code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __a: Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ["pixel_values"] def __init__( self , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = 1 / 255 , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , **__lowerCAmelCase , ) -> str: super().__init__(**_snake_case ) lowercase__ : List[str] = size if size is not None else {'''shortest_edge''': 224} lowercase__ : Optional[Any] = get_size_dict(_snake_case , default_to_square=_snake_case ) lowercase__ : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase__ : str = get_size_dict(_snake_case , default_to_square=_snake_case , param_name='''crop_size''' ) lowercase__ : List[Any] = do_resize lowercase__ : Any = size lowercase__ : Tuple = resample lowercase__ : Dict = do_center_crop lowercase__ : Optional[Any] = crop_size lowercase__ : List[Any] = do_rescale lowercase__ : Tuple = rescale_factor lowercase__ : List[Any] = do_normalize lowercase__ : str = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase__ : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD lowercase__ : Dict = do_convert_rgb def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> int: lowercase__ : Dict = get_size_dict(_snake_case , default_to_square=_snake_case ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) lowercase__ : Tuple = get_resize_output_image_size(_snake_case , size=size['''shortest_edge'''] , default_to_square=_snake_case ) return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> Dict: lowercase__ : str = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_snake_case , size=(size['''height'''], size['''width''']) , data_format=_snake_case , **_snake_case ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> int: return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> Dict: return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = ChannelDimension.FIRST , **__lowerCAmelCase , ) -> Any: lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize lowercase__ : Any = size if size is not None else self.size lowercase__ : int = get_size_dict(_snake_case , param_name='''size''' , default_to_square=_snake_case ) lowercase__ : List[Any] = resample if resample is not None else self.resample lowercase__ : str = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Any = crop_size if crop_size is not None else self.crop_size lowercase__ : List[Any] = get_size_dict(_snake_case , param_name='''crop_size''' , default_to_square=_snake_case ) lowercase__ : str = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : str = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Any = image_mean if image_mean is not None else self.image_mean lowercase__ : Any = image_std if image_std is not None else self.image_std lowercase__ : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase__ : str = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase__ : Optional[Any] = [convert_to_rgb(_snake_case ) for image in images] # All transformations expect numpy arrays. lowercase__ : List[str] = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowercase__ : Optional[int] = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) for image in images] if do_center_crop: lowercase__ : Optional[int] = [self.center_crop(image=_snake_case , size=_snake_case ) for image in images] if do_rescale: lowercase__ : Optional[Any] = [self.rescale(image=_snake_case , scale=_snake_case ) for image in images] if do_normalize: lowercase__ : Dict = [self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case ) for image in images] lowercase__ : Any = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] lowercase__ : Union[str, Any] = {'''pixel_values''': images} return BatchFeature(data=_snake_case , tensor_type=_snake_case )
152
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __UpperCamelCase : Optional[int] = pytest.mark.integration @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_snake_case ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() lowerCAmelCase = dset.map( lambda _snake_case , _snake_case : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_snake_case , keep_in_memory=_snake_case ) lowerCAmelCase = dset.add_faiss_index('vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_snake_case , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch lowerCAmelCase = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCAmelCase = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_snake_case ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertRaises(_snake_case , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCAmelCase = np.eye(5 , dtype=np.floataa )[::-1] lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) self.assertRaises(_snake_case , index.search_batch , queries[0] ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCAmelCase = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_snake_case ): lowerCAmelCase = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = faiss.IndexFlat(5 ) lowerCAmelCase = FaissIndex(custom_index=_snake_case ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: index.save(tmp_file.name ) lowerCAmelCase = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ): import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCAmelCase = 'index.faiss' lowerCAmelCase = F'mock://{index_name}' index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = Elasticsearch() lowerCAmelCase = {'acknowledged': True} lowerCAmelCase = ElasticSearchIndex(es_client=_snake_case ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case ) # batched queries with timeout lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case , request_timeout=30 ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case )
4
0
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def A_ ( snake_case_ : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(_UpperCAmelCase ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A_ ( ): '''simple docstring''' UpperCamelCase : int = 2 while True: if is_prime(_UpperCAmelCase ): yield num num += 1 def A_ ( snake_case_ : int = 2_0_0_0_0_0_0 ): '''simple docstring''' return sum(takewhile(lambda snake_case_ : x < n ,prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
499
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a ( a__ , a__ , unittest.TestCase ): snake_case__ = IFInpaintingPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_dummy_components() def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
4
0
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __UpperCAmelCase = [ '''cross_validation.py''', '''gradient_accumulation.py''', '''local_sgd.py''', '''multi_process_metrics.py''', '''memory.py''', '''automatic_gradient_accumulation.py''', '''fsdp_with_peak_mem_tracking.py''', '''deepspeed_with_config_support.py''', '''megatron_lm_gpt_pretraining.py''', ] class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[Any] = None ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = None __lowerCAmelCase : int = os.path.abspath(os.path.join("""examples""" , """by_feature""" ) ) __lowerCAmelCase : str = os.path.abspath("""examples""" ) for item in os.listdir(_snake_case ): if item not in EXCLUDE_EXAMPLES: __lowerCAmelCase : Dict = os.path.join(_snake_case , _snake_case ) if os.path.isfile(_snake_case ) and ".py" in item_path: with self.subTest( tested_script=_snake_case , feature_script=_snake_case , tested_section="""main()""" if parser_only else """training_function()""" , ): __lowerCAmelCase : List[Any] = compare_against_test( os.path.join(_snake_case , _snake_case ) , _snake_case , _snake_case , _snake_case ) __lowerCAmelCase : List[str] = """\n""".join(_snake_case ) if special_strings is not None: for string in special_strings: __lowerCAmelCase : List[Any] = diff.replace(_snake_case , """""" ) self.assertEqual(_snake_case , """""" ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: """simple docstring""" self.one_complete_example("""complete_nlp_example.py""" , _snake_case ) self.one_complete_example("""complete_nlp_example.py""" , _snake_case ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Tuple = os.path.abspath(os.path.join("""examples""" , """cv_example.py""" ) ) __lowerCAmelCase : Union[str, Any] = [ """ """ * 16 + """{\n\n""", """ """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""", """ """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""", """ """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""", """ """ * 20 + """\"epoch\": epoch,\n\n""", """ """ * 16 + """},\n\n""", """ """ * 16 + """step=epoch,\n""", """ """ * 12, """ """ * 8 + """for step, batch in enumerate(active_dataloader):\n""", ] self.one_complete_example("""complete_cv_example.py""" , _snake_case , _snake_case , _snake_case ) self.one_complete_example("""complete_cv_example.py""" , _snake_case , _snake_case , _snake_case ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class SCREAMING_SNAKE_CASE ( a__ ): """simple docstring""" lowerCamelCase : Optional[int] =False @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] ) -> Optional[int]: """simple docstring""" super().setUpClass() __lowerCAmelCase : int = tempfile.mkdtemp() __lowerCAmelCase : str = os.path.join(cls._tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) __lowerCAmelCase : str = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def SCREAMING_SNAKE_CASE ( cls : Dict ) -> Union[str, Any]: """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[Any] = f'''\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0""" ) ) ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: """simple docstring""" __lowerCAmelCase : Optional[int] = f'''\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '''.split() __lowerCAmelCase : Any = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2""" ) ) ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = f'''\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n '''.split() __lowerCAmelCase : Optional[int] = run_command(self._launch_args + testargs , return_stdout=_snake_case ) self.assertNotIn("""epoch 0:""" , _snake_case ) self.assertIn("""epoch 1:""" , _snake_case ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: """simple docstring""" __lowerCAmelCase : Optional[Any] = f'''\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n '''.split() __lowerCAmelCase : int = run_command(self._launch_args + testargs , return_stdout=_snake_case ) if torch.cuda.is_available(): __lowerCAmelCase : Union[str, Any] = torch.cuda.device_count() else: __lowerCAmelCase : int = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""" , _snake_case ) self.assertIn("""epoch 1:""" , _snake_case ) else: self.assertIn("""epoch 0:""" , _snake_case ) self.assertIn("""epoch 1:""" , _snake_case ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: """simple docstring""" __lowerCAmelCase : List[Any] = """\n examples/by_feature/cross_validation.py\n --num_folds 2\n """.split() with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""} ): __lowerCAmelCase : int = run_command(self._launch_args + testargs , return_stdout=_snake_case ) __lowerCAmelCase : Tuple = re.findall("""({.+})""" , _snake_case ) __lowerCAmelCase : Optional[int] = [r for r in results if """accuracy""" in r][-1] __lowerCAmelCase : Optional[Any] = ast.literal_eval(_snake_case ) self.assertGreaterEqual(results["""accuracy"""] , 0.75 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: """simple docstring""" __lowerCAmelCase : List[Any] = ["""examples/by_feature/multi_process_metrics.py"""] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: __lowerCAmelCase : Dict = f'''\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(_snake_case , """tracking""" ) ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: """simple docstring""" __lowerCAmelCase : List[str] = ["""examples/by_feature/gradient_accumulation.py"""] run_command(self._launch_args + testargs ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = ["""examples/by_feature/local_sgd.py"""] run_command(self._launch_args + testargs )
651
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = self.vocab_size - 1 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , head_mask=_snake_case ) lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTLMHeadModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTDoubleHeadsModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = OpenAIGPTForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case__ = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=False ): """simple docstring""" lowerCAmelCase = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_snake_case , ) lowerCAmelCase = inputs_dict['labels'] lowerCAmelCase = inputs_dict['labels'] lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_snake_case , ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_snake_case ) return inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenAIGPTModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , n_embd=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = OpenAIGPTModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_torch class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(_snake_case ) lowerCAmelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=_snake_case ) # the president is lowerCAmelCase = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCAmelCase = model.generate(_snake_case , do_sample=_snake_case ) self.assertListEqual(output_ids[0].tolist() , _snake_case )
4
0
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( a__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = DanceDiffusionPipeline __SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - { 'callback', 'latents', 'callback_steps', 'output_type', 'num_images_per_prompt', } __SCREAMING_SNAKE_CASE : int = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : List[Any] = False def UpperCAmelCase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16_000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_snake_case , use_timestep_embedding=_snake_case , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , ) lowercase_ = IPNDMScheduler() lowercase_ = { """unet""": unet, """scheduler""": scheduler, } return components def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int]=0 ): '''simple docstring''' if str(_snake_case ).startswith("""mps""" ): lowercase_ = torch.manual_seed(_snake_case ) else: lowercase_ = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase_ = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.get_dummy_components() lowercase_ = DanceDiffusionPipeline(**_snake_case ) lowercase_ = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase_ = self.get_dummy_inputs(_snake_case ) lowercase_ = pipe(**_snake_case ) lowercase_ = output.audios lowercase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowercase_ = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def UpperCAmelCase__ ( self : str ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = torch_device lowercase_ = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) lowercase_ = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe(generator=_snake_case , num_inference_steps=100 , audio_length_in_s=4.096 ) lowercase_ = output.audios lowercase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowercase_ = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = torch_device lowercase_ = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa ) lowercase_ = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe(generator=_snake_case , num_inference_steps=100 , audio_length_in_s=4.096 ) lowercase_ = output.audios lowercase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowercase_ = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
412
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __UpperCamelCase : str = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=_UpperCAmelCase , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=_UpperCAmelCase , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=_UpperCAmelCase , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=_UpperCAmelCase , default='data/dump' , help='The dump file prefix.' ) lowerCAmelCase = parser.parse_args() logger.info(F'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": lowerCAmelCase = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `[CLS]` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCAmelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `<s>` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": lowerCAmelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` lowerCAmelCase = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(F'Loading text from {args.file_path}' ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: lowerCAmelCase = fp.readlines() logger.info('Start encoding' ) logger.info(F'{len(_UpperCAmelCase )} examples to process.' ) lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 1_0000 lowerCAmelCase = time.time() for text in data: lowerCAmelCase = F'{bos} {text.strip()} {sep}' lowerCAmelCase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) rslt.append(_UpperCAmelCase ) iter += 1 if iter % interval == 0: lowerCAmelCase = time.time() logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) lowerCAmelCase = time.time() logger.info('Finished binarization' ) logger.info(F'{len(_UpperCAmelCase )} examples processed.' ) lowerCAmelCase = F'{args.dump_file}.{args.tokenizer_name}.pickle' lowerCAmelCase = tokenizer.vocab_size if vocab_size < (1 << 16): lowerCAmelCase = [np.uintaa(_UpperCAmelCase ) for d in rslt] else: lowerCAmelCase = [np.intaa(_UpperCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'Dump to {dp_file}' ) with open(_UpperCAmelCase , 'wb' ) as handle: pickle.dump(rslt_ , _UpperCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
4
0
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a ( unittest.TestCase ): """simple docstring""" @property def UpperCAmelCase ( self : Tuple ) -> str: torch.manual_seed(0 ) __UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def UpperCAmelCase ( self : Union[str, Any] ) -> str: __UpperCAmelCase : str = self.dummy_uncond_unet __UpperCAmelCase : int = ScoreSdeVeScheduler() __UpperCAmelCase : List[Any] = ScoreSdeVePipeline(unet=_snake_case , scheduler=_snake_case ) sde_ve.to(_snake_case ) sde_ve.set_progress_bar_config(disable=_snake_case ) __UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) __UpperCAmelCase : Tuple = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=_snake_case ).images __UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) __UpperCAmelCase : List[str] = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=_snake_case , return_dict=_snake_case )[ 0 ] __UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] __UpperCAmelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCAmelCase : Optional[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase : int = """google/ncsnpp-church-256""" __UpperCAmelCase : List[Any] = UNetaDModel.from_pretrained(_snake_case ) __UpperCAmelCase : str = ScoreSdeVeScheduler.from_pretrained(_snake_case ) __UpperCAmelCase : Optional[Any] = ScoreSdeVePipeline(unet=_snake_case , scheduler=_snake_case ) sde_ve.to(_snake_case ) sde_ve.set_progress_bar_config(disable=_snake_case ) __UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = sde_ve(num_inference_steps=10 , output_type="""numpy""" , generator=_snake_case ).images __UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __UpperCAmelCase : Union[str, Any] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
63
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''bert''' def __init__( self , _snake_case=3_05_22 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache lowerCAmelCase = classifier_dropout class a ( a__ ): @property def UpperCamelCase__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
4
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase_ = logging.get_logger(__name__) lowercase_ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowercase_ = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } lowercase_ = {'''facebook/blenderbot-3B''': 128} class __UpperCamelCase ( a__ ): """simple docstring""" lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase_ = BlenderbotTokenizer def __init__( self : List[str] , _A : Optional[Any]=None , _A : Optional[Any]=None , _A : Optional[int]=None , _A : Tuple="replace" , _A : Tuple="<s>" , _A : Dict="</s>" , _A : Tuple="</s>" , _A : List[Any]="<s>" , _A : Optional[int]="<unk>" , _A : List[str]="<pad>" , _A : Dict="<mask>" , _A : Optional[Any]=False , _A : Optional[int]=True , **_A : Optional[int] , ): """simple docstring""" super().__init__( _snake_case , _snake_case , tokenizer_file=_snake_case , errors=_snake_case , bos_token=_snake_case , eos_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , unk_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case , **_snake_case , ) __SCREAMING_SNAKE_CASE : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _snake_case ) != add_prefix_space: __SCREAMING_SNAKE_CASE : int = getattr(_snake_case , pre_tok_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space __SCREAMING_SNAKE_CASE : int = pre_tok_class(**_snake_case ) __SCREAMING_SNAKE_CASE : Dict = add_prefix_space __SCREAMING_SNAKE_CASE : Tuple = '''post_processor''' __SCREAMING_SNAKE_CASE : Tuple = getattr(self.backend_tokenizer , _snake_case , _snake_case ) if tokenizer_component_instance: __SCREAMING_SNAKE_CASE : List[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __SCREAMING_SNAKE_CASE : str = tuple(state['''sep'''] ) if "cls" in state: __SCREAMING_SNAKE_CASE : int = tuple(state['''cls'''] ) __SCREAMING_SNAKE_CASE : Dict = False if state.get('''add_prefix_space''' , _snake_case ) != add_prefix_space: __SCREAMING_SNAKE_CASE : int = add_prefix_space __SCREAMING_SNAKE_CASE : Optional[Any] = True if state.get('''trim_offsets''' , _snake_case ) != trim_offsets: __SCREAMING_SNAKE_CASE : List[str] = trim_offsets __SCREAMING_SNAKE_CASE : Dict = True if changes_to_apply: __SCREAMING_SNAKE_CASE : List[Any] = getattr(_snake_case , state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : List[str] = component_class(**_snake_case ) setattr(self.backend_tokenizer , _snake_case , _snake_case ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase__ ( self : List[str] , _A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else value __SCREAMING_SNAKE_CASE : Tuple = value def UpperCAmelCase__ ( self : str , *_A : int , **_A : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = kwargs.get('''is_split_into_words''' , _snake_case ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_snake_case , **_snake_case ) def UpperCAmelCase__ ( self : Union[str, Any] , *_A : str , **_A : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = kwargs.get('''is_split_into_words''' , _snake_case ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_snake_case , **_snake_case ) def UpperCAmelCase__ ( self : Union[str, Any] , _A : str , _A : List[Any] = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case ) def UpperCAmelCase__ ( self : List[Any] , _A : Tuple , _A : List[str] = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self : str , _A : Union[str, Any] , _A : str = None ): """simple docstring""" return token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self : Dict , _A : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(_snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = ''' '''.join(_snake_case ) __SCREAMING_SNAKE_CASE : Dict = self.encode(_snake_case ) if len(_snake_case ) > self.model_max_length: __SCREAMING_SNAKE_CASE : List[Any] = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
74
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( a__ , unittest.TestCase ): snake_case__ = DanceDiffusionPipeline snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_snake_case , use_timestep_embedding=_snake_case , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase = IPNDMScheduler() lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = DanceDiffusionPipeline(**_snake_case ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = pipe(**_snake_case ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_local() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
4
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : List[str] = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) UpperCAmelCase : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _SCREAMING_SNAKE_CASE ( a ) -> int: for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: __A : str = model_type_to_module_name(_UpperCAmelCase ) __A : Dict = importlib.import_module(F""".{module_name}""" , 'transformers.models' ) try: return getattr(_UpperCAmelCase , _UpperCAmelCase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(_UpperCAmelCase , '__name__' , _UpperCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __A : List[Any] = importlib.import_module('transformers' ) if hasattr(_UpperCAmelCase , _UpperCAmelCase ): return getattr(_UpperCAmelCase , _UpperCAmelCase ) return None def _SCREAMING_SNAKE_CASE ( a , a = None , a = False , a = False , a = None , a = None , a = None , a = False , **a , ) -> Any: __A : Optional[int] = get_file_from_repo( _UpperCAmelCase , _UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , resume_download=_UpperCAmelCase , proxies=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , local_files_only=_UpperCAmelCase , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(_UpperCAmelCase , encoding='utf-8' ) as reader: return json.load(_UpperCAmelCase ) class _A: """simple docstring""" def __init__( self ): raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(_snake_case ) def UpperCAmelCase_ ( cls , _A , **_A ): __A : Tuple = kwargs.pop('config' , _snake_case ) __A : Tuple = kwargs.pop('trust_remote_code' , _snake_case ) __A : str = True __A , __A : Optional[Any] = ImageProcessingMixin.get_image_processor_dict(_snake_case , **_snake_case ) __A : Optional[int] = config_dict.get('image_processor_type' , _snake_case ) __A : Union[str, Any] = None if "AutoImageProcessor" in config_dict.get('auto_map' , {} ): __A : Dict = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: __A : Optional[int] = config_dict.pop('feature_extractor_type' , _snake_case ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) __A : List[str] = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): __A : Tuple = config_dict['auto_map']['AutoFeatureExtractor'] __A : Any = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_snake_case , _snake_case ): __A : Union[str, Any] = AutoConfig.from_pretrained(_snake_case , **_snake_case ) # It could be in `config.image_processor_type`` __A : Dict = getattr(_snake_case , 'image_processor_type' , _snake_case ) if hasattr(_snake_case , 'auto_map' ) and "AutoImageProcessor" in config.auto_map: __A : int = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: __A : List[str] = image_processor_class_from_name(_snake_case ) __A : Optional[int] = image_processor_auto_map is not None __A : Any = image_processor_class is not None or type(_snake_case ) in IMAGE_PROCESSOR_MAPPING __A : str = resolve_trust_remote_code( _snake_case , _snake_case , _snake_case , _snake_case ) if has_remote_code and trust_remote_code: __A : Any = get_class_from_dynamic_module( _snake_case , _snake_case , **_snake_case ) __A : Union[str, Any] = kwargs.pop('code_revision' , _snake_case ) if os.path.isdir(_snake_case ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_snake_case , **_snake_case ) elif image_processor_class is not None: return image_processor_class.from_dict(_snake_case , **_snake_case ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_snake_case ) in IMAGE_PROCESSOR_MAPPING: __A : Dict = IMAGE_PROCESSOR_MAPPING[type(_snake_case )] return image_processor_class.from_dict(_snake_case , **_snake_case ) raise ValueError( F"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ F"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def UpperCAmelCase_ ( _A , _A ): IMAGE_PROCESSOR_MAPPING.register(_snake_case , _snake_case )
239
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , use_stable_embedding=_snake_case , ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = OpenLlamaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = OpenLlamaModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , ) lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() # first forward pass lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , use_cache=_snake_case , ) lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , past_key_values=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) snake_case__ = (OpenLlamaForCausalLM,) if is_torch_available() else () snake_case__ = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenLlamaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase = type self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'single_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'multi_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = OpenLlamaModel(_snake_case ) original_model.to(_snake_case ) original_model.eval() lowerCAmelCase = original_model(_snake_case ).last_hidden_state lowerCAmelCase = original_model(_snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = {'type': scaling_type, 'factor': 10.0} lowerCAmelCase = OpenLlamaModel(_snake_case ) scaled_model.to(_snake_case ) scaled_model.eval() lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
4
0
'''simple docstring''' class __a : def __init__( self : Optional[int] ,lowerCamelCase : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = [0] * size __SCREAMING_SNAKE_CASE = [0] * size @staticmethod def UpperCAmelCase__ ( lowerCamelCase : Dict ): '''simple docstring''' return index | (index + 1) @staticmethod def UpperCAmelCase__ ( lowerCamelCase : Union[str, Any] ): '''simple docstring''' return (index & (index + 1)) - 1 def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = value while index < self.size: __SCREAMING_SNAKE_CASE = self.get_prev(_snake_case ) + 1 if current_left_border == index: __SCREAMING_SNAKE_CASE = value else: __SCREAMING_SNAKE_CASE = max(_snake_case ,_snake_case ,_snake_case ) __SCREAMING_SNAKE_CASE = self.get_next(_snake_case ) def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ): '''simple docstring''' right -= 1 # Because of right is exclusive __SCREAMING_SNAKE_CASE = 0 while left <= right: __SCREAMING_SNAKE_CASE = self.get_prev(_snake_case ) if left <= current_left: __SCREAMING_SNAKE_CASE = max(_snake_case ,self.tree[right] ) __SCREAMING_SNAKE_CASE = current_left else: __SCREAMING_SNAKE_CASE = max(_snake_case ,self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
109
"""simple docstring""" from typing import Any class a : def __init__( self , _snake_case ): """simple docstring""" lowerCAmelCase = data lowerCAmelCase = None def __repr__( self ): """simple docstring""" return F'Node({self.data})' class a : def __init__( self ): """simple docstring""" lowerCAmelCase = None def __iter__( self ): """simple docstring""" lowerCAmelCase = self.head while node: yield node.data lowerCAmelCase = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(_snake_case ) for item in self] ) def __getitem__( self , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase = self.head for _ in range(_snake_case ): lowerCAmelCase = current.next lowerCAmelCase = data def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(len(self ) , _snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(0 , _snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase = Node(_snake_case ) if self.head is None: lowerCAmelCase = new_node elif index == 0: lowerCAmelCase = self.head # link new_node to head lowerCAmelCase = new_node else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = new_node def UpperCamelCase__ ( self ): # print every node data """simple docstring""" print(self ) def UpperCamelCase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def UpperCamelCase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def UpperCamelCase__ ( self , _snake_case = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase = self.head # default first node if index == 0: lowerCAmelCase = self.head.next else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = temp.next.next return delete_node.data def UpperCamelCase__ ( self ): """simple docstring""" return self.head is None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = None lowerCAmelCase = self.head while current: # Store the current node's next node. lowerCAmelCase = current.next # Make the current node's next point backwards lowerCAmelCase = prev # Make the previous node be the current node lowerCAmelCase = current # Make the current node the next node (to progress iteration) lowerCAmelCase = next_node # Return prev in order to put the head at the end lowerCAmelCase = prev def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = LinkedList() assert linked_list.is_empty() is True assert str(_UpperCAmelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_UpperCAmelCase ) == i linked_list.insert_nth(_UpperCAmelCase , i + 1 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_UpperCAmelCase ) == 9 assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(-8 , 1 ) ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = [ -9, 100, Node(7734_5112 ), 'dlrow olleH', 7, 5555, 0, -192.5_5555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase = LinkedList() for i in test_input: linked_list.insert_tail(_UpperCAmelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase = linked_list.delete_head() assert result == -9 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_UpperCAmelCase ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_UpperCAmelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _SCREAMING_SNAKE_CASE (): from doctest import testmod testmod() lowerCAmelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_UpperCAmelCase ) print('\nReading/changing Node data using indexing:' ) print(F'Element at Position 1: {linked_list[1]}' ) lowerCAmelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_UpperCAmelCase ) print(F'length of linked_list is : {len(_UpperCAmelCase )}' ) if __name__ == "__main__": main()
4
0
def __lowercase( UpperCAmelCase__ ): """simple docstring""" if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __lowercase( UpperCAmelCase__ ): """simple docstring""" if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
623
"""simple docstring""" from __future__ import annotations import requests def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(_UpperCAmelCase ).json() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' lowerCAmelCase = requests.get(_UpperCAmelCase ).json()[:max_stories] return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = hackernews_top_stories(_UpperCAmelCase ) return "\n".join('* [{title}]({url})'.format(**_UpperCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
0
