelCase = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def UpperCamelCase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCAmelCase = DummyModel() lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) lowerCAmelCase = torch.optim.lr_scheduler.StepLR(_snake_case , step_size=1 , gamma=0.99 ) lowerCAmelCase ,lowerCAmelCase = dummy_dataloaders() lowerCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=_snake_case ) # Train baseline lowerCAmelCase = Accelerator(project_dir=_snake_case , project_config=_snake_case ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = accelerator.prepare( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) # Save initial accelerator.save_state() lowerCAmelCase = scheduler.state_dict() train(3 , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) self.assertNotEqual(_snake_case , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_snake_case , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(_snake_case , scheduler.state_dict() ) def UpperCamelCase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCAmelCase = DummyModel() lowerCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=_snake_case , total_limit=2 ) # Train baseline lowerCAmelCase = Accelerator(project_dir=_snake_case , project_config=_snake_case ) lowerCAmelCase = accelerator.prepare(_snake_case ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_snake_case , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(_snake_case , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(_snake_case , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(_snake_case , env=os.environ.copy() ) if __name__ == "__main__": __UpperCamelCase : Any = '''/tmp/accelerate/state_checkpointing''' __UpperCamelCase : int = DummyModel() __UpperCamelCase : List[str] = torch.optim.Adam(params=model.parameters(), lr=1e-3) __UpperCamelCase : Optional[int] = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) __UpperCamelCase ,__UpperCamelCase : Dict = dummy_dataloaders() __UpperCamelCase : List[str] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __UpperCamelCase : Tuple = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='''no''') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase : Union[str, Any] = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __UpperCamelCase ,__UpperCamelCase : List[Any] = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __UpperCamelCase : str = group['''params'''][0].device break assert param_device.type == accelerator.device.type __UpperCamelCase : Union[str, Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''cpu''') for group in optimizer.param_groups: __UpperCamelCase : Dict = group['''params'''][0].device break assert ( param_device.type == torch.device('''cpu''').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''on_device''') for group in optimizer.param_groups: __UpperCamelCase : str = group['''params'''][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='''Unsupported optimizer map location passed'''): accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''invalid''') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
4
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Dict = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
1
"""simple docstring""" from collections import deque class a : def __init__( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = process_name # process name lowerCAmelCase = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowerCAmelCase = arrival_time lowerCAmelCase = burst_time # remaining burst time lowerCAmelCase = 0 # total time of the process wait in ready queue lowerCAmelCase = 0 # time from arrival time to completion time class a : def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = number_of_queues # time slice of queues that round robin algorithm applied lowerCAmelCase = time_slices # unfinished process is in this ready_queue lowerCAmelCase = queue # current time lowerCAmelCase = current_time # finished process is in this sequence queue lowerCAmelCase = deque() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = [] for i in range(len(_snake_case ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = [] for i in range(len(_snake_case ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = [] for i in range(len(_snake_case ) ): completion_times.append(queue[i].stop_time ) return completion_times def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return [q.burst_time for q in queue] def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = deque() # sequence deque of finished process while len(_snake_case ) != 0: lowerCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_snake_case ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowerCAmelCase = 0 # set the process's turnaround time because it is finished lowerCAmelCase = self.current_time - cp.arrival_time # set the completion time lowerCAmelCase = self.current_time # add the process to queue that has finished queue finished.append(_snake_case ) self.finish_queue.extend(_snake_case ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_snake_case ) ): lowerCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_snake_case ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowerCAmelCase = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_snake_case ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowerCAmelCase = 0 # set the finish time lowerCAmelCase = self.current_time # update the process' turnaround time because it is finished lowerCAmelCase = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_snake_case ) self.finish_queue.extend(_snake_case ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def UpperCamelCase__ ( self ): """simple docstring""" for i in range(self.number_of_queues - 1 ): lowerCAmelCase ,lowerCAmelCase = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest __UpperCamelCase : Tuple = Process('''P1''', 0, 53) __UpperCamelCase : List[Any] = Process('''P2''', 0, 17) __UpperCamelCase : Tuple = Process('''P3''', 0, 68) __UpperCamelCase : List[Any] = Process('''P4''', 0, 24) __UpperCamelCase : Union[str, Any] = 3 __UpperCamelCase : str = [17, 25] __UpperCamelCase : str = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) __UpperCamelCase : Union[str, Any] = Process('''P1''', 0, 53) __UpperCamelCase : Any = Process('''P2''', 0, 17) __UpperCamelCase : Optional[Any] = Process('''P3''', 0, 68) __UpperCamelCase : List[Any] = Process('''P4''', 0, 24) __UpperCamelCase : List[Any] = 3 __UpperCamelCase : Any = [17, 25] __UpperCamelCase : int = deque([Pa, Pa, Pa, Pa]) __UpperCamelCase : Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0) __UpperCamelCase : Optional[Any] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( f'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( f'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
4
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ): lowerCAmelCase = 0.00 lowerCAmelCase = 0 for resistor in resistors: if resistor <= 0: lowerCAmelCase = F'Resistor at index {index} has a negative or zero value!' raise ValueError(_UpperCAmelCase ) first_sum += 1 / float(_UpperCAmelCase ) index += 1 return 1 / first_sum def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ): lowerCAmelCase = 0.00 lowerCAmelCase = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowerCAmelCase = F'Resistor at index {index} has a negative value!' raise ValueError(_UpperCAmelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
4
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : int ): if b == 0: return 1 if (b % 2) == 0: return actual_power(_UpperCAmelCase , int(b / 2 ) ) * actual_power(_UpperCAmelCase , int(b / 2 ) ) else: return a * actual_power(_UpperCAmelCase , int(b / 2 ) ) * actual_power(_UpperCAmelCase , int(b / 2 ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : int ): if b < 0: return 1 / actual_power(_UpperCAmelCase , _UpperCAmelCase ) return actual_power(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
4
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''', # See all GLPN models at https://huggingface.co/models?filter=glpn } class a ( a__ ): snake_case__ = '''glpn''' def __init__( self , _snake_case=3 , _snake_case=4 , _snake_case=[2, 2, 2, 2] , _snake_case=[8, 4, 2, 1] , _snake_case=[32, 64, 1_60, 2_56] , _snake_case=[7, 3, 3, 3] , _snake_case=[4, 2, 2, 2] , _snake_case=[1, 2, 5, 8] , _snake_case=[4, 4, 4, 4] , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=0.1 , _snake_case=1E-6 , _snake_case=64 , _snake_case=10 , _snake_case=-1 , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = num_channels lowerCAmelCase = num_encoder_blocks lowerCAmelCase = depths lowerCAmelCase = sr_ratios lowerCAmelCase = hidden_sizes lowerCAmelCase = patch_sizes lowerCAmelCase = strides lowerCAmelCase = mlp_ratios lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = drop_path_rate lowerCAmelCase = layer_norm_eps lowerCAmelCase = decoder_hidden_size lowerCAmelCase = max_depth lowerCAmelCase = head_in_index
4
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : str = { '''configuration_deberta''': ['''DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DebertaConfig''', '''DebertaOnnxConfig'''], '''tokenization_deberta''': ['''DebertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['''DebertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ '''DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DebertaForMaskedLM''', '''DebertaForQuestionAnswering''', '''DebertaForSequenceClassification''', '''DebertaForTokenClassification''', '''DebertaModel''', '''DebertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ '''TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDebertaForMaskedLM''', '''TFDebertaForQuestionAnswering''', '''TFDebertaForSequenceClassification''', '''TFDebertaForTokenClassification''', '''TFDebertaModel''', '''TFDebertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , _snake_case=10_00 , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = range_bbox def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase = bbox[i, j, 3] lowerCAmelCase = bbox[i, j, 1] lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase = bbox[i, j, 2] lowerCAmelCase = bbox[i, j, 0] lowerCAmelCase = t lowerCAmelCase = tf.convert_to_tensor(_snake_case ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForMaskedLM(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForSequenceClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForTokenClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = True snake_case__ = 1_0 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFLayoutLMModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def _SCREAMING_SNAKE_CASE (): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off lowerCAmelCase = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowerCAmelCase = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the sequence output on [0, :3, :3] lowerCAmelCase = tf.convert_to_tensor( [[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _snake_case , atol=1E-3 ) ) # test the pooled output on [1, :3] lowerCAmelCase = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _snake_case , atol=1E-3 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar lowerCAmelCase = outputs.loss lowerCAmelCase = (2,) self.assertEqual(loss.shape , _snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = (2, 2) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the shape of the logits lowerCAmelCase = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _snake_case ) self.assertEqual(outputs.end_logits.shape , _snake_case )
4
1
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ): lowerCAmelCase = tmp_path / 'cache' lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase = TextDatasetReader(_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase ).read() _check_text_dataset(_UpperCAmelCase , _UpperCAmelCase ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Tuple ): lowerCAmelCase = tmp_path / 'cache' lowerCAmelCase = {'text': 'string'} lowerCAmelCase = features.copy() if features else default_expected_features lowerCAmelCase = ( Features({feature: Value(_UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase = TextDatasetReader(_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() _check_text_dataset(_UpperCAmelCase , _UpperCAmelCase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any ): lowerCAmelCase = tmp_path / 'cache' lowerCAmelCase = {'text': 'string'} lowerCAmelCase = TextDatasetReader(_UpperCAmelCase , cache_dir=_UpperCAmelCase , split=_UpperCAmelCase ).read() _check_text_dataset(_UpperCAmelCase , _UpperCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] ): if issubclass(_UpperCAmelCase , _UpperCAmelCase ): lowerCAmelCase = text_path elif issubclass(_UpperCAmelCase , _UpperCAmelCase ): lowerCAmelCase = [text_path] lowerCAmelCase = tmp_path / 'cache' lowerCAmelCase = {'text': 'string'} lowerCAmelCase = TextDatasetReader(_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() _check_text_dataset(_UpperCAmelCase , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any]=("train",) ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) for split in splits: lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] ): lowerCAmelCase = tmp_path / 'cache' lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase = TextDatasetReader({'train': text_path} , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase ).read() _check_text_datasetdict(_UpperCAmelCase , _UpperCAmelCase ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] ): lowerCAmelCase = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" lowerCAmelCase = {'text': 'string'} lowerCAmelCase = features.copy() if features else default_expected_features lowerCAmelCase = ( Features({feature: Value(_UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase = TextDatasetReader({'train': text_path} , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() _check_text_datasetdict(_UpperCAmelCase , _UpperCAmelCase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ): if split: lowerCAmelCase = {split: text_path} else: lowerCAmelCase = 'train' lowerCAmelCase = {'train': text_path, 'test': text_path} lowerCAmelCase = tmp_path / 'cache' lowerCAmelCase = {'text': 'string'} lowerCAmelCase = TextDatasetReader(_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() _check_text_datasetdict(_UpperCAmelCase , _UpperCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
4
"""simple docstring""" import argparse import os import re import packaging.version __UpperCamelCase : Union[str, Any] = '''examples/''' __UpperCamelCase : str = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __UpperCamelCase : List[str] = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } __UpperCamelCase : Optional[int] = '''README.md''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ): with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.read() lowerCAmelCase ,lowerCAmelCase = REPLACE_PATTERNS[pattern] lowerCAmelCase = replace.replace('VERSION' , _UpperCAmelCase ) lowerCAmelCase = re_pattern.sub(_UpperCAmelCase , _UpperCAmelCase ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ): for folder, directories, fnames in os.walk(_UpperCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , pattern='examples' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not patch: update_version_in_examples(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = '🤗 Transformers currently provides the following architectures' lowerCAmelCase = '1. Want to contribute a new model?' with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.readlines() # Find the start of the list. lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): lowerCAmelCase = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): with open(REPLACE_FILES['init'] , 'r' ) as f: lowerCAmelCase = f.read() lowerCAmelCase = REPLACE_PATTERNS['init'][0].search(_UpperCAmelCase ).groups()[0] return packaging.version.parse(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple=False ): lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: lowerCAmelCase = default_version.base_version elif patch: lowerCAmelCase = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: lowerCAmelCase = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. lowerCAmelCase = input(F'Which version are you releasing? [{default_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = default_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase , patch=_UpperCAmelCase ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = get_version() lowerCAmelCase = F'{current_version.major}.{current_version.minor + 1}.0.dev0' lowerCAmelCase = current_version.base_version # Check with the user we got that right. lowerCAmelCase = input(F'Which version are we developing now? [{dev_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = dev_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __UpperCamelCase : Optional[int] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