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCamelCase :Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase :Tuple = ''' Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)["depth"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline("depth-estimation") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to("cuda") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> img = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/cat.png" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda") >>> prompt = "A robot, 4k photo" >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature" >>> generator = torch.Generator(device="cuda").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save("robot_cat.png") ``` ''' def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=8 ): '''simple docstring''' A_ : Optional[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 A_ : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class _lowerCAmelCase ( a__ ): def __init__(self , lowercase , lowercase , lowercase , ): super().__init__() self.register_modules( unet=_snake_case , scheduler=_snake_case , movq=_snake_case , ) A_ : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): if latents is None: A_ : int = randn_tensor(_snake_case , generator=_snake_case , device=_snake_case , dtype=_snake_case ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) A_ : List[str] = latents.to(_snake_case ) A_ : Tuple = latents * scheduler.init_noise_sigma return latents def _a (self , lowercase=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) A_ : Union[str, Any] = torch.device(F'cuda:{gpu_id}' ) A_ : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_snake_case , _snake_case ) def _a (self , lowercase=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) A_ : Dict = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=_snake_case ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) A_ : Optional[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: A_, A_ : str = cpu_offload_with_hook(_snake_case , _snake_case , prev_module_hook=_snake_case ) # We'll offload the last model manually. A_ : int = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _a (self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(_snake_case , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_snake_case ) def __call__(self , lowercase , lowercase , lowercase , lowercase = 512 , lowercase = 512 , lowercase = 100 , lowercase = 4.0 , lowercase = 1 , lowercase = None , lowercase = None , lowercase = "pil" , lowercase = True , ): A_ : Tuple = self._execution_device A_ : List[str] = guidance_scale > 1.0 if isinstance(_snake_case , _snake_case ): A_ : Optional[int] = torch.cat(_snake_case , dim=0 ) if isinstance(_snake_case , _snake_case ): A_ : int = torch.cat(_snake_case , dim=0 ) if isinstance(_snake_case , _snake_case ): A_ : List[str] = torch.cat(_snake_case , dim=0 ) A_ : Optional[Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: A_ : Optional[int] = image_embeds.repeat_interleave(_snake_case , dim=0 ) A_ : str = negative_image_embeds.repeat_interleave(_snake_case , dim=0 ) A_ : Tuple = hint.repeat_interleave(_snake_case , dim=0 ) A_ : Any = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_snake_case ) A_ : List[Any] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=_snake_case ) self.scheduler.set_timesteps(_snake_case , device=_snake_case ) A_ : int = self.scheduler.timesteps A_ : str = self.movq.config.latent_channels A_, A_ : Any = downscale_height_and_width(_snake_case , _snake_case , self.movq_scale_factor ) # create initial latent A_ : Tuple = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _snake_case , _snake_case , _snake_case , self.scheduler , ) for i, t in enumerate(self.progress_bar(_snake_case ) ): # expand the latents if we are doing classifier free guidance A_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : Any = {"""image_embeds""": image_embeds, """hint""": hint} A_ : int = self.unet( sample=_snake_case , timestep=_snake_case , encoder_hidden_states=_snake_case , added_cond_kwargs=_snake_case , return_dict=_snake_case , )[0] if do_classifier_free_guidance: A_, A_ : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) A_, A_ : str = noise_pred.chunk(2 ) A_, A_ : Optional[int] = variance_pred.chunk(2 ) A_ : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) A_ : Any = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): A_, A_ : Any = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 A_ : Union[str, Any] = self.scheduler.step( _snake_case , _snake_case , _snake_case , generator=_snake_case , )[0] # post-processing A_ : Tuple = self.movq.decode(_snake_case , force_not_quantize=_snake_case )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: A_ : int = image * 0.5 + 0.5 A_ : Dict = image.clamp(0 , 1 ) A_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A_ : Dict = self.numpy_to_pil(_snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=_snake_case )
667
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ): lowerCAmelCase = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 48 lowerCAmelCase = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 60 lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCAmelCase = 1 lowerCAmelCase = 1 lowerCAmelCase = 126 lowerCAmelCase = 7 lowerCAmelCase = 255.0 lowerCAmelCase = '' return config def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): if "patch_embed.proj" in name and "layers" not in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCAmelCase = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: lowerCAmelCase = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: lowerCAmelCase = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: lowerCAmelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCAmelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCAmelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCAmelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: lowerCAmelCase = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: lowerCAmelCase = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: lowerCAmelCase = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: lowerCAmelCase = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": lowerCAmelCase = 'layernorm.weight' if name == "norm.bias": lowerCAmelCase = 'layernorm.bias' if "conv_first" in name: lowerCAmelCase = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCAmelCase = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCAmelCase = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: lowerCAmelCase = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: lowerCAmelCase = name.replace('upsample.2' , 'upsample.convolution_1' ) lowerCAmelCase = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": lowerCAmelCase = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) lowerCAmelCase = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: lowerCAmelCase = 'swin2sr.' + name return name def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict ): for key in orig_state_dict.copy().keys(): lowerCAmelCase = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: lowerCAmelCase = key.split('.' ) lowerCAmelCase = int(key_split[1] ) lowerCAmelCase = int(key_split[4] ) lowerCAmelCase = config.embed_dim if "weight" in key: lowerCAmelCase = val[:dim, :] lowerCAmelCase = val[dim : dim * 2, :] lowerCAmelCase = val[-dim:, :] else: lowerCAmelCase = val[:dim] lowerCAmelCase = val[dim : dim * 2] lowerCAmelCase = val[-dim:] pass else: lowerCAmelCase = val return orig_state_dict def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ): lowerCAmelCase = get_config(_UpperCAmelCase ) lowerCAmelCase = SwinaSRForImageSuperResolution(_UpperCAmelCase ) model.eval() lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' ) lowerCAmelCase = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_UpperCAmelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowerCAmelCase = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) lowerCAmelCase = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCAmelCase = 126 if 'Jpeg' in checkpoint_url else 256 lowerCAmelCase = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowerCAmelCase = transforms(_UpperCAmelCase ).unsqueeze(0 ) if config.num_channels == 1: lowerCAmelCase = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCAmelCase = model(_UpperCAmelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-3 ) print('Looks ok!' ) lowerCAmelCase = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } lowerCAmelCase = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') __UpperCamelCase : Optional[int] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class A__ ( metaclass=a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['flax', 'transformers'] def __init__( self: int , *_SCREAMING_SNAKE_CASE: Optional[int] , **_SCREAMING_SNAKE_CASE: Union[str, Any]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["flax", "transformers"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: List[Any] , *_SCREAMING_SNAKE_CASE: str , **_SCREAMING_SNAKE_CASE: Optional[int]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["flax", "transformers"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Tuple , *_SCREAMING_SNAKE_CASE: Optional[int] , **_SCREAMING_SNAKE_CASE: int) -> int: """simple docstring""" requires_backends(cls , ["flax", "transformers"]) class A__ ( metaclass=a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['flax', 'transformers'] def __init__( self: List[Any] , *_SCREAMING_SNAKE_CASE: Union[str, Any] , **_SCREAMING_SNAKE_CASE: Dict) -> int: """simple docstring""" requires_backends(self , ["flax", "transformers"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Union[str, Any] , *_SCREAMING_SNAKE_CASE: Any , **_SCREAMING_SNAKE_CASE: Any) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["flax", "transformers"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Tuple , *_SCREAMING_SNAKE_CASE: Optional[int] , **_SCREAMING_SNAKE_CASE: Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["flax", "transformers"]) class A__ ( metaclass=a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['flax', 'transformers'] def __init__( self: Optional[int] , *_SCREAMING_SNAKE_CASE: Dict , **_SCREAMING_SNAKE_CASE: Any) -> str: """simple docstring""" requires_backends(self , ["flax", "transformers"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: int , *_SCREAMING_SNAKE_CASE: Optional[int] , **_SCREAMING_SNAKE_CASE: Any) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["flax", "transformers"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: int , *_SCREAMING_SNAKE_CASE: Dict , **_SCREAMING_SNAKE_CASE: Union[str, Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["flax", "transformers"]) class A__ ( metaclass=a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['flax', 'transformers'] def __init__( self: Any , *_SCREAMING_SNAKE_CASE: List[str] , **_SCREAMING_SNAKE_CASE: List[Any]) -> List[str]: """simple docstring""" requires_backends(self , ["flax", "transformers"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Optional[Any] , *_SCREAMING_SNAKE_CASE: str , **_SCREAMING_SNAKE_CASE: Tuple) -> int: """simple docstring""" requires_backends(cls , ["flax", "transformers"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Tuple , *_SCREAMING_SNAKE_CASE: Any , **_SCREAMING_SNAKE_CASE: Any) -> Dict: """simple docstring""" requires_backends(cls , ["flax", "transformers"])
293
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''megatron-bert''' def __init__( self , _snake_case=2_90_56 , _snake_case=10_24 , _snake_case=24 , _snake_case=16 , _snake_case=40_96 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache
4
0
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = 3.0 class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> List[Any]: self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_snake_case ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.2_5 ).to_kwargs() , {'''a''': 2, '''c''': 2.2_5} ) @require_cuda def _lowerCAmelCase( self ) -> Dict: lowercase__ : Any = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() lowercase__ : Dict = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) lowercase__ : str = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , _snake_case ) @require_multi_gpu def _lowerCAmelCase( self ) -> List[str]: lowercase__ : str = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_snake_case , env=os.environ.copy() ) if __name__ == "__main__": __a: List[str] = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) __a: Optional[Any] = Accelerator(kwargs_handlers=[ddp_scaler]) __a: Dict = torch.nn.Linear(1_00, 2_00) __a: Optional[Any] = accelerator.prepare(model) # Check the values changed in kwargs __a: Dict = '''''' __a: Tuple = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
152
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
4
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class lowerCamelCase ( unittest.TestCase ): def a_ ( self ): UpperCamelCase : Optional[int] = [[1, 2, 4], [1, 2, 3, 4]] UpperCamelCase : int = DisjunctiveConstraint(_snake_case ) self.assertTrue(isinstance(dc.token_ids , _snake_case ) ) with self.assertRaises(_snake_case ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_snake_case ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def a_ ( self ): UpperCamelCase : Optional[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_snake_case ): DisjunctiveConstraint(_snake_case ) # fails here def a_ ( self ): UpperCamelCase : Optional[int] = [[1, 2, 3], [1, 2, 4]] UpperCamelCase : Optional[int] = DisjunctiveConstraint(_snake_case ) UpperCamelCase , UpperCamelCase , UpperCamelCase : Union[str, Any] = dc.update(1 ) UpperCamelCase : Union[str, Any] = stepped is True and completed is False and reset is False self.assertTrue(_snake_case ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = dc.update(2 ) UpperCamelCase : Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(_snake_case ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCamelCase , UpperCamelCase , UpperCamelCase : List[str] = dc.update(3 ) UpperCamelCase : List[str] = stepped is True and completed is True and reset is False self.assertTrue(_snake_case ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def a_ ( self ): UpperCamelCase : Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCamelCase : List[str] = DisjunctiveConstraint(_snake_case ) UpperCamelCase , UpperCamelCase , UpperCamelCase : Dict = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[int] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCamelCase , UpperCamelCase , UpperCamelCase : List[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCamelCase , UpperCamelCase , UpperCamelCase : List[str] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCamelCase , UpperCamelCase , UpperCamelCase : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
499
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class a ( a__ ): snake_case__ = 42 class a ( a__ , a__ ): @register_to_config def __init__( self , _snake_case = 3 , _snake_case = 3 , _snake_case = ("DownEncoderBlock2D",) , _snake_case = ("UpDecoderBlock2D",) , _snake_case = (64,) , _snake_case = 1 , _snake_case = "silu" , _snake_case = 3 , _snake_case = 32 , _snake_case = 2_56 , _snake_case = 32 , _snake_case = None , _snake_case = 0.18_215 , _snake_case = "group" , ): """simple docstring""" super().__init__() # pass init params to Encoder lowerCAmelCase = Encoder( in_channels=_snake_case , out_channels=_snake_case , down_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , double_z=_snake_case , ) lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 ) lowerCAmelCase = VectorQuantizer(_snake_case , _snake_case , beta=0.25 , remap=_snake_case , sane_index_shape=_snake_case ) lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 ) # pass init params to Decoder lowerCAmelCase = Decoder( in_channels=_snake_case , out_channels=_snake_case , up_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , norm_type=_snake_case , ) @apply_forward_hook def UpperCamelCase__ ( self , _snake_case , _snake_case = True ): """simple docstring""" lowerCAmelCase = self.encoder(_snake_case ) lowerCAmelCase = self.quant_conv(_snake_case ) if not return_dict: return (h,) return VQEncoderOutput(latents=_snake_case ) @apply_forward_hook def UpperCamelCase__ ( self , _snake_case , _snake_case = False , _snake_case = True ): """simple docstring""" if not force_not_quantize: lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = self.quantize(_snake_case ) else: lowerCAmelCase = h lowerCAmelCase = self.post_quant_conv(_snake_case ) lowerCAmelCase = self.decoder(_snake_case , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case = True ): """simple docstring""" lowerCAmelCase = sample lowerCAmelCase = self.encode(_snake_case ).latents lowerCAmelCase = self.decode(_snake_case ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_snake_case )
4
0
def snake_case_ () -> List[str]: return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] __UpperCAmelCase = generate_large_matrix() __UpperCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def snake_case_ (__A : list[list[int]] ) -> List[Any]: assert all(row == sorted(_UpperCAmelCase , reverse=_UpperCAmelCase ) for row in grid ) assert all(list(_UpperCAmelCase ) == sorted(_UpperCAmelCase , reverse=_UpperCAmelCase ) for col in zip(*_UpperCAmelCase ) ) def snake_case_ (__A : list[int] ) -> Tuple: __lowerCAmelCase : Dict = 0 __lowerCAmelCase : Dict = len(_UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __lowerCAmelCase : Optional[int] = (left + right) // 2 __lowerCAmelCase : Optional[int] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __lowerCAmelCase : Any = mid + 1 else: __lowerCAmelCase : Union[str, Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(_UpperCAmelCase ) def snake_case_ (__A : list[list[int]] ) -> Optional[int]: __lowerCAmelCase : Union[str, Any] = 0 __lowerCAmelCase : Optional[Any] = len(grid[0] ) for i in range(len(_UpperCAmelCase ) ): __lowerCAmelCase : List[str] = find_negative_index(grid[i][:bound] ) total += bound return (len(_UpperCAmelCase ) * len(grid[0] )) - total def snake_case_ (__A : list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def snake_case_ (__A : list[list[int]] ) -> Dict: __lowerCAmelCase : Any = 0 for row in grid: for i, number in enumerate(_UpperCAmelCase ): if number < 0: total += len(_UpperCAmelCase ) - i break return total def snake_case_ () -> str: from timeit import timeit print("""Running benchmarks""" ) __lowerCAmelCase : List[Any] = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __lowerCAmelCase : Tuple = timeit(f'''{func}(grid=grid)''' , setup=_UpperCAmelCase , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
651
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping __UpperCamelCase : Optional[Any] = tuple[int, int] class a : def __init__( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = vertices lowerCAmelCase = { (min(_snake_case ), max(_snake_case )): weight for edge, weight in edges.items() } def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase = weight def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Graph({min(self.vertices )} , {} ) lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase = edge lowerCAmelCase = weight subgraph.add_edge(_snake_case , _snake_case ) return subgraph def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "p107_network.txt" ): lowerCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) ) lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = {} lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 with open(_UpperCAmelCase ) as f: lowerCAmelCase = f.read().strip().split('\n' ) lowerCAmelCase = [line.split(',' ) for line in data] for edgea in range(1 , len(_UpperCAmelCase ) ): for edgea in range(_UpperCAmelCase ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase = Graph(set(range(len(_UpperCAmelCase ) ) ) , _UpperCAmelCase ) lowerCAmelCase = graph.prims_algorithm() lowerCAmelCase = sum(graph.edges.values() ) lowerCAmelCase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
4
0
a = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' a = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] a = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
412
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCAmelCase )] ) lowerCAmelCase = np.array(_UpperCAmelCase ) lowerCAmelCase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCAmelCase ) ) , x.transpose() ) , _UpperCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = (1, 2, 1) lowerCAmelCase = (1, 1, 0, 7) lowerCAmelCase = SARIMAX( _UpperCAmelCase , exog=_UpperCAmelCase , order=_UpperCAmelCase , seasonal_order=_UpperCAmelCase ) lowerCAmelCase = model.fit(disp=_UpperCAmelCase , maxiter=600 , method='nm' ) lowerCAmelCase = model_fit.predict(1 , len(_UpperCAmelCase ) , exog=[test_match] ) return result[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = regressor.predict(_UpperCAmelCase ) return y_pred[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ): train_user.sort() lowerCAmelCase = np.percentile(_UpperCAmelCase , 25 ) lowerCAmelCase = np.percentile(_UpperCAmelCase , 75 ) lowerCAmelCase = qa - qa lowerCAmelCase = qa - (iqr * 0.1) return low_lim def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : float ): lowerCAmelCase = 0 lowerCAmelCase = 0 for i in list_vote: if i > actual_result: lowerCAmelCase = not_safe + 1 else: if abs(abs(_UpperCAmelCase ) - abs(_UpperCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __UpperCamelCase : Optional[Any] = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] __UpperCamelCase : Any = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) __UpperCamelCase : Dict = Normalizer().fit_transform(data_input_df.values) # split data __UpperCamelCase : Dict = normalize_df[:, 2].tolist() __UpperCamelCase : Union[str, Any] = normalize_df[:, 0].tolist() __UpperCamelCase : List[str] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __UpperCamelCase : Optional[int] = normalize_df[:, [1, 2]].tolist() __UpperCamelCase : Tuple = x[: len(x) - 1] __UpperCamelCase : Any = x[len(x) - 1 :] # for linear regression & sarimax __UpperCamelCase : str = total_date[: len(total_date) - 1] __UpperCamelCase : Union[str, Any] = total_user[: len(total_user) - 1] __UpperCamelCase : List[Any] = total_match[: len(total_match) - 1] __UpperCamelCase : Optional[Any] = total_date[len(total_date) - 1 :] __UpperCamelCase : str = total_user[len(total_user) - 1 :] __UpperCamelCase : str = total_match[len(total_match) - 1 :] # voting system with forecasting __UpperCamelCase : Any = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __UpperCamelCase : List[str] = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('''Today\'s data is {not_str}safe.''')
4
0
def lowerCamelCase__ ( __lowerCamelCase : str ): __UpperCAmelCase : List[Any] = [False] * len(_UpperCAmelCase ) __UpperCAmelCase : List[Any] = [-1] * len(_UpperCAmelCase ) def dfs(__lowerCamelCase : str , __lowerCamelCase : Optional[Any] ): __UpperCAmelCase : Dict = True __UpperCAmelCase : Dict = c for u in graph[v]: if not visited[u]: dfs(_UpperCAmelCase , 1 - c ) for i in range(len(_UpperCAmelCase ) ): if not visited[i]: dfs(_UpperCAmelCase , 0 ) for i in range(len(_UpperCAmelCase ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph a : Dict = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
63
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=_UpperCAmelCase , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=_UpperCAmelCase , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=_UpperCAmelCase , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=_UpperCAmelCase , default=0 , help='cuda_id.' , ) lowerCAmelCase = parser.parse_args() return args def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ): if not len(_UpperCAmelCase ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) lowerCAmelCase ,lowerCAmelCase = imgs[0].size lowerCAmelCase = Image.new('RGB' , size=(cols * w, rows * h) ) lowerCAmelCase ,lowerCAmelCase = grid.size for i, img in enumerate(_UpperCAmelCase ): grid.paste(_UpperCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]="robotic cat with wings" , _UpperCAmelCase : Optional[int]=7.5 , _UpperCAmelCase : Dict=50 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=42 , ): lowerCAmelCase = torch.Generator(pipeline.device ).manual_seed(_UpperCAmelCase ) lowerCAmelCase = pipeline( _UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , ).images lowerCAmelCase = int(math.sqrt(_UpperCAmelCase ) ) lowerCAmelCase = image_grid(_UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __UpperCamelCase : Optional[Any] = parse_args() # Load models and create wrapper for stable diffusion __UpperCamelCase : List[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') __UpperCamelCase : str = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') __UpperCamelCase : Optional[int] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') __UpperCamelCase : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') __UpperCamelCase : Tuple = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __UpperCamelCase : Union[str, Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): __UpperCamelCase : Dict = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: __UpperCamelCase : Dict = unet.to(torch.device('''cuda''', args.cuda_id)) __UpperCamelCase : Optional[Any] = pipeline.to(unet.device) __UpperCamelCase ,__UpperCamelCase : List[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) __UpperCamelCase : int = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
4
0
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowercase_ = logging.getLogger(__name__) require_version("""pytorch_lightning>=1.0.4""") lowercase_ = { '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowercase_ = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowercase_ = sorted(arg_to_scheduler.keys()) lowercase_ = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class __UpperCamelCase ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[Any] , _A : int , _A : Any=None , _A : List[Any]="base" , _A : Optional[Any]=None , _A : str=None , _A : Union[str, Any]=None , **_A : Dict , ): """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : int = Path(self.hparams.output_dir ) __SCREAMING_SNAKE_CASE : str = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=_snake_case , **_snake_case , ) else: __SCREAMING_SNAKE_CASE : Tuple = config __SCREAMING_SNAKE_CASE : Optional[int] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , _snake_case , _snake_case ): assert hasattr(self.config , _snake_case ), F'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , _snake_case , getattr(self.hparams , _snake_case ) ) if tokenizer is None: __SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_snake_case , ) else: __SCREAMING_SNAKE_CASE : Any = tokenizer __SCREAMING_SNAKE_CASE : List[str] = MODEL_MODES[mode] if model is None: __SCREAMING_SNAKE_CASE : Optional[int] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_snake_case , ) else: __SCREAMING_SNAKE_CASE : int = model def UpperCAmelCase__ ( self : Optional[int] , *_A : str , **_A : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = self.model_type.from_pretrained(*_snake_case , **_snake_case ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = arg_to_scheduler[self.hparams.lr_scheduler] __SCREAMING_SNAKE_CASE : Union[str, Any] = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __SCREAMING_SNAKE_CASE : Optional[Any] = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.model __SCREAMING_SNAKE_CASE : Tuple = ['''bias''', '''LayerNorm.weight'''] __SCREAMING_SNAKE_CASE : Dict = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: __SCREAMING_SNAKE_CASE : Any = Adafactor( _snake_case , lr=self.hparams.learning_rate , scale_parameter=_snake_case , relative_step=_snake_case ) else: __SCREAMING_SNAKE_CASE : Union[str, Any] = AdamW( _snake_case , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __SCREAMING_SNAKE_CASE : List[Any] = optimizer __SCREAMING_SNAKE_CASE : Optional[int] = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase__ ( self : Optional[int] , _A : List[Any] , _A : Tuple ): """simple docstring""" return self.validation_step(_snake_case , _snake_case ) def UpperCAmelCase__ ( self : List[Any] , _A : List[Any] ): """simple docstring""" return self.validation_end(_snake_case ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __SCREAMING_SNAKE_CASE : Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase__ ( self : str , _A : List[str] ): """simple docstring""" if stage == "test": __SCREAMING_SNAKE_CASE : Dict = len(self.test_dataloader().dataset ) else: __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=_snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = len(self.train_dataloader().dataset ) def UpperCAmelCase__ ( self : str , _A : Any , _A : Tuple , _A : Optional[Any] = False ): """simple docstring""" raise NotImplementedError('''You must implement this for your task''' ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return self.train_loader def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=_snake_case ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=_snake_case ) def UpperCAmelCase__ ( self : List[str] , _A : Optional[Any] ): """simple docstring""" return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( _snake_case , list(filter(_snake_case , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase__ ( self : List[Any] , _A : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.output_dir.joinpath('''best_tfmr''' ) __SCREAMING_SNAKE_CASE : Any = self.step_count self.model.save_pretrained(_snake_case ) self.tokenizer.save_pretrained(_snake_case ) @staticmethod def UpperCAmelCase__ ( _A : List[Any] , _A : Optional[Any] ): """simple docstring""" parser.add_argument( '''--model_name_or_path''' , default=_snake_case , type=_snake_case , required=_snake_case , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=_snake_case , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=_snake_case , type=_snake_case , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(_snake_case ).parent / '''test_run''' / '''cache''' ) , type=_snake_case , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=_snake_case , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=_snake_case , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=_snake_case , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=_snake_case , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5e-5 , type=_snake_case , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=_snake_case , metavar=_snake_case , type=_snake_case , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=_snake_case , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=_snake_case , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=_snake_case , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=_snake_case , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=_snake_case ) parser.add_argument('''--train_batch_size''' , default=32 , type=_snake_case ) parser.add_argument('''--eval_batch_size''' , default=32 , type=_snake_case ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class __UpperCamelCase ( pl.Callback ): """simple docstring""" def UpperCAmelCase__ ( self : Dict , _A : Optional[int] , _A : Union[str, Any] ): """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __UpperCamelCase ( pl.Callback ): """simple docstring""" def UpperCAmelCase__ ( self : Any , _A : Optional[int] , _A : Any ): """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_snake_case ) class __UpperCamelCase ( pl.Callback ): """simple docstring""" def UpperCAmelCase__ ( self : int , _A : Optional[Any] , _A : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = trainer.lr_schedulers[0]['''scheduler'''] __SCREAMING_SNAKE_CASE : List[Any] = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_snake_case ) def UpperCAmelCase__ ( self : str , _A : Any , _A : Tuple ): """simple docstring""" rank_zero_info('''***** Validation results *****''' ) __SCREAMING_SNAKE_CASE : Dict = trainer.callback_metrics # Log results for key in sorted(_snake_case ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(_snake_case , str(metrics[key] ) ) ) def UpperCAmelCase__ ( self : str , _A : int , _A : Any ): """simple docstring""" rank_zero_info('''***** Test results *****''' ) __SCREAMING_SNAKE_CASE : List[str] = trainer.callback_metrics # Log and save results to file __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(_snake_case , '''w''' ) as writer: for key in sorted(_snake_case ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(_snake_case , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(_snake_case , str(metrics[key] ) ) ) def a__ ( snake_case , snake_case ): """simple docstring""" # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '''--output_dir''' , default=str(Path(_UpperCAmelCase ).parent / '''test_run''' / '''model_checkpoints''' ) , type=_UpperCAmelCase , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=_UpperCAmelCase , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=_UpperCAmelCase ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=_UpperCAmelCase , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=_UpperCAmelCase , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=_UpperCAmelCase , default=42 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(_UpperCAmelCase ).parent / '''test_run''' / '''dummy-train-data''' ) , type=_UpperCAmelCase , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def a__ ( snake_case , snake_case , snake_case=None , snake_case=True , snake_case=[] , snake_case=None , snake_case=None , **snake_case , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __SCREAMING_SNAKE_CASE : str = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_UpperCAmelCase ) # add custom checkpoints if checkpoint_callback is None: __SCREAMING_SNAKE_CASE : Dict = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_UpperCAmelCase ) if logging_callback is None: __SCREAMING_SNAKE_CASE : List[str] = LoggingCallback() __SCREAMING_SNAKE_CASE : Dict = {} if args.fpaa: __SCREAMING_SNAKE_CASE : int = 16 if args.gpus > 1: __SCREAMING_SNAKE_CASE : Union[str, Any] = '''auto''' __SCREAMING_SNAKE_CASE : int = '''ddp''' __SCREAMING_SNAKE_CASE : Tuple = args.accumulate_grad_batches __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = '''auto''' __SCREAMING_SNAKE_CASE : Any = pl.Trainer.from_argparse_args( _UpperCAmelCase , weights_summary=_UpperCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_UpperCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **_UpperCAmelCase , ) if args.do_train: trainer.fit(_UpperCAmelCase ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
74
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : List[int] ): lowerCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ), F'{len(_UpperCAmelCase )} != {len(_UpperCAmelCase )}' dest_layers.load_state_dict(layers_to_copy.state_dict() ) __UpperCamelCase : Optional[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } __UpperCamelCase : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ): try: lowerCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first' F' {n_student}' ) return list(range(_UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ): if n_student > n_teacher: raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' ) elif n_teacher == n_student: return list(range(_UpperCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, PreTrainedModel] , _UpperCAmelCase : Union[str, Path] = "student" , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ): lowerCAmelCase = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(_UpperCAmelCase , _UpperCAmelCase ): AutoTokenizer.from_pretrained(_UpperCAmelCase ).save_pretrained(_UpperCAmelCase ) # purely for convenience lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).eval() else: assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), F'teacher must be a model or string got type {type(_UpperCAmelCase )}' lowerCAmelCase = teacher.config.to_diff_dict() try: lowerCAmelCase ,lowerCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: lowerCAmelCase = teacher_e if d is None: lowerCAmelCase = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): lowerCAmelCase ,lowerCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: lowerCAmelCase ,lowerCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: lowerCAmelCase = teacher_e if d is None: lowerCAmelCase = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(_UpperCAmelCase ) # Copy weights lowerCAmelCase = teacher.config_class(**_UpperCAmelCase ) lowerCAmelCase = AutoModelForSeqaSeqLM.from_config(_UpperCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. lowerCAmelCase = student.load_state_dict(teacher.state_dict() , strict=_UpperCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save lowerCAmelCase ,lowerCAmelCase = list(range(_UpperCAmelCase ) ), list(range(_UpperCAmelCase ) ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to' F' {save_path}' ) student.save_pretrained(_UpperCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase ) if d_layers_to_copy is None: lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase ) try: if hasattr( _UpperCAmelCase , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _UpperCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _UpperCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _UpperCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _UpperCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , _UpperCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , _UpperCAmelCase ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' ) lowerCAmelCase = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(_UpperCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
4
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : List[str] = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class _A( a__ ): """simple docstring""" UpperCamelCase : Optional[Any] = '''marian''' UpperCamelCase : List[str] = ['''past_key_values'''] UpperCamelCase : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , _A=58101 , _A=None , _A=1024 , _A=12 , _A=4096 , _A=16 , _A=12 , _A=4096 , _A=16 , _A=0.0 , _A=0.0 , _A=True , _A=True , _A="gelu" , _A=1024 , _A=0.1 , _A=0.0 , _A=0.0 , _A=0.0_2 , _A=58100 , _A=False , _A=58100 , _A=0 , _A=0 , _A=True , **_A , ): __A : Dict = vocab_size __A : Optional[Any] = decoder_vocab_size or vocab_size __A : int = max_position_embeddings __A : Union[str, Any] = d_model __A : Union[str, Any] = encoder_ffn_dim __A : List[Any] = encoder_layers __A : Union[str, Any] = encoder_attention_heads __A : str = decoder_ffn_dim __A : Dict = decoder_layers __A : Union[str, Any] = decoder_attention_heads __A : List[str] = dropout __A : List[Any] = attention_dropout __A : Union[str, Any] = activation_dropout __A : int = activation_function __A : Optional[Any] = init_std __A : Any = encoder_layerdrop __A : Tuple = decoder_layerdrop __A : Optional[int] = use_cache __A : str = encoder_layers __A : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True __A : List[Any] = share_encoder_decoder_embeddings super().__init__( pad_token_id=_snake_case , eos_token_id=_snake_case , is_encoder_decoder=_snake_case , decoder_start_token_id=_snake_case , forced_eos_token_id=_snake_case , **_snake_case , ) class _A( a__ ): """simple docstring""" @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def UpperCAmelCase_ ( self ): if self.task in ["default", "seq2seq-lm"]: __A : Dict = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __A : Dict = {0: 'batch'} __A : Optional[int] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __A : Tuple = {0: 'batch', 1: 'decoder_sequence'} __A : Tuple = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_snake_case , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. __A : int = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __A , __A : Tuple = self.num_layers for i in range(_snake_case ): __A : Optional[int] = {0: 'batch', 2: 'past_sequence + sequence'} __A : Optional[Any] = {0: 'batch', 2: 'past_sequence + sequence'} else: __A : Tuple = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def UpperCAmelCase_ ( self ): if self.task in ["default", "seq2seq-lm"]: __A : List[Any] = super().outputs else: __A : Any = super(_snake_case , self ).outputs if self.use_past: __A , __A : str = self.num_layers for i in range(_snake_case ): __A : Tuple = {0: 'batch', 2: 'past_sequence + sequence'} __A : List[str] = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def UpperCAmelCase_ ( self , _A , _A = -1 , _A = -1 , _A = False , _A = None , ): __A : str = self._generate_dummy_inputs_for_encoder_and_decoder( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) # Generate decoder inputs __A : Dict = seq_length if not self.use_past else 1 __A : Tuple = self._generate_dummy_inputs_for_encoder_and_decoder( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) __A : str = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} __A : Any = dict(**_snake_case , **_snake_case ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __A , __A : Union[str, Any] = common_inputs['input_ids'].shape __A : Optional[int] = common_inputs['decoder_input_ids'].shape[1] __A , __A : Tuple = self.num_attention_heads __A : Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __A : Optional[Any] = decoder_seq_length + 3 __A : Optional[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __A : Optional[int] = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(_snake_case , _snake_case )] , dim=1 ) __A : Any = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __A , __A : int = self.num_layers __A : Optional[int] = min(_snake_case , _snake_case ) __A : Tuple = max(_snake_case , _snake_case ) - min_num_layers __A : Any = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(_snake_case ): common_inputs["past_key_values"].append( ( torch.zeros(_snake_case ), torch.zeros(_snake_case ), torch.zeros(_snake_case ), torch.zeros(_snake_case ), ) ) # TODO: test this. __A : str = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(_snake_case , _snake_case ): common_inputs["past_key_values"].append((torch.zeros(_snake_case ), torch.zeros(_snake_case )) ) return common_inputs def UpperCAmelCase_ ( self , _A , _A = -1 , _A = -1 , _A = False , _A = None , ): __A : Tuple = self._generate_dummy_inputs_for_encoder_and_decoder( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __A , __A : Dict = common_inputs['input_ids'].shape # Not using the same length for past_key_values __A : List[Any] = seqlen + 2 __A , __A : Union[str, Any] = self.num_layers __A , __A : Dict = self.num_attention_heads __A : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __A : Optional[Any] = common_inputs['attention_mask'].dtype __A : List[Any] = torch.cat( [common_inputs['attention_mask'], torch.ones(_snake_case , _snake_case , dtype=_snake_case )] , dim=1 ) __A : Any = [ (torch.zeros(_snake_case ), torch.zeros(_snake_case )) for _ in range(_snake_case ) ] return common_inputs def UpperCAmelCase_ ( self , _A , _A = -1 , _A = -1 , _A = False , _A = None , ): __A : List[Any] = compute_effective_axis_dimension( _snake_case , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __A : List[Any] = tokenizer.num_special_tokens_to_add(_snake_case ) __A : Optional[Any] = compute_effective_axis_dimension( _snake_case , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_snake_case ) # Generate dummy inputs according to compute batch and sequence __A : List[Any] = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size __A : int = dict(tokenizer(_snake_case , return_tensors=_snake_case ) ) return common_inputs def UpperCAmelCase_ ( self , _A , _A = -1 , _A = -1 , _A = False , _A = None , ): if self.task in ["default", "seq2seq-lm"]: __A : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _snake_case , batch_size=_snake_case , seq_length=_snake_case , is_pair=_snake_case , framework=_snake_case ) else: __A : Union[str, Any] = self._generate_dummy_inputs_for_causal_lm( _snake_case , batch_size=_snake_case , seq_length=_snake_case , is_pair=_snake_case , framework=_snake_case ) return common_inputs def UpperCAmelCase_ ( self , _A , _A , _A , _A ): if self.task in ["default", "seq2seq-lm"]: __A : Optional[Any] = super()._flatten_past_key_values_(_snake_case , _snake_case , _snake_case , _snake_case ) else: __A : Dict = super(_snake_case , self )._flatten_past_key_values_( _snake_case , _snake_case , _snake_case , _snake_case ) @property def UpperCAmelCase_ ( self ): return 1e-4
239
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Dict = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
0
'''simple docstring''' import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) a = logging.getLogger() def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , """all_results.json""" ) if os.path.exists(_UpperCAmelCase ): with open(_UpperCAmelCase , """r""" ) as f: __SCREAMING_SNAKE_CASE = json.load(_UpperCAmelCase ) else: raise ValueError(f"""can\'t find {path}""" ) return results a = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class __a ( a__ ): def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' import xla_spawn __SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() __SCREAMING_SNAKE_CASE = f"""\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n """.split() with patch.object(_snake_case ,"""argv""" ,_snake_case ): __SCREAMING_SNAKE_CASE = time() xla_spawn.main() __SCREAMING_SNAKE_CASE = time() __SCREAMING_SNAKE_CASE = get_results(_snake_case ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start ,500 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' import xla_spawn __SCREAMING_SNAKE_CASE = """\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n """.split() with patch.object(_snake_case ,"""argv""" ,_snake_case ): xla_spawn.main()
109
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ): lowerCAmelCase = 0.00 lowerCAmelCase = 0 for resistor in resistors: if resistor <= 0: lowerCAmelCase = F'Resistor at index {index} has a negative or zero value!' raise ValueError(_UpperCAmelCase ) first_sum += 1 / float(_UpperCAmelCase ) index += 1 return 1 / first_sum def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ): lowerCAmelCase = 0.00 lowerCAmelCase = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowerCAmelCase = F'Resistor at index {index} has a negative value!' raise ValueError(_UpperCAmelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
4
0
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = tmp_path / "cache" lowerCamelCase = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase = TextDatasetReader(_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase ).read() _check_text_dataset(_UpperCAmelCase , _UpperCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = tmp_path / "cache" lowerCamelCase = {"text": "string"} lowerCamelCase = features.copy() if features else default_expected_features lowerCamelCase = ( Features({feature: Value(_UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase = TextDatasetReader(_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() _check_text_dataset(_UpperCAmelCase , _UpperCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = tmp_path / "cache" lowerCamelCase = {"text": "string"} lowerCamelCase = TextDatasetReader(_UpperCAmelCase , cache_dir=_UpperCAmelCase , split=_UpperCAmelCase ).read() _check_text_dataset(_UpperCAmelCase , _UpperCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" if issubclass(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase = text_path elif issubclass(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase = [text_path] lowerCamelCase = tmp_path / "cache" lowerCamelCase = {"text": "string"} lowerCamelCase = TextDatasetReader(_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() _check_text_dataset(_UpperCAmelCase , _UpperCAmelCase ) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=("train",) ): """simple docstring""" assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) for split in splits: lowerCamelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = tmp_path / "cache" lowerCamelCase = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase = TextDatasetReader({"train": text_path} , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase ).read() _check_text_datasetdict(_UpperCAmelCase , _UpperCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" lowerCamelCase = {"text": "string"} lowerCamelCase = features.copy() if features else default_expected_features lowerCamelCase = ( Features({feature: Value(_UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase = TextDatasetReader({"train": text_path} , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() _check_text_datasetdict(_UpperCAmelCase , _UpperCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" if split: lowerCamelCase = {split: text_path} else: lowerCamelCase = "train" lowerCamelCase = {"train": text_path, "test": text_path} lowerCamelCase = tmp_path / "cache" lowerCamelCase = {"text": "string"} lowerCamelCase = TextDatasetReader(_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() _check_text_datasetdict(_UpperCAmelCase , _UpperCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
623
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''', # See all GLPN models at https://huggingface.co/models?filter=glpn } class a ( a__ ): snake_case__ = '''glpn''' def __init__( self , _snake_case=3 , _snake_case=4 , _snake_case=[2, 2, 2, 2] , _snake_case=[8, 4, 2, 1] , _snake_case=[32, 64, 1_60, 2_56] , _snake_case=[7, 3, 3, 3] , _snake_case=[4, 2, 2, 2] , _snake_case=[1, 2, 5, 8] , _snake_case=[4, 4, 4, 4] , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=0.1 , _snake_case=1E-6 , _snake_case=64 , _snake_case=10 , _snake_case=-1 , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = num_channels lowerCAmelCase = num_encoder_blocks lowerCAmelCase = depths lowerCAmelCase = sr_ratios lowerCAmelCase = hidden_sizes lowerCAmelCase = patch_sizes lowerCAmelCase = strides lowerCAmelCase = mlp_ratios lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = drop_path_rate lowerCAmelCase = layer_norm_eps lowerCAmelCase = decoder_hidden_size lowerCAmelCase = max_depth lowerCAmelCase = head_in_index
4
0
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCamelCase :Union[str, Any] = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCamelCase :Any = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCamelCase :int = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCamelCase :List[Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCamelCase :Dict = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCamelCase :Optional[int] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCamelCase :Optional[int] = ( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def a ( ): '''simple docstring''' A_, A_ : Any = randrange(len(_UpperCAmelCase ) ), randrange(len(_UpperCAmelCase ) ) A_ : Union[str, Any] = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] A_, A_ : Optional[Any] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a ( lowerCamelCase__ = 1_00 ): '''simple docstring''' return (generate_random_hand() for _ in range(_UpperCAmelCase )) @pytest.mark.parametrize("""hand, expected""" , _UpperCAmelCase ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' assert PokerHand(_UpperCAmelCase )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , _UpperCAmelCase ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' assert PokerHand(_UpperCAmelCase )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , _UpperCAmelCase ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Union[str, Any] = PokerHand(_UpperCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , _UpperCAmelCase ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' assert PokerHand(_UpperCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , _UpperCAmelCase ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' assert PokerHand(_UpperCAmelCase )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , _UpperCAmelCase ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' assert PokerHand(_UpperCAmelCase ).compare_with(PokerHand(_UpperCAmelCase ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' assert PokerHand(_UpperCAmelCase ).compare_with(PokerHand(_UpperCAmelCase ) ) == expected def a ( ): '''simple docstring''' A_ : Tuple = [PokerHand(_UpperCAmelCase ) for hand in SORTED_HANDS] A_ : str = poker_hands.copy() shuffle(_UpperCAmelCase ) A_ : Union[str, Any] = chain(sorted(_UpperCAmelCase ) ) for index, hand in enumerate(_UpperCAmelCase ): assert hand == poker_hands[index] def a ( ): '''simple docstring''' A_ : List[Any] = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=_UpperCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a ( ): '''simple docstring''' A_ : str = PokerHand("""2C 4S AS 3D 5C""" ) A_ : str = True A_ : Union[str, Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a ( ): '''simple docstring''' A_ : Any = 0 A_ : str = os.path.abspath(os.path.dirname(_UpperCAmelCase ) ) A_ : List[Any] = os.path.join(_UpperCAmelCase , """poker_hands.txt""" ) with open(_UpperCAmelCase ) as file_hand: for line in file_hand: A_ : Tuple = line[:14].strip() A_ : List[str] = line[15:].strip() A_, A_ : Optional[Any] = PokerHand(_UpperCAmelCase ), PokerHand(_UpperCAmelCase ) A_ : str = player.compare_with(_UpperCAmelCase ) if output == "Win": answer += 1 assert answer == 3_76
667
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , _snake_case=10_00 , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = range_bbox def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase = bbox[i, j, 3] lowerCAmelCase = bbox[i, j, 1] lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase = bbox[i, j, 2] lowerCAmelCase = bbox[i, j, 0] lowerCAmelCase = t lowerCAmelCase = tf.convert_to_tensor(_snake_case ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForMaskedLM(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForSequenceClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForTokenClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = True snake_case__ = 1_0 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFLayoutLMModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def _SCREAMING_SNAKE_CASE (): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off lowerCAmelCase = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowerCAmelCase = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the sequence output on [0, :3, :3] lowerCAmelCase = tf.convert_to_tensor( [[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _snake_case , atol=1E-3 ) ) # test the pooled output on [1, :3] lowerCAmelCase = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _snake_case , atol=1E-3 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar lowerCAmelCase = outputs.loss lowerCAmelCase = (2,) self.assertEqual(loss.shape , _snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = (2, 2) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the shape of the logits lowerCAmelCase = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _snake_case ) self.assertEqual(outputs.end_logits.shape , _snake_case )
4
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __snake_case : List[str] = None __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : Tuple = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case : str = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __snake_case : Optional[int] = { '''moussaKam/mbarthez''': 1_024, '''moussaKam/barthez''': 1_024, '''moussaKam/barthez-orangesum-title''': 1_024, } __snake_case : Optional[Any] = '''▁''' class A__ ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE = BarthezTokenizer def __init__( self: Any , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Optional[Any]="<s>" , _SCREAMING_SNAKE_CASE: Any="</s>" , _SCREAMING_SNAKE_CASE: Optional[Any]="</s>" , _SCREAMING_SNAKE_CASE: Dict="<s>" , _SCREAMING_SNAKE_CASE: Optional[Any]="<unk>" , _SCREAMING_SNAKE_CASE: Dict="<pad>" , _SCREAMING_SNAKE_CASE: List[Any]="<mask>" , **_SCREAMING_SNAKE_CASE: Any , ) -> Dict: """simple docstring""" __lowerCAmelCase : int = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case) if isinstance(_snake_case , _snake_case) else mask_token super().__init__( _snake_case , tokenizer_file=_snake_case , bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , **_snake_case , ) __lowerCAmelCase : Optional[Any] = vocab_file __lowerCAmelCase : List[Any] = False if not self.vocab_file else True def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Union[str, Any] = None) -> str: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase : Optional[Any] = [self.cls_token_id] __lowerCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Dict = None) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = [self.sep_token_id] __lowerCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: str = None) -> Optional[Any]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(_snake_case): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return __lowerCAmelCase : Optional[int] = os.path.join( _snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(_snake_case): copyfile(self.vocab_file , _snake_case) return (out_vocab_file,)
293
"""simple docstring""" import argparse import os import re import packaging.version __UpperCamelCase : Union[str, Any] = '''examples/''' __UpperCamelCase : str = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __UpperCamelCase : List[str] = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } __UpperCamelCase : Optional[int] = '''README.md''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ): with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.read() lowerCAmelCase ,lowerCAmelCase = REPLACE_PATTERNS[pattern] lowerCAmelCase = replace.replace('VERSION' , _UpperCAmelCase ) lowerCAmelCase = re_pattern.sub(_UpperCAmelCase , _UpperCAmelCase ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ): for folder, directories, fnames in os.walk(_UpperCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , pattern='examples' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not patch: update_version_in_examples(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = '🤗 Transformers currently provides the following architectures' lowerCAmelCase = '1. Want to contribute a new model?' with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.readlines() # Find the start of the list. lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): lowerCAmelCase = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): with open(REPLACE_FILES['init'] , 'r' ) as f: lowerCAmelCase = f.read() lowerCAmelCase = REPLACE_PATTERNS['init'][0].search(_UpperCAmelCase ).groups()[0] return packaging.version.parse(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple=False ): lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: lowerCAmelCase = default_version.base_version elif patch: lowerCAmelCase = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: lowerCAmelCase = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. lowerCAmelCase = input(F'Which version are you releasing? [{default_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = default_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase , patch=_UpperCAmelCase ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = get_version() lowerCAmelCase = F'{current_version.major}.{current_version.minor + 1}.0.dev0' lowerCAmelCase = current_version.base_version # Check with the user we got that right. lowerCAmelCase = input(F'Which version are we developing now? [{dev_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = dev_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __UpperCamelCase : Optional[int] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
4
0
'''simple docstring''' from typing import Any class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase ) -> int: lowercase__ : List[Any] = data lowercase__ : Dict = None def __repr__( self ) -> Union[str, Any]: return F"""Node({self.data})""" class UpperCAmelCase : '''simple docstring''' def __init__( self ) -> List[str]: lowercase__ : List[Any] = None def __iter__( self ) -> Optional[int]: lowercase__ : List[str] = self.head while node: yield node.data lowercase__ : int = node.next def __len__( self ) -> Dict: return sum(1 for _ in self ) def __repr__( self ) -> Dict: return "->".join([str(_snake_case ) for item in self] ) def __getitem__( self , __lowerCAmelCase ) -> Optional[int]: if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , __lowerCAmelCase , __lowerCAmelCase ) -> Any: if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) lowercase__ : List[Any] = self.head for _ in range(_snake_case ): lowercase__ : str = current.next lowercase__ : Optional[Any] = data def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[str]: self.insert_nth(len(self ) , _snake_case ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[Any]: self.insert_nth(0 , _snake_case ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: if not 0 <= index <= len(self ): raise IndexError('''list index out of range''' ) lowercase__ : Optional[int] = Node(_snake_case ) if self.head is None: lowercase__ : Optional[Any] = new_node elif index == 0: lowercase__ : int = self.head # link new_node to head lowercase__ : Any = new_node else: lowercase__ : List[Any] = self.head for _ in range(index - 1 ): lowercase__ : Any = temp.next lowercase__ : Tuple = temp.next lowercase__ : str = new_node def _lowerCAmelCase( self ) -> Optional[Any]: # print every node data print(self ) def _lowerCAmelCase( self ) -> Dict: return self.delete_nth(0 ) def _lowerCAmelCase( self ) -> str: # delete from tail return self.delete_nth(len(self ) - 1 ) def _lowerCAmelCase( self , __lowerCAmelCase = 0 ) -> int: if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('''List index out of range.''' ) lowercase__ : int = self.head # default first node if index == 0: lowercase__ : Optional[int] = self.head.next else: lowercase__ : Tuple = self.head for _ in range(index - 1 ): lowercase__ : Tuple = temp.next lowercase__ : Optional[Any] = temp.next lowercase__ : Union[str, Any] = temp.next.next return delete_node.data def _lowerCAmelCase( self ) -> List[str]: return self.head is None def _lowerCAmelCase( self ) -> str: lowercase__ : Dict = None lowercase__ : Tuple = self.head while current: # Store the current node's next node. lowercase__ : List[Any] = current.next # Make the current node's next point backwards lowercase__ : str = prev # Make the previous node be the current node lowercase__ : Union[str, Any] = current # Make the current node the next node (to progress iteration) lowercase__ : Tuple = next_node # Return prev in order to put the head at the end lowercase__ : List[str] = prev def __UpperCamelCase ( ): lowercase__ : Optional[int] = LinkedList() assert linked_list.is_empty() is True assert str(_UpperCAmelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_UpperCAmelCase ) == i linked_list.insert_nth(_UpperCAmelCase , i + 1 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_UpperCAmelCase ) == 9 assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowercase__ : int = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ): lowercase__ : int = [ -9, 100, Node(7734_5112 ), '''dlrow olleH''', 7, 5555, 0, -1_9_2.5_5_5_5_5, '''Hello, world!''', 7_7.9, Node(10 ), None, None, 1_2.2_0, ] lowercase__ : Any = LinkedList() for i in test_input: linked_list.insert_tail(_UpperCAmelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowercase__ : str = linked_list.delete_head() assert result == -9 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowercase__ : List[str] = linked_list.delete_tail() assert result == 1_2.2 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowercase__ : Optional[int] = linked_list.delete_nth(10 ) assert result is None assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('''Hello again, world!''' ) ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_UpperCAmelCase ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_UpperCAmelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ): from doctest import testmod testmod() lowercase__ : int = LinkedList() linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() ) linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() ) linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() print('''\nDelete head''' ) linked_list.delete_head() print('''Delete tail''' ) linked_list.delete_tail() print('''\nPrint list:''' ) linked_list.print_list() print('''\nReverse linked list''' ) linked_list.reverse() print('''\nPrint list:''' ) linked_list.print_list() print('''\nString representation of linked list:''' ) print(_UpperCAmelCase ) print('''\nReading/changing Node data using indexing:''' ) print(F"""Element at Position 1: {linked_list[1]}""" ) lowercase__ : Union[str, Any] = input('''Enter New Value: ''' ).strip() print('''New list:''' ) print(_UpperCAmelCase ) print(F"""length of linked_list is : {len(_UpperCAmelCase )}""" ) if __name__ == "__main__": main()
152
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __UpperCamelCase : Optional[int] = pytest.mark.integration @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_snake_case ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() lowerCAmelCase = dset.map( lambda _snake_case , _snake_case : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_snake_case , keep_in_memory=_snake_case ) lowerCAmelCase = dset.add_faiss_index('vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_snake_case , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch lowerCAmelCase = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCAmelCase = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_snake_case ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertRaises(_snake_case , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCAmelCase = np.eye(5 , dtype=np.floataa )[::-1] lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) self.assertRaises(_snake_case , index.search_batch , queries[0] ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCAmelCase = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_snake_case ): lowerCAmelCase = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = faiss.IndexFlat(5 ) lowerCAmelCase = FaissIndex(custom_index=_snake_case ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: index.save(tmp_file.name ) lowerCAmelCase = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ): import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCAmelCase = 'index.faiss' lowerCAmelCase = F'mock://{index_name}' index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = Elasticsearch() lowerCAmelCase = {'acknowledged': True} lowerCAmelCase = ElasticSearchIndex(es_client=_snake_case ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case ) # batched queries with timeout lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case , request_timeout=30 ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case )
4
0
"""simple docstring""" import argparse import os import re import packaging.version __A : Union[str, Any] = '''examples/''' __A : str = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __A : List[str] = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } __A : Optional[int] = '''README.md''' def A_ ( snake_case_ : Any ,snake_case_ : Dict ,snake_case_ : Any ): '''simple docstring''' with open(_UpperCAmelCase ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: UpperCamelCase : List[str] = f.read() UpperCamelCase , UpperCamelCase : Dict = REPLACE_PATTERNS[pattern] UpperCamelCase : Dict = replace.replace("""VERSION""" ,_UpperCAmelCase ) UpperCamelCase : Union[str, Any] = re_pattern.sub(_UpperCAmelCase ,_UpperCAmelCase ) with open(_UpperCAmelCase ,"""w""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: f.write(_UpperCAmelCase ) def A_ ( snake_case_ : Union[str, Any] ): '''simple docstring''' for folder, directories, fnames in os.walk(_UpperCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_UpperCAmelCase ,_UpperCAmelCase ) ,_UpperCAmelCase ,pattern="""examples""" ) def A_ ( snake_case_ : List[str] ,snake_case_ : Dict=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) if not patch: update_version_in_examples(_UpperCAmelCase ) def A_ ( ): '''simple docstring''' UpperCamelCase : List[Any] = """🤗 Transformers currently provides the following architectures""" UpperCamelCase : Union[str, Any] = """1. Want to contribute a new model?""" with open(_UpperCAmelCase ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: UpperCamelCase : Union[str, Any] = f.readlines() # Find the start of the list. UpperCamelCase : Tuple = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCamelCase : Union[str, Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): UpperCamelCase : int = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" ,"""https://huggingface.co/docs/transformers/model_doc""" ,) index += 1 with open(_UpperCAmelCase ,"""w""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: f.writelines(_UpperCAmelCase ) def A_ ( ): '''simple docstring''' with open(REPLACE_FILES["""init"""] ,"""r""" ) as f: UpperCamelCase : Tuple = f.read() UpperCamelCase : Union[str, Any] = REPLACE_PATTERNS["""init"""][0].search(_UpperCAmelCase ).groups()[0] return packaging.version.parse(_UpperCAmelCase ) def A_ ( snake_case_ : Tuple=False ): '''simple docstring''' UpperCamelCase : Union[str, Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can\'t create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: UpperCamelCase : Any = default_version.base_version elif patch: UpperCamelCase : Optional[Any] = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: UpperCamelCase : str = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. UpperCamelCase : List[Any] = input(f'Which version are you releasing? [{default_version}]' ) if len(_UpperCAmelCase ) == 0: UpperCamelCase : List[str] = default_version print(f'Updating version to {version}.' ) global_version_update(_UpperCAmelCase ,patch=_UpperCAmelCase ) if not patch: print("""Cleaning main README, don\'t forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def A_ ( ): '''simple docstring''' UpperCamelCase : List[str] = get_version() UpperCamelCase : Union[str, Any] = f'{current_version.major}.{current_version.minor + 1}.0.dev0' UpperCamelCase : Union[str, Any] = current_version.base_version # Check with the user we got that right. UpperCamelCase : Any = input(f'Which version are we developing now? [{dev_version}]' ) if len(_UpperCAmelCase ) == 0: UpperCamelCase : List[str] = dev_version print(f'Updating version to {version}.' ) global_version_update(_UpperCAmelCase ) print("""Cleaning main README, don\'t forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": __A : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __A : Optional[int] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