4
1
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class a ( tf.keras.layers.Layer ): def __init__( self , _snake_case , _snake_case , _snake_case = None , _snake_case = None ): """simple docstring""" super().__init__() lowerCAmelCase = pad_token_id lowerCAmelCase = max_length lowerCAmelCase = vocab lowerCAmelCase = merges lowerCAmelCase = BytePairTokenizer(_snake_case , _snake_case , sequence_length=_snake_case ) @classmethod def UpperCamelCase__ ( cls , _snake_case , *_snake_case , **_snake_case ): """simple docstring""" lowerCAmelCase = [' '.join(_snake_case ) for m in tokenizer.bpe_ranks.keys()] lowerCAmelCase = tokenizer.get_vocab() return cls(_snake_case , _snake_case , *_snake_case , **_snake_case ) @classmethod def UpperCamelCase__ ( cls , _snake_case , *_snake_case , **_snake_case ): """simple docstring""" lowerCAmelCase = GPTaTokenizer.from_pretrained(_snake_case , *_snake_case , **_snake_case ) return cls.from_tokenizer(_snake_case , *_snake_case , **_snake_case ) @classmethod def UpperCamelCase__ ( cls , _snake_case ): """simple docstring""" return cls(**_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = self.tf_tokenizer(_snake_case ) lowerCAmelCase = tf.ones_like(_snake_case ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCAmelCase = max_length if max_length is not None else self.max_length if max_length is not None: lowerCAmelCase ,lowerCAmelCase = pad_model_inputs( _snake_case , max_seq_length=_snake_case , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
4
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __UpperCamelCase : Optional[int] = pytest.mark.integration @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_snake_case ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() lowerCAmelCase = dset.map( lambda _snake_case , _snake_case : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_snake_case , keep_in_memory=_snake_case ) lowerCAmelCase = dset.add_faiss_index('vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_snake_case , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch lowerCAmelCase = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCAmelCase = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_snake_case ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertRaises(_snake_case , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCAmelCase = np.eye(5 , dtype=np.floataa )[::-1] lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) self.assertRaises(_snake_case , index.search_batch , queries[0] ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCAmelCase = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_snake_case ): lowerCAmelCase = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = faiss.IndexFlat(5 ) lowerCAmelCase = FaissIndex(custom_index=_snake_case ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: index.save(tmp_file.name ) lowerCAmelCase = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ): import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCAmelCase = 'index.faiss' lowerCAmelCase = F'mock://{index_name}' index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = Elasticsearch() lowerCAmelCase = {'acknowledged': True} lowerCAmelCase = ElasticSearchIndex(es_client=_snake_case ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case ) # batched queries with timeout lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case , request_timeout=30 ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case )
4
1
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __UpperCamelCase : Optional[int] = pytest.mark.integration @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_snake_case ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() lowerCAmelCase = dset.map( lambda _snake_case , _snake_case : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_snake_case , keep_in_memory=_snake_case ) lowerCAmelCase = dset.add_faiss_index('vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_snake_case , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch lowerCAmelCase = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCAmelCase = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_snake_case ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertRaises(_snake_case , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCAmelCase = np.eye(5 , dtype=np.floataa )[::-1] lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) self.assertRaises(_snake_case , index.search_batch , queries[0] ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCAmelCase = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_snake_case ): lowerCAmelCase = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = faiss.IndexFlat(5 ) lowerCAmelCase = FaissIndex(custom_index=_snake_case ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: index.save(tmp_file.name ) lowerCAmelCase = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ): import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCAmelCase = 'index.faiss' lowerCAmelCase = F'mock://{index_name}' index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = Elasticsearch() lowerCAmelCase = {'acknowledged': True} lowerCAmelCase = ElasticSearchIndex(es_client=_snake_case ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case ) # batched queries with timeout lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case , request_timeout=30 ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case )
4
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a ( a__ , a__ , unittest.TestCase ): snake_case__ = IFInpaintingPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_dummy_components() def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
4
1
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class a ( a__ ): def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=False , _snake_case=True , _snake_case="None" , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = relative_attention lowerCAmelCase = position_biased_input lowerCAmelCase = pos_att_type lowerCAmelCase = scope def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_config() lowerCAmelCase = 3_00 return config def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = DebertaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )[0] lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case )[0] lowerCAmelCase = model(_snake_case )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = DebertaForMaskedLM(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = DebertaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = DebertaForTokenClassification(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = DebertaForQuestionAnswering(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , start_positions=_snake_case , end_positions=_snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) snake_case__ = ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ = True snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = DebertaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = DebertaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = DebertaModel.from_pretrained('microsoft/deberta-base' ) lowerCAmelCase = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) lowerCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase = model(_snake_case , attention_mask=_snake_case )[0] # compare the actual values for a slice. lowerCAmelCase = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _snake_case , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
4
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = self.vocab_size - 1 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , head_mask=_snake_case ) lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTLMHeadModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTDoubleHeadsModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = OpenAIGPTForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case__ = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=False ): """simple docstring""" lowerCAmelCase = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_snake_case , ) lowerCAmelCase = inputs_dict['labels'] lowerCAmelCase = inputs_dict['labels'] lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_snake_case , ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_snake_case ) return inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenAIGPTModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , n_embd=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = OpenAIGPTModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_torch class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(_snake_case ) lowerCAmelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=_snake_case ) # the president is lowerCAmelCase = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCAmelCase = model.generate(_snake_case , do_sample=_snake_case ) self.assertListEqual(output_ids[0].tolist() , _snake_case )
4
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Optional[Any] = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class a ( a__ ): snake_case__ = '''dpt''' def __init__( self , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=3_84 , _snake_case=16 , _snake_case=3 , _snake_case=False , _snake_case=True , _snake_case=[2, 5, 8, 11] , _snake_case="project" , _snake_case=[4, 2, 1, 0.5] , _snake_case=[96, 1_92, 3_84, 7_68] , _snake_case=2_56 , _snake_case=-1 , _snake_case=False , _snake_case=True , _snake_case=0.4 , _snake_case=2_55 , _snake_case=0.1 , _snake_case=[1, 10_24, 24, 24] , _snake_case=[0, 1] , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = hidden_size lowerCAmelCase = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) lowerCAmelCase = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } lowerCAmelCase = BitConfig(**_snake_case ) elif isinstance(_snake_case , _snake_case ): logger.info('Initializing the config with a `BiT` backbone.' ) lowerCAmelCase = BitConfig(**_snake_case ) elif isinstance(_snake_case , _snake_case ): lowerCAmelCase = backbone_config else: raise ValueError( F'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' ) lowerCAmelCase = backbone_featmap_shape lowerCAmelCase = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = [] lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = qkv_bias lowerCAmelCase = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) lowerCAmelCase = readout_type lowerCAmelCase = reassemble_factors lowerCAmelCase = neck_hidden_sizes lowerCAmelCase = fusion_hidden_size lowerCAmelCase = head_in_index lowerCAmelCase = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowerCAmelCase = use_auxiliary_head lowerCAmelCase = auxiliary_loss_weight lowerCAmelCase = semantic_loss_ignore_index lowerCAmelCase = semantic_classifier_dropout def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase = self.backbone_config.to_dict() lowerCAmelCase = self.__class__.model_type return output
4
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __UpperCamelCase : str = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=_UpperCAmelCase , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=_UpperCAmelCase , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=_UpperCAmelCase , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=_UpperCAmelCase , default='data/dump' , help='The dump file prefix.' ) lowerCAmelCase = parser.parse_args() logger.info(F'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": lowerCAmelCase = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `[CLS]` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCAmelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `<s>` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": lowerCAmelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` lowerCAmelCase = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(F'Loading text from {args.file_path}' ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: lowerCAmelCase = fp.readlines() logger.info('Start encoding' ) logger.info(F'{len(_UpperCAmelCase )} examples to process.' ) lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 1_0000 lowerCAmelCase = time.time() for text in data: lowerCAmelCase = F'{bos} {text.strip()} {sep}' lowerCAmelCase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) rslt.append(_UpperCAmelCase ) iter += 1 if iter % interval == 0: lowerCAmelCase = time.time() logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) lowerCAmelCase = time.time() logger.info('Finished binarization' ) logger.info(F'{len(_UpperCAmelCase )} examples processed.' ) lowerCAmelCase = F'{args.dump_file}.{args.tokenizer_name}.pickle' lowerCAmelCase = tokenizer.vocab_size if vocab_size < (1 << 16): lowerCAmelCase = [np.uintaa(_UpperCAmelCase ) for d in rslt] else: lowerCAmelCase = [np.intaa(_UpperCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'Dump to {dp_file}' ) with open(_UpperCAmelCase , 'wb' ) as handle: pickle.dump(rslt_ , _UpperCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
4
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Any = { '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''bert''' def __init__( self , _snake_case=3_05_22 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache lowerCAmelCase = classifier_dropout class a ( a__ ): @property def UpperCamelCase__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
4
1
"""simple docstring""" from scipy.stats import pearsonr import datasets __UpperCamelCase : Tuple = ''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' __UpperCamelCase : Tuple = ''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' __UpperCamelCase : Any = ''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=False ): """simple docstring""" if return_pvalue: lowerCAmelCase = pearsonr(_snake_case , _snake_case ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(_snake_case , _snake_case )[0] )}
4
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( a__ , unittest.TestCase ): snake_case__ = DanceDiffusionPipeline snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_snake_case , use_timestep_embedding=_snake_case , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase = IPNDMScheduler() lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = DanceDiffusionPipeline(**_snake_case ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = pipe(**_snake_case ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_local() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
4
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''megatron-bert''' def __init__( self , _snake_case=2_90_56 , _snake_case=10_24 , _snake_case=24 , _snake_case=16 , _snake_case=40_96 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache
4
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , use_stable_embedding=_snake_case , ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = OpenLlamaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = OpenLlamaModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , ) lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() # first forward pass lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , use_cache=_snake_case , ) lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , past_key_values=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) snake_case__ = (OpenLlamaForCausalLM,) if is_torch_available() else () snake_case__ = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenLlamaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase = type self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'single_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'multi_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = OpenLlamaModel(_snake_case ) original_model.to(_snake_case ) original_model.eval() lowerCAmelCase = original_model(_snake_case ).last_hidden_state lowerCAmelCase = original_model(_snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = {'type': scaling_type, 'factor': 10.0} lowerCAmelCase = OpenLlamaModel(_snake_case ) scaled_model.to(_snake_case ) scaled_model.eval() lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