499
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a ( a__ , a__ , unittest.TestCase ): snake_case__ = IFInpaintingPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_dummy_components() def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
4
0
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: """simple docstring""" __lowerCAmelCase : List[str] = FlaxXLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) __lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained("""xlm-roberta-base""" ) __lowerCAmelCase : Any = """The dog is cute and lives in the garden house""" __lowerCAmelCase : List[Any] = jnp.array([tokenizer.encode(_snake_case )] ) __lowerCAmelCase : int = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim __lowerCAmelCase : Dict = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) __lowerCAmelCase : int = model(_snake_case )["""last_hidden_state"""] self.assertEqual(output.shape , _snake_case ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , _snake_case , atol=1e-3 ) )
651
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = self.vocab_size - 1 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , head_mask=_snake_case ) lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTLMHeadModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTDoubleHeadsModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = OpenAIGPTForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case__ = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=False ): """simple docstring""" lowerCAmelCase = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_snake_case , ) lowerCAmelCase = inputs_dict['labels'] lowerCAmelCase = inputs_dict['labels'] lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_snake_case , ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_snake_case ) return inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenAIGPTModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , n_embd=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = OpenAIGPTModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_torch class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(_snake_case ) lowerCAmelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=_snake_case ) # the president is lowerCAmelCase = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCAmelCase = model.generate(_snake_case , do_sample=_snake_case ) self.assertListEqual(output_ids[0].tolist() , _snake_case )
4
0
class UpperCamelCase__ : def __init__( self : Dict , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' lowercase_ = set_counts lowercase_ = max(_snake_case ) lowercase_ = len(_snake_case ) lowercase_ = [1] * num_sets lowercase_ = list(range(_snake_case ) ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' lowercase_ = self.get_parent(_snake_case ) lowercase_ = self.get_parent(_snake_case ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ = 0 lowercase_ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ = 0 lowercase_ = src_parent lowercase_ = self.set_counts[src_parent] lowercase_ = max(self.max_set , _snake_case ) return True def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : List[Any] ): '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set lowercase_ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
412
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __UpperCamelCase : str = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=_UpperCAmelCase , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=_UpperCAmelCase , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=_UpperCAmelCase , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=_UpperCAmelCase , default='data/dump' , help='The dump file prefix.' ) lowerCAmelCase = parser.parse_args() logger.info(F'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": lowerCAmelCase = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `[CLS]` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCAmelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `<s>` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": lowerCAmelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` lowerCAmelCase = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(F'Loading text from {args.file_path}' ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: lowerCAmelCase = fp.readlines() logger.info('Start encoding' ) logger.info(F'{len(_UpperCAmelCase )} examples to process.' ) lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 1_0000 lowerCAmelCase = time.time() for text in data: lowerCAmelCase = F'{bos} {text.strip()} {sep}' lowerCAmelCase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) rslt.append(_UpperCAmelCase ) iter += 1 if iter % interval == 0: lowerCAmelCase = time.time() logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) lowerCAmelCase = time.time() logger.info('Finished binarization' ) logger.info(F'{len(_UpperCAmelCase )} examples processed.' ) lowerCAmelCase = F'{args.dump_file}.{args.tokenizer_name}.pickle' lowerCAmelCase = tokenizer.vocab_size if vocab_size < (1 << 16): lowerCAmelCase = [np.uintaa(_UpperCAmelCase ) for d in rslt] else: lowerCAmelCase = [np.intaa(_UpperCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'Dump to {dp_file}' ) with open(_UpperCAmelCase , 'wb' ) as handle: pickle.dump(rslt_ , _UpperCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
4
0
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Dict ): # Load checkpoint __UpperCAmelCase : Optional[int] = torch.load(_UpperCAmelCase , map_location="""cpu""" ) __UpperCAmelCase : List[str] = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository __UpperCAmelCase : Union[str, Any] = {} for k, v in state_dict.items(): if "pred_layer" in k: __UpperCAmelCase : Union[str, Any] = v else: __UpperCAmelCase : Optional[Any] = v __UpperCAmelCase : str = chkpt["""params"""] __UpperCAmelCase : Any = {n: v for n, v in config.items() if not isinstance(_UpperCAmelCase , (torch.FloatTensor, numpy.ndarray) )} __UpperCAmelCase : str = chkpt["""dico_word2id"""] __UpperCAmelCase : List[str] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""" , """""" ): i for s, i in vocab.items()} # Save pytorch-model __UpperCAmelCase : str = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME __UpperCAmelCase : Optional[Any] = pytorch_dump_folder_path + """/""" + CONFIG_NAME __UpperCAmelCase : Optional[Any] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(_UpperCAmelCase , indent=2 ) + """\n""" ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(_UpperCAmelCase , indent=2 ) + """\n""" ) if __name__ == "__main__": a : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a : List[Any] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
63
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''bert''' def __init__( self , _snake_case=3_05_22 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache lowerCAmelCase = classifier_dropout class a ( a__ ): @property def UpperCamelCase__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
4
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = '''▁''' lowercase_ = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowercase_ = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } lowercase_ = { '''facebook/mbart-large-50-one-to-many-mmt''': 1_024, } # fmt: off lowercase_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class __UpperCamelCase ( a__ ): """simple docstring""" lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase_ = [] lowerCAmelCase_ = [] def __init__( self : Any , _A : str , _A : List[str]=None , _A : List[Any]=None , _A : Union[str, Any]="</s>" , _A : Union[str, Any]="</s>" , _A : int="<s>" , _A : str="<unk>" , _A : int="<pad>" , _A : Any="<mask>" , _A : List[Any] = None , **_A : Optional[Any] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token __SCREAMING_SNAKE_CASE : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs __SCREAMING_SNAKE_CASE : List[str] = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_snake_case , tgt_lang=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) __SCREAMING_SNAKE_CASE : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __SCREAMING_SNAKE_CASE : Dict = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __SCREAMING_SNAKE_CASE : int = 1 __SCREAMING_SNAKE_CASE : str = len(self.sp_model ) __SCREAMING_SNAKE_CASE : Union[str, Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_snake_case ) } __SCREAMING_SNAKE_CASE : List[str] = {v: k for k, v in self.lang_code_to_id.items()} __SCREAMING_SNAKE_CASE : str = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __SCREAMING_SNAKE_CASE : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __SCREAMING_SNAKE_CASE : Optional[int] = src_lang if src_lang is not None else '''en_XX''' __SCREAMING_SNAKE_CASE : List[Any] = self.lang_code_to_id[self._src_lang] __SCREAMING_SNAKE_CASE : List[str] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCAmelCase__ ( self : int ): """simple docstring""" return self._src_lang @src_lang.setter def UpperCAmelCase__ ( self : List[str] , _A : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.__dict__.copy() __SCREAMING_SNAKE_CASE : Tuple = None return state def __setstate__( self : Optional[int] , _A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __SCREAMING_SNAKE_CASE : Tuple = {} __SCREAMING_SNAKE_CASE : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ ( self : Optional[Any] , _A : str ): """simple docstring""" return self.sp_model.encode(_snake_case , out_type=_snake_case ) def UpperCAmelCase__ ( self : List[str] , _A : str ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __SCREAMING_SNAKE_CASE : Optional[Any] = self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase__ ( self : Dict , _A : str ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase__ ( self : Any , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : Tuple = '''''' __SCREAMING_SNAKE_CASE : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_snake_case ) + token __SCREAMING_SNAKE_CASE : Union[str, Any] = True __SCREAMING_SNAKE_CASE : List[Any] = [] else: current_sub_tokens.append(_snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = False out_string += self.sp_model.decode(_snake_case ) return out_string.strip() def UpperCAmelCase__ ( self : Optional[Any] , _A : List[str] , _A : int = None ): """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __SCREAMING_SNAKE_CASE : Dict = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , '''wb''' ) as fi: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,) def UpperCAmelCase__ ( self : Optional[int] , _A : List[str] , _A : Optional[int] = None , _A : Tuple = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) __SCREAMING_SNAKE_CASE : Tuple = [1] * len(self.prefix_tokens ) __SCREAMING_SNAKE_CASE : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_snake_case )) + suffix_ones return prefix_ones + ([0] * len(_snake_case )) + ([0] * len(_snake_case )) + suffix_ones def UpperCAmelCase__ ( self : Tuple , _A : int , _A : List[str] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase__ ( self : Any , _A : str , _A : List[Any] , _A : Union[str, Any] , _A : str , **_A : Any ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang __SCREAMING_SNAKE_CASE : int = self(_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , **_snake_case ) __SCREAMING_SNAKE_CASE : Any = self.convert_tokens_to_ids(_snake_case ) __SCREAMING_SNAKE_CASE : int = tgt_lang_id return inputs def UpperCAmelCase__ ( self : str , _A : List[Any] , _A : List[Any] = "en_XX" , _A : List[Any] = None , _A : Any = "ro_RO" , **_A : Tuple , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = src_lang __SCREAMING_SNAKE_CASE : List[str] = tgt_lang return super().prepare_seqaseq_batch(_snake_case , _snake_case , **_snake_case ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase__ ( self : int ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase__ ( self : Tuple , _A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.lang_code_to_id[src_lang] __SCREAMING_SNAKE_CASE : Any = [self.cur_lang_code_id] __SCREAMING_SNAKE_CASE : Dict = [self.eos_token_id] def UpperCAmelCase__ ( self : List[str] , _A : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.lang_code_to_id[tgt_lang] __SCREAMING_SNAKE_CASE : Any = [self.cur_lang_code_id] __SCREAMING_SNAKE_CASE : int = [self.eos_token_id]
74
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( a__ , unittest.TestCase ): snake_case__ = DanceDiffusionPipeline snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_snake_case , use_timestep_embedding=_snake_case , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase = IPNDMScheduler() lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = DanceDiffusionPipeline(**_snake_case ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = pipe(**_snake_case ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_local() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
4
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer UpperCAmelCase : Union[str, Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase : int = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } UpperCAmelCase : List[str] = { '''unc-nlp/lxmert-base-uncased''': 5_12, } UpperCAmelCase : Optional[int] = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class _A( a__ ): """simple docstring""" UpperCamelCase : int = VOCAB_FILES_NAMES UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : List[str] = PRETRAINED_INIT_CONFIGURATION UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Dict = LxmertTokenizer def __init__( self , _A=None , _A=None , _A=True , _A="[UNK]" , _A="[SEP]" , _A="[PAD]" , _A="[CLS]" , _A="[MASK]" , _A=True , _A=None , **_A , ): super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , ) __A : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _snake_case ) != do_lower_case or normalizer_state.get('strip_accents' , _snake_case ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _snake_case ) != tokenize_chinese_chars ): __A : str = getattr(_snake_case , normalizer_state.pop('type' ) ) __A : Optional[Any] = do_lower_case __A : str = strip_accents __A : Optional[int] = tokenize_chinese_chars __A : Union[str, Any] = normalizer_class(**_snake_case ) __A : Dict = do_lower_case def UpperCAmelCase_ ( self , _A , _A=None ): __A : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self , _A , _A = None ): __A : List[Any] = [self.sep_token_id] __A : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self , _A , _A = None ): __A : Union[str, Any] = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case )
239
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , use_stable_embedding=_snake_case , ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = OpenLlamaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = OpenLlamaModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , ) lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() # first forward pass lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , use_cache=_snake_case , ) lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , past_key_values=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) snake_case__ = (OpenLlamaForCausalLM,) if is_torch_available() else () snake_case__ = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenLlamaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase = type self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'single_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'multi_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = OpenLlamaModel(_snake_case ) original_model.to(_snake_case ) original_model.eval() lowerCAmelCase = original_model(_snake_case ).last_hidden_state lowerCAmelCase = original_model(_snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = {'type': scaling_type, 'factor': 10.0} lowerCAmelCase = OpenLlamaModel(_snake_case ) scaled_model.to(_snake_case ) scaled_model.eval() lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
4
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' if b == 0: return 1 if (b % 2) == 0: return actual_power(_UpperCAmelCase , int(b / 2 ) ) * actual_power(_UpperCAmelCase , int(b / 2 ) ) else: return a * actual_power(_UpperCAmelCase , int(b / 2 ) ) * actual_power(_UpperCAmelCase , int(b / 2 ) ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if b < 0: return 1 / actual_power(_UpperCAmelCase , _UpperCAmelCase ) return actual_power(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
109
"""simple docstring""" from typing import Any class a : def __init__( self , _snake_case ): """simple docstring""" lowerCAmelCase = data lowerCAmelCase = None def __repr__( self ): """simple docstring""" return F'Node({self.data})' class a : def __init__( self ): """simple docstring""" lowerCAmelCase = None def __iter__( self ): """simple docstring""" lowerCAmelCase = self.head while node: yield node.data lowerCAmelCase = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(_snake_case ) for item in self] ) def __getitem__( self , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase = self.head for _ in range(_snake_case ): lowerCAmelCase = current.next lowerCAmelCase = data def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(len(self ) , _snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(0 , _snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase = Node(_snake_case ) if self.head is None: lowerCAmelCase = new_node elif index == 0: lowerCAmelCase = self.head # link new_node to head lowerCAmelCase = new_node else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = new_node def UpperCamelCase__ ( self ): # print every node data """simple docstring""" print(self ) def UpperCamelCase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def UpperCamelCase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def UpperCamelCase__ ( self , _snake_case = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase = self.head # default first node if index == 0: lowerCAmelCase = self.head.next else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = temp.next.next return delete_node.data def UpperCamelCase__ ( self ): """simple docstring""" return self.head is None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = None lowerCAmelCase = self.head while current: # Store the current node's next node. lowerCAmelCase = current.next # Make the current node's next point backwards lowerCAmelCase = prev # Make the previous node be the current node lowerCAmelCase = current # Make the current node the next node (to progress iteration) lowerCAmelCase = next_node # Return prev in order to put the head at the end lowerCAmelCase = prev def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = LinkedList() assert linked_list.is_empty() is True assert str(_UpperCAmelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_UpperCAmelCase ) == i linked_list.insert_nth(_UpperCAmelCase , i + 1 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_UpperCAmelCase ) == 9 assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(-8 , 1 ) ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = [ -9, 100, Node(7734_5112 ), 'dlrow olleH', 7, 5555, 0, -192.5_5555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase = LinkedList() for i in test_input: linked_list.insert_tail(_UpperCAmelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase = linked_list.delete_head() assert result == -9 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_UpperCAmelCase ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_UpperCAmelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _SCREAMING_SNAKE_CASE (): from doctest import testmod testmod() lowerCAmelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_UpperCAmelCase ) print('\nReading/changing Node data using indexing:' ) print(F'Element at Position 1: {linked_list[1]}' ) lowerCAmelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_UpperCAmelCase ) print(F'length of linked_list is : {len(_UpperCAmelCase )}' ) if __name__ == "__main__": main()
4
0
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a_ : int = TypeVar('T') def __lowercase( UpperCAmelCase__ ): """simple docstring""" return (position - 1) // 2 def __lowercase( UpperCAmelCase__ ): """simple docstring""" return (2 * position) + 1 def __lowercase( UpperCAmelCase__ ): """simple docstring""" return (2 * position) + 2 class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__(self ): '''simple docstring''' lowerCamelCase = [] lowerCamelCase = {} lowerCamelCase = 0 def __len__(self ): '''simple docstring''' return self.elements def __repr__(self ): '''simple docstring''' return str(self.heap ) def _a (self ): '''simple docstring''' return self.elements == 0 def _a (self , __a , __a ): '''simple docstring''' self.heap.append((elem, weight) ) lowerCamelCase = self.elements self.elements += 1 self._bubble_up(_snake_case ) def _a (self ): '''simple docstring''' if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) lowerCamelCase , lowerCamelCase = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: lowerCamelCase , lowerCamelCase = self.heap[0] self._bubble_down(_snake_case ) return elem def _a (self , __a , __a ): '''simple docstring''' lowerCamelCase = self.position_map[elem] lowerCamelCase = (elem, weight) if position > 0: lowerCamelCase = get_parent_position(_snake_case ) lowerCamelCase , lowerCamelCase = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_snake_case ) else: self._bubble_down(_snake_case ) else: self._bubble_down(_snake_case ) def _a (self , __a ): '''simple docstring''' lowerCamelCase = self.position_map[elem] if curr_pos == 0: return None lowerCamelCase = get_parent_position(_snake_case ) lowerCamelCase , lowerCamelCase = self.heap[curr_pos] lowerCamelCase , lowerCamelCase = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_snake_case , _snake_case ) return self._bubble_up(_snake_case ) return None def _a (self , __a ): '''simple docstring''' lowerCamelCase = self.position_map[elem] lowerCamelCase , lowerCamelCase = self.heap[curr_pos] lowerCamelCase = get_child_left_position(_snake_case ) lowerCamelCase = get_child_right_position(_snake_case ) if child_left_position < self.elements and child_right_position < self.elements: lowerCamelCase , lowerCamelCase = self.heap[child_left_position] lowerCamelCase , lowerCamelCase = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_snake_case , _snake_case ) return self._bubble_down(_snake_case ) if child_left_position < self.elements: lowerCamelCase , lowerCamelCase = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_snake_case , _snake_case ) return self._bubble_down(_snake_case ) else: return None if child_right_position < self.elements: lowerCamelCase , lowerCamelCase = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_snake_case , _snake_case ) return self._bubble_down(_snake_case ) return None def _a (self , __a , __a ): '''simple docstring''' lowerCamelCase = self.heap[nodea_pos][0] lowerCamelCase = self.heap[nodea_pos][0] lowerCamelCase , lowerCamelCase = ( self.heap[nodea_pos], self.heap[nodea_pos], ) lowerCamelCase = nodea_pos lowerCamelCase = nodea_pos class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__(self ): '''simple docstring''' lowerCamelCase = {} lowerCamelCase = 0 def __repr__(self ): '''simple docstring''' return str(self.connections ) def __len__(self ): '''simple docstring''' return self.nodes def _a (self , __a ): '''simple docstring''' if node not in self.connections: lowerCamelCase = {} self.nodes += 1 def _a (self , __a , __a , __a ): '''simple docstring''' self.add_node(_snake_case ) self.add_node(_snake_case ) lowerCamelCase = weight lowerCamelCase = weight def __lowercase( UpperCAmelCase__ , ): """simple docstring""" lowerCamelCase = {node: maxsize for node in graph.connections} lowerCamelCase = {node: None for node in graph.connections} lowerCamelCase = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_UpperCAmelCase , _UpperCAmelCase ) if priority_queue.is_empty(): return dist, parent # initialization lowerCamelCase = priority_queue.extract_min() lowerCamelCase = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCamelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_UpperCAmelCase , dist[neighbour] ) lowerCamelCase = node # running prim's algorithm while not priority_queue.is_empty(): lowerCamelCase = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCamelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_UpperCAmelCase , dist[neighbour] ) lowerCamelCase = node return dist, parent
623
"""simple docstring""" from __future__ import annotations import requests def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(_UpperCAmelCase ).json() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' lowerCAmelCase = requests.get(_UpperCAmelCase ).json()[:max_stories] return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = hackernews_top_stories(_UpperCAmelCase ) return "\n".join('* [{title}]({url})'.format(**_UpperCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
0
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('''.''') def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Union[str, Any] = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( """`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """ f'{test_file} instead.' ) A_ : Dict = components[-1] if not test_fn.endswith("""py""" ): raise ValueError(f'`test_file` should be a python file. Got {test_fn} instead.' ) if not test_fn.startswith("""test_modeling_""" ): raise ValueError( f'`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.' ) A_ : Union[str, Any] = components[:-1] + [test_fn.replace(""".py""" , """""" )] A_ : Optional[int] = """.""".join(_UpperCAmelCase ) return test_module_path def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = get_module_path(_UpperCAmelCase ) A_ : Optional[int] = importlib.import_module(_UpperCAmelCase ) return test_module def a ( lowerCamelCase__ ): '''simple docstring''' A_ : str = [] A_ : List[str] = get_test_module(_UpperCAmelCase ) for attr in dir(_UpperCAmelCase ): if attr.endswith("""ModelTester""" ): tester_classes.append(getattr(_UpperCAmelCase , _UpperCAmelCase ) ) # sort with class names return sorted(_UpperCAmelCase , key=lambda lowerCamelCase__ : x.__name__ ) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[Any] = [] A_ : List[Any] = get_test_module(_UpperCAmelCase ) for attr in dir(_UpperCAmelCase ): A_ : Tuple = getattr(_UpperCAmelCase , _UpperCAmelCase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). A_ : Tuple = getattr(_UpperCAmelCase , """all_model_classes""" , [] ) if len(_UpperCAmelCase ) > 0: test_classes.append(_UpperCAmelCase ) # sort with class names return sorted(_UpperCAmelCase , key=lambda lowerCamelCase__ : x.__name__ ) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Union[str, Any] = get_test_classes(_UpperCAmelCase ) A_ : int = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_UpperCAmelCase , key=lambda lowerCamelCase__ : x.__name__ ) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Dict = test_class() if hasattr(_UpperCAmelCase , """setUp""" ): test.setUp() A_ : Optional[int] = None if hasattr(_UpperCAmelCase , """model_tester""" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: A_ : List[str] = test.model_tester.__class__ return model_tester def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Optional[int] = get_test_classes(_UpperCAmelCase ) A_ : Optional[int] = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_UpperCAmelCase ) # sort with class names return sorted(_UpperCAmelCase , key=lambda lowerCamelCase__ : x.__name__ ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : int = get_test_classes_for_model(_UpperCAmelCase , _UpperCAmelCase ) A_ : List[str] = [] for test_class in test_classes: A_ : Optional[int] = get_model_tester_from_test_class(_UpperCAmelCase ) if tester_class is not None: tester_classes.append(_UpperCAmelCase ) # sort with class names return sorted(_UpperCAmelCase , key=lambda lowerCamelCase__ : x.__name__ ) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[Any] = get_test_classes(_UpperCAmelCase ) A_ : Tuple = {test_class: get_model_tester_from_test_class(_UpperCAmelCase ) for test_class in test_classes} return test_tester_mapping def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Union[str, Any] = get_model_classes(_UpperCAmelCase ) A_ : int = { model_class: get_test_classes_for_model(_UpperCAmelCase , _UpperCAmelCase ) for model_class in model_classes } return model_test_mapping def a ( lowerCamelCase__ ): '''simple docstring''' A_ : str = get_model_classes(_UpperCAmelCase ) A_ : Optional[Any] = { model_class: get_tester_classes_for_model(_UpperCAmelCase , _UpperCAmelCase ) for model_class in model_classes } return model_to_tester_mapping def a ( lowerCamelCase__ ): '''simple docstring''' if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return o elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): return o.__name__ elif isinstance(_UpperCAmelCase , (list, tuple) ): return [to_json(_UpperCAmelCase ) for x in o] elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): return {to_json(_UpperCAmelCase ): to_json(_UpperCAmelCase ) for k, v in o.items()} else: return o
667
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ): lowerCAmelCase = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 48 lowerCAmelCase = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 60 lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCAmelCase = 1 lowerCAmelCase = 1 lowerCAmelCase = 126 lowerCAmelCase = 7 lowerCAmelCase = 255.0 lowerCAmelCase = '' return config def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): if "patch_embed.proj" in name and "layers" not in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCAmelCase = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: lowerCAmelCase = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: lowerCAmelCase = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: lowerCAmelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCAmelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCAmelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCAmelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: lowerCAmelCase = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: lowerCAmelCase = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: lowerCAmelCase = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: lowerCAmelCase = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": lowerCAmelCase = 'layernorm.weight' if name == "norm.bias": lowerCAmelCase = 'layernorm.bias' if "conv_first" in name: lowerCAmelCase = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCAmelCase = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCAmelCase = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: lowerCAmelCase = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: lowerCAmelCase = name.replace('upsample.2' , 'upsample.convolution_1' ) lowerCAmelCase = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": lowerCAmelCase = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) lowerCAmelCase = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: lowerCAmelCase = 'swin2sr.' + name return name def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict ): for key in orig_state_dict.copy().keys(): lowerCAmelCase = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: lowerCAmelCase = key.split('.' ) lowerCAmelCase = int(key_split[1] ) lowerCAmelCase = int(key_split[4] ) lowerCAmelCase = config.embed_dim if "weight" in key: lowerCAmelCase = val[:dim, :] lowerCAmelCase = val[dim : dim * 2, :] lowerCAmelCase = val[-dim:, :] else: lowerCAmelCase = val[:dim] lowerCAmelCase = val[dim : dim * 2] lowerCAmelCase = val[-dim:] pass else: lowerCAmelCase = val return orig_state_dict def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ): lowerCAmelCase = get_config(_UpperCAmelCase ) lowerCAmelCase = SwinaSRForImageSuperResolution(_UpperCAmelCase ) model.eval() lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' ) lowerCAmelCase = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_UpperCAmelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowerCAmelCase = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) lowerCAmelCase = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCAmelCase = 126 if 'Jpeg' in checkpoint_url else 256 lowerCAmelCase = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowerCAmelCase = transforms(_UpperCAmelCase ).unsqueeze(0 ) if config.num_channels == 1: lowerCAmelCase = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCAmelCase = model(_UpperCAmelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-3 ) print('Looks ok!' ) lowerCAmelCase = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } lowerCAmelCase = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') __UpperCamelCase : Optional[int] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
0
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __snake_case : Dict = logging.get_logger(__name__) def _lowercase ( __snake_case ,__snake_case ,__snake_case ,__snake_case=None ,__snake_case=None ) -> Tuple: # Recurse if needed if "." in tensor_name: __lowerCAmelCase : Union[str, Any] = tensor_name.split("." ) for split in splits[:-1]: __lowerCAmelCase : List[str] = getattr(_UpperCAmelCase ,_UpperCAmelCase ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) __lowerCAmelCase : Optional[Any] = new_module __lowerCAmelCase : str = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) __lowerCAmelCase : int = tensor_name in module._buffers __lowerCAmelCase : List[Any] = getattr(_UpperCAmelCase ,_UpperCAmelCase ) if old_value.device == torch.device("meta" ) and device not in ["meta", torch.device("meta" )] and value is None: raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) __lowerCAmelCase : str = False __lowerCAmelCase : str = False if is_buffer or not is_bitsandbytes_available(): __lowerCAmelCase : int = False __lowerCAmelCase : str = False else: __lowerCAmelCase : Union[str, Any] = hasattr(bnb.nn ,"Params4bit" ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) __lowerCAmelCase : List[Any] = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: __lowerCAmelCase : List[str] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: __lowerCAmelCase : List[str] = old_value.to(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase ,torch.Tensor ): __lowerCAmelCase : Optional[int] = value.to("cpu" ) if value.dtype == torch.inta: __lowerCAmelCase : List[Any] = version.parse(importlib.metadata.version("bitsandbytes" ) ) > version.parse( "0.37.2" ) if not is_abit_serializable: raise ValueError( "Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) else: __lowerCAmelCase : int = torch.tensor(_UpperCAmelCase ,device="cpu" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,_UpperCAmelCase ) and fpaa_statistics is None: __lowerCAmelCase : Tuple = new_value.T __lowerCAmelCase : int = old_value.__dict__ if is_abit: __lowerCAmelCase : Any = bnb.nn.IntaParams(_UpperCAmelCase ,requires_grad=_UpperCAmelCase ,**_UpperCAmelCase ).to(_UpperCAmelCase ) elif is_abit: __lowerCAmelCase : Dict = bnb.nn.Paramsabit(_UpperCAmelCase ,requires_grad=_UpperCAmelCase ,**_UpperCAmelCase ).to(_UpperCAmelCase ) __lowerCAmelCase : int = new_value if fpaa_statistics is not None: setattr(module.weight ,"SCB" ,fpaa_statistics.to(_UpperCAmelCase ) ) else: if value is None: __lowerCAmelCase : Optional[Any] = old_value.to(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase ,torch.Tensor ): __lowerCAmelCase : Optional[int] = value.to(_UpperCAmelCase ) else: __lowerCAmelCase : Tuple = torch.tensor(_UpperCAmelCase ,device=_UpperCAmelCase ) if is_buffer: __lowerCAmelCase : Dict = new_value else: __lowerCAmelCase : Optional[Any] = nn.Parameter(_UpperCAmelCase ,requires_grad=old_value.requires_grad ) __lowerCAmelCase : Optional[Any] = new_value def _lowercase ( __snake_case ,__snake_case=None ,__snake_case=None ,__snake_case=None ,__snake_case=False ) -> Optional[int]: for name, module in model.named_children(): if current_key_name is None: __lowerCAmelCase : Any = [] current_key_name.append(_UpperCAmelCase ) if (isinstance(_UpperCAmelCase ,nn.Linear ) or isinstance(_UpperCAmelCase ,_UpperCAmelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in ".".join(_UpperCAmelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): __lowerCAmelCase , __lowerCAmelCase : Any = module.weight.shape else: __lowerCAmelCase : Optional[int] = module.in_features __lowerCAmelCase : List[Any] = module.out_features if quantization_config.quantization_method() == "llm_int8": __lowerCAmelCase : int = bnb.nn.LinearabitLt( _UpperCAmelCase ,_UpperCAmelCase ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) __lowerCAmelCase : Optional[int] = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: __lowerCAmelCase : Dict = bnb.nn.Linearabit( _UpperCAmelCase ,_UpperCAmelCase ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) __lowerCAmelCase : Tuple = True # Store the module class in case we need to transpose the weight later __lowerCAmelCase : str = type(_UpperCAmelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_UpperCAmelCase ) if len(list(module.children() ) ) > 0: __lowerCAmelCase , __lowerCAmelCase : int = _replace_with_bnb_linear( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,has_been_replaced=_UpperCAmelCase ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _lowercase ( __snake_case ,__snake_case=None ,__snake_case=None ,__snake_case=None ) -> List[Any]: __lowerCAmelCase : List[Any] = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert __lowerCAmelCase , __lowerCAmelCase : str = _replace_with_bnb_linear( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def _lowercase ( *__snake_case ,**__snake_case ) -> str: warnings.warn( "`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead" ,_UpperCAmelCase ,) return replace_with_bnb_linear(*_UpperCAmelCase ,**_UpperCAmelCase ) def _lowercase ( *__snake_case ,**__snake_case ) -> List[str]: warnings.warn( "`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead" ,_UpperCAmelCase ,) return set_module_quantized_tensor_to_device(*_UpperCAmelCase ,**_UpperCAmelCase ) def _lowercase ( __snake_case ) -> Any: __lowerCAmelCase : Dict = deepcopy(_UpperCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() __lowerCAmelCase : Optional[Any] = find_tied_parameters(_UpperCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): __lowerCAmelCase : Any = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: __lowerCAmelCase : Tuple = sum(_UpperCAmelCase ,[] ) __lowerCAmelCase : List[str] = len(_UpperCAmelCase ) > 0 # Check if it is a base model __lowerCAmelCase : Optional[Any] = not hasattr(_UpperCAmelCase ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head __lowerCAmelCase : Any = list(model.named_children() ) __lowerCAmelCase : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights __lowerCAmelCase : List[Any] = set(_UpperCAmelCase ) - set(_UpperCAmelCase ) __lowerCAmelCase : Any = list(set(_UpperCAmelCase ) ) + list(_UpperCAmelCase ) # remove ".weight" from the keys __lowerCAmelCase : Optional[Any] = [".weight", ".bias"] __lowerCAmelCase : Dict = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: __lowerCAmelCase : Any = name.replace(_UpperCAmelCase ,"" ) filtered_module_names.append(_UpperCAmelCase ) return filtered_module_names
293
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''megatron-bert''' def __init__( self , _snake_case=2_90_56 , _snake_case=10_24 , _snake_case=24 , _snake_case=16 , _snake_case=40_96 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache
4
0
'''simple docstring''' import math def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : int = len(_UpperCAmelCase ) lowercase__ : Union[str, Any] = int(math.floor(math.sqrt(_UpperCAmelCase ) ) ) lowercase__ : Any = 0 while arr[min(_UpperCAmelCase , _UpperCAmelCase ) - 1] < x: lowercase__ : List[str] = step step += int(math.floor(math.sqrt(_UpperCAmelCase ) ) ) if prev >= n: return -1 while arr[prev] < x: lowercase__ : Dict = prev + 1 if prev == min(_UpperCAmelCase , _UpperCAmelCase ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": __a: str = input("""Enter numbers separated by a comma:\n""").strip() __a: Any = [int(item) for item in user_input.split(""",""")] __a: Dict = int(input("""Enter the number to be searched:\n""")) __a: List[str] = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(F'Number {x} is at index {res}')
152
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
4
0
"""simple docstring""" from scipy.stats import pearsonr import datasets __A : Tuple = ''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' __A : Tuple = ''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' __A : Any = ''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def a_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): if return_pvalue: UpperCamelCase : List[str] = pearsonr(_snake_case , _snake_case ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(_snake_case , _snake_case )[0] )}
499
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class a ( a__ ): snake_case__ = 42 class a ( a__ , a__ ): @register_to_config def __init__( self , _snake_case = 3 , _snake_case = 3 , _snake_case = ("DownEncoderBlock2D",) , _snake_case = ("UpDecoderBlock2D",) , _snake_case = (64,) , _snake_case = 1 , _snake_case = "silu" , _snake_case = 3 , _snake_case = 32 , _snake_case = 2_56 , _snake_case = 32 , _snake_case = None , _snake_case = 0.18_215 , _snake_case = "group" , ): """simple docstring""" super().__init__() # pass init params to Encoder lowerCAmelCase = Encoder( in_channels=_snake_case , out_channels=_snake_case , down_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , double_z=_snake_case , ) lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 ) lowerCAmelCase = VectorQuantizer(_snake_case , _snake_case , beta=0.25 , remap=_snake_case , sane_index_shape=_snake_case ) lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 ) # pass init params to Decoder lowerCAmelCase = Decoder( in_channels=_snake_case , out_channels=_snake_case , up_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , norm_type=_snake_case , ) @apply_forward_hook def UpperCamelCase__ ( self , _snake_case , _snake_case = True ): """simple docstring""" lowerCAmelCase = self.encoder(_snake_case ) lowerCAmelCase = self.quant_conv(_snake_case ) if not return_dict: return (h,) return VQEncoderOutput(latents=_snake_case ) @apply_forward_hook def UpperCamelCase__ ( self , _snake_case , _snake_case = False , _snake_case = True ): """simple docstring""" if not force_not_quantize: lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = self.quantize(_snake_case ) else: lowerCAmelCase = h lowerCAmelCase = self.post_quant_conv(_snake_case ) lowerCAmelCase = self.decoder(_snake_case , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case = True ): """simple docstring""" lowerCAmelCase = sample lowerCAmelCase = self.encode(_snake_case ).latents lowerCAmelCase = self.decode(_snake_case ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_snake_case )
4
0
from __future__ import annotations def snake_case_ (__A : list , __A : int , __A : int , __A : int ) -> List[Any]: __lowerCAmelCase : List[Any] = [] __lowerCAmelCase ,__lowerCAmelCase : Any = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) __lowerCAmelCase : Optional[int] = result + left + right return input_list def snake_case_ (__A : list ) -> List[Any]: if len(_UpperCAmelCase ) <= 1: return input_list __lowerCAmelCase : List[Any] = list(_UpperCAmelCase ) # iteration for two-way merging __lowerCAmelCase : Union[str, Any] = 2 while p <= len(_UpperCAmelCase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ): __lowerCAmelCase : Optional[Any] = i __lowerCAmelCase : Optional[int] = i + p - 1 __lowerCAmelCase : int = (low + high + 1) // 2 __lowerCAmelCase : Tuple = merge(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # final merge of last two parts if p * 2 >= len(_UpperCAmelCase ): __lowerCAmelCase : str = i __lowerCAmelCase : Optional[Any] = merge(_UpperCAmelCase , 0 , _UpperCAmelCase , len(_UpperCAmelCase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": __UpperCAmelCase = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": __UpperCAmelCase = [] else: __UpperCAmelCase = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
651
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping __UpperCamelCase : Optional[Any] = tuple[int, int] class a : def __init__( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = vertices lowerCAmelCase = { (min(_snake_case ), max(_snake_case )): weight for edge, weight in edges.items() } def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase = weight def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Graph({min(self.vertices )} , {} ) lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase = edge lowerCAmelCase = weight subgraph.add_edge(_snake_case , _snake_case ) return subgraph def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "p107_network.txt" ): lowerCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) ) lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = {} lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 with open(_UpperCAmelCase ) as f: lowerCAmelCase = f.read().strip().split('\n' ) lowerCAmelCase = [line.split(',' ) for line in data] for edgea in range(1 , len(_UpperCAmelCase ) ): for edgea in range(_UpperCAmelCase ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase = Graph(set(range(len(_UpperCAmelCase ) ) ) , _UpperCAmelCase ) lowerCAmelCase = graph.prims_algorithm() lowerCAmelCase = sum(graph.edges.values() ) lowerCAmelCase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
4
0
import os # Precomputes a list of the 100 first triangular numbers a = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def UpperCAmelCase_ ( ): lowercase_ = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) lowercase_ = os.path.join(_UpperCAmelCase , """words.txt""" ) lowercase_ = """""" with open(_UpperCAmelCase ) as f: lowercase_ = f.readline() lowercase_ = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] lowercase_ = [ word for word in [sum(ord(_UpperCAmelCase ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
412
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCAmelCase )] ) lowerCAmelCase = np.array(_UpperCAmelCase ) lowerCAmelCase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCAmelCase ) ) , x.transpose() ) , _UpperCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = (1, 2, 1) lowerCAmelCase = (1, 1, 0, 7) lowerCAmelCase = SARIMAX( _UpperCAmelCase , exog=_UpperCAmelCase , order=_UpperCAmelCase , seasonal_order=_UpperCAmelCase ) lowerCAmelCase = model.fit(disp=_UpperCAmelCase , maxiter=600 , method='nm' ) lowerCAmelCase = model_fit.predict(1 , len(_UpperCAmelCase ) , exog=[test_match] ) return result[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = regressor.predict(_UpperCAmelCase ) return y_pred[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ): train_user.sort() lowerCAmelCase = np.percentile(_UpperCAmelCase , 25 ) lowerCAmelCase = np.percentile(_UpperCAmelCase , 75 ) lowerCAmelCase = qa - qa lowerCAmelCase = qa - (iqr * 0.1) return low_lim def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : float ): lowerCAmelCase = 0 lowerCAmelCase = 0 for i in list_vote: if i > actual_result: lowerCAmelCase = not_safe + 1 else: if abs(abs(_UpperCAmelCase ) - abs(_UpperCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __UpperCamelCase : Optional[Any] = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] __UpperCamelCase : Any = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) __UpperCamelCase : Dict = Normalizer().fit_transform(data_input_df.values) # split data __UpperCamelCase : Dict = normalize_df[:, 2].tolist() __UpperCamelCase : Union[str, Any] = normalize_df[:, 0].tolist() __UpperCamelCase : List[str] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __UpperCamelCase : Optional[int] = normalize_df[:, [1, 2]].tolist() __UpperCamelCase : Tuple = x[: len(x) - 1] __UpperCamelCase : Any = x[len(x) - 1 :] # for linear regression & sarimax __UpperCamelCase : str = total_date[: len(total_date) - 1] __UpperCamelCase : Union[str, Any] = total_user[: len(total_user) - 1] __UpperCamelCase : List[Any] = total_match[: len(total_match) - 1] __UpperCamelCase : Optional[Any] = total_date[len(total_date) - 1 :] __UpperCamelCase : str = total_user[len(total_user) - 1 :] __UpperCamelCase : str = total_match[len(total_match) - 1 :] # voting system with forecasting __UpperCamelCase : Any = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __UpperCamelCase : List[str] = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('''Today\'s data is {not_str}safe.''')
4
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a : Optional[int] = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys a : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
63
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=_UpperCAmelCase , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=_UpperCAmelCase , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=_UpperCAmelCase , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=_UpperCAmelCase , default=0 , help='cuda_id.' , ) lowerCAmelCase = parser.parse_args() return args def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ): if not len(_UpperCAmelCase ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) lowerCAmelCase ,lowerCAmelCase = imgs[0].size lowerCAmelCase = Image.new('RGB' , size=(cols * w, rows * h) ) lowerCAmelCase ,lowerCAmelCase = grid.size for i, img in enumerate(_UpperCAmelCase ): grid.paste(_UpperCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]="robotic cat with wings" , _UpperCAmelCase : Optional[int]=7.5 , _UpperCAmelCase : Dict=50 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=42 , ): lowerCAmelCase = torch.Generator(pipeline.device ).manual_seed(_UpperCAmelCase ) lowerCAmelCase = pipeline( _UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , ).images lowerCAmelCase = int(math.sqrt(_UpperCAmelCase ) ) lowerCAmelCase = image_grid(_UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __UpperCamelCase : Optional[Any] = parse_args() # Load models and create wrapper for stable diffusion __UpperCamelCase : List[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') __UpperCamelCase : str = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') __UpperCamelCase : Optional[int] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') __UpperCamelCase : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') __UpperCamelCase : Tuple = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __UpperCamelCase : Union[str, Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): __UpperCamelCase : Dict = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: __UpperCamelCase : Dict = unet.to(torch.device('''cuda''', args.cuda_id)) __UpperCamelCase : Optional[Any] = pipeline.to(unet.device) __UpperCamelCase ,__UpperCamelCase : List[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) __UpperCamelCase : int = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
4
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowercase_ = logging.get_logger(__name__) lowercase_ = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class __UpperCamelCase ( a__ ): """simple docstring""" lowerCAmelCase_ = '''dpt''' def __init__( self : Any , _A : Dict=768 , _A : str=12 , _A : str=12 , _A : Union[str, Any]=3072 , _A : List[Any]="gelu" , _A : str=0.0 , _A : Union[str, Any]=0.0 , _A : List[Any]=0.02 , _A : str=1e-12 , _A : Union[str, Any]=384 , _A : List[str]=16 , _A : Optional[Any]=3 , _A : Tuple=False , _A : Any=True , _A : List[str]=[2, 5, 8, 11] , _A : str="project" , _A : Union[str, Any]=[4, 2, 1, 0.5] , _A : List[Any]=[96, 192, 384, 768] , _A : Any=256 , _A : Any=-1 , _A : Dict=False , _A : List[Any]=True , _A : Dict=0.4 , _A : Optional[int]=255 , _A : str=0.1 , _A : Dict=[1, 1024, 24, 24] , _A : str=[0, 1] , _A : Optional[int]=None , **_A : Optional[int] , ): """simple docstring""" super().__init__(**_snake_case ) __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size __SCREAMING_SNAKE_CASE : Tuple = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) __SCREAMING_SNAKE_CASE : int = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } __SCREAMING_SNAKE_CASE : Dict = BitConfig(**_snake_case ) elif isinstance(_snake_case , _snake_case ): logger.info('''Initializing the config with a `BiT` backbone.''' ) __SCREAMING_SNAKE_CASE : Tuple = BitConfig(**_snake_case ) elif isinstance(_snake_case , _snake_case ): __SCREAMING_SNAKE_CASE : Optional[int] = backbone_config else: raise ValueError( F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) __SCREAMING_SNAKE_CASE : List[str] = backbone_featmap_shape __SCREAMING_SNAKE_CASE : str = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE : Any = None __SCREAMING_SNAKE_CASE : List[Any] = [] __SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads __SCREAMING_SNAKE_CASE : List[str] = intermediate_size __SCREAMING_SNAKE_CASE : List[str] = hidden_act __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Dict = initializer_range __SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps __SCREAMING_SNAKE_CASE : Union[str, Any] = image_size __SCREAMING_SNAKE_CASE : Dict = patch_size __SCREAMING_SNAKE_CASE : List[Any] = num_channels __SCREAMING_SNAKE_CASE : Optional[Any] = qkv_bias __SCREAMING_SNAKE_CASE : List[Any] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) __SCREAMING_SNAKE_CASE : int = readout_type __SCREAMING_SNAKE_CASE : str = reassemble_factors __SCREAMING_SNAKE_CASE : Union[str, Any] = neck_hidden_sizes __SCREAMING_SNAKE_CASE : Optional[int] = fusion_hidden_size __SCREAMING_SNAKE_CASE : Optional[int] = head_in_index __SCREAMING_SNAKE_CASE : Union[str, Any] = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE : str = use_auxiliary_head __SCREAMING_SNAKE_CASE : str = auxiliary_loss_weight __SCREAMING_SNAKE_CASE : List[Any] = semantic_loss_ignore_index __SCREAMING_SNAKE_CASE : Any = semantic_classifier_dropout def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.backbone_config.to_dict() __SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
74
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : List[int] ): lowerCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ), F'{len(_UpperCAmelCase )} != {len(_UpperCAmelCase )}' dest_layers.load_state_dict(layers_to_copy.state_dict() ) __UpperCamelCase : Optional[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } __UpperCamelCase : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ): try: lowerCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first' F' {n_student}' ) return list(range(_UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ): if n_student > n_teacher: raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' ) elif n_teacher == n_student: return list(range(_UpperCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, PreTrainedModel] , _UpperCAmelCase : Union[str, Path] = "student" , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ): lowerCAmelCase = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(_UpperCAmelCase , _UpperCAmelCase ): AutoTokenizer.from_pretrained(_UpperCAmelCase ).save_pretrained(_UpperCAmelCase ) # purely for convenience lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).eval() else: assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), F'teacher must be a model or string got type {type(_UpperCAmelCase )}' lowerCAmelCase = teacher.config.to_diff_dict() try: lowerCAmelCase ,lowerCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: lowerCAmelCase = teacher_e if d is None: lowerCAmelCase = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): lowerCAmelCase ,lowerCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: lowerCAmelCase ,lowerCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: lowerCAmelCase = teacher_e if d is None: lowerCAmelCase = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(_UpperCAmelCase ) # Copy weights lowerCAmelCase = teacher.config_class(**_UpperCAmelCase ) lowerCAmelCase = AutoModelForSeqaSeqLM.from_config(_UpperCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. lowerCAmelCase = student.load_state_dict(teacher.state_dict() , strict=_UpperCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save lowerCAmelCase ,lowerCAmelCase = list(range(_UpperCAmelCase ) ), list(range(_UpperCAmelCase ) ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to' F' {save_path}' ) student.save_pretrained(_UpperCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase ) if d_layers_to_copy is None: lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase ) try: if hasattr( _UpperCAmelCase , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _UpperCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _UpperCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _UpperCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _UpperCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , _UpperCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , _UpperCAmelCase ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' ) lowerCAmelCase = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(_UpperCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
4
0
def _SCREAMING_SNAKE_CASE ( a ) -> Tuple: return str(_UpperCAmelCase ) == str(_UpperCAmelCase )[::-1] def _SCREAMING_SNAKE_CASE ( a ) -> List[str]: return int(_UpperCAmelCase ) + int(str(_UpperCAmelCase )[::-1] ) def _SCREAMING_SNAKE_CASE ( a = 1_00_00 ) -> int: __A : Optional[Any] = [] for num in range(1 , _UpperCAmelCase ): __A : Optional[Any] = 0 __A : Dict = num while iterations < 50: __A : Tuple = sum_reverse(_UpperCAmelCase ) iterations += 1 if is_palindrome(_UpperCAmelCase ): break else: lychrel_nums.append(_UpperCAmelCase ) return len(_UpperCAmelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
239
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Dict = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
0
'''simple docstring''' import os def __magic_name__ ( __UpperCAmelCase = "input.txt" ) -> str: '''simple docstring''' with open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) as input_file: __SCREAMING_SNAKE_CASE = [ [int(_UpperCAmelCase ) for element in line.split(""",""" )] for line in input_file.readlines() ] __SCREAMING_SNAKE_CASE = len(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = len(matrix[0] ) __SCREAMING_SNAKE_CASE = [[-1 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): __SCREAMING_SNAKE_CASE = matrix[i][0] for j in range(1 , _UpperCAmelCase ): for i in range(_UpperCAmelCase ): __SCREAMING_SNAKE_CASE = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _UpperCAmelCase ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'''{solution() = }''')
109
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ): lowerCAmelCase = 0.00 lowerCAmelCase = 0 for resistor in resistors: if resistor <= 0: lowerCAmelCase = F'Resistor at index {index} has a negative or zero value!' raise ValueError(_UpperCAmelCase ) first_sum += 1 / float(_UpperCAmelCase ) index += 1 return 1 / first_sum def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ): lowerCAmelCase = 0.00 lowerCAmelCase = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowerCAmelCase = F'Resistor at index {index} has a negative value!' raise ValueError(_UpperCAmelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
4
0
import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union a_ : int = re.compile(R'^(?P<major>\d+)' R'\.(?P<minor>\d+)' R'\.(?P<patch>\d+)$') @total_ordering @dataclass class lowerCamelCase__ : """simple docstring""" _A = 42 _A = None _A = None _A = None _A = None def _a (self ): '''simple docstring''' lowerCamelCase , lowerCamelCase , lowerCamelCase = _str_to_version_tuple(self.version_str ) def __repr__(self ): '''simple docstring''' return F"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}""" @property def _a (self ): '''simple docstring''' return self.major, self.minor, self.patch def _a (self , __a ): '''simple docstring''' if isinstance(_snake_case , _snake_case ): return Version(_snake_case ) elif isinstance(_snake_case , _snake_case ): return other raise TypeError(F"""{other} (type {type(_snake_case )}) cannot be compared to version.""" ) def __eq__(self , __a ): '''simple docstring''' try: lowerCamelCase = self._validate_operand(_snake_case ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__(self , __a ): '''simple docstring''' lowerCamelCase = self._validate_operand(_snake_case ) return self.tuple < other.tuple def __hash__(self ): '''simple docstring''' return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def _a (cls , __a ): '''simple docstring''' lowerCamelCase = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def _a (self ): '''simple docstring''' return self.version_str def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = _VERSION_REG.match(_UpperCAmelCase ) if not res: raise ValueError(F"""Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.""" ) return tuple(int(_UpperCAmelCase ) for v in [res.group("major" ), res.group("minor" ), res.group("patch" )] ) def __lowercase( UpperCAmelCase__ ): """simple docstring""" return ".".join(str(_UpperCAmelCase ) for v in version_tuple )
623
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''', # See all GLPN models at https://huggingface.co/models?filter=glpn } class a ( a__ ): snake_case__ = '''glpn''' def __init__( self , _snake_case=3 , _snake_case=4 , _snake_case=[2, 2, 2, 2] , _snake_case=[8, 4, 2, 1] , _snake_case=[32, 64, 1_60, 2_56] , _snake_case=[7, 3, 3, 3] , _snake_case=[4, 2, 2, 2] , _snake_case=[1, 2, 5, 8] , _snake_case=[4, 4, 4, 4] , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=0.1 , _snake_case=1E-6 , _snake_case=64 , _snake_case=10 , _snake_case=-1 , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = num_channels lowerCAmelCase = num_encoder_blocks lowerCAmelCase = depths lowerCAmelCase = sr_ratios lowerCAmelCase = hidden_sizes lowerCAmelCase = patch_sizes lowerCAmelCase = strides lowerCAmelCase = mlp_ratios lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = drop_path_rate lowerCAmelCase = layer_norm_eps lowerCAmelCase = decoder_hidden_size lowerCAmelCase = max_depth lowerCAmelCase = head_in_index
4
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): A_ : Optional[int] = tf.convert_to_tensor( [ [ 8.2_22_09_91, # 3rd highest value; idx. 0 -0.5_62_00_44, 5.23_22_97_52, 4.0_38_63_93, -6.8_79_83_78, -0.54_78_58_02, -3.2_01_21_53, 2.92_77_71_76, 1.88_17_19_53, 7.35_34_12_76, # 5th highest value; idx. 9 8.43_20_78_33, # 2nd highest value; idx. 10 -9.85_71_18_36, -5.96_20_92_36, -1.13_03_91_61, -7.1_11_52_94, -0.8_36_96_33, -5.3_18_64_08, 7.06_42_74_07, 0.81_36_93_44, -0.82_02_38_17, -5.9_17_97_96, 0.58_81_34_43, -6.99_77_84_38, 4.71_55_11_89, -0.18_77_16_37, 7.44_02_07_59, # 4th highest value; idx. 25 9.38_45_09_87, # 1st highest value; idx. 26 2.12_66_29_41, -9.32_56_20_38, 2.35_65_25_22, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_42_55_18, 4.53_13_92_38, -5.57_51_04_64, -6.28_03_06_99, -7.19_52_95_03, -4.02_12_25_51, 1.39_33_70_37, -6.06_70_70_57, 1.59_48_05_17, -9.64_31_19, 0.03_90_77_99, 0.67_23_17_62, -8.88_20_67_26, 6.27_11_59_22, # 4th highest value; idx. 13 2.28_52_07_23, 4.82_76_75_06, 4.30_42_13_68, 8.8_27_53_13, # 2nd highest value; idx. 17 5.44_02_99_58, # 5th highest value; idx. 18 -4.4_73_57_94, 7.38_57_95_36, # 3rd highest value; idx. 20 -2.91_05_16_63, 2.61_94_60_77, -2.5_67_47_62, -9.48_95_93_02, -4.02_92_26_45, -1.35_41_69_18, 9.67_70_23_23, # 1st highest value; idx. 27 -5.89_47_85_53, 1.85_37_04_67, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) A_ : Dict = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above A_ : List[Any] = tf.convert_to_tensor( [8.22_20_99, 7.3_53_41_26, 8.43_20_78, 7.4_40_20_75, 9.3_84_51, 6.27_11_59, 8.82_75_31, 5.4_40_29_95, 7.3_85_79_56, 9.67_70_23] , dtype=tf.floataa , ) # expected non filtered values as noted above A_ : Dict = tf_top_k_top_p_filtering(_snake_case , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) A_ : Optional[int] = output[output != -float("""inf""" )] A_ : Tuple = tf.cast( tf.where(tf.not_equal(_snake_case , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_snake_case , _snake_case , rtol=1E-12 ) tf.debugging.assert_equal(_snake_case , _snake_case ) @require_tf class _lowerCAmelCase ( unittest.TestCase , a__ ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): __SCREAMING_SNAKE_CASE : List[Any] = { 'AutoModelForCausalLM': TFAutoModelForCausalLM, 'AutoModelForSpeechSeq2Seq': TFAutoModelForSpeechSeqaSeq, 'AutoModelForSeq2SeqLM': TFAutoModelForSeqaSeqLM, 'AutoModelForVision2Seq': TFAutoModelForVisionaSeq, 'LogitsProcessorList': TFLogitsProcessorList, 'MinLengthLogitsProcessor': TFMinLengthLogitsProcessor, 'create_tensor_fn': tf.convert_to_tensor, 'floats_tensor': floats_tensor, 'return_tensors': 'tf', } @slow def _a (self ): A_ : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) A_ : List[str] = 2 A_ : List[str] = 2 class _lowerCAmelCase ( tf.Module ): def __init__(self , lowercase ): super(_snake_case , self ).__init__() A_ : List[Any] = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=_snake_case , ) def _a (self , lowercase , lowercase ): A_ : Any = self.model.generate( input_ids=_snake_case , attention_mask=_snake_case , max_new_tokens=_snake_case , return_dict_in_generate=_snake_case , ) return {"sequences": outputs["sequences"]} A_ : Tuple = [[2, 0], [102, 103]] A_ : Optional[int] = [[1, 0], [1, 1]] A_ : Union[str, Any] = DummyModel(model=_snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_snake_case , _snake_case , signatures={"""serving_default""": dummy_model.serving} ) A_ : str = tf.saved_model.load(_snake_case ).signatures["""serving_default"""] for batch_size in range(1 , len(_snake_case ) + 1 ): A_ : Tuple = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } A_ : int = serving_func(**_snake_case )["""sequences"""] A_ : Optional[int] = test_model.generate(**_snake_case , max_new_tokens=_snake_case ) tf.debugging.assert_equal(_snake_case , _snake_case ) @slow def _a (self ): A_ : Tuple = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) A_ : Union[str, Any] = 1 A_ : int = 2 class _lowerCAmelCase ( tf.Module ): def __init__(self , lowercase ): super(_snake_case , self ).__init__() A_ : Tuple = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=_snake_case , ) def _a (self , lowercase , lowercase ): A_ : Dict = self.model.generate( input_ids=_snake_case , attention_mask=_snake_case , max_new_tokens=_snake_case , return_dict_in_generate=_snake_case , ) return {"sequences": outputs["sequences"]} A_ : List[str] = [[2], [102, 103]] A_ : Any = [[1], [1, 1]] A_ : List[Any] = DummyModel(model=_snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_snake_case , _snake_case , signatures={"""serving_default""": dummy_model.serving} ) A_ : Dict = tf.saved_model.load(_snake_case ).signatures["""serving_default"""] for input_row in range(len(_snake_case ) ): A_ : Union[str, Any] = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } A_ : str = serving_func(**_snake_case )["""sequences"""] A_ : List[str] = test_model.generate(**_snake_case , max_new_tokens=_snake_case ) tf.debugging.assert_equal(_snake_case , _snake_case ) @slow @require_tensorflow_text def _a (self ): with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=_snake_case ) class _lowerCAmelCase ( tf.keras.layers.Layer ): def __init__(self ): super().__init__() A_ : Optional[int] = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_snake_case , """spiece.model""" ) , """rb""" ).read() ) A_ : str = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def _a (self , lowercase , *lowercase , **lowercase ): A_ : Optional[int] = self.tokenizer.tokenize(_snake_case ) A_, A_ : Optional[Any] = text.pad_model_inputs( _snake_case , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) A_ : int = self.model.generate(input_ids=_snake_case , attention_mask=_snake_case ) return self.tokenizer.detokenize(_snake_case ) A_ : List[str] = CompleteSentenceTransformer() A_ : Tuple = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) A_ : Union[str, Any] = complete_model(_snake_case ) A_ : List[Any] = tf.keras.Model(_snake_case , _snake_case ) keras_model.save(_snake_case ) def _a (self ): A_ : List[str] = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } A_ : List[Any] = 14 A_ : Union[str, Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) A_ : Tuple = """Hello, my dog is cute and""" A_ : Any = tokenizer(_snake_case , return_tensors="""tf""" ) A_ : Optional[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) A_ : Dict = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) A_ : Dict = model.generate(**_snake_case , eos_token_id=_snake_case , **_snake_case ) self.assertTrue(expectation == len(generated_tokens[0] ) ) A_ : str = [638, 198] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) A_ : Any = model.generate(**_snake_case , eos_token_id=_snake_case , **_snake_case ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def _a (self ): A_ : int = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) A_ : int = """Hugging Face is a technology company based in New York and Paris.""" A_ : List[str] = bart_tokenizer(_snake_case , return_tensors="""tf""" ).input_ids A_ : List[str] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) A_ : Optional[int] = bart_model.generate(_snake_case ).numpy() class _lowerCAmelCase ( a__ ): def _a (self , lowercase , lowercase=None , **lowercase ): return super().call(_snake_case , **_snake_case ) A_ : Optional[int] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) A_ : List[str] = bart_model.generate(_snake_case , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(_snake_case , _snake_case ) ) class _lowerCAmelCase ( bart_model.model.encoder.__class__ ): def _a (self , lowercase , **lowercase ): return super().call(_snake_case , **_snake_case ) A_ : str = FakeEncoder(bart_model.config , bart_model.model.shared ) A_ : Any = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) A_ : int = bart_model.generate(_snake_case ).numpy() with self.assertRaises(_snake_case ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_snake_case , foo="""bar""" )