4
1
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __UpperCamelCase : Union[str, Any] = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) __UpperCamelCase : Any = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) __UpperCamelCase : int = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) __UpperCamelCase : List[Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) __UpperCamelCase : Dict = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) __UpperCamelCase : Optional[int] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) __UpperCamelCase : Optional[int] = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase ,lowerCAmelCase = randrange(len(_UpperCAmelCase ) ), randrange(len(_UpperCAmelCase ) ) lowerCAmelCase = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] lowerCAmelCase ,lowerCAmelCase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 100 ): return (generate_random_hand() for _ in range(_UpperCAmelCase )) @pytest.mark.parametrize('hand, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : List[str] ): assert PokerHand(_UpperCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : Any ): assert PokerHand(_UpperCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ): lowerCAmelCase = PokerHand(_UpperCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] ): assert PokerHand(_UpperCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] ): assert PokerHand(_UpperCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] ): assert PokerHand(_UpperCAmelCase ).compare_with(PokerHand(_UpperCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] ): assert PokerHand(_UpperCAmelCase ).compare_with(PokerHand(_UpperCAmelCase ) ) == expected def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = [PokerHand(_UpperCAmelCase ) for hand in SORTED_HANDS] lowerCAmelCase = poker_hands.copy() shuffle(_UpperCAmelCase ) lowerCAmelCase = chain(sorted(_UpperCAmelCase ) ) for index, hand in enumerate(_UpperCAmelCase ): assert hand == poker_hands[index] def _SCREAMING_SNAKE_CASE (): # Test that five high straights are compared correctly. lowerCAmelCase = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=_UpperCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _SCREAMING_SNAKE_CASE (): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. lowerCAmelCase = PokerHand('2C 4S AS 3D 5C' ) lowerCAmelCase = True lowerCAmelCase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _SCREAMING_SNAKE_CASE (): # Problem number 54 from Project Euler # Testing from poker_hands.txt file lowerCAmelCase = 0 lowerCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) ) lowerCAmelCase = os.path.join(_UpperCAmelCase , 'poker_hands.txt' ) with open(_UpperCAmelCase ) as file_hand: for line in file_hand: lowerCAmelCase = line[:14].strip() lowerCAmelCase = line[15:].strip() lowerCAmelCase ,lowerCAmelCase = PokerHand(_UpperCAmelCase ), PokerHand(_UpperCAmelCase ) lowerCAmelCase = player.compare_with(_UpperCAmelCase ) if output == "Win": answer += 1 assert answer == 376
4
"""simple docstring""" from typing import Any class a : def __init__( self , _snake_case ): """simple docstring""" lowerCAmelCase = data lowerCAmelCase = None def __repr__( self ): """simple docstring""" return F'Node({self.data})' class a : def __init__( self ): """simple docstring""" lowerCAmelCase = None def __iter__( self ): """simple docstring""" lowerCAmelCase = self.head while node: yield node.data lowerCAmelCase = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(_snake_case ) for item in self] ) def __getitem__( self , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase = self.head for _ in range(_snake_case ): lowerCAmelCase = current.next lowerCAmelCase = data def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(len(self ) , _snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(0 , _snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase = Node(_snake_case ) if self.head is None: lowerCAmelCase = new_node elif index == 0: lowerCAmelCase = self.head # link new_node to head lowerCAmelCase = new_node else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = new_node def UpperCamelCase__ ( self ): # print every node data """simple docstring""" print(self ) def UpperCamelCase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def UpperCamelCase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def UpperCamelCase__ ( self , _snake_case = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase = self.head # default first node if index == 0: lowerCAmelCase = self.head.next else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = temp.next.next return delete_node.data def UpperCamelCase__ ( self ): """simple docstring""" return self.head is None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = None lowerCAmelCase = self.head while current: # Store the current node's next node. lowerCAmelCase = current.next # Make the current node's next point backwards lowerCAmelCase = prev # Make the previous node be the current node lowerCAmelCase = current # Make the current node the next node (to progress iteration) lowerCAmelCase = next_node # Return prev in order to put the head at the end lowerCAmelCase = prev def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = LinkedList() assert linked_list.is_empty() is True assert str(_UpperCAmelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_UpperCAmelCase ) == i linked_list.insert_nth(_UpperCAmelCase , i + 1 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_UpperCAmelCase ) == 9 assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(-8 , 1 ) ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = [ -9, 100, Node(7734_5112 ), 'dlrow olleH', 7, 5555, 0, -192.5_5555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase = LinkedList() for i in test_input: linked_list.insert_tail(_UpperCAmelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase = linked_list.delete_head() assert result == -9 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_UpperCAmelCase ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_UpperCAmelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _SCREAMING_SNAKE_CASE (): from doctest import testmod testmod() lowerCAmelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_UpperCAmelCase ) print('\nReading/changing Node data using indexing:' ) print(F'Element at Position 1: {linked_list[1]}' ) lowerCAmelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_UpperCAmelCase ) print(F'length of linked_list is : {len(_UpperCAmelCase )}' ) if __name__ == "__main__": main()
4
1
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union __UpperCamelCase : int = TypeVar('''T''') __UpperCamelCase : Union[str, Any] = Union[List[T], Tuple[T, ...]] __UpperCamelCase : int = Union[T, List[T], Dict[str, T]] __UpperCamelCase : str = Union[str, bytes, os.PathLike]
4
"""simple docstring""" from __future__ import annotations import requests def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(_UpperCAmelCase ).json() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' lowerCAmelCase = requests.get(_UpperCAmelCase ).json()[:max_stories] return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = hackernews_top_stories(_UpperCAmelCase ) return "\n".join('* [{title}]({url})'.format(**_UpperCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
1
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : Tuple = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) __UpperCamelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCAmelCase = model_type_to_module_name(_UpperCAmelCase ) lowerCAmelCase = importlib.import_module(F'.{module_name}' , 'transformers.models' ) try: return getattr(_UpperCAmelCase , _UpperCAmelCase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_UpperCAmelCase , '__name__' , _UpperCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCAmelCase = importlib.import_module('transformers' ) if hasattr(_UpperCAmelCase , _UpperCAmelCase ): return getattr(_UpperCAmelCase , _UpperCAmelCase ) return None def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, os.PathLike] , _UpperCAmelCase : Optional[Union[str, os.PathLike]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[Dict[str, str]] = None , _UpperCAmelCase : Optional[Union[bool, str]] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , **_UpperCAmelCase : List[str] , ): lowerCAmelCase = get_file_from_repo( _UpperCAmelCase , _UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , resume_download=_UpperCAmelCase , proxies=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , local_files_only=_UpperCAmelCase , ) if resolved_config_file is None: logger.info( 'Could not locate the feature extractor configuration file, will try to use the model config instead.' ) return {} with open(_UpperCAmelCase , encoding='utf-8' ) as reader: return json.load(_UpperCAmelCase ) class a : def __init__( self ): """simple docstring""" raise EnvironmentError( 'AutoFeatureExtractor is designed to be instantiated ' 'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(_snake_case ) def UpperCamelCase__ ( cls , _snake_case , **_snake_case ): """simple docstring""" lowerCAmelCase = kwargs.pop('config' , _snake_case ) lowerCAmelCase = kwargs.pop('trust_remote_code' , _snake_case ) lowerCAmelCase = True lowerCAmelCase ,lowerCAmelCase = FeatureExtractionMixin.get_feature_extractor_dict(_snake_case , **_snake_case ) lowerCAmelCase = config_dict.get('feature_extractor_type' , _snake_case ) lowerCAmelCase = None if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): lowerCAmelCase = config_dict['auto_map']['AutoFeatureExtractor'] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_snake_case , _snake_case ): lowerCAmelCase = AutoConfig.from_pretrained(_snake_case , **_snake_case ) # It could be in `config.feature_extractor_type`` lowerCAmelCase = getattr(_snake_case , 'feature_extractor_type' , _snake_case ) if hasattr(_snake_case , 'auto_map' ) and "AutoFeatureExtractor" in config.auto_map: lowerCAmelCase = config.auto_map['AutoFeatureExtractor'] if feature_extractor_class is not None: lowerCAmelCase = feature_extractor_class_from_name(_snake_case ) lowerCAmelCase = feature_extractor_auto_map is not None lowerCAmelCase = feature_extractor_class is not None or type(_snake_case ) in FEATURE_EXTRACTOR_MAPPING lowerCAmelCase = resolve_trust_remote_code( _snake_case , _snake_case , _snake_case , _snake_case ) if has_remote_code and trust_remote_code: lowerCAmelCase = get_class_from_dynamic_module( _snake_case , _snake_case , **_snake_case ) lowerCAmelCase = kwargs.pop('code_revision' , _snake_case ) if os.path.isdir(_snake_case ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_snake_case , **_snake_case ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_snake_case , **_snake_case ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_snake_case ) in FEATURE_EXTRACTOR_MAPPING: lowerCAmelCase = FEATURE_EXTRACTOR_MAPPING[type(_snake_case )] return feature_extractor_class.from_dict(_snake_case , **_snake_case ) raise ValueError( F'Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ' F'`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ' F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}' ) @staticmethod def UpperCamelCase__ ( _snake_case , _snake_case ): """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(_snake_case , _snake_case )
4
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ): lowerCAmelCase = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 48 lowerCAmelCase = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 60 lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCAmelCase = 1 lowerCAmelCase = 1 lowerCAmelCase = 126 lowerCAmelCase = 7 lowerCAmelCase = 255.0 lowerCAmelCase = '' return config def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): if "patch_embed.proj" in name and "layers" not in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCAmelCase = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: lowerCAmelCase = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: lowerCAmelCase = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: lowerCAmelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCAmelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCAmelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCAmelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: lowerCAmelCase = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: lowerCAmelCase = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: lowerCAmelCase = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: lowerCAmelCase = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": lowerCAmelCase = 'layernorm.weight' if name == "norm.bias": lowerCAmelCase = 'layernorm.bias' if "conv_first" in name: lowerCAmelCase = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCAmelCase = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCAmelCase = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: lowerCAmelCase = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: lowerCAmelCase = name.replace('upsample.2' , 'upsample.convolution_1' ) lowerCAmelCase = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": lowerCAmelCase = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) lowerCAmelCase = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: lowerCAmelCase = 'swin2sr.' + name return name def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict ): for key in orig_state_dict.copy().keys(): lowerCAmelCase = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: lowerCAmelCase = key.split('.' ) lowerCAmelCase = int(key_split[1] ) lowerCAmelCase = int(key_split[4] ) lowerCAmelCase = config.embed_dim if "weight" in key: lowerCAmelCase = val[:dim, :] lowerCAmelCase = val[dim : dim * 2, :] lowerCAmelCase = val[-dim:, :] else: lowerCAmelCase = val[:dim] lowerCAmelCase = val[dim : dim * 2] lowerCAmelCase = val[-dim:] pass else: lowerCAmelCase = val return orig_state_dict def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ): lowerCAmelCase = get_config(_UpperCAmelCase ) lowerCAmelCase = SwinaSRForImageSuperResolution(_UpperCAmelCase ) model.eval() lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' ) lowerCAmelCase = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_UpperCAmelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowerCAmelCase = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) lowerCAmelCase = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCAmelCase = 126 if 'Jpeg' in checkpoint_url else 256 lowerCAmelCase = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowerCAmelCase = transforms(_UpperCAmelCase ).unsqueeze(0 ) if config.num_channels == 1: lowerCAmelCase = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCAmelCase = model(_UpperCAmelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-3 ) print('Looks ok!' ) lowerCAmelCase = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } lowerCAmelCase = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') __UpperCamelCase : Optional[int] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
1