667
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , _snake_case=10_00 , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = range_bbox def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase = bbox[i, j, 3] lowerCAmelCase = bbox[i, j, 1] lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase = bbox[i, j, 2] lowerCAmelCase = bbox[i, j, 0] lowerCAmelCase = t lowerCAmelCase = tf.convert_to_tensor(_snake_case ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForMaskedLM(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForSequenceClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForTokenClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = True snake_case__ = 1_0 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFLayoutLMModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def _SCREAMING_SNAKE_CASE (): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off lowerCAmelCase = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowerCAmelCase = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the sequence output on [0, :3, :3] lowerCAmelCase = tf.convert_to_tensor( [[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _snake_case , atol=1E-3 ) ) # test the pooled output on [1, :3] lowerCAmelCase = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _snake_case , atol=1E-3 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar lowerCAmelCase = outputs.loss lowerCAmelCase = (2,) self.assertEqual(loss.shape , _snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = (2, 2) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the shape of the logits lowerCAmelCase = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _snake_case ) self.assertEqual(outputs.end_logits.shape , _snake_case )
4
0
"""simple docstring""" from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def _lowercase ( __snake_case ,__snake_case ) -> Union[str, Any]: __lowerCAmelCase : Optional[Any] = k_size // 2 __lowerCAmelCase , __lowerCAmelCase : Any = mgrid[0 - center : k_size - center, 0 - center : k_size - center] __lowerCAmelCase : str = 1 / (2 * pi * sigma) * exp(-(square(_UpperCAmelCase ) + square(_UpperCAmelCase )) / (2 * square(_UpperCAmelCase )) ) return g def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Optional[int]: __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = image.shape[0], image.shape[1] # dst image height and width __lowerCAmelCase : int = height - k_size + 1 __lowerCAmelCase : Union[str, Any] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __lowerCAmelCase : Optional[int] = zeros((dst_height * dst_width, k_size * k_size) ) __lowerCAmelCase : List[Any] = 0 for i, j in product(range(_UpperCAmelCase ) ,range(_UpperCAmelCase ) ): __lowerCAmelCase : List[Any] = ravel(image[i : i + k_size, j : j + k_size] ) __lowerCAmelCase : Tuple = window row += 1 # turn the kernel into shape(k*k, 1) __lowerCAmelCase : int = gen_gaussian_kernel(_UpperCAmelCase ,_UpperCAmelCase ) __lowerCAmelCase : Optional[Any] = ravel(_UpperCAmelCase ) # reshape and get the dst image __lowerCAmelCase : List[Any] = dot(_UpperCAmelCase ,_UpperCAmelCase ).reshape(_UpperCAmelCase ,_UpperCAmelCase ).astype(_UpperCAmelCase ) return dst if __name__ == "__main__": # read original image __snake_case : Tuple = imread(R'../image_data/lena.jpg') # turn image in gray scale value __snake_case : int = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __snake_case : Optional[Any] = gaussian_filter(gray, 3, sigma=1) __snake_case : Tuple = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('gaussian filter with 3x3 mask', gaussianaxa) imshow('gaussian filter with 5x5 mask', gaussianaxa) waitKey()
293
"""simple docstring""" import argparse import os import re import packaging.version __UpperCamelCase : Union[str, Any] = '''examples/''' __UpperCamelCase : str = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __UpperCamelCase : List[str] = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } __UpperCamelCase : Optional[int] = '''README.md''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ): with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.read() lowerCAmelCase ,lowerCAmelCase = REPLACE_PATTERNS[pattern] lowerCAmelCase = replace.replace('VERSION' , _UpperCAmelCase ) lowerCAmelCase = re_pattern.sub(_UpperCAmelCase , _UpperCAmelCase ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ): for folder, directories, fnames in os.walk(_UpperCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , pattern='examples' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not patch: update_version_in_examples(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = '🤗 Transformers currently provides the following architectures' lowerCAmelCase = '1. Want to contribute a new model?' with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.readlines() # Find the start of the list. lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): lowerCAmelCase = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): with open(REPLACE_FILES['init'] , 'r' ) as f: lowerCAmelCase = f.read() lowerCAmelCase = REPLACE_PATTERNS['init'][0].search(_UpperCAmelCase ).groups()[0] return packaging.version.parse(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple=False ): lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: lowerCAmelCase = default_version.base_version elif patch: lowerCAmelCase = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: lowerCAmelCase = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. lowerCAmelCase = input(F'Which version are you releasing? [{default_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = default_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase , patch=_UpperCAmelCase ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = get_version() lowerCAmelCase = F'{current_version.major}.{current_version.minor + 1}.0.dev0' lowerCAmelCase = current_version.base_version # Check with the user we got that right. lowerCAmelCase = input(F'Which version are we developing now? [{dev_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = dev_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __UpperCamelCase : Optional[int] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
4
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __a: List[Any] = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: int = ['''EncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Optional[int] = ['''TFEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Optional[int] = ['''FlaxEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys __a: Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
152
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __UpperCamelCase : Optional[int] = pytest.mark.integration @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_snake_case ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() lowerCAmelCase = dset.map( lambda _snake_case , _snake_case : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_snake_case , keep_in_memory=_snake_case ) lowerCAmelCase = dset.add_faiss_index('vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_snake_case , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch lowerCAmelCase = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCAmelCase = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_snake_case ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertRaises(_snake_case , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCAmelCase = np.eye(5 , dtype=np.floataa )[::-1] lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) self.assertRaises(_snake_case , index.search_batch , queries[0] ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCAmelCase = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_snake_case ): lowerCAmelCase = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = faiss.IndexFlat(5 ) lowerCAmelCase = FaissIndex(custom_index=_snake_case ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: index.save(tmp_file.name ) lowerCAmelCase = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ): import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCAmelCase = 'index.faiss' lowerCAmelCase = F'mock://{index_name}' index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = Elasticsearch() lowerCAmelCase = {'acknowledged': True} lowerCAmelCase = ElasticSearchIndex(es_client=_snake_case ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case ) # batched queries with timeout lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case , request_timeout=30 ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case )
4
0
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase ( a__ ): lowercase : List[Any] = (DDIMParallelScheduler,) lowercase : Optional[Any] = (('eta', 0.0), ('num_inference_steps', 5_0)) def a_ ( self , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """clip_sample""": True, } config.update(**_snake_case ) return config def a_ ( self , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[str] = self.scheduler_classes[0] UpperCamelCase : Any = self.get_scheduler_config(**_snake_case ) UpperCamelCase : Any = scheduler_class(**_snake_case ) UpperCamelCase , UpperCamelCase : Dict = 10, 0.0 UpperCamelCase : Optional[Any] = self.dummy_model() UpperCamelCase : List[str] = self.dummy_sample_deter scheduler.set_timesteps(_snake_case ) for t in scheduler.timesteps: UpperCamelCase : Union[str, Any] = model(_snake_case , _snake_case ) UpperCamelCase : str = scheduler.step(_snake_case , _snake_case , _snake_case , _snake_case ).prev_sample return sample def a_ ( self ): for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=_snake_case ) def a_ ( self ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_snake_case ) UpperCamelCase : str = self.scheduler_classes[0] UpperCamelCase : List[str] = self.get_scheduler_config(steps_offset=1 ) UpperCamelCase : Tuple = scheduler_class(**_snake_case ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def a_ ( self ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_snake_case , beta_end=_snake_case ) def a_ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_snake_case ) def a_ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case ) def a_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_snake_case ) def a_ ( self ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_snake_case ) def a_ ( self ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_snake_case ) def a_ ( self ): self.check_over_configs(thresholding=_snake_case ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , ) def a_ ( self ): for t in [1, 10, 49]: self.check_over_forward(time_step=_snake_case ) def a_ ( self ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=_snake_case , num_inference_steps=_snake_case ) def a_ ( self ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_snake_case , eta=_snake_case ) def a_ ( self ): UpperCamelCase : int = self.scheduler_classes[0] UpperCamelCase : str = self.get_scheduler_config() UpperCamelCase : Optional[int] = scheduler_class(**_snake_case ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def a_ ( self ): UpperCamelCase : str = self.scheduler_classes[0] UpperCamelCase : Union[str, Any] = self.get_scheduler_config() UpperCamelCase : Any = scheduler_class(**_snake_case ) UpperCamelCase , UpperCamelCase : List[str] = 10, 0.0 scheduler.set_timesteps(_snake_case ) UpperCamelCase : Union[str, Any] = self.dummy_model() UpperCamelCase : Any = self.dummy_sample_deter UpperCamelCase : Union[str, Any] = self.dummy_sample_deter + 0.1 UpperCamelCase : List[str] = self.dummy_sample_deter - 0.1 UpperCamelCase : Any = samplea.shape[0] UpperCamelCase : Optional[int] = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCamelCase : Union[str, Any] = torch.arange(_snake_case )[0:3, None].repeat(1 , _snake_case ) UpperCamelCase : Optional[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCamelCase : Union[str, Any] = scheduler.batch_step_no_noise(_snake_case , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _snake_case ) UpperCamelCase : int = torch.sum(torch.abs(_snake_case ) ) UpperCamelCase : Dict = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def a_ ( self ): UpperCamelCase : Any = self.full_loop() UpperCamelCase : Dict = torch.sum(torch.abs(_snake_case ) ) UpperCamelCase : List[str] = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.223967 ) < 1e-3 def a_ ( self ): UpperCamelCase : List[Any] = self.full_loop(prediction_type="""v_prediction""" ) UpperCamelCase : Optional[Any] = torch.sum(torch.abs(_snake_case ) ) UpperCamelCase : Optional[Any] = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def a_ ( self ): UpperCamelCase : str = self.full_loop(set_alpha_to_one=_snake_case , beta_start=0.01 ) UpperCamelCase : List[Any] = torch.sum(torch.abs(_snake_case ) ) UpperCamelCase : List[Any] = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def a_ ( self ): UpperCamelCase : Tuple = self.full_loop(set_alpha_to_one=_snake_case , beta_start=0.01 ) UpperCamelCase : List[str] = torch.sum(torch.abs(_snake_case ) ) UpperCamelCase : Dict = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
499
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a ( a__ , a__ , unittest.TestCase ): snake_case__ = IFInpaintingPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_dummy_components() def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
4
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCAmelCase = { '''configuration_transfo_xl''': ['''TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TransfoXLConfig'''], '''tokenization_transfo_xl''': ['''TransfoXLCorpus''', '''TransfoXLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AdaptiveEmbedding''', '''TransfoXLForSequenceClassification''', '''TransfoXLLMHeadModel''', '''TransfoXLModel''', '''TransfoXLPreTrainedModel''', '''load_tf_weights_in_transfo_xl''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAdaptiveEmbedding''', '''TFTransfoXLForSequenceClassification''', '''TFTransfoXLLMHeadModel''', '''TFTransfoXLMainLayer''', '''TFTransfoXLModel''', '''TFTransfoXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
651
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = self.vocab_size - 1 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , head_mask=_snake_case ) lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTLMHeadModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTDoubleHeadsModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = OpenAIGPTForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case__ = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=False ): """simple docstring""" lowerCAmelCase = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_snake_case , ) lowerCAmelCase = inputs_dict['labels'] lowerCAmelCase = inputs_dict['labels'] lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_snake_case , ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_snake_case ) return inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenAIGPTModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , n_embd=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = OpenAIGPTModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_torch class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(_snake_case ) lowerCAmelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=_snake_case ) # the president is lowerCAmelCase = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCAmelCase = model.generate(_snake_case , do_sample=_snake_case ) self.assertListEqual(output_ids[0].tolist() , _snake_case )
4
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a = { '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
412
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __UpperCamelCase : str = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=_UpperCAmelCase , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=_UpperCAmelCase , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=_UpperCAmelCase , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=_UpperCAmelCase , default='data/dump' , help='The dump file prefix.' ) lowerCAmelCase = parser.parse_args() logger.info(F'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": lowerCAmelCase = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `[CLS]` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCAmelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `<s>` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": lowerCAmelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` lowerCAmelCase = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(F'Loading text from {args.file_path}' ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: lowerCAmelCase = fp.readlines() logger.info('Start encoding' ) logger.info(F'{len(_UpperCAmelCase )} examples to process.' ) lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 1_0000 lowerCAmelCase = time.time() for text in data: lowerCAmelCase = F'{bos} {text.strip()} {sep}' lowerCAmelCase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) rslt.append(_UpperCAmelCase ) iter += 1 if iter % interval == 0: lowerCAmelCase = time.time() logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) lowerCAmelCase = time.time() logger.info('Finished binarization' ) logger.info(F'{len(_UpperCAmelCase )} examples processed.' ) lowerCAmelCase = F'{args.dump_file}.{args.tokenizer_name}.pickle' lowerCAmelCase = tokenizer.vocab_size if vocab_size < (1 << 16): lowerCAmelCase = [np.uintaa(_UpperCAmelCase ) for d in rslt] else: lowerCAmelCase = [np.intaa(_UpperCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'Dump to {dp_file}' ) with open(_UpperCAmelCase , 'wb' ) as handle: pickle.dump(rslt_ , _UpperCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
4
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : Dict = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class a ( a__ ): """simple docstring""" a : Dict = 'markuplm' def __init__( self : List[str] , __lowercase : List[Any]=30522 , __lowercase : Any=768 , __lowercase : Any=12 , __lowercase : Optional[Any]=12 , __lowercase : str=3072 , __lowercase : str="gelu" , __lowercase : Dict=0.1 , __lowercase : Optional[Any]=0.1 , __lowercase : List[Any]=512 , __lowercase : List[Any]=2 , __lowercase : str=0.02 , __lowercase : Any=1e-1_2 , __lowercase : int=0 , __lowercase : Dict=0 , __lowercase : int=2 , __lowercase : Any=256 , __lowercase : Optional[Any]=1024 , __lowercase : List[Any]=216 , __lowercase : Optional[int]=1001 , __lowercase : Dict=32 , __lowercase : Dict=50 , __lowercase : Optional[int]="absolute" , __lowercase : Dict=True , __lowercase : Optional[Any]=None , **__lowercase : Dict , ) -> Union[str, Any]: super().__init__( pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case , ) __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : int = hidden_dropout_prob __UpperCAmelCase : Tuple = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : str = initializer_range __UpperCAmelCase : Optional[Any] = layer_norm_eps __UpperCAmelCase : Any = position_embedding_type __UpperCAmelCase : Tuple = use_cache __UpperCAmelCase : Union[str, Any] = classifier_dropout # additional properties __UpperCAmelCase : Union[str, Any] = max_depth __UpperCAmelCase : Union[str, Any] = max_xpath_tag_unit_embeddings __UpperCAmelCase : Optional[Any] = max_xpath_subs_unit_embeddings __UpperCAmelCase : Optional[int] = tag_pad_id __UpperCAmelCase : Dict = subs_pad_id __UpperCAmelCase : str = xpath_unit_hidden_size
63
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''bert''' def __init__( self , _snake_case=3_05_22 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache lowerCAmelCase = classifier_dropout class a ( a__ ): @property def UpperCamelCase__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
4
0
def a__ ( snake_case , snake_case ): """simple docstring""" if mass < 0: raise ValueError('''The mass of a body cannot be negative''' ) return 0.5 * mass * abs(_UpperCAmelCase ) * abs(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
74
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( a__ , unittest.TestCase ): snake_case__ = DanceDiffusionPipeline snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_snake_case , use_timestep_embedding=_snake_case , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase = IPNDMScheduler() lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = DanceDiffusionPipeline(**_snake_case ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = pipe(**_snake_case ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_local() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
4
0
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def _SCREAMING_SNAKE_CASE ( a ) -> Tuple: return x + 2 class _A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): __A : Any = 'x = 3' __A : Dict = {} __A : int = evaluate(_snake_case , {} , state=_snake_case ) assert result == 3 self.assertDictEqual(_snake_case , {'x': 3} ) __A : Any = 'x = y' __A : Union[str, Any] = {'y': 5} __A : Any = evaluate(_snake_case , {} , state=_snake_case ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_snake_case , {'x': 5, 'y': 5} ) def UpperCAmelCase_ ( self ): __A : List[Any] = 'y = add_two(x)' __A : str = {'x': 3} __A : Any = evaluate(_snake_case , {'add_two': add_two} , state=_snake_case ) assert result == 5 self.assertDictEqual(_snake_case , {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: __A : Union[str, Any] = evaluate(_snake_case , {} , state=_snake_case ) assert result is None assert "tried to execute add_two" in out.out def UpperCAmelCase_ ( self ): __A : List[Any] = 'x = 3' __A : Union[str, Any] = {} __A : int = evaluate(_snake_case , {} , state=_snake_case ) assert result == 3 self.assertDictEqual(_snake_case , {'x': 3} ) def UpperCAmelCase_ ( self ): __A : str = 'test_dict = {\'x\': x, \'y\': add_two(x)}' __A : Optional[Any] = {'x': 3} __A : str = evaluate(_snake_case , {'add_two': add_two} , state=_snake_case ) self.assertDictEqual(_snake_case , {'x': 3, 'y': 5} ) self.assertDictEqual(_snake_case , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def UpperCAmelCase_ ( self ): __A : str = 'x = 3\ny = 5' __A : Union[str, Any] = {} __A : Any = evaluate(_snake_case , {} , state=_snake_case ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_snake_case , {'x': 3, 'y': 5} ) def UpperCAmelCase_ ( self ): __A : Optional[Any] = 'text = f\'This is x: {x}.\'' __A : List[str] = {'x': 3} __A : Any = evaluate(_snake_case , {} , state=_snake_case ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_snake_case , {'x': 3, 'text': 'This is x: 3.'} ) def UpperCAmelCase_ ( self ): __A : int = 'if x <= 3:\n y = 2\nelse:\n y = 5' __A : Tuple = {'x': 3} __A : List[str] = evaluate(_snake_case , {} , state=_snake_case ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_snake_case , {'x': 3, 'y': 2} ) __A : Optional[Any] = {'x': 8} __A : Dict = evaluate(_snake_case , {} , state=_snake_case ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_snake_case , {'x': 8, 'y': 5} ) def UpperCAmelCase_ ( self ): __A : Optional[int] = 'test_list = [x, add_two(x)]' __A : Dict = {'x': 3} __A : List[str] = evaluate(_snake_case , {'add_two': add_two} , state=_snake_case ) self.assertListEqual(_snake_case , [3, 5] ) self.assertDictEqual(_snake_case , {'x': 3, 'test_list': [3, 5]} ) def UpperCAmelCase_ ( self ): __A : List[Any] = 'y = x' __A : Optional[int] = {'x': 3} __A : List[Any] = evaluate(_snake_case , {} , state=_snake_case ) assert result == 3 self.assertDictEqual(_snake_case , {'x': 3, 'y': 3} ) def UpperCAmelCase_ ( self ): __A : Dict = 'test_list = [x, add_two(x)]\ntest_list[1]' __A : Dict = {'x': 3} __A : int = evaluate(_snake_case , {'add_two': add_two} , state=_snake_case ) assert result == 5 self.assertDictEqual(_snake_case , {'x': 3, 'test_list': [3, 5]} ) __A : Dict = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' __A : List[str] = {'x': 3} __A : int = evaluate(_snake_case , {'add_two': add_two} , state=_snake_case ) assert result == 5 self.assertDictEqual(_snake_case , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def UpperCAmelCase_ ( self ): __A : List[Any] = 'x = 0\nfor i in range(3):\n x = i' __A : Dict = {} __A : Tuple = evaluate(_snake_case , {'range': range} , state=_snake_case ) assert result == 2 self.assertDictEqual(_snake_case , {'x': 2, 'i': 2} )
239
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , use_stable_embedding=_snake_case , ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = OpenLlamaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = OpenLlamaModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , ) lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() # first forward pass lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , use_cache=_snake_case , ) lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , past_key_values=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) snake_case__ = (OpenLlamaForCausalLM,) if is_torch_available() else () snake_case__ = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenLlamaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase = type self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'single_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'multi_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = OpenLlamaModel(_snake_case ) original_model.to(_snake_case ) original_model.eval() lowerCAmelCase = original_model(_snake_case ).last_hidden_state lowerCAmelCase = original_model(_snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = {'type': scaling_type, 'factor': 10.0} lowerCAmelCase = OpenLlamaModel(_snake_case ) scaled_model.to(_snake_case ) scaled_model.eval() lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
4
0
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING a = logging.get_logger(__name__) @add_end_docstrings(a__ ) class __a ( a__ ): def __init__( self : Optional[int] ,*lowerCamelCase : Tuple ,**lowerCamelCase : List[Any] ): '''simple docstring''' super().__init__(*_snake_case ,**_snake_case ) requires_backends(self ,"""decord""" ) self.check_model_type(_snake_case ) def UpperCAmelCase__ ( self : int ,lowerCamelCase : List[Any]=None ,lowerCamelCase : Tuple=None ,lowerCamelCase : Optional[Any]=None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {} if frame_sampling_rate is not None: __SCREAMING_SNAKE_CASE = frame_sampling_rate if num_frames is not None: __SCREAMING_SNAKE_CASE = num_frames __SCREAMING_SNAKE_CASE = {} if top_k is not None: __SCREAMING_SNAKE_CASE = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[Any] ,lowerCamelCase : Union[str, Any] ,**lowerCamelCase : Dict ): '''simple docstring''' return super().__call__(_snake_case ,**_snake_case ) def UpperCAmelCase__ ( self : int ,lowerCamelCase : Dict ,lowerCamelCase : int=None ,lowerCamelCase : Tuple=1 ): '''simple docstring''' if num_frames is None: __SCREAMING_SNAKE_CASE = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): __SCREAMING_SNAKE_CASE = BytesIO(requests.get(_snake_case ).content ) __SCREAMING_SNAKE_CASE = VideoReader(_snake_case ) videoreader.seek(0 ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = num_frames * frame_sampling_rate - 1 __SCREAMING_SNAKE_CASE = np.linspace(_snake_case ,_snake_case ,num=_snake_case ,dtype=np.intaa ) __SCREAMING_SNAKE_CASE = videoreader.get_batch(_snake_case ).asnumpy() __SCREAMING_SNAKE_CASE = list(_snake_case ) __SCREAMING_SNAKE_CASE = self.image_processor(_snake_case ,return_tensors=self.framework ) return model_inputs def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model(**_snake_case ) return model_outputs def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : List[str]=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: __SCREAMING_SNAKE_CASE = self.model.config.num_labels if self.framework == "pt": __SCREAMING_SNAKE_CASE = model_outputs.logits.softmax(-1 )[0] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = probs.topk(_snake_case ) else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __SCREAMING_SNAKE_CASE = scores.tolist() __SCREAMING_SNAKE_CASE = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_snake_case ,_snake_case )]
109
"""simple docstring""" from typing import Any class a : def __init__( self , _snake_case ): """simple docstring""" lowerCAmelCase = data lowerCAmelCase = None def __repr__( self ): """simple docstring""" return F'Node({self.data})' class a : def __init__( self ): """simple docstring""" lowerCAmelCase = None def __iter__( self ): """simple docstring""" lowerCAmelCase = self.head while node: yield node.data lowerCAmelCase = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(_snake_case ) for item in self] ) def __getitem__( self , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase = self.head for _ in range(_snake_case ): lowerCAmelCase = current.next lowerCAmelCase = data def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(len(self ) , _snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(0 , _snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase = Node(_snake_case ) if self.head is None: lowerCAmelCase = new_node elif index == 0: lowerCAmelCase = self.head # link new_node to head lowerCAmelCase = new_node else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = new_node def UpperCamelCase__ ( self ): # print every node data """simple docstring""" print(self ) def UpperCamelCase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def UpperCamelCase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def UpperCamelCase__ ( self , _snake_case = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase = self.head # default first node if index == 0: lowerCAmelCase = self.head.next else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = temp.next.next return delete_node.data def UpperCamelCase__ ( self ): """simple docstring""" return self.head is None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = None lowerCAmelCase = self.head while current: # Store the current node's next node. lowerCAmelCase = current.next # Make the current node's next point backwards lowerCAmelCase = prev # Make the previous node be the current node lowerCAmelCase = current # Make the current node the next node (to progress iteration) lowerCAmelCase = next_node # Return prev in order to put the head at the end lowerCAmelCase = prev def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = LinkedList() assert linked_list.is_empty() is True assert str(_UpperCAmelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_UpperCAmelCase ) == i linked_list.insert_nth(_UpperCAmelCase , i + 1 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_UpperCAmelCase ) == 9 assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(-8 , 1 ) ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = [ -9, 100, Node(7734_5112 ), 'dlrow olleH', 7, 5555, 0, -192.5_5555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase = LinkedList() for i in test_input: linked_list.insert_tail(_UpperCAmelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase = linked_list.delete_head() assert result == -9 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_UpperCAmelCase ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_UpperCAmelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _SCREAMING_SNAKE_CASE (): from doctest import testmod testmod() lowerCAmelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_UpperCAmelCase ) print('\nReading/changing Node data using indexing:' ) print(F'Element at Position 1: {linked_list[1]}' ) lowerCAmelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_UpperCAmelCase ) print(F'length of linked_list is : {len(_UpperCAmelCase )}' ) if __name__ == "__main__": main()
4
0
import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class lowerCamelCase__ ( a__): """simple docstring""" _A = 'microsoft/speecht5_tts' _A = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) _A = 'text_reader' _A = SpeechTaProcessor _A = SpeechTaForTextToSpeech _A = SpeechTaHifiGan _A = ['text'] _A = ['audio'] def _a (self ): '''simple docstring''' if self.post_processor is None: lowerCamelCase = "microsoft/speecht5_hifigan" super().setup() def _a (self , __a , __a=None ): '''simple docstring''' lowerCamelCase = self.pre_processor(text=_snake_case , return_tensors="pt" , truncation=_snake_case ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) lowerCamelCase = load_dataset("Matthijs/cmu-arctic-xvectors" , split="validation" ) lowerCamelCase = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _a (self , __a ): '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**_snake_case ) def _a (self , __a ): '''simple docstring''' with torch.no_grad(): return self.post_processor(_snake_case ).cpu().detach()
623
"""simple docstring""" from __future__ import annotations import requests def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(_UpperCAmelCase ).json() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' lowerCAmelCase = requests.get(_UpperCAmelCase ).json()[:max_stories] return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = hackernews_top_stories(_UpperCAmelCase ) return "\n".join('* [{title}]({url})'.format(**_UpperCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
0
'''simple docstring''' import operator as op def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Any = [] A_ : List[str] = lambda lowerCamelCase__ , lowerCamelCase__ : int(x / y ) # noqa: E731 integer division operation A_ : Optional[Any] = { """^""": op.pow, """*""": op.mul, """/""": div, """+""": op.add, """-""": op.sub, } # operators & their respective operation # print table header print("""Symbol""".center(8 ) , """Action""".center(12 ) , """Stack""" , sep=""" | """ ) print("""-""" * (30 + len(_UpperCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(_UpperCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("""push(""" + x + """)""").ljust(12 ) , """,""".join(_UpperCAmelCase ) , sep=""" | """ ) else: A_ : Tuple = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + b + """)""").ljust(12 ) , """,""".join(_UpperCAmelCase ) , sep=""" | """ ) A_ : List[str] = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + a + """)""").ljust(12 ) , """,""".join(_UpperCAmelCase ) , sep=""" | """ ) stack.append( str(opr[x](int(_UpperCAmelCase ) , int(_UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("""push(""" + a + x + b + """)""").ljust(12 ) , """,""".join(_UpperCAmelCase ) , sep=""" | """ , ) return int(stack[0] ) if __name__ == "__main__": lowerCamelCase :Any = input('''\n\nEnter a Postfix Equation (space separated) = ''').split(''' ''') print('''\n\tResult = ''', solve(Postfix))
667
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ): lowerCAmelCase = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 48 lowerCAmelCase = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 60 lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCAmelCase = 1 lowerCAmelCase = 1 lowerCAmelCase = 126 lowerCAmelCase = 7 lowerCAmelCase = 255.0 lowerCAmelCase = '' return config def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): if "patch_embed.proj" in name and "layers" not in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCAmelCase = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: lowerCAmelCase = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: lowerCAmelCase = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: lowerCAmelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCAmelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCAmelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCAmelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: lowerCAmelCase = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: lowerCAmelCase = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: lowerCAmelCase = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: lowerCAmelCase = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": lowerCAmelCase = 'layernorm.weight' if name == "norm.bias": lowerCAmelCase = 'layernorm.bias' if "conv_first" in name: lowerCAmelCase = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCAmelCase = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCAmelCase = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: lowerCAmelCase = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: lowerCAmelCase = name.replace('upsample.2' , 'upsample.convolution_1' ) lowerCAmelCase = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": lowerCAmelCase = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) lowerCAmelCase = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: lowerCAmelCase = 'swin2sr.' + name return name def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict ): for key in orig_state_dict.copy().keys(): lowerCAmelCase = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: lowerCAmelCase = key.split('.' ) lowerCAmelCase = int(key_split[1] ) lowerCAmelCase = int(key_split[4] ) lowerCAmelCase = config.embed_dim if "weight" in key: lowerCAmelCase = val[:dim, :] lowerCAmelCase = val[dim : dim * 2, :] lowerCAmelCase = val[-dim:, :] else: lowerCAmelCase = val[:dim] lowerCAmelCase = val[dim : dim * 2] lowerCAmelCase = val[-dim:] pass else: lowerCAmelCase = val return orig_state_dict def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ): lowerCAmelCase = get_config(_UpperCAmelCase ) lowerCAmelCase = SwinaSRForImageSuperResolution(_UpperCAmelCase ) model.eval() lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' ) lowerCAmelCase = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_UpperCAmelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowerCAmelCase = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) lowerCAmelCase = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCAmelCase = 126 if 'Jpeg' in checkpoint_url else 256 lowerCAmelCase = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowerCAmelCase = transforms(_UpperCAmelCase ).unsqueeze(0 ) if config.num_channels == 1: lowerCAmelCase = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCAmelCase = model(_UpperCAmelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-3 ) print('Looks ok!' ) lowerCAmelCase = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } lowerCAmelCase = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') __UpperCamelCase : Optional[int] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
0
"""simple docstring""" from __future__ import annotations from cmath import sqrt def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Optional[int]: if a == 0: raise ValueError("Coefficient \'a\' must not be zero." ) __lowerCAmelCase : Union[str, Any] = b * b - 4 * a * c __lowerCAmelCase : Union[str, Any] = (-b + sqrt(_UpperCAmelCase )) / (2 * a) __lowerCAmelCase : Optional[int] = (-b - sqrt(_UpperCAmelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _lowercase ( ) -> int: __lowerCAmelCase , __lowerCAmelCase : int = quadratic_roots(a=5 ,b=6 ,c=1 ) print(F"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
293
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''megatron-bert''' def __init__( self , _snake_case=2_90_56 , _snake_case=10_24 , _snake_case=24 , _snake_case=16 , _snake_case=40_96 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache
4
0
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __a: Any = '''\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } ''' __a: str = '''\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy. ''' __a: Union[str, Any] = R''' Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting "1/2" to "\\frac{1}{2}") Examples: >>> metric = datasets.load_metric("competition_math") >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"]) >>> print(results) {\'accuracy\': 1.0} ''' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: lowercase__ : Dict = 0.0 for i, j in zip(_snake_case , _snake_case ): n_correct += 1.0 if math_equivalence.is_equiv(_snake_case , _snake_case ) else 0.0 lowercase__ : Union[str, Any] = n_correct / len(_snake_case ) return { "accuracy": accuracy, }
152
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
4
0
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase ( unittest.TestCase ): def a_ ( self ): UpperCamelCase : str = torch.nn.Linear(10 , 10 ) UpperCamelCase : Tuple = torch.optim.SGD(model.parameters() , 0.1 ) UpperCamelCase : Dict = Accelerator() UpperCamelCase : Optional[Any] = accelerator.prepare(_snake_case ) try: pickle.loads(pickle.dumps(_snake_case ) ) except Exception as e: self.fail(f'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
499
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class a ( a__ ): snake_case__ = 42 class a ( a__ , a__ ): @register_to_config def __init__( self , _snake_case = 3 , _snake_case = 3 , _snake_case = ("DownEncoderBlock2D",) , _snake_case = ("UpDecoderBlock2D",) , _snake_case = (64,) , _snake_case = 1 , _snake_case = "silu" , _snake_case = 3 , _snake_case = 32 , _snake_case = 2_56 , _snake_case = 32 , _snake_case = None , _snake_case = 0.18_215 , _snake_case = "group" , ): """simple docstring""" super().__init__() # pass init params to Encoder lowerCAmelCase = Encoder( in_channels=_snake_case , out_channels=_snake_case , down_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , double_z=_snake_case , ) lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 ) lowerCAmelCase = VectorQuantizer(_snake_case , _snake_case , beta=0.25 , remap=_snake_case , sane_index_shape=_snake_case ) lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 ) # pass init params to Decoder lowerCAmelCase = Decoder( in_channels=_snake_case , out_channels=_snake_case , up_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , norm_type=_snake_case , ) @apply_forward_hook def UpperCamelCase__ ( self , _snake_case , _snake_case = True ): """simple docstring""" lowerCAmelCase = self.encoder(_snake_case ) lowerCAmelCase = self.quant_conv(_snake_case ) if not return_dict: return (h,) return VQEncoderOutput(latents=_snake_case ) @apply_forward_hook def UpperCamelCase__ ( self , _snake_case , _snake_case = False , _snake_case = True ): """simple docstring""" if not force_not_quantize: lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = self.quantize(_snake_case ) else: lowerCAmelCase = h lowerCAmelCase = self.post_quant_conv(_snake_case ) lowerCAmelCase = self.decoder(_snake_case , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case = True ): """simple docstring""" lowerCAmelCase = sample lowerCAmelCase = self.encode(_snake_case ).latents lowerCAmelCase = self.decode(_snake_case ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_snake_case )
4
0
from collections import defaultdict class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str ) -> Tuple: """simple docstring""" __lowerCAmelCase : Union[str, Any] = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 __lowerCAmelCase : Any = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(_snake_case ) ) ] __lowerCAmelCase : Tuple = defaultdict(_snake_case ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 __lowerCAmelCase : List[str] = (1 << len(_snake_case )) - 1 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement __lowerCAmelCase : List[Any] = self.count_ways_until(_snake_case , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. __lowerCAmelCase : List[str] = total_ways_util return self.dp[mask][task_no] def SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for i in range(len(_snake_case ) ): for j in task_performed[i]: self.task[j].append(_snake_case ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": __UpperCAmelCase = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. __UpperCAmelCase = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
651
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping __UpperCamelCase : Optional[Any] = tuple[int, int] class a : def __init__( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = vertices lowerCAmelCase = { (min(_snake_case ), max(_snake_case )): weight for edge, weight in edges.items() } def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase = weight def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Graph({min(self.vertices )} , {} ) lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase = edge lowerCAmelCase = weight subgraph.add_edge(_snake_case , _snake_case ) return subgraph def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "p107_network.txt" ): lowerCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) ) lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = {} lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 with open(_UpperCAmelCase ) as f: lowerCAmelCase = f.read().strip().split('\n' ) lowerCAmelCase = [line.split(',' ) for line in data] for edgea in range(1 , len(_UpperCAmelCase ) ): for edgea in range(_UpperCAmelCase ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase = Graph(set(range(len(_UpperCAmelCase ) ) ) , _UpperCAmelCase ) lowerCAmelCase = graph.prims_algorithm() lowerCAmelCase = sum(graph.edges.values() ) lowerCAmelCase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
4
0
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( a__ ): __SCREAMING_SNAKE_CASE : int = ['pixel_values'] def __init__( self : List[Any] , UpperCamelCase__ : Optional[Any] = True , UpperCamelCase__ : Any = 32 , UpperCamelCase__ : str=PILImageResampling.BILINEAR , UpperCamelCase__ : List[Any] = True , **UpperCamelCase__ : Tuple , ): '''simple docstring''' lowercase_ = do_resize lowercase_ = do_rescale lowercase_ = size_divisor lowercase_ = resample super().__init__(**_snake_case ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] = None , **UpperCamelCase__ : Optional[int] ): '''simple docstring''' lowercase_ , lowercase_ = get_image_size(_snake_case ) # Rounds the height and width down to the closest multiple of size_divisor lowercase_ = height // size_divisor * size_divisor lowercase_ = width // size_divisor * size_divisor lowercase_ = resize(_snake_case , (new_h, new_w) , resample=_snake_case , data_format=_snake_case , **_snake_case ) return image def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] = None , **UpperCamelCase__ : Tuple ): '''simple docstring''' return rescale(image=_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] = None , UpperCamelCase__ : Any = None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Optional[Any] = None , UpperCamelCase__ : Any = None , UpperCamelCase__ : List[str] = ChannelDimension.FIRST , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = size_divisor if size_divisor is not None else self.size_divisor lowercase_ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) lowercase_ = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(_snake_case ) for img in images] if do_resize: lowercase_ = [self.resize(_snake_case , size_divisor=_snake_case , resample=_snake_case ) for image in images] if do_rescale: lowercase_ = [self.rescale(_snake_case , scale=1 / 255 ) for image in images] lowercase_ = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=_snake_case , tensor_type=_snake_case )
412
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCAmelCase )] ) lowerCAmelCase = np.array(_UpperCAmelCase ) lowerCAmelCase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCAmelCase ) ) , x.transpose() ) , _UpperCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = (1, 2, 1) lowerCAmelCase = (1, 1, 0, 7) lowerCAmelCase = SARIMAX( _UpperCAmelCase , exog=_UpperCAmelCase , order=_UpperCAmelCase , seasonal_order=_UpperCAmelCase ) lowerCAmelCase = model.fit(disp=_UpperCAmelCase , maxiter=600 , method='nm' ) lowerCAmelCase = model_fit.predict(1 , len(_UpperCAmelCase ) , exog=[test_match] ) return result[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = regressor.predict(_UpperCAmelCase ) return y_pred[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ): train_user.sort() lowerCAmelCase = np.percentile(_UpperCAmelCase , 25 ) lowerCAmelCase = np.percentile(_UpperCAmelCase , 75 ) lowerCAmelCase = qa - qa lowerCAmelCase = qa - (iqr * 0.1) return low_lim def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : float ): lowerCAmelCase = 0 lowerCAmelCase = 0 for i in list_vote: if i > actual_result: lowerCAmelCase = not_safe + 1 else: if abs(abs(_UpperCAmelCase ) - abs(_UpperCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __UpperCamelCase : Optional[Any] = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] __UpperCamelCase : Any = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) __UpperCamelCase : Dict = Normalizer().fit_transform(data_input_df.values) # split data __UpperCamelCase : Dict = normalize_df[:, 2].tolist() __UpperCamelCase : Union[str, Any] = normalize_df[:, 0].tolist() __UpperCamelCase : List[str] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __UpperCamelCase : Optional[int] = normalize_df[:, [1, 2]].tolist() __UpperCamelCase : Tuple = x[: len(x) - 1] __UpperCamelCase : Any = x[len(x) - 1 :] # for linear regression & sarimax __UpperCamelCase : str = total_date[: len(total_date) - 1] __UpperCamelCase : Union[str, Any] = total_user[: len(total_user) - 1] __UpperCamelCase : List[Any] = total_match[: len(total_match) - 1] __UpperCamelCase : Optional[Any] = total_date[len(total_date) - 1 :] __UpperCamelCase : str = total_user[len(total_user) - 1 :] __UpperCamelCase : str = total_match[len(total_match) - 1 :] # voting system with forecasting __UpperCamelCase : Any = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __UpperCamelCase : List[str] = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('''Today\'s data is {not_str}safe.''')
4
0
from __future__ import annotations def lowerCamelCase__ ( __lowerCamelCase : list[int] ): if not nums: return 0 __UpperCAmelCase : Any = nums[0] __UpperCAmelCase : int = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase : Any = ( max_excluding + num, max(_UpperCAmelCase , _UpperCAmelCase ), ) return max(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
63
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=_UpperCAmelCase , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=_UpperCAmelCase , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=_UpperCAmelCase , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=_UpperCAmelCase , default=0 , help='cuda_id.' , ) lowerCAmelCase = parser.parse_args() return args def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ): if not len(_UpperCAmelCase ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) lowerCAmelCase ,lowerCAmelCase = imgs[0].size lowerCAmelCase = Image.new('RGB' , size=(cols * w, rows * h) ) lowerCAmelCase ,lowerCAmelCase = grid.size for i, img in enumerate(_UpperCAmelCase ): grid.paste(_UpperCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]="robotic cat with wings" , _UpperCAmelCase : Optional[int]=7.5 , _UpperCAmelCase : Dict=50 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=42 , ): lowerCAmelCase = torch.Generator(pipeline.device ).manual_seed(_UpperCAmelCase ) lowerCAmelCase = pipeline( _UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , ).images lowerCAmelCase = int(math.sqrt(_UpperCAmelCase ) ) lowerCAmelCase = image_grid(_UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __UpperCamelCase : Optional[Any] = parse_args() # Load models and create wrapper for stable diffusion __UpperCamelCase : List[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') __UpperCamelCase : str = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') __UpperCamelCase : Optional[int] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') __UpperCamelCase : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') __UpperCamelCase : Tuple = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __UpperCamelCase : Union[str, Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): __UpperCamelCase : Dict = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: __UpperCamelCase : Dict = unet.to(torch.device('''cuda''', args.cuda_id)) __UpperCamelCase : Optional[Any] = pipeline.to(unet.device) __UpperCamelCase ,__UpperCamelCase : List[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) __UpperCamelCase : int = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
4
0
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = DiTPipeline lowerCAmelCase_ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } lowerCAmelCase_ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS lowerCAmelCase_ = False def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[str] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_snake_case , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=_snake_case , ) __SCREAMING_SNAKE_CASE : Dict = AutoencoderKL() __SCREAMING_SNAKE_CASE : Any = DDIMScheduler() __SCREAMING_SNAKE_CASE : str = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def UpperCAmelCase__ ( self : str , _A : int , _A : Union[str, Any]=0 ): """simple docstring""" if str(_snake_case ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(_snake_case ) else: __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) __SCREAMING_SNAKE_CASE : Any = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = '''cpu''' __SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs(_snake_case ) __SCREAMING_SNAKE_CASE : int = pipe(**_snake_case ).images __SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) __SCREAMING_SNAKE_CASE : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_snake_case , 1e-3 ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_snake_case , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[Any] = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) __SCREAMING_SNAKE_CASE : List[Any] = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.get_label_ids(_snake_case ) __SCREAMING_SNAKE_CASE : int = pipe(_snake_case , generator=_snake_case , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(_snake_case , _snake_case ): __SCREAMING_SNAKE_CASE : int = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) __SCREAMING_SNAKE_CASE : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) __SCREAMING_SNAKE_CASE : str = ['''vase''', '''umbrella'''] __SCREAMING_SNAKE_CASE : Optional[Any] = pipe.get_label_ids(_snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[int] = pipe(_snake_case , generator=_snake_case , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(_snake_case , _snake_case ): __SCREAMING_SNAKE_CASE : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
74
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : List[int] ): lowerCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ), F'{len(_UpperCAmelCase )} != {len(_UpperCAmelCase )}' dest_layers.load_state_dict(layers_to_copy.state_dict() ) __UpperCamelCase : Optional[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } __UpperCamelCase : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ): try: lowerCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first' F' {n_student}' ) return list(range(_UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ): if n_student > n_teacher: raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' ) elif n_teacher == n_student: return list(range(_UpperCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, PreTrainedModel] , _UpperCAmelCase : Union[str, Path] = "student" , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ): lowerCAmelCase = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(_UpperCAmelCase , _UpperCAmelCase ): AutoTokenizer.from_pretrained(_UpperCAmelCase ).save_pretrained(_UpperCAmelCase ) # purely for convenience lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).eval() else: assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), F'teacher must be a model or string got type {type(_UpperCAmelCase )}' lowerCAmelCase = teacher.config.to_diff_dict() try: lowerCAmelCase ,lowerCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: lowerCAmelCase = teacher_e if d is None: lowerCAmelCase = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): lowerCAmelCase ,lowerCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: lowerCAmelCase ,lowerCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: lowerCAmelCase = teacher_e if d is None: lowerCAmelCase = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(_UpperCAmelCase ) # Copy weights lowerCAmelCase = teacher.config_class(**_UpperCAmelCase ) lowerCAmelCase = AutoModelForSeqaSeqLM.from_config(_UpperCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. lowerCAmelCase = student.load_state_dict(teacher.state_dict() , strict=_UpperCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save lowerCAmelCase ,lowerCAmelCase = list(range(_UpperCAmelCase ) ), list(range(_UpperCAmelCase ) ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to' F' {save_path}' ) student.save_pretrained(_UpperCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase ) if d_layers_to_copy is None: lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase ) try: if hasattr( _UpperCAmelCase , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _UpperCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _UpperCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _UpperCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _UpperCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , _UpperCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , _UpperCAmelCase ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' ) lowerCAmelCase = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(_UpperCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
4
0
import argparse from collections import defaultdict import yaml UpperCAmelCase : Union[str, Any] = '''docs/source/en/_toctree.yml''' def _SCREAMING_SNAKE_CASE ( a ) -> Any: __A : List[str] = defaultdict(_UpperCAmelCase ) for doc in model_doc: counts[doc["local"]] += 1 __A : Optional[int] = [key for key, value in counts.items() if value > 1] __A : Tuple = [] for duplicate_key in duplicates: __A : Dict = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(_UpperCAmelCase ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(_UpperCAmelCase , key=lambda a : s["title"].lower() ) def _SCREAMING_SNAKE_CASE ( a=False ) -> Tuple: with open(_UpperCAmelCase , encoding='utf-8' ) as f: __A : Tuple = yaml.safe_load(f.read() ) # Get to the API doc __A : Union[str, Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 __A : Optional[int] = content[api_idx]['sections'] # Then to the model doc __A : List[Any] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 __A : Tuple = api_doc[model_idx]['sections'] __A : int = [(idx, section) for idx, section in enumerate(_UpperCAmelCase ) if 'sections' in section] __A : Tuple = False for idx, modality_doc in modalities_docs: __A : Optional[int] = modality_doc['sections'] __A : Union[str, Any] = clean_model_doc_toc(_UpperCAmelCase ) if old_modality_doc != new_modality_doc: __A : Dict = True if overwrite: __A : int = new_modality_doc if diff: if overwrite: __A : Tuple = model_doc __A : List[Any] = api_doc with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(_UpperCAmelCase , allow_unicode=_UpperCAmelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') UpperCAmelCase : int = parser.parse_args() check_model_doc(args.fix_and_overwrite)
239
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Dict = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
109
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ): lowerCAmelCase = 0.00 lowerCAmelCase = 0 for resistor in resistors: if resistor <= 0: lowerCAmelCase = F'Resistor at index {index} has a negative or zero value!' raise ValueError(_UpperCAmelCase ) first_sum += 1 / float(_UpperCAmelCase ) index += 1 return 1 / first_sum def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ): lowerCAmelCase = 0.00 lowerCAmelCase = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowerCAmelCase = F'Resistor at index {index} has a negative value!' raise ValueError(_UpperCAmelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
4
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ : Union[str, Any] = logging.get_logger(__name__) a_ : Tuple = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase__ ( a__): """simple docstring""" _A = 'bert' def __init__(self , __a=3_05_22 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=2 , __a=0.02 , __a=1E-12 , __a=0 , __a="absolute" , __a=True , __a=None , **__a , ): '''simple docstring''' super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = hidden_act lowerCamelCase = intermediate_size lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = type_vocab_size lowerCamelCase = initializer_range lowerCamelCase = layer_norm_eps lowerCamelCase = position_embedding_type lowerCamelCase = use_cache lowerCamelCase = classifier_dropout class lowerCamelCase__ ( a__): """simple docstring""" @property def _a (self ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
623
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''', # See all GLPN models at https://huggingface.co/models?filter=glpn } class a ( a__ ): snake_case__ = '''glpn''' def __init__( self , _snake_case=3 , _snake_case=4 , _snake_case=[2, 2, 2, 2] , _snake_case=[8, 4, 2, 1] , _snake_case=[32, 64, 1_60, 2_56] , _snake_case=[7, 3, 3, 3] , _snake_case=[4, 2, 2, 2] , _snake_case=[1, 2, 5, 8] , _snake_case=[4, 4, 4, 4] , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=0.1 , _snake_case=1E-6 , _snake_case=64 , _snake_case=10 , _snake_case=-1 , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = num_channels lowerCAmelCase = num_encoder_blocks lowerCAmelCase = depths lowerCAmelCase = sr_ratios lowerCAmelCase = hidden_sizes lowerCAmelCase = patch_sizes lowerCAmelCase = strides lowerCAmelCase = mlp_ratios lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = drop_path_rate lowerCAmelCase = layer_norm_eps lowerCAmelCase = decoder_hidden_size lowerCAmelCase = max_depth lowerCAmelCase = head_in_index
4
0
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase :Optional[Any] = 2_0_0 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase :Dict = 5_0 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase :Optional[int] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_0_0_0)) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] ) return (item, float(_UpperCAmelCase )) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : str = random.randint(0 , len(_UpperCAmelCase ) - 1 ) A_ : str = parent_a[:random_slice] + parent_a[random_slice:] A_ : Tuple = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Optional[int] = list(_UpperCAmelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: A_ : Optional[int] = random.choice(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): '''simple docstring''' A_ : Tuple = [] # Generate more children proportionally to the fitness score. A_ : Any = int(parent_a[1] * 1_00 ) + 1 A_ : Any = 10 if child_n >= 10 else child_n for _ in range(_UpperCAmelCase ): A_ : Optional[int] = population_score[random.randint(0 , _UpperCAmelCase )][0] A_, A_ : List[str] = crossover(parent_a[0] , _UpperCAmelCase ) # Append new string to the population list. pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) return pop def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True ): '''simple docstring''' if N_POPULATION < N_SELECTED: A_ : Union[str, Any] = f'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(_UpperCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. A_ : List[Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: A_ : Optional[Any] = f'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(_UpperCAmelCase ) # Generate random starting population. A_ : Dict = [] for _ in range(_UpperCAmelCase ): population.append("""""".join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. A_, A_ : List[Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_UpperCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. A_ : Optional[int] = [evaluate(_UpperCAmelCase , _UpperCAmelCase ) for item in population] # Check if there is a matching evolution. A_ : Dict = sorted(_UpperCAmelCase , key=lambda lowerCamelCase__ : x[1] , reverse=_UpperCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'\nGeneration: {generation}' f'\nTotal Population:{total_population}' f'\nBest score: {population_score[0][1]}' f'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. A_ : Optional[int] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_UpperCAmelCase ) # Normalize population score to be between 0 and 1. A_ : Optional[Any] = [ (item, score / len(_UpperCAmelCase )) for item, score in population_score ] # This is selection for i in range(_UpperCAmelCase ): population.extend(select(population_score[int(_UpperCAmelCase )] , _UpperCAmelCase , _UpperCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_UpperCAmelCase ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase :List[Any] = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) lowerCamelCase :str = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) lowerCamelCase :Any = basic(target_str, genes_list) print( F"\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}" )
667
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , _snake_case=10_00 , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = range_bbox def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase = bbox[i, j, 3] lowerCAmelCase = bbox[i, j, 1] lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase = bbox[i, j, 2] lowerCAmelCase = bbox[i, j, 0] lowerCAmelCase = t lowerCAmelCase = tf.convert_to_tensor(_snake_case ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForMaskedLM(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForSequenceClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForTokenClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = True snake_case__ = 1_0 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFLayoutLMModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def _SCREAMING_SNAKE_CASE (): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off lowerCAmelCase = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowerCAmelCase = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the sequence output on [0, :3, :3] lowerCAmelCase = tf.convert_to_tensor( [[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _snake_case , atol=1E-3 ) ) # test the pooled output on [1, :3] lowerCAmelCase = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _snake_case , atol=1E-3 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar lowerCAmelCase = outputs.loss lowerCAmelCase = (2,) self.assertEqual(loss.shape , _snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = (2, 2) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the shape of the logits lowerCAmelCase = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _snake_case ) self.assertEqual(outputs.end_logits.shape , _snake_case )
4
0
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _lowercase ( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> List[str]: __lowerCAmelCase : List[Any] = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCAmelCase )] ) __lowerCAmelCase : Dict = np.array(_UpperCAmelCase ) __lowerCAmelCase : Union[str, Any] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() ,_UpperCAmelCase ) ) ,x.transpose() ) ,_UpperCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Optional[int]: __lowerCAmelCase : Optional[Any] = (1, 2, 1) __lowerCAmelCase : str = (1, 1, 0, 7) __lowerCAmelCase : Optional[int] = SARIMAX( _UpperCAmelCase ,exog=_UpperCAmelCase ,order=_UpperCAmelCase ,seasonal_order=_UpperCAmelCase ) __lowerCAmelCase : str = model.fit(disp=_UpperCAmelCase ,maxiter=600 ,method="nm" ) __lowerCAmelCase : Union[str, Any] = model_fit.predict(1 ,len(_UpperCAmelCase ) ,exog=[test_match] ) return result[0] def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> List[str]: __lowerCAmelCase : Any = SVR(kernel="rbf" ,C=1 ,gamma=0.1 ,epsilon=0.1 ) regressor.fit(_UpperCAmelCase ,_UpperCAmelCase ) __lowerCAmelCase : Optional[int] = regressor.predict(_UpperCAmelCase ) return y_pred[0] def _lowercase ( __snake_case ) -> Union[str, Any]: train_user.sort() __lowerCAmelCase : Dict = np.percentile(_UpperCAmelCase ,25 ) __lowerCAmelCase : List[Any] = np.percentile(_UpperCAmelCase ,75 ) __lowerCAmelCase : Tuple = qa - qa __lowerCAmelCase : Any = qa - (iqr * 0.1) return low_lim def _lowercase ( __snake_case ,__snake_case ) -> str: __lowerCAmelCase : int = 0 __lowerCAmelCase : Dict = 0 for i in list_vote: if i > actual_result: __lowerCAmelCase : List[str] = not_safe + 1 else: if abs(abs(_UpperCAmelCase ) - abs(_UpperCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __snake_case : Optional[Any] = [[18_231, 0.0, 1], [22_621, 1.0, 2], [15_675, 0.0, 3], [23_583, 1.0, 4]] __snake_case : Any = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) __snake_case : Dict = Normalizer().fit_transform(data_input_df.values) # split data __snake_case : Dict = normalize_df[:, 2].tolist() __snake_case : Union[str, Any] = normalize_df[:, 0].tolist() __snake_case : List[str] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __snake_case : Optional[int] = normalize_df[:, [1, 2]].tolist() __snake_case : Tuple = x[: len(x) - 1] __snake_case : Any = x[len(x) - 1 :] # for linear regression & sarimax __snake_case : str = total_date[: len(total_date) - 1] __snake_case : Union[str, Any] = total_user[: len(total_user) - 1] __snake_case : List[Any] = total_match[: len(total_match) - 1] __snake_case : Optional[Any] = total_date[len(total_date) - 1 :] __snake_case : str = total_user[len(total_user) - 1 :] __snake_case : str = total_match[len(total_match) - 1 :] # voting system with forecasting __snake_case : Any = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __snake_case : List[str] = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('Today\'s data is {not_str}safe.')