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('''.''') def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ): lowerCAmelCase = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' F'{test_file} instead.' ) lowerCAmelCase = components[-1] if not test_fn.endswith('py' ): raise ValueError(F'`test_file` should be a python file. Got {test_fn} instead.' ) if not test_fn.startswith('test_modeling_' ): raise ValueError( F'`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.' ) lowerCAmelCase = components[:-1] + [test_fn.replace('.py' , '' )] lowerCAmelCase = '.'.join(_UpperCAmelCase ) return test_module_path def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple ): lowerCAmelCase = get_module_path(_UpperCAmelCase ) lowerCAmelCase = importlib.import_module(_UpperCAmelCase ) return test_module def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ): lowerCAmelCase = [] lowerCAmelCase = get_test_module(_UpperCAmelCase ) for attr in dir(_UpperCAmelCase ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(_UpperCAmelCase , _UpperCAmelCase ) ) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x.__name__ ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ): lowerCAmelCase = [] lowerCAmelCase = get_test_module(_UpperCAmelCase ) for attr in dir(_UpperCAmelCase ): lowerCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowerCAmelCase = getattr(_UpperCAmelCase , 'all_model_classes' , [] ) if len(_UpperCAmelCase ) > 0: test_classes.append(_UpperCAmelCase ) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x.__name__ ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ): lowerCAmelCase = get_test_classes(_UpperCAmelCase ) lowerCAmelCase = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x.__name__ ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ): lowerCAmelCase = test_class() if hasattr(_UpperCAmelCase , 'setUp' ): test.setUp() lowerCAmelCase = None if hasattr(_UpperCAmelCase , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowerCAmelCase = test.model_tester.__class__ return model_tester def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ): lowerCAmelCase = get_test_classes(_UpperCAmelCase ) lowerCAmelCase = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_UpperCAmelCase ) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x.__name__ ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : int ): lowerCAmelCase = get_test_classes_for_model(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = [] for test_class in test_classes: lowerCAmelCase = get_model_tester_from_test_class(_UpperCAmelCase ) if tester_class is not None: tester_classes.append(_UpperCAmelCase ) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x.__name__ ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): lowerCAmelCase = get_test_classes(_UpperCAmelCase ) lowerCAmelCase = {test_class: get_model_tester_from_test_class(_UpperCAmelCase ) for test_class in test_classes} return test_tester_mapping def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ): lowerCAmelCase = get_model_classes(_UpperCAmelCase ) lowerCAmelCase = { model_class: get_test_classes_for_model(_UpperCAmelCase , _UpperCAmelCase ) for model_class in model_classes } return model_test_mapping def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple ): lowerCAmelCase = get_model_classes(_UpperCAmelCase ) lowerCAmelCase = { model_class: get_tester_classes_for_model(_UpperCAmelCase , _UpperCAmelCase ) for model_class in model_classes } return model_to_tester_mapping def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return o elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): return o.__name__ elif isinstance(_UpperCAmelCase , (list, tuple) ): return [to_json(_UpperCAmelCase ) for x in o] elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): return {to_json(_UpperCAmelCase ): to_json(_UpperCAmelCase ) for k, v in o.items()} else: return o
4
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''megatron-bert''' def __init__( self , _snake_case=2_90_56 , _snake_case=10_24 , _snake_case=24 , _snake_case=16 , _snake_case=40_96 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache
4
1
"""simple docstring""" from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING __UpperCamelCase : Dict = logging.get_logger(__name__) @add_end_docstrings(a__ ) class a ( a__ ): def __init__( self , *_snake_case , **_snake_case ): """simple docstring""" super().__init__(*_snake_case , **_snake_case ) requires_backends(self , 'vision' ) self.check_model_type(_snake_case ) def __call__( self , _snake_case , **_snake_case ): """simple docstring""" return super().__call__(_snake_case , **_snake_case ) def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" return {}, {}, {} def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = load_image(_snake_case ) lowerCAmelCase = image.size lowerCAmelCase = self.image_processor(images=_snake_case , return_tensors=self.framework ) return model_inputs def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.model(**_snake_case ) return model_outputs def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = model_outputs.predicted_depth lowerCAmelCase = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='bicubic' , align_corners=_snake_case ) lowerCAmelCase = prediction.squeeze().cpu().numpy() lowerCAmelCase = (output * 2_55 / np.max(_snake_case )).astype('uint8' ) lowerCAmelCase = Image.fromarray(_snake_case ) lowerCAmelCase = {} lowerCAmelCase = predicted_depth lowerCAmelCase = depth return output_dict
4
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
4
1
def __lowercase ( snake_case, snake_case ): """simple docstring""" __magic_name__ :Tuple = (boundary[1] - boundary[0]) / steps __magic_name__ :Optional[int] = boundary[0] __magic_name__ :Tuple = boundary[1] __magic_name__ :Union[str, Any] = make_points(snake_case, snake_case, snake_case ) __magic_name__ :Union[str, Any] = 0.0 y += (h / 2.0) * f(snake_case ) for i in x_i: # print(i) y += h * f(snake_case ) y += (h / 2.0) * f(snake_case ) return y def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" __magic_name__ :List[Any] = a + h while x < (b - h): yield x __magic_name__ :Union[str, Any] = x + h def __lowercase ( snake_case ): # enter your function here """simple docstring""" __magic_name__ :Dict = (x - 0) * (x - 0) return y def __lowercase ( ): """simple docstring""" __magic_name__ :str = 0.0 # Lower bound of integration __magic_name__ :Dict = 1.0 # Upper bound of integration __magic_name__ :List[Any] = 10.0 # define number of steps or resolution __magic_name__ :Union[str, Any] = [a, b] # define boundary of integration __magic_name__ :Dict = method_a(snake_case, snake_case ) print(f'''y = {y}''' ) if __name__ == "__main__": main()
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class a ( a__ ): snake_case__ = 42 class a ( a__ , a__ ): @register_to_config def __init__( self , _snake_case = 3 , _snake_case = 3 , _snake_case = ("DownEncoderBlock2D",) , _snake_case = ("UpDecoderBlock2D",) , _snake_case = (64,) , _snake_case = 1 , _snake_case = "silu" , _snake_case = 3 , _snake_case = 32 , _snake_case = 2_56 , _snake_case = 32 , _snake_case = None , _snake_case = 0.18_215 , _snake_case = "group" , ): """simple docstring""" super().__init__() # pass init params to Encoder lowerCAmelCase = Encoder( in_channels=_snake_case , out_channels=_snake_case , down_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , double_z=_snake_case , ) lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 ) lowerCAmelCase = VectorQuantizer(_snake_case , _snake_case , beta=0.25 , remap=_snake_case , sane_index_shape=_snake_case ) lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 ) # pass init params to Decoder lowerCAmelCase = Decoder( in_channels=_snake_case , out_channels=_snake_case , up_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , norm_type=_snake_case , ) @apply_forward_hook def UpperCamelCase__ ( self , _snake_case , _snake_case = True ): """simple docstring""" lowerCAmelCase = self.encoder(_snake_case ) lowerCAmelCase = self.quant_conv(_snake_case ) if not return_dict: return (h,) return VQEncoderOutput(latents=_snake_case ) @apply_forward_hook def UpperCamelCase__ ( self , _snake_case , _snake_case = False , _snake_case = True ): """simple docstring""" if not force_not_quantize: lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = self.quantize(_snake_case ) else: lowerCAmelCase = h lowerCAmelCase = self.post_quant_conv(_snake_case ) lowerCAmelCase = self.decoder(_snake_case , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case = True ): """simple docstring""" lowerCAmelCase = sample lowerCAmelCase = self.encode(_snake_case ).latents lowerCAmelCase = self.decode(_snake_case ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_snake_case )
4
0
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __lowerCamelCase : def __init__( self: Optional[Any],A_: int,A_: str=3,A_: List[Any]=7,A_: List[str]=True,A_: List[str]=True,A_: Any=False,A_: int=True,A_: str=99,A_: List[str]=32,A_: Optional[Any]=5,A_: Optional[int]=4,A_: List[Any]=37,A_: List[str]="gelu",A_: Tuple=0.1,A_: Any=0.1,A_: str=512,A_: Any=16,A_: List[str]=2,A_: Dict=0.0_2,A_: Tuple=3,A_: Union[str, Any]=4,A_: Union[str, Any]=None,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size],self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size],self.num_choices ) __UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=A_,initializer_range=self.initializer_range,pad_token_id=1,new_decoder_architecture=A_,) def snake_case_ ( self: int,A_: Union[str, Any],A_: Union[str, Any],A_: int,A_: Any,A_: Tuple,A_: Any,A_: Tuple ): '''simple docstring''' __UpperCamelCase = FalconModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model(A_,attention_mask=A_ ) __UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self: Dict,A_: Any,A_: Optional[Any],A_: List[str],A_: str,A_: Optional[Any],A_: Optional[Any],A_: Dict,A_: Optional[Any],A_: str,): '''simple docstring''' __UpperCamelCase = True __UpperCamelCase = FalconModel(A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model( A_,attention_mask=A_,encoder_hidden_states=A_,encoder_attention_mask=A_,) __UpperCamelCase = model( A_,attention_mask=A_,encoder_hidden_states=A_,) __UpperCamelCase = model(A_,attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self: Union[str, Any],A_: Union[str, Any],A_: List[str],A_: Tuple,A_: List[Any],A_: Tuple,A_: int,A_: int,A_: Tuple,A_: Tuple,): '''simple docstring''' __UpperCamelCase = FalconForCausalLM(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model(A_,attention_mask=A_,labels=A_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self: str,A_: int,A_: str,A_: Optional[int],A_: Optional[int],A_: List[str],A_: str,A_: Union[str, Any],A_: Tuple,A_: Dict,): '''simple docstring''' __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = FalconForCausalLM(config=A_ ) model.to(A_ ) model.eval() # first forward pass __UpperCamelCase = model( A_,attention_mask=A_,encoder_hidden_states=A_,encoder_attention_mask=A_,use_cache=A_,) __UpperCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCamelCase = ids_tensor((self.batch_size, 3),config.vocab_size ) __UpperCamelCase = ids_tensor((self.batch_size, 3),vocab_size=2 ) # append to next input_ids and __UpperCamelCase = torch.cat([input_ids, next_tokens],dim=-1 ) __UpperCamelCase = torch.cat([input_mask, next_mask],dim=-1 ) __UpperCamelCase = model( A_,attention_mask=A_,encoder_hidden_states=A_,encoder_attention_mask=A_,output_hidden_states=A_,)['hidden_states'][0] __UpperCamelCase = model( A_,attention_mask=A_,encoder_hidden_states=A_,encoder_attention_mask=A_,past_key_values=A_,output_hidden_states=A_,)['hidden_states'][0] # select random slice __UpperCamelCase = ids_tensor((1,),output_from_past.shape[-1] ).item() __UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_,A_,atol=1E-3 ) ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ) = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase (_a , _a , _a , unittest.TestCase ): _lowercase = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) _lowercase = (FalconForCausalLM,) if is_torch_available() else () _lowercase = ( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) _lowercase = False _lowercase = False def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = FalconModelTester(self ) __UpperCamelCase = ConfigTester(self,config_class=A_,hidden_size=37 ) def snake_case_ ( self: Dict ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase, *__UpperCamelCase = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: __UpperCamelCase = alibi self.model_tester.create_and_check_model(A_,*A_ ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = 3 __UpperCamelCase = input_dict['input_ids'] __UpperCamelCase = input_ids.ne(1 ).to(A_ ) __UpperCamelCase = ids_tensor([self.model_tester.batch_size],self.model_tester.type_sequence_label_size ) __UpperCamelCase = FalconForSequenceClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model(A_,attention_mask=A_,labels=A_ ) self.assertEqual(result.logits.shape,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = 3 __UpperCamelCase = 'single_label_classification' __UpperCamelCase = input_dict['input_ids'] __UpperCamelCase = input_ids.ne(1 ).to(A_ ) __UpperCamelCase = ids_tensor([self.model_tester.batch_size],self.model_tester.type_sequence_label_size ) __UpperCamelCase = FalconForSequenceClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model(A_,attention_mask=A_,labels=A_ ) self.assertEqual(result.logits.shape,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = input_dict['input_ids'] __UpperCamelCase = FalconForCausalLM(A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model(A_,use_cache=A_ ) __UpperCamelCase = input_ids.shape[0] __UpperCamelCase = model._convert_to_rw_cache(result.past_key_values ) __UpperCamelCase = model._convert_cache_to_standard_format(A_,A_ ) for layer in range(len(A_ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = 3 __UpperCamelCase = 'multi_label_classification' __UpperCamelCase = input_dict['input_ids'] __UpperCamelCase = input_ids.ne(1 ).to(A_ ) __UpperCamelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels],self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCamelCase = FalconForSequenceClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model(A_,attention_mask=A_,labels=A_ ) self.assertEqual(result.logits.shape,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case_ ( self: List[str] ): '''simple docstring''' for model_class in self.all_generative_model_classes: __UpperCamelCase, __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(A_,'use_cache' ): return __UpperCamelCase = model_class(A_ ).to(A_ ) if "use_cache" not in inputs: __UpperCamelCase = True __UpperCamelCase = model(**A_ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return __UpperCamelCase = ( getattr(A_,'decoder_layers',A_ ) or getattr(A_,'num_decoder_layers',A_ ) or config.num_hidden_layers ) __UpperCamelCase = getattr(A_,'num_kv_heads',config.num_attention_heads ) __UpperCamelCase = getattr(A_,'d_model',config.hidden_size ) __UpperCamelCase = embed_dim // num_attention_heads __UpperCamelCase = outputs['past_key_values'] self.assertEqual(len(A_ ),A_ ) __UpperCamelCase, __UpperCamelCase = inputs['input_ids'].shape for i in range(A_ ): if config.new_decoder_architecture: __UpperCamelCase = config.num_attention_heads elif config.multi_query: __UpperCamelCase = 1 self.assertEqual(len(past_kv[0] ),2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape,(batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape,(batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class __lowerCamelCase (unittest.TestCase ): @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b' ) __UpperCamelCase = FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b' ) model.eval() model.to(A_ ) __UpperCamelCase = tokenizer('My favorite food is',return_tensors='pt' ).to(A_ ) __UpperCamelCase = ( 'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.' ) __UpperCamelCase = model.generate(**A_,do_sample=A_,max_new_tokens=19 ) __UpperCamelCase = tokenizer.batch_decode(A_ )[0] self.assertEqual(A_,A_ ) @slow def snake_case_ ( self: Dict ): '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: __UpperCamelCase = AutoTokenizer.from_pretrained(A_ ) __UpperCamelCase = FalconForCausalLM.from_pretrained(A_ ) model.eval() model.to(A_ ) __UpperCamelCase = tokenizer('My favorite food is',return_tensors='pt' ).to(A_ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**A_,do_sample=A_,max_new_tokens=4 ) model.generate(**A_,do_sample=A_,max_new_tokens=4 ) model.generate(**A_,num_beams=2,max_new_tokens=4 ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: __UpperCamelCase = AutoTokenizer.from_pretrained(A_ ) __UpperCamelCase = FalconForCausalLM.from_pretrained(A_ ) model.eval() model.to(device=A_ ) __UpperCamelCase = tokenizer('My favorite food is',return_tensors='pt' ).to(A_ ) # Test results are the same with and without cache __UpperCamelCase = model.generate(**A_,do_sample=A_,max_new_tokens=20,use_cache=A_ ) __UpperCamelCase = model.generate(**A_,do_sample=A_,max_new_tokens=20,use_cache=A_ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
1
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping __UpperCamelCase : Optional[Any] = tuple[int, int] class a : def __init__( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = vertices lowerCAmelCase = { (min(_snake_case ), max(_snake_case )): weight for edge, weight in edges.items() } def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase = weight def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Graph({min(self.vertices )} , {} ) lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase = edge lowerCAmelCase = weight subgraph.add_edge(_snake_case , _snake_case ) return subgraph def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "p107_network.txt" ): lowerCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) ) lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = {} lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 with open(_UpperCAmelCase ) as f: lowerCAmelCase = f.read().strip().split('\n' ) lowerCAmelCase = [line.split(',' ) for line in data] for edgea in range(1 , len(_UpperCAmelCase ) ): for edgea in range(_UpperCAmelCase ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase = Graph(set(range(len(_UpperCAmelCase ) ) ) , _UpperCAmelCase ) lowerCAmelCase = graph.prims_algorithm() lowerCAmelCase = sum(graph.edges.values() ) lowerCAmelCase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
4
0
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record UpperCAmelCase_ = """\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ UpperCAmelCase_ = """\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ UpperCAmelCase_ = """ Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] , _snake_case :Dict ) -> Optional[int]: return float((preds == labels).mean() ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :int , _snake_case :str="binary" ) -> int: _A = simple_accuracy(_snake_case , _snake_case ) _A = float(fa_score(y_true=_snake_case , y_pred=_snake_case , average=_snake_case ) ) return { "accuracy": acc, "f1": fa, } def SCREAMING_SNAKE_CASE_ ( _snake_case :List[Any] , _snake_case :int ) -> Any: _A = {} for id_pred, label in zip(_snake_case , _snake_case ): _A = F'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' _A = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _A = [(pred, label)] _A , _A = [], [] for question, preds_labels in question_map.items(): _A , _A = zip(*_snake_case ) _A = fa_score(y_true=_snake_case , y_pred=_snake_case , average='''macro''' ) fas.append(_snake_case ) _A = int(sum(pred == label for pred, label in preds_labels ) == len(_snake_case ) ) ems.append(_snake_case ) _A = float(sum(_snake_case ) / len(_snake_case ) ) _A = sum(_snake_case ) / len(_snake_case ) _A = float(fa_score(y_true=_snake_case , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): """simple docstring""" def snake_case_ ( self : Tuple ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def snake_case_ ( self : str ) -> Dict: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def snake_case_ ( self : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] ) -> Any: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__lowerCAmelCase , __lowerCAmelCase )} elif self.config_name == "cb": return acc_and_fa(__lowerCAmelCase , __lowerCAmelCase , fa_avg='''macro''' ) elif self.config_name == "record": _A = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] _A = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(__lowerCAmelCase , __lowerCAmelCase )[0] elif self.config_name == "multirc": return evaluate_multirc(__lowerCAmelCase , __lowerCAmelCase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
2
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCAmelCase )] ) lowerCAmelCase = np.array(_UpperCAmelCase ) lowerCAmelCase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCAmelCase ) ) , x.transpose() ) , _UpperCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = (1, 2, 1) lowerCAmelCase = (1, 1, 0, 7) lowerCAmelCase = SARIMAX( _UpperCAmelCase , exog=_UpperCAmelCase , order=_UpperCAmelCase , seasonal_order=_UpperCAmelCase ) lowerCAmelCase = model.fit(disp=_UpperCAmelCase , maxiter=600 , method='nm' ) lowerCAmelCase = model_fit.predict(1 , len(_UpperCAmelCase ) , exog=[test_match] ) return result[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = regressor.predict(_UpperCAmelCase ) return y_pred[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ): train_user.sort() lowerCAmelCase = np.percentile(_UpperCAmelCase , 25 ) lowerCAmelCase = np.percentile(_UpperCAmelCase , 75 ) lowerCAmelCase = qa - qa lowerCAmelCase = qa - (iqr * 0.1) return low_lim def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : float ): lowerCAmelCase = 0 lowerCAmelCase = 0 for i in list_vote: if i > actual_result: lowerCAmelCase = not_safe + 1 else: if abs(abs(_UpperCAmelCase ) - abs(_UpperCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __UpperCamelCase : Optional[Any] = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] __UpperCamelCase : Any = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) __UpperCamelCase : Dict = Normalizer().fit_transform(data_input_df.values) # split data __UpperCamelCase : Dict = normalize_df[:, 2].tolist() __UpperCamelCase : Union[str, Any] = normalize_df[:, 0].tolist() __UpperCamelCase : List[str] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __UpperCamelCase : Optional[int] = normalize_df[:, [1, 2]].tolist() __UpperCamelCase : Tuple = x[: len(x) - 1] __UpperCamelCase : Any = x[len(x) - 1 :] # for linear regression & sarimax __UpperCamelCase : str = total_date[: len(total_date) - 1] __UpperCamelCase : Union[str, Any] = total_user[: len(total_user) - 1] __UpperCamelCase : List[Any] = total_match[: len(total_match) - 1] __UpperCamelCase : Optional[Any] = total_date[len(total_date) - 1 :] __UpperCamelCase : str = total_user[len(total_user) - 1 :] __UpperCamelCase : str = total_match[len(total_match) - 1 :] # voting system with forecasting __UpperCamelCase : Any = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __UpperCamelCase : List[str] = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('''Today\'s data is {not_str}safe.''')
4
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Dict = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """cvt""" def __init__( self , A_=3 , A_=[7, 3, 3] , A_=[4, 2, 2] , A_=[2, 1, 1] , A_=[64, 192, 384] , A_=[1, 3, 6] , A_=[1, 2, 10] , A_=[4.0, 4.0, 4.0] , A_=[0.0, 0.0, 0.0] , A_=[0.0, 0.0, 0.0] , A_=[0.0, 0.0, 0.1] , A_=[True, True, True] , A_=[False, False, True] , A_=["dw_bn", "dw_bn", "dw_bn"] , A_=[3, 3, 3] , A_=[1, 1, 1] , A_=[2, 2, 2] , A_=[1, 1, 1] , A_=[1, 1, 1] , A_=0.02 , A_=1e-12 , **A_ , )-> Any: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = num_channels UpperCamelCase = patch_sizes UpperCamelCase = patch_stride UpperCamelCase = patch_padding UpperCamelCase = embed_dim UpperCamelCase = num_heads UpperCamelCase = depth UpperCamelCase = mlp_ratio UpperCamelCase = attention_drop_rate UpperCamelCase = drop_rate UpperCamelCase = drop_path_rate UpperCamelCase = qkv_bias UpperCamelCase = cls_token UpperCamelCase = qkv_projection_method UpperCamelCase = kernel_qkv UpperCamelCase = padding_kv UpperCamelCase = stride_kv UpperCamelCase = padding_q UpperCamelCase = stride_q UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps
3
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=_UpperCAmelCase , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=_UpperCAmelCase , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=_UpperCAmelCase , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=_UpperCAmelCase , default=0 , help='cuda_id.' , ) lowerCAmelCase = parser.parse_args() return args def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ): if not len(_UpperCAmelCase ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) lowerCAmelCase ,lowerCAmelCase = imgs[0].size lowerCAmelCase = Image.new('RGB' , size=(cols * w, rows * h) ) lowerCAmelCase ,lowerCAmelCase = grid.size for i, img in enumerate(_UpperCAmelCase ): grid.paste(_UpperCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]="robotic cat with wings" , _UpperCAmelCase : Optional[int]=7.5 , _UpperCAmelCase : Dict=50 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=42 , ): lowerCAmelCase = torch.Generator(pipeline.device ).manual_seed(_UpperCAmelCase ) lowerCAmelCase = pipeline( _UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , ).images lowerCAmelCase = int(math.sqrt(_UpperCAmelCase ) ) lowerCAmelCase = image_grid(_UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __UpperCamelCase : Optional[Any] = parse_args() # Load models and create wrapper for stable diffusion __UpperCamelCase : List[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') __UpperCamelCase : str = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') __UpperCamelCase : Optional[int] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') __UpperCamelCase : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') __UpperCamelCase : Tuple = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __UpperCamelCase : Union[str, Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): __UpperCamelCase : Dict = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: __UpperCamelCase : Dict = unet.to(torch.device('''cuda''', args.cuda_id)) __UpperCamelCase : Optional[Any] = pipeline.to(unet.device) __UpperCamelCase ,__UpperCamelCase : List[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) __UpperCamelCase : int = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
4
0
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def A (__lowerCamelCase :int ): if isinstance(__lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class UpperCAmelCase_ : '''simple docstring''' def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase ): """simple docstring""" _lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowercase , _lowercase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(_lowercase ) _lowerCAmelCase = model(input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowercase , _lowercase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_lowercase , text_model=_lowercase ) _lowerCAmelCase = model(input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowercase , _lowercase ) _lowerCAmelCase = {"""vision_model""": vision_model, """text_model""": text_model} _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowercase ) _lowerCAmelCase = model(input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowercase , _lowercase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_lowercase , text_model=_lowercase ) _lowerCAmelCase = model(input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase ) _lowerCAmelCase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowercase ) _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_lowercase ) _lowerCAmelCase = model(input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase ) _lowerCAmelCase = after_output[0].numpy() _lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowercase , 1e-5 ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowercase , _lowercase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_lowercase , text_model=_lowercase ) _lowerCAmelCase = model( input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , output_attentions=_lowercase ) _lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_lowercase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase = to_atuple(vision_model.config.image_size ) _lowerCAmelCase = to_atuple(vision_model.config.patch_size ) _lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_lowercase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = np.abs((a - b) ).max() self.assertLessEqual(_lowercase , _lowercase , F'Difference between torch and flax is {diff} (>= {tol}).' ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_save_load(**_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowercase ) @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_pretrained_model_and_inputs() _lowerCAmelCase = model_a(**_lowercase ) _lowerCAmelCase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowercase ) _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_lowercase ) _lowerCAmelCase = model_a(**_lowercase ) _lowerCAmelCase = after_outputs[0].numpy() _lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowercase , 1e-5 ) @require_tf class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFViTModel(_lowercase , name="""vision_model""" ) _lowerCAmelCase = TFBertModel(_lowercase , name="""text_model""" ) return vision_model, text_model def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFViTModelTester(self ) _lowerCAmelCase = TFBertModelTester(self ) _lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowercase , _lowercase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_lowercase , text_model=_lowercase ) _lowerCAmelCase = model( input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , output_attentions=_lowercase ) _lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_lowercase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowerCAmelCase = to_atuple(vision_model.config.image_size ) _lowerCAmelCase = to_atuple(vision_model.config.patch_size ) _lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_lowercase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFDeiTModel(_lowercase , name="""vision_model""" ) _lowerCAmelCase = TFRobertaModel(_lowercase , name="""text_model""" ) return vision_model, text_model def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFDeiTModelTester(self ) _lowerCAmelCase = TFRobertaModelTester(self ) _lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFCLIPVisionModel(_lowercase , name="""vision_model""" ) _lowerCAmelCase = TFBertModel(_lowercase , name="""text_model""" ) return vision_model, text_model def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFCLIPVisionModelTester(self ) _lowerCAmelCase = TFBertModelTester(self ) _lowerCAmelCase = clip_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowercase ) _lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _lowerCAmelCase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowercase , padding=_lowercase , return_tensors="""np""" ) _lowerCAmelCase = model(**_lowercase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _lowerCAmelCase = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowercase , atol=1e-3 ) )
5
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : List[int] ): lowerCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ), F'{len(_UpperCAmelCase )} != {len(_UpperCAmelCase )}' dest_layers.load_state_dict(layers_to_copy.state_dict() ) __UpperCamelCase : Optional[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } __UpperCamelCase : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ): try: lowerCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first' F' {n_student}' ) return list(range(_UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ): if n_student > n_teacher: raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' ) elif n_teacher == n_student: return list(range(_UpperCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, PreTrainedModel] , _UpperCAmelCase : Union[str, Path] = "student" , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ): lowerCAmelCase = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(_UpperCAmelCase , _UpperCAmelCase ): AutoTokenizer.from_pretrained(_UpperCAmelCase ).save_pretrained(_UpperCAmelCase ) # purely for convenience lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).eval() else: assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), F'teacher must be a model or string got type {type(_UpperCAmelCase )}' lowerCAmelCase = teacher.config.to_diff_dict() try: lowerCAmelCase ,lowerCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: lowerCAmelCase = teacher_e if d is None: lowerCAmelCase = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): lowerCAmelCase ,lowerCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: lowerCAmelCase ,lowerCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: lowerCAmelCase = teacher_e if d is None: lowerCAmelCase = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(_UpperCAmelCase ) # Copy weights lowerCAmelCase = teacher.config_class(**_UpperCAmelCase ) lowerCAmelCase = AutoModelForSeqaSeqLM.from_config(_UpperCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. lowerCAmelCase = student.load_state_dict(teacher.state_dict() , strict=_UpperCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save lowerCAmelCase ,lowerCAmelCase = list(range(_UpperCAmelCase ) ), list(range(_UpperCAmelCase ) ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to' F' {save_path}' ) student.save_pretrained(_UpperCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase ) if d_layers_to_copy is None: lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase ) try: if hasattr( _UpperCAmelCase , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _UpperCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _UpperCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _UpperCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _UpperCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , _UpperCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , _UpperCAmelCase ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' ) lowerCAmelCase = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(_UpperCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
4
0
from __future__ import annotations from collections.abc import Iterator class UpperCamelCase_ : def __init__( self :Any , __A :int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = value SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None class UpperCamelCase_ : def __init__( self :Dict , __A :Node ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = tree def _snake_case ( self :List[str] , __A :Node | None ) -> int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self :Tuple ) -> Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
6
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Dict = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
0
"""simple docstring""" import math from numpy import inf from scipy.integrate import quad def _snake_case ( _snake_case : float ) -> float: '''simple docstring''' if num <= 0: raise ValueError('math domain error' ) return quad(_snake_case , 0 , _snake_case , args=(_snake_case) )[0] def _snake_case ( _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' return math.pow(_snake_case , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
7
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ): lowerCAmelCase = 0.00 lowerCAmelCase = 0 for resistor in resistors: if resistor <= 0: lowerCAmelCase = F'Resistor at index {index} has a negative or zero value!' raise ValueError(_UpperCAmelCase ) first_sum += 1 / float(_UpperCAmelCase ) index += 1 return 1 / first_sum def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ): lowerCAmelCase = 0.00 lowerCAmelCase = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowerCAmelCase = F'Resistor at index {index} has a negative value!' raise ValueError(_UpperCAmelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
4
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = 42 class SCREAMING_SNAKE_CASE (a__ , a__ ): @register_to_config def __init__( self , _UpperCAmelCase = 6_5536 , _UpperCAmelCase = None , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0 , _UpperCAmelCase = "fourier" , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _UpperCAmelCase = "UNetMidBlock1D" , _UpperCAmelCase = None , _UpperCAmelCase = (32, 32, 64) , _UpperCAmelCase = None , _UpperCAmelCase = 8 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , ): '''simple docstring''' super().__init__() __A : Dict = sample_size # time if time_embedding_type == "fourier": __A : int = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase) __A : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": __A : List[str] = Timesteps( block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase) __A : List[str] = block_out_channels[0] if use_timestep_embedding: __A : Optional[Any] = block_out_channels[0] * 4 __A : Optional[int] = TimestepEmbedding( in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , ) __A : Dict = nn.ModuleList([]) __A : Dict = None __A : Tuple = nn.ModuleList([]) __A : Tuple = None # down __A : Any = in_channels for i, down_block_type in enumerate(_UpperCAmelCase): __A : Tuple = output_channel __A : Optional[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels __A : List[str] = i == len(_UpperCAmelCase) - 1 __A : int = get_down_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_UpperCAmelCase) # mid __A : str = get_mid_block( _UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , ) # up __A : Optional[int] = list(reversed(_UpperCAmelCase)) __A : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: __A : str = out_channels else: __A : List[Any] = block_out_channels[0] for i, up_block_type in enumerate(_UpperCAmelCase): __A : Optional[Any] = output_channel __A : Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase) - 1 else final_upsample_channels ) __A : Dict = i == len(_UpperCAmelCase) - 1 __A : str = get_up_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_UpperCAmelCase) __A : Optional[int] = output_channel # out __A : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) __A : Optional[Any] = get_out_block( out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ): '''simple docstring''' __A : Any = timestep if not torch.is_tensor(_UpperCAmelCase): __A : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(_UpperCAmelCase) and len(timesteps.shape) == 0: __A : Any = timesteps[None].to(sample.device) __A : List[Any] = self.time_proj(_UpperCAmelCase) if self.config.use_timestep_embedding: __A : Dict = self.time_mlp(_UpperCAmelCase) else: __A : Dict = timestep_embed[..., None] __A : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) __A : List[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down __A : int = () for downsample_block in self.down_blocks: __A ,__A : int = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase) down_block_res_samples += res_samples # 3. mid if self.mid_block: __A : Optional[int] = self.mid_block(_UpperCAmelCase , _UpperCAmelCase) # 4. up for i, upsample_block in enumerate(self.up_blocks): __A : Any = down_block_res_samples[-1:] __A : Optional[int] = down_block_res_samples[:-1] __A : Any = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase) # 5. post-process if self.out_block: __A : Dict = self.out_block(_UpperCAmelCase , _UpperCAmelCase) if not return_dict: return (sample,) return UNetaDOutput(sample=_UpperCAmelCase)
8
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''', # See all GLPN models at https://huggingface.co/models?filter=glpn } class a ( a__ ): snake_case__ = '''glpn''' def __init__( self , _snake_case=3 , _snake_case=4 , _snake_case=[2, 2, 2, 2] , _snake_case=[8, 4, 2, 1] , _snake_case=[32, 64, 1_60, 2_56] , _snake_case=[7, 3, 3, 3] , _snake_case=[4, 2, 2, 2] , _snake_case=[1, 2, 5, 8] , _snake_case=[4, 4, 4, 4] , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=0.1 , _snake_case=1E-6 , _snake_case=64 , _snake_case=10 , _snake_case=-1 , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = num_channels lowerCAmelCase = num_encoder_blocks lowerCAmelCase = depths lowerCAmelCase = sr_ratios lowerCAmelCase = hidden_sizes lowerCAmelCase = patch_sizes lowerCAmelCase = strides lowerCAmelCase = mlp_ratios lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = drop_path_rate lowerCAmelCase = layer_norm_eps lowerCAmelCase = decoder_hidden_size lowerCAmelCase = max_depth lowerCAmelCase = head_in_index
4
0
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , *_snake_case : int , **_snake_case : Optional[int] ): """simple docstring""" warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
9
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , _snake_case=10_00 , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = range_bbox def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase = bbox[i, j, 3] lowerCAmelCase = bbox[i, j, 1] lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase = bbox[i, j, 2] lowerCAmelCase = bbox[i, j, 0] lowerCAmelCase = t lowerCAmelCase = tf.convert_to_tensor(_snake_case ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForMaskedLM(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForSequenceClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForTokenClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = True snake_case__ = 1_0 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFLayoutLMModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def _SCREAMING_SNAKE_CASE (): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off lowerCAmelCase = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowerCAmelCase = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the sequence output on [0, :3, :3] lowerCAmelCase = tf.convert_to_tensor( [[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _snake_case , atol=1E-3 ) ) # test the pooled output on [1, :3] lowerCAmelCase = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _snake_case , atol=1E-3 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar lowerCAmelCase = outputs.loss lowerCAmelCase = (2,) self.assertEqual(loss.shape , _snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = (2, 2) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the shape of the logits lowerCAmelCase = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _snake_case ) self.assertEqual(outputs.end_logits.shape , _snake_case )
4
0
def _snake_case ( __snake_case ): _UpperCamelCase = len(__snake_case ) _UpperCamelCase = sum(__snake_case ) _UpperCamelCase = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _UpperCamelCase = True for i in range(1 , s + 1 ): _UpperCamelCase = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _UpperCamelCase = dp[i][j - 1] if arr[i - 1] <= j: _UpperCamelCase = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _UpperCamelCase = s - 2 * j break return diff
10
"""simple docstring""" import argparse import os import re import packaging.version __UpperCamelCase : Union[str, Any] = '''examples/''' __UpperCamelCase : str = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __UpperCamelCase : List[str] = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } __UpperCamelCase : Optional[int] = '''README.md''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ): with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.read() lowerCAmelCase ,lowerCAmelCase = REPLACE_PATTERNS[pattern] lowerCAmelCase = replace.replace('VERSION' , _UpperCAmelCase ) lowerCAmelCase = re_pattern.sub(_UpperCAmelCase , _UpperCAmelCase ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ): for folder, directories, fnames in os.walk(_UpperCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , pattern='examples' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not patch: update_version_in_examples(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = '🤗 Transformers currently provides the following architectures' lowerCAmelCase = '1. Want to contribute a new model?' with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.readlines() # Find the start of the list. lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): lowerCAmelCase = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): with open(REPLACE_FILES['init'] , 'r' ) as f: lowerCAmelCase = f.read() lowerCAmelCase = REPLACE_PATTERNS['init'][0].search(_UpperCAmelCase ).groups()[0] return packaging.version.parse(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple=False ): lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: lowerCAmelCase = default_version.base_version elif patch: lowerCAmelCase = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: lowerCAmelCase = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. lowerCAmelCase = input(F'Which version are you releasing? [{default_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = default_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase , patch=_UpperCAmelCase ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = get_version() lowerCAmelCase = F'{current_version.major}.{current_version.minor + 1}.0.dev0' lowerCAmelCase = current_version.base_version # Check with the user we got that right. lowerCAmelCase = input(F'Which version are we developing now? [{dev_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = dev_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __UpperCamelCase : Optional[int] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
4
0
'''simple docstring''' import numpy as np def lowerCAmelCase (__A , __A , __A , __A , __A): """simple docstring""" _a = int(np.ceil((x_end - xa) / h)) _a = np.zeros((n + 1,)) _a = ya _a = xa for k in range(__A): _a = f(__A , y[k]) _a = f(x + 0.5 * h , y[k] + 0.5 * h * ka) _a = f(x + 0.5 * h , y[k] + 0.5 * h * ka) _a = f(x + h , y[k] + h * ka) _a = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
11
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __UpperCamelCase : Optional[int] = pytest.mark.integration @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_snake_case ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() lowerCAmelCase = dset.map( lambda _snake_case , _snake_case : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_snake_case , keep_in_memory=_snake_case ) lowerCAmelCase = dset.add_faiss_index('vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_snake_case , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch lowerCAmelCase = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCAmelCase = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_snake_case ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertRaises(_snake_case , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCAmelCase = np.eye(5 , dtype=np.floataa )[::-1] lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) self.assertRaises(_snake_case , index.search_batch , queries[0] ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCAmelCase = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_snake_case ): lowerCAmelCase = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = faiss.IndexFlat(5 ) lowerCAmelCase = FaissIndex(custom_index=_snake_case ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: index.save(tmp_file.name ) lowerCAmelCase = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ): import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCAmelCase = 'index.faiss' lowerCAmelCase = F'mock://{index_name}' index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = Elasticsearch() lowerCAmelCase = {'acknowledged': True} lowerCAmelCase = ElasticSearchIndex(es_client=_snake_case ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case ) # batched queries with timeout lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case , request_timeout=30 ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case )
4
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase__ : int = { """vocab_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt""" ), """squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""", """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli""": ( """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json""" ), }, } lowerCamelCase__ : Dict = { """squeezebert/squeezebert-uncased""": 5_1_2, """squeezebert/squeezebert-mnli""": 5_1_2, """squeezebert/squeezebert-mnli-headless""": 5_1_2, } lowerCamelCase__ : List[str] = { """squeezebert/squeezebert-uncased""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True}, } class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[str] = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Dict = SqueezeBertTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("""lowercase""" , SCREAMING_SNAKE_CASE_) != do_lower_case or normalizer_state.get("""strip_accents""" , SCREAMING_SNAKE_CASE_) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , SCREAMING_SNAKE_CASE_) != tokenize_chinese_chars ): lowercase__ : Dict = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop("""type""")) lowercase__ : Optional[Any] = do_lower_case lowercase__ : List[Any] = strip_accents lowercase__ : List[str] = tokenize_chinese_chars lowercase__ : Any = normalizer_class(**SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = do_lower_case def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None): '''simple docstring''' lowercase__ : Dict = [self.sep_token_id] lowercase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None): '''simple docstring''' lowercase__ : Optional[int] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_) return tuple(SCREAMING_SNAKE_CASE_)
12
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a ( a__ , a__ , unittest.TestCase ): snake_case__ = IFInpaintingPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_dummy_components() def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
4
0
'''simple docstring''' from collections.abc import Sequence from queue import Queue class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> int: __lowerCamelCase : str = start __lowerCamelCase : Union[str, Any] = end __lowerCamelCase : Any = val __lowerCamelCase : int = (start + end) // 2 __lowerCamelCase : str = left __lowerCamelCase : Tuple = right def __repr__( self ) -> List[str]: return f'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : Optional[Any] = collection __lowerCamelCase : Tuple = function if self.collection: __lowerCamelCase : List[str] = self._build_tree(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: self._update_tree(self.root , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: return self._query_range(self.root , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: if start == end: return SegmentTreeNode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.collection[start] ) __lowerCamelCase : Optional[int] = (start + end) // 2 __lowerCamelCase : str = self._build_tree(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self._build_tree(mid + 1 , SCREAMING_SNAKE_CASE_ ) return SegmentTreeNode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.fn(left.val , right.val ) , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: if node.start == i and node.end == i: __lowerCamelCase : Any = val return if i <= node.mid: self._update_tree(node.left , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: self._update_tree(node.right , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = self.fn(node.left.val , node.right.val ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , SCREAMING_SNAKE_CASE_ , node.mid ) , self._query_range(node.right , node.mid + 1 , SCREAMING_SNAKE_CASE_ ) , ) else: # range in right child tree return self._query_range(node.right , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Dict: if self.root is not None: __lowerCamelCase : Any = Queue() queue.put(self.root ) while not queue.empty(): __lowerCamelCase : List[str] = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("""*""" * 50) A__ : List[Any] = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
13
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = self.vocab_size - 1 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , head_mask=_snake_case ) lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTLMHeadModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTDoubleHeadsModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = OpenAIGPTForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case__ = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=False ): """simple docstring""" lowerCAmelCase = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_snake_case , ) lowerCAmelCase = inputs_dict['labels'] lowerCAmelCase = inputs_dict['labels'] lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_snake_case , ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_snake_case ) return inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenAIGPTModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , n_embd=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = OpenAIGPTModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_torch class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(_snake_case ) lowerCAmelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=_snake_case ) # the president is lowerCAmelCase = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCAmelCase = model.generate(_snake_case , do_sample=_snake_case ) self.assertListEqual(output_ids[0].tolist() , _snake_case )
4
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = StableDiffusionInpaintPipeline UpperCAmelCase__ : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCAmelCase__ : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ : Dict = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase__ : Optional[int] = frozenset([] ) def __lowercase ( self ) -> Tuple: torch.manual_seed(0 ) _a : Tuple = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=_a , ) _a : List[Any] = PNDMScheduler(skip_prk_steps=_a ) torch.manual_seed(0 ) _a : Tuple = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) _a : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) _a : str = CLIPTextModel(_a ) _a : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _a : Dict = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowercase ( self , _a , _a=0 ) -> List[Any]: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched _a : Union[str, Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_a ) ).to(_a ) _a : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a : Tuple = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((6_4, 6_4) ) _a : Dict = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((6_4, 6_4) ) if str(_a ).startswith('''mps''' ): _a : Optional[int] = torch.manual_seed(_a ) else: _a : Dict = torch.Generator(device=_a ).manual_seed(_a ) _a : Optional[int] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __lowercase ( self ) -> List[str]: _a : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator _a : List[str] = self.get_dummy_components() _a : List[str] = StableDiffusionInpaintPipeline(**_a ) _a : Tuple = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) _a : Union[str, Any] = self.get_dummy_inputs(_a ) _a : List[str] = sd_pipe(**_a ).images _a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _a : str = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowercase ( self ) -> Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self ) -> List[Any]: _a : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _a : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _a : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) _a : Optional[int] = '''stabilityai/stable-diffusion-2-inpainting''' _a : Union[str, Any] = StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _a : int = '''Face of a yellow cat, high resolution, sitting on a park bench''' _a : List[Any] = torch.manual_seed(0 ) _a : Any = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) _a : Union[str, Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9e-3 def __lowercase ( self ) -> Dict: _a : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _a : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _a : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) _a : Tuple = '''stabilityai/stable-diffusion-2-inpainting''' _a : Optional[int] = StableDiffusionInpaintPipeline.from_pretrained( _a , torch_dtype=torch.floataa , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _a : List[Any] = '''Face of a yellow cat, high resolution, sitting on a park bench''' _a : Dict = torch.manual_seed(0 ) _a : Any = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) _a : List[str] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def __lowercase ( self ) -> List[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _a : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _a : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _a : List[Any] = '''stabilityai/stable-diffusion-2-inpainting''' _a : Optional[int] = PNDMScheduler.from_pretrained(_a , subfolder='''scheduler''' ) _a : Tuple = StableDiffusionInpaintPipeline.from_pretrained( _a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _a : Tuple = '''Face of a yellow cat, high resolution, sitting on a park bench''' _a : Tuple = torch.manual_seed(0 ) _a : Dict = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , ) _a : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
14
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __UpperCamelCase : str = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=_UpperCAmelCase , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=_UpperCAmelCase , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=_UpperCAmelCase , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=_UpperCAmelCase , default='data/dump' , help='The dump file prefix.' ) lowerCAmelCase = parser.parse_args() logger.info(F'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": lowerCAmelCase = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `[CLS]` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCAmelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `<s>` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": lowerCAmelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` lowerCAmelCase = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(F'Loading text from {args.file_path}' ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: lowerCAmelCase = fp.readlines() logger.info('Start encoding' ) logger.info(F'{len(_UpperCAmelCase )} examples to process.' ) lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 1_0000 lowerCAmelCase = time.time() for text in data: lowerCAmelCase = F'{bos} {text.strip()} {sep}' lowerCAmelCase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) rslt.append(_UpperCAmelCase ) iter += 1 if iter % interval == 0: lowerCAmelCase = time.time() logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) lowerCAmelCase = time.time() logger.info('Finished binarization' ) logger.info(F'{len(_UpperCAmelCase )} examples processed.' ) lowerCAmelCase = F'{args.dump_file}.{args.tokenizer_name}.pickle' lowerCAmelCase = tokenizer.vocab_size if vocab_size < (1 << 16): lowerCAmelCase = [np.uintaa(_UpperCAmelCase ) for d in rslt] else: lowerCAmelCase = [np.intaa(_UpperCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'Dump to {dp_file}' ) with open(_UpperCAmelCase , 'wb' ) as handle: pickle.dump(rslt_ , _UpperCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
4
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on lowercase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__ = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] lowercase__ = {"""unk_token""": """<unk>"""} lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_UpperCAmelCase ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Optional[int] ) -> int: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] , **_UpperCAmelCase : str ) -> Any: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Tuple ) -> List[str]: """simple docstring""" lowercase__ = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
15
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''bert''' def __init__( self , _snake_case=3_05_22 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache lowerCAmelCase = classifier_dropout class a ( a__ ): @property def UpperCamelCase__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
4
0
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __A : Any = 'bart' __A : str = True @st.cache(allow_output_mutation=A__ ) def __a ( ): if LOAD_DENSE_INDEX: SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased" ) SCREAMING_SNAKE_CASE = AutoModel.from_pretrained("yjernite/retribert-base-uncased" ).to("cuda:0" ) SCREAMING_SNAKE_CASE = qar_model.eval() else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = (None, None) if MODEL_TYPE == "bart": SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("yjernite/bart_eli5" ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained("yjernite/bart_eli5" ).to("cuda:0" ) SCREAMING_SNAKE_CASE = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth" ) sas_model.load_state_dict(save_dict["model"] ) SCREAMING_SNAKE_CASE = sas_model.eval() else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = make_qa_sas_model( model_name="t5-small" , from_file="seq2seq_models/eli5_t5_model_1024_4.pth" , device="cuda:0" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=A__ ) def __a ( ): if LOAD_DENSE_INDEX: SCREAMING_SNAKE_CASE = faiss.StandardGpuResources() SCREAMING_SNAKE_CASE = datasets.load_dataset(path="wiki_snippets" , name="wiki40b_en_100_0" )["train"] SCREAMING_SNAKE_CASE = np.memmap( "wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat" , dtype="float32" , mode="r" , shape=(wikiaab_passages.num_rows, 128) , ) SCREAMING_SNAKE_CASE = faiss.IndexFlatIP(128 ) SCREAMING_SNAKE_CASE = faiss.index_cpu_to_gpu(A__ , 1 , A__ ) wikiaab_gpu_index_flat.add(A__ ) # TODO fix for larger GPU else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = (None, None) SCREAMING_SNAKE_CASE = Elasticsearch([{"host": "localhost", "port": "9200"}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=A__ ) def __a ( ): SCREAMING_SNAKE_CASE = datasets.load_dataset("eli5" , name="LFQA_reddit" ) SCREAMING_SNAKE_CASE = elia["train_eli5"] SCREAMING_SNAKE_CASE = np.memmap( "eli5_questions_reps.dat" , dtype="float32" , mode="r" , shape=(elia_train.num_rows, 128) ) SCREAMING_SNAKE_CASE = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(A__ ) return (elia_train, eli5_train_q_index) __A , __A , __A : Dict = load_indexes() __A , __A , __A , __A : Union[str, Any] = load_models() __A , __A : Union[str, Any] = load_train_data() def __a ( A__ : Any , A__ : List[str]=10 ): SCREAMING_SNAKE_CASE = embed_questions_for_retrieval([question] , A__ , A__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = eli5_train_q_index.search(A__ , A__ ) SCREAMING_SNAKE_CASE = [elia_train[int(A__ )] for i in I[0]] return nn_examples def __a ( A__ : Optional[int] , A__ : Union[str, Any]="wiki40b" , A__ : List[str]="dense" , A__ : int=10 ): if source == "none": SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = (" <P> ".join(["" for _ in range(11 )] ).strip(), []) else: if method == "dense": SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = query_qa_dense_index( A__ , A__ , A__ , A__ , A__ , A__ ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = query_es_index( A__ , A__ , index_name="english_wiki40b_snippets_100w" , n_results=A__ , ) SCREAMING_SNAKE_CASE = [ (res["article_title"], res["section_title"].strip(), res["score"], res["passage_text"]) for res in hit_lst ] SCREAMING_SNAKE_CASE = "question: {} context: {}".format(A__ , A__ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda A__ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda A__ : None), } ) def __a ( A__ : List[str] , A__ : Tuple , A__ : Dict , A__ : Optional[int]=64 , A__ : Tuple=256 , A__ : Dict=False , A__ : Optional[Any]=2 , A__ : Optional[int]=0.9_5 , A__ : Any=0.8 ): with torch.no_grad(): SCREAMING_SNAKE_CASE = qa_sas_generate( A__ , A__ , A__ , num_answers=1 , num_beams=A__ , min_len=A__ , max_len=A__ , do_sample=A__ , temp=A__ , top_p=A__ , top_k=A__ , max_input_length=1024 , device="cuda:0" , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar __A : int = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' __A : Tuple = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __A : int = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) __A : List[Any] = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] __A : Dict = st.sidebar.checkbox('Demo options') if demo_options: __A : List[Any] = st.sidebar.selectbox( '', action_list, index=3, ) __A : Optional[int] = action_list.index(action_st) __A : Optional[Any] = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) __A : List[Any] = show_type == 'Show full text of passages' else: __A : Tuple = 3 __A : List[str] = True __A : Tuple = st.sidebar.checkbox('Retrieval options') if retrieval_options: __A : str = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) __A : List[str] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) __A : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: __A : str = 'wiki40b' __A : str = 'dense' __A : Optional[Any] = 'beam' __A : int = 2 __A : Dict = 6_4 __A : Optional[Any] = 2_5_6 __A : Dict = None __A : Optional[Any] = None __A : Optional[int] = st.sidebar.checkbox('Generation options') if generate_options: __A : Dict = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) __A : Optional[Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) __A : Union[str, Any] = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=2_5_6, value=6_4, step=8, format=None, key=None ) __A : Any = st.sidebar.slider( 'Maximum generation length', min_value=6_4, max_value=5_1_2, value=2_5_6, step=1_6, format=None, key=None ) if sampled == "beam": __A : Optional[int] = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __A : Any = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __A : Optional[int] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __A : int = None # start main text __A : Optional[int] = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] __A : Any = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": __A : List[Any] = st.text_input('Enter your question here:', '') else: __A : List[Any] = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": __A , __A : str = make_support(question, source=wiki_source, method='dense', n_results=1_0) __A , __A : List[str] = make_support(question, source=wiki_source, method='sparse', n_results=1_0) __A : Optional[Any] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __A : Union[str, Any] = support_list[:1_0] __A : List[str] = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: __A , __A : List[Any] = make_support(question, source=wiki_source, method=index_type, n_results=1_0) if action in [0, 3]: __A , __A : Tuple = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): __A : Optional[int] = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) __A : List[Any] = res[1].strip() if sec_titles == "": __A : List[str] = '[{}]({})'.format(res[0], wiki_url) else: __A : List[Any] = sec_titles.split(' & ') __A : Union[str, Any] = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: __A : Optional[int] = find_nearest_training(question) __A : List[Any] = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) __A : Any = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) __A : Optional[int] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
16
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( a__ , unittest.TestCase ): snake_case__ = DanceDiffusionPipeline snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_snake_case , use_timestep_embedding=_snake_case , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase = IPNDMScheduler() lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = DanceDiffusionPipeline(**_snake_case ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = pipe(**_snake_case ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_local() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
4
0
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() UpperCAmelCase_ : Any = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int ,a__ : Tuple ) -> Optional[int]: __A : int = UniSpeechSatForSequenceClassification.from_pretrained(a__ ,config=a__ ) __A : Dict = downstream_dict["""projector.weight"""] __A : int = downstream_dict["""projector.bias"""] __A : Any = downstream_dict["""model.post_net.linear.weight"""] __A : Any = downstream_dict["""model.post_net.linear.bias"""] return model def __SCREAMING_SNAKE_CASE ( a__ : Optional[int] ,a__ : Optional[Any] ,a__ : str ) -> str: __A : Dict = UniSpeechSatForAudioFrameClassification.from_pretrained(a__ ,config=a__ ) __A : List[str] = downstream_dict["""model.linear.weight"""] __A : int = downstream_dict["""model.linear.bias"""] return model def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : str ,a__ : Optional[Any] ) -> str: __A : Optional[Any] = UniSpeechSatForXVector.from_pretrained(a__ ,config=a__ ) __A : int = downstream_dict["""connector.weight"""] __A : Dict = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __A : str = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] __A : Tuple = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] __A : str = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] __A : Optional[Any] = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] __A : Union[str, Any] = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] __A : Tuple = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] __A : Union[str, Any] = downstream_dict["""objective.W"""] return model @torch.no_grad() def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : Dict ,a__ : List[Any] ,a__ : Tuple ) -> List[str]: __A : Dict = torch.load(a__ ,map_location="""cpu""" ) __A : int = checkpoint["""Downstream"""] __A : Optional[int] = UniSpeechSatConfig.from_pretrained(a__ ) __A : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( a__ ,return_attention_mask=a__ ,do_normalize=a__ ) __A : Union[str, Any] = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): __A : List[str] = convert_classification(a__ ,a__ ,a__ ) elif arch.endswith("""ForAudioFrameClassification""" ): __A : List[Any] = convert_diarization(a__ ,a__ ,a__ ) elif arch.endswith("""ForXVector""" ): __A : Tuple = convert_xvector(a__ ,a__ ,a__ ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: __A : List[str] = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(a__ ) hf_model.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') UpperCAmelCase_ : Dict = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
17
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , use_stable_embedding=_snake_case , ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = OpenLlamaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = OpenLlamaModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , ) lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() # first forward pass lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , use_cache=_snake_case , ) lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , past_key_values=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) snake_case__ = (OpenLlamaForCausalLM,) if is_torch_available() else () snake_case__ = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenLlamaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase = type self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'single_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'multi_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = OpenLlamaModel(_snake_case ) original_model.to(_snake_case ) original_model.eval() lowerCAmelCase = original_model(_snake_case ).last_hidden_state lowerCAmelCase = original_model(_snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = {'type': scaling_type, 'factor': 10.0} lowerCAmelCase = OpenLlamaModel(_snake_case ) scaled_model.to(_snake_case ) scaled_model.eval() lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
4
0
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): _lowerCAmelCase = n - k # Calculate C(n,k) for i in range(SCREAMING_SNAKE_CASE_ ): result *= n - i result //= i + 1 return result def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' return binomial_coefficient(2 * node_count , SCREAMING_SNAKE_CASE_ ) // (node_count + 1) def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if n < 0: raise ValueError("factorial() not defined for negative values" ) _lowerCAmelCase = 1 for i in range(1 , n + 1 ): result *= i return result def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' return catalan_number(SCREAMING_SNAKE_CASE_ ) * factorial(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' f'''binary trees and {catalan_number(node_count)} binary search trees.''' )
18
"""simple docstring""" from typing import Any class a : def __init__( self , _snake_case ): """simple docstring""" lowerCAmelCase = data lowerCAmelCase = None def __repr__( self ): """simple docstring""" return F'Node({self.data})' class a : def __init__( self ): """simple docstring""" lowerCAmelCase = None def __iter__( self ): """simple docstring""" lowerCAmelCase = self.head while node: yield node.data lowerCAmelCase = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(_snake_case ) for item in self] ) def __getitem__( self , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase = self.head for _ in range(_snake_case ): lowerCAmelCase = current.next lowerCAmelCase = data def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(len(self ) , _snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(0 , _snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase = Node(_snake_case ) if self.head is None: lowerCAmelCase = new_node elif index == 0: lowerCAmelCase = self.head # link new_node to head lowerCAmelCase = new_node else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = new_node def UpperCamelCase__ ( self ): # print every node data """simple docstring""" print(self ) def UpperCamelCase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def UpperCamelCase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def UpperCamelCase__ ( self , _snake_case = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase = self.head # default first node if index == 0: lowerCAmelCase = self.head.next else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = temp.next.next return delete_node.data def UpperCamelCase__ ( self ): """simple docstring""" return self.head is None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = None lowerCAmelCase = self.head while current: # Store the current node's next node. lowerCAmelCase = current.next # Make the current node's next point backwards lowerCAmelCase = prev # Make the previous node be the current node lowerCAmelCase = current # Make the current node the next node (to progress iteration) lowerCAmelCase = next_node # Return prev in order to put the head at the end lowerCAmelCase = prev def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = LinkedList() assert linked_list.is_empty() is True assert str(_UpperCAmelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_UpperCAmelCase ) == i linked_list.insert_nth(_UpperCAmelCase , i + 1 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_UpperCAmelCase ) == 9 assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(-8 , 1 ) ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = [ -9, 100, Node(7734_5112 ), 'dlrow olleH', 7, 5555, 0, -192.5_5555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase = LinkedList() for i in test_input: linked_list.insert_tail(_UpperCAmelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase = linked_list.delete_head() assert result == -9 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_UpperCAmelCase ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_UpperCAmelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _SCREAMING_SNAKE_CASE (): from doctest import testmod testmod() lowerCAmelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_UpperCAmelCase ) print('\nReading/changing Node data using indexing:' ) print(F'Element at Position 1: {linked_list[1]}' ) lowerCAmelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_UpperCAmelCase ) print(F'length of linked_list is : {len(_UpperCAmelCase )}' ) if __name__ == "__main__": main()
4
0
"""simple docstring""" from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _a = datasets.load_iris() _a = np.array(data["""data"""]) _a = np.array(data["""target"""]) _a = data["""target_names"""] _a , _a , _a , _a = train_test_split(X, y) def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" return np.linalg.norm(np.array(__snake_case ) - np.array(__snake_case ) ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case=5 ) -> str: """simple docstring""" _UpperCamelCase = zip(__snake_case, __snake_case ) # List of distances of all points from the point to be classified _UpperCamelCase = [] for data_point in data: _UpperCamelCase = euclidean_distance(data_point[0], __snake_case ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. _UpperCamelCase = [i[1] for i in sorted(__snake_case )[:k]] # Most commonly occurring class among them # is the class into which the point is classified _UpperCamelCase = Counter(__snake_case ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
19
"""simple docstring""" from __future__ import annotations import requests def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(_UpperCAmelCase ).json() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' lowerCAmelCase = requests.get(_UpperCAmelCase ).json()[:max_stories] return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = hackernews_top_stories(_UpperCAmelCase ) return "\n".join('* [{title}]({url})'.format(**_UpperCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
0
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase_ (lowercase__ , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class lowercase_ (unittest.TestCase ): @property def __UpperCamelCase ( self) -> Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self) -> List[str]: a__ =ort.SessionOptions() a__ =False return options def __UpperCamelCase ( self) -> Any: a__ =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png') a__ =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png') a__ =OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , safety_checker=lowercase_ , feature_extractor=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_) a__ ='A red cat sitting on a park bench' a__ =np.random.RandomState(0) a__ =pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase_ , output_type='np' , ) a__ =output.images a__ =images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) a__ =np.array([0.25_14, 0.30_07, 0.35_17, 0.17_90, 0.23_82, 0.31_67, 0.19_44, 0.22_73, 0.24_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def __UpperCamelCase ( self) -> List[str]: a__ =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png') a__ =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png') a__ =LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting' , subfolder='scheduler' , revision='onnx') a__ =OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , scheduler=lowercase_ , safety_checker=lowercase_ , feature_extractor=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_) a__ ='A red cat sitting on a park bench' a__ =np.random.RandomState(0) a__ =pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase_ , output_type='np' , ) a__ =output.images a__ =images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) a__ =np.array([0.00_86, 0.00_77, 0.00_83, 0.00_93, 0.01_07, 0.01_39, 0.00_94, 0.00_97, 0.01_25]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
20
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ): lowerCAmelCase = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 48 lowerCAmelCase = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 60 lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCAmelCase = 1 lowerCAmelCase = 1 lowerCAmelCase = 126 lowerCAmelCase = 7 lowerCAmelCase = 255.0 lowerCAmelCase = '' return config def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): if "patch_embed.proj" in name and "layers" not in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCAmelCase = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: lowerCAmelCase = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: lowerCAmelCase = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: lowerCAmelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCAmelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCAmelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCAmelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: lowerCAmelCase = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: lowerCAmelCase = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: lowerCAmelCase = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: lowerCAmelCase = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": lowerCAmelCase = 'layernorm.weight' if name == "norm.bias": lowerCAmelCase = 'layernorm.bias' if "conv_first" in name: lowerCAmelCase = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCAmelCase = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCAmelCase = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: lowerCAmelCase = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: lowerCAmelCase = name.replace('upsample.2' , 'upsample.convolution_1' ) lowerCAmelCase = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": lowerCAmelCase = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) lowerCAmelCase = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: lowerCAmelCase = 'swin2sr.' + name return name def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict ): for key in orig_state_dict.copy().keys(): lowerCAmelCase = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: lowerCAmelCase = key.split('.' ) lowerCAmelCase = int(key_split[1] ) lowerCAmelCase = int(key_split[4] ) lowerCAmelCase = config.embed_dim if "weight" in key: lowerCAmelCase = val[:dim, :] lowerCAmelCase = val[dim : dim * 2, :] lowerCAmelCase = val[-dim:, :] else: lowerCAmelCase = val[:dim] lowerCAmelCase = val[dim : dim * 2] lowerCAmelCase = val[-dim:] pass else: lowerCAmelCase = val return orig_state_dict def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ): lowerCAmelCase = get_config(_UpperCAmelCase ) lowerCAmelCase = SwinaSRForImageSuperResolution(_UpperCAmelCase ) model.eval() lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' ) lowerCAmelCase = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_UpperCAmelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowerCAmelCase = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) lowerCAmelCase = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCAmelCase = 126 if 'Jpeg' in checkpoint_url else 256 lowerCAmelCase = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowerCAmelCase = transforms(_UpperCAmelCase ).unsqueeze(0 ) if config.num_channels == 1: lowerCAmelCase = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCAmelCase = model(_UpperCAmelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-3 ) print('Looks ok!' ) lowerCAmelCase = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } lowerCAmelCase = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') __UpperCamelCase : Optional[int] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
0