293
"""simple docstring""" import argparse import os import re import packaging.version __UpperCamelCase : Union[str, Any] = '''examples/''' __UpperCamelCase : str = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __UpperCamelCase : List[str] = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } __UpperCamelCase : Optional[int] = '''README.md''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ): with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.read() lowerCAmelCase ,lowerCAmelCase = REPLACE_PATTERNS[pattern] lowerCAmelCase = replace.replace('VERSION' , _UpperCAmelCase ) lowerCAmelCase = re_pattern.sub(_UpperCAmelCase , _UpperCAmelCase ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ): for folder, directories, fnames in os.walk(_UpperCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , pattern='examples' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not patch: update_version_in_examples(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = '🤗 Transformers currently provides the following architectures' lowerCAmelCase = '1. Want to contribute a new model?' with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.readlines() # Find the start of the list. lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): lowerCAmelCase = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): with open(REPLACE_FILES['init'] , 'r' ) as f: lowerCAmelCase = f.read() lowerCAmelCase = REPLACE_PATTERNS['init'][0].search(_UpperCAmelCase ).groups()[0] return packaging.version.parse(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple=False ): lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: lowerCAmelCase = default_version.base_version elif patch: lowerCAmelCase = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: lowerCAmelCase = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. lowerCAmelCase = input(F'Which version are you releasing? [{default_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = default_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase , patch=_UpperCAmelCase ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = get_version() lowerCAmelCase = F'{current_version.major}.{current_version.minor + 1}.0.dev0' lowerCAmelCase = current_version.base_version # Check with the user we got that right. lowerCAmelCase = input(F'Which version are we developing now? [{dev_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = dev_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __UpperCamelCase : Optional[int] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
4
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : Tuple = tempfile.mkdtemp() # fmt: off lowercase__ : Dict = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowercase__ : Union[str, Any] = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } lowercase__ : List[Any] = os.path.join(self.tmpdirname , _snake_case ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_snake_case , _snake_case ) def _lowerCAmelCase( self , **__lowerCAmelCase ) -> List[Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def _lowerCAmelCase( self , **__lowerCAmelCase ) -> Tuple: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_snake_case ) def _lowerCAmelCase( self ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ : str = [Image.fromarray(np.moveaxis(_snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCAmelCase( self ) -> str: lowercase__ : Any = self.get_tokenizer() lowercase__ : Any = self.get_image_processor() lowercase__ : List[Any] = VisionTextDualEncoderProcessor(tokenizer=_snake_case , image_processor=_snake_case ) processor.save_pretrained(self.tmpdirname ) lowercase__ : int = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _snake_case ) def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : Optional[Any] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ : List[Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowercase__ : Optional[Any] = self.get_image_processor(do_normalize=_snake_case , padding_value=1.0 ) lowercase__ : Dict = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _snake_case ) def _lowerCAmelCase( self ) -> Dict: lowercase__ : List[str] = self.get_image_processor() lowercase__ : List[Any] = self.get_tokenizer() lowercase__ : Dict = VisionTextDualEncoderProcessor(tokenizer=_snake_case , image_processor=_snake_case ) lowercase__ : Optional[Any] = self.prepare_image_inputs() lowercase__ : Any = image_processor(_snake_case , return_tensors='''np''' ) lowercase__ : List[Any] = processor(images=_snake_case , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCAmelCase( self ) -> int: lowercase__ : str = self.get_image_processor() lowercase__ : Dict = self.get_tokenizer() lowercase__ : Tuple = VisionTextDualEncoderProcessor(tokenizer=_snake_case , image_processor=_snake_case ) lowercase__ : Union[str, Any] = '''lower newer''' lowercase__ : Dict = processor(text=_snake_case ) lowercase__ : Dict = tokenizer(_snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : Optional[int] = self.get_image_processor() lowercase__ : List[str] = self.get_tokenizer() lowercase__ : List[str] = VisionTextDualEncoderProcessor(tokenizer=_snake_case , image_processor=_snake_case ) lowercase__ : Tuple = '''lower newer''' lowercase__ : Optional[Any] = self.prepare_image_inputs() lowercase__ : Optional[Any] = processor(text=_snake_case , images=_snake_case ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(_snake_case ): processor() def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : Optional[Any] = self.get_image_processor() lowercase__ : Tuple = self.get_tokenizer() lowercase__ : Any = VisionTextDualEncoderProcessor(tokenizer=_snake_case , image_processor=_snake_case ) lowercase__ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ : int = processor.batch_decode(_snake_case ) lowercase__ : Any = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def _lowerCAmelCase( self ) -> str: lowercase__ : Any = self.get_image_processor() lowercase__ : Optional[int] = self.get_tokenizer() lowercase__ : Any = VisionTextDualEncoderProcessor(tokenizer=_snake_case , image_processor=_snake_case ) lowercase__ : Tuple = '''lower newer''' lowercase__ : List[str] = self.prepare_image_inputs() lowercase__ : List[str] = processor(text=_snake_case , images=_snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
152
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __UpperCamelCase : Optional[int] = pytest.mark.integration @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_snake_case ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() lowerCAmelCase = dset.map( lambda _snake_case , _snake_case : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_snake_case , keep_in_memory=_snake_case ) lowerCAmelCase = dset.add_faiss_index('vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_snake_case , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch lowerCAmelCase = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCAmelCase = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_snake_case ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertRaises(_snake_case , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCAmelCase = np.eye(5 , dtype=np.floataa )[::-1] lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) self.assertRaises(_snake_case , index.search_batch , queries[0] ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCAmelCase = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_snake_case ): lowerCAmelCase = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = faiss.IndexFlat(5 ) lowerCAmelCase = FaissIndex(custom_index=_snake_case ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: index.save(tmp_file.name ) lowerCAmelCase = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ): import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCAmelCase = 'index.faiss' lowerCAmelCase = F'mock://{index_name}' index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = Elasticsearch() lowerCAmelCase = {'acknowledged': True} lowerCAmelCase = ElasticSearchIndex(es_client=_snake_case ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case ) # batched queries with timeout lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case , request_timeout=30 ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case )
4
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowerCamelCase : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , ): UpperCamelCase : Union[str, Any] = parent UpperCamelCase : List[Any] = batch_size UpperCamelCase : Union[str, Any] = seq_length UpperCamelCase : Union[str, Any] = is_training UpperCamelCase : Any = use_token_type_ids UpperCamelCase : List[str] = use_labels UpperCamelCase : Optional[int] = vocab_size UpperCamelCase : List[str] = hidden_size UpperCamelCase : Union[str, Any] = num_hidden_layers UpperCamelCase : List[str] = num_attention_heads UpperCamelCase : Union[str, Any] = intermediate_size UpperCamelCase : Optional[Any] = hidden_act UpperCamelCase : Optional[int] = hidden_dropout_prob UpperCamelCase : Optional[int] = attention_probs_dropout_prob UpperCamelCase : Optional[int] = max_position_embeddings UpperCamelCase : Optional[Any] = type_vocab_size UpperCamelCase : Tuple = type_sequence_label_size UpperCamelCase : Union[str, Any] = initializer_range UpperCamelCase : Tuple = num_labels UpperCamelCase : Optional[int] = num_choices UpperCamelCase : Optional[Any] = scope UpperCamelCase : List[str] = self.vocab_size - 1 def a_ ( self ): UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : List[str] = None if self.use_token_type_ids: UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase : List[Any] = None UpperCamelCase : Optional[int] = None UpperCamelCase : Dict = None if self.use_labels: UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase : List[Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) UpperCamelCase : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ): UpperCamelCase : str = OpenAIGPTModel(config=_snake_case ) model.to(_snake_case ) model.eval() UpperCamelCase : Any = model(_snake_case , token_type_ids=_snake_case , head_mask=_snake_case ) UpperCamelCase : Optional[int] = model(_snake_case , token_type_ids=_snake_case ) UpperCamelCase : Union[str, Any] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ): UpperCamelCase : int = OpenAIGPTLMHeadModel(_snake_case ) model.to(_snake_case ) model.eval() UpperCamelCase : Any = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ): UpperCamelCase : int = OpenAIGPTDoubleHeadsModel(_snake_case ) model.to(_snake_case ) model.eval() UpperCamelCase : Dict = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Dict = self.num_labels UpperCamelCase : Any = OpenAIGPTForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : Any = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self ): UpperCamelCase : Any = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : List[str] = config_and_inputs UpperCamelCase : int = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ): lowercase : Dict = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowercase : Any = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowercase : List[str] = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): UpperCamelCase : Any = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": UpperCamelCase : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_snake_case , ) UpperCamelCase : int = inputs_dict["""labels"""] UpperCamelCase : Tuple = inputs_dict["""labels"""] UpperCamelCase : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_snake_case , ) UpperCamelCase : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_snake_case ) return inputs_dict def a_ ( self ): UpperCamelCase : Union[str, Any] = OpenAIGPTModelTester(self ) UpperCamelCase : int = ConfigTester(self , config_class=_snake_case , n_embd=37 ) def a_ ( self ): self.config_tester.run_common_tests() def a_ ( self ): UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_snake_case ) def a_ ( self ): UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_snake_case ) def a_ ( self ): UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_snake_case ) def a_ ( self ): UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_snake_case ) @slow def a_ ( self ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : str = OpenAIGPTModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def a_ ( self ): UpperCamelCase : Any = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(_snake_case ) UpperCamelCase : Tuple = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=_snake_case ) # the president is UpperCamelCase : Tuple = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the UpperCamelCase : Optional[int] = model.generate(_snake_case , do_sample=_snake_case ) self.assertListEqual(output_ids[0].tolist() , _snake_case )
499
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a ( a__ , a__ , unittest.TestCase ): snake_case__ = IFInpaintingPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_dummy_components() def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
4
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCAmelCase = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
651
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = self.vocab_size - 1 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , head_mask=_snake_case ) lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTLMHeadModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTDoubleHeadsModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = OpenAIGPTForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case__ = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=False ): """simple docstring""" lowerCAmelCase = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_snake_case , ) lowerCAmelCase = inputs_dict['labels'] lowerCAmelCase = inputs_dict['labels'] lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_snake_case , ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_snake_case ) return inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenAIGPTModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , n_embd=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = OpenAIGPTModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_torch class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(_snake_case ) lowerCAmelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=_snake_case ) # the president is lowerCAmelCase = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCAmelCase = model.generate(_snake_case , do_sample=_snake_case ) self.assertListEqual(output_ids[0].tolist() , _snake_case )
4
0
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class UpperCamelCase__ ( unittest.TestCase ): def __init__( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any]=13 , UpperCamelCase__ : List[Any]=7 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[Any]=99 , UpperCamelCase__ : Optional[Any]=32 , UpperCamelCase__ : List[Any]=5 , UpperCamelCase__ : Any=4 , UpperCamelCase__ : Union[str, Any]=37 , UpperCamelCase__ : List[Any]="gelu" , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : List[Any]=512 , UpperCamelCase__ : List[str]=16 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : List[Any]=0.02 , UpperCamelCase__ : Any=4 , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_attention_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_choices def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_attention_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class UpperCamelCase__ ( a__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = True __SCREAMING_SNAKE_CASE : Any = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase_ = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_snake_case ) lowercase_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_snake_case ) @require_flax class UpperCamelCase__ ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) lowercase_ = jnp.array([[0, 1, 2, 3, 4, 5]] ) lowercase_ = model(_snake_case )[0] lowercase_ = 50_000 lowercase_ = (1, 6, vocab_size) self.assertEqual(output.shape , _snake_case ) lowercase_ = jnp.array( [[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _snake_case , atol=1e-4 ) )
412
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __UpperCamelCase : str = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=_UpperCAmelCase , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=_UpperCAmelCase , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=_UpperCAmelCase , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=_UpperCAmelCase , default='data/dump' , help='The dump file prefix.' ) lowerCAmelCase = parser.parse_args() logger.info(F'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": lowerCAmelCase = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `[CLS]` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCAmelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `<s>` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": lowerCAmelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` lowerCAmelCase = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(F'Loading text from {args.file_path}' ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: lowerCAmelCase = fp.readlines() logger.info('Start encoding' ) logger.info(F'{len(_UpperCAmelCase )} examples to process.' ) lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 1_0000 lowerCAmelCase = time.time() for text in data: lowerCAmelCase = F'{bos} {text.strip()} {sep}' lowerCAmelCase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) rslt.append(_UpperCAmelCase ) iter += 1 if iter % interval == 0: lowerCAmelCase = time.time() logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) lowerCAmelCase = time.time() logger.info('Finished binarization' ) logger.info(F'{len(_UpperCAmelCase )} examples processed.' ) lowerCAmelCase = F'{args.dump_file}.{args.tokenizer_name}.pickle' lowerCAmelCase = tokenizer.vocab_size if vocab_size < (1 << 16): lowerCAmelCase = [np.uintaa(_UpperCAmelCase ) for d in rslt] else: lowerCAmelCase = [np.intaa(_UpperCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'Dump to {dp_file}' ) with open(_UpperCAmelCase , 'wb' ) as handle: pickle.dump(rslt_ , _UpperCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
4
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging a : Tuple = logging.get_logger(__name__) class a ( a__ ): """simple docstring""" a : Union[str, Any] = ['input_features', 'is_longer'] def __init__( self : Dict , __lowercase : int=64 , __lowercase : str=48000 , __lowercase : Optional[Any]=480 , __lowercase : int=10 , __lowercase : Tuple=1024 , __lowercase : List[Any]=0.0 , __lowercase : Dict=False , __lowercase : Any = 0 , __lowercase : int = 14000 , __lowercase : List[str] = None , __lowercase : str = "fusion" , __lowercase : Union[str, Any] = "repeatpad" , **__lowercase : Optional[int] , ) -> Tuple: super().__init__( feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) __UpperCAmelCase : List[Any] = top_db __UpperCAmelCase : List[Any] = truncation __UpperCAmelCase : Optional[int] = padding __UpperCAmelCase : List[str] = fft_window_size __UpperCAmelCase : Any = (fft_window_size >> 1) + 1 __UpperCAmelCase : Union[str, Any] = hop_length __UpperCAmelCase : Dict = max_length_s __UpperCAmelCase : List[Any] = max_length_s * sampling_rate __UpperCAmelCase : str = sampling_rate __UpperCAmelCase : int = frequency_min __UpperCAmelCase : Dict = frequency_max __UpperCAmelCase : Optional[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_snake_case , min_frequency=_snake_case , max_frequency=_snake_case , sampling_rate=_snake_case , norm=_snake_case , mel_scale="""htk""" , ) __UpperCAmelCase : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_snake_case , min_frequency=_snake_case , max_frequency=_snake_case , sampling_rate=_snake_case , norm="""slaney""" , mel_scale="""slaney""" , ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: __UpperCAmelCase : int = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Any = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase ( self : Optional[Any] , __lowercase : Optional[Any] , __lowercase : Dict = None ) -> List[Any]: __UpperCAmelCase : str = spectrogram( _snake_case , window_function(self.fft_window_size , """hann""" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_snake_case , log_mel="""dB""" , ) return log_mel_spectrogram.T def UpperCAmelCase ( self : Optional[Any] , __lowercase : Tuple , __lowercase : Tuple , __lowercase : Optional[int] ) -> Optional[int]: __UpperCAmelCase : Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk __UpperCAmelCase : int = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk __UpperCAmelCase : int = [0] # randomly choose index for each part __UpperCAmelCase : Optional[int] = np.random.choice(ranges[0] ) __UpperCAmelCase : List[str] = np.random.choice(ranges[1] ) __UpperCAmelCase : List[str] = np.random.choice(ranges[2] ) __UpperCAmelCase : Union[str, Any] = mel[idx_front : idx_front + chunk_frames, :] __UpperCAmelCase : Union[str, Any] = mel[idx_middle : idx_middle + chunk_frames, :] __UpperCAmelCase : int = mel[idx_back : idx_back + chunk_frames, :] __UpperCAmelCase : Any = torch.tensor(mel[None, None, :] ) __UpperCAmelCase : Optional[int] = torch.nn.functional.interpolate( _snake_case , size=[chunk_frames, 64] , mode="""bilinear""" , align_corners=_snake_case ) __UpperCAmelCase : Tuple = mel_shrink[0][0].numpy() __UpperCAmelCase : Any = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def UpperCAmelCase ( self : Optional[Any] , __lowercase : Optional[Any] , __lowercase : Any , __lowercase : Union[str, Any] , __lowercase : Dict ) -> str: if waveform.shape[0] > max_length: if truncation == "rand_trunc": __UpperCAmelCase : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __UpperCAmelCase : str = len(_snake_case ) - max_length __UpperCAmelCase : Tuple = np.random.randint(0 , overflow + 1 ) __UpperCAmelCase : Tuple = waveform[idx : idx + max_length] __UpperCAmelCase : str = self._np_extract_fbank_features(_snake_case , self.mel_filters_slaney )[None, :] elif truncation == "fusion": __UpperCAmelCase : str = self._np_extract_fbank_features(_snake_case , self.mel_filters ) __UpperCAmelCase : Any = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __UpperCAmelCase : Union[str, Any] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __UpperCAmelCase : List[Any] = np.stack([mel, mel, mel, mel] , axis=0 ) __UpperCAmelCase : Any = False else: __UpperCAmelCase : Dict = self._random_mel_fusion(_snake_case , _snake_case , _snake_case ) __UpperCAmelCase : Optional[Any] = True else: raise NotImplementedError(f"""data_truncating {truncation} not implemented""" ) else: __UpperCAmelCase : List[str] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __UpperCAmelCase : List[str] = int(max_length / len(_snake_case ) ) __UpperCAmelCase : Tuple = np.stack(np.tile(_snake_case , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": __UpperCAmelCase : List[Any] = int(max_length / len(_snake_case ) ) __UpperCAmelCase : int = np.stack(np.tile(_snake_case , _snake_case ) ) __UpperCAmelCase : List[str] = np.pad(_snake_case , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0 ) if truncation == "fusion": __UpperCAmelCase : Tuple = self._np_extract_fbank_features(_snake_case , self.mel_filters ) __UpperCAmelCase : Optional[int] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: __UpperCAmelCase : List[str] = self._np_extract_fbank_features(_snake_case , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int , __lowercase : Union[str, Any] , __lowercase : List[Any] = None , __lowercase : Any = None , __lowercase : List[Any] = None , __lowercase : Dict = None , __lowercase : List[Any] = None , **__lowercase : List[str] , ) -> List[Any]: __UpperCAmelCase : str = truncation if truncation is not None else self.truncation __UpperCAmelCase : int = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __UpperCAmelCase : Optional[int] = isinstance(_snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __UpperCAmelCase : List[Any] = is_batched_numpy or ( isinstance(_snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCAmelCase : Optional[int] = [np.asarray(_snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_snake_case , np.ndarray ): __UpperCAmelCase : List[str] = np.asarray(_snake_case , dtype=np.floataa ) elif isinstance(_snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCAmelCase : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCAmelCase : Tuple = [np.asarray(_snake_case )] # convert to mel spectrogram, truncate and pad if needed. __UpperCAmelCase : List[Any] = [ self._get_input_mel(_snake_case , max_length if max_length else self.nb_max_samples , _snake_case , _snake_case ) for waveform in raw_speech ] __UpperCAmelCase : str = [] __UpperCAmelCase : int = [] for mel, longer in padded_inputs: input_mel.append(_snake_case ) is_longer.append(_snake_case ) if truncation == "fusion" and sum(_snake_case ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __UpperCAmelCase : int = np.random.randint(0 , len(_snake_case ) ) __UpperCAmelCase : Union[str, Any] = True if isinstance(input_mel[0] , _snake_case ): __UpperCAmelCase : int = [np.asarray(_snake_case , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool __UpperCAmelCase : Dict = [[longer] for longer in is_longer] __UpperCAmelCase : str = {"""input_features""": input_mel, """is_longer""": is_longer} __UpperCAmelCase : Union[str, Any] = BatchFeature(_snake_case ) if return_tensors is not None: __UpperCAmelCase : int = input_features.convert_to_tensors(_snake_case ) return input_features
63
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''bert''' def __init__( self , _snake_case=3_05_22 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache lowerCAmelCase = classifier_dropout class a ( a__ ): @property def UpperCamelCase__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
4
0
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = args.pruning_method __SCREAMING_SNAKE_CASE : List[str] = args.threshold __SCREAMING_SNAKE_CASE : Tuple = args.model_name_or_path.rstrip('''/''' ) __SCREAMING_SNAKE_CASE : Tuple = args.target_model_path print(F'''Load fine-pruned model from {model_name_or_path}''' ) __SCREAMING_SNAKE_CASE : Tuple = torch.load(os.path.join(_UpperCAmelCase , '''pytorch_model.bin''' ) ) __SCREAMING_SNAKE_CASE : List[Any] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = tensor print(F'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: __SCREAMING_SNAKE_CASE : Union[str, Any] = tensor print(F'''Copied layer {name}''' ) elif "bias" in name: __SCREAMING_SNAKE_CASE : Optional[int] = tensor print(F'''Copied layer {name}''' ) else: if pruning_method == "magnitude": __SCREAMING_SNAKE_CASE : int = MagnitudeBinarizer.apply(inputs=_UpperCAmelCase , threshold=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue __SCREAMING_SNAKE_CASE : Optional[int] = name[:-6] __SCREAMING_SNAKE_CASE : str = model[F'''{prefix_}mask_scores'''] __SCREAMING_SNAKE_CASE : Any = TopKBinarizer.apply(_UpperCAmelCase , _UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue __SCREAMING_SNAKE_CASE : Dict = name[:-6] __SCREAMING_SNAKE_CASE : List[Any] = model[F'''{prefix_}mask_scores'''] __SCREAMING_SNAKE_CASE : Dict = ThresholdBinarizer.apply(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Any = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue __SCREAMING_SNAKE_CASE : Dict = name[:-6] __SCREAMING_SNAKE_CASE : Optional[int] = model[F'''{prefix_}mask_scores'''] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = -0.1, 1.1 __SCREAMING_SNAKE_CASE : Any = torch.sigmoid(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = s * (r - l) + l __SCREAMING_SNAKE_CASE : List[str] = s_bar.clamp(min=0.0 , max=1.0 ) __SCREAMING_SNAKE_CASE : str = tensor * mask print(F'''Pruned layer {name}''' ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: __SCREAMING_SNAKE_CASE : List[Any] = os.path.join( os.path.dirname(_UpperCAmelCase ) , F'''bertarized_{os.path.basename(_UpperCAmelCase )}''' ) if not os.path.isdir(_UpperCAmelCase ): shutil.copytree(_UpperCAmelCase , _UpperCAmelCase ) print(F'''\nCreated folder {target_model_path}''' ) torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) lowercase_ = parser.parse_args() main(args)
74
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( a__ , unittest.TestCase ): snake_case__ = DanceDiffusionPipeline snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_snake_case , use_timestep_embedding=_snake_case , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase = IPNDMScheduler() lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = DanceDiffusionPipeline(**_snake_case ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = pipe(**_snake_case ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_local() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
4
0
UpperCAmelCase : int = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def _SCREAMING_SNAKE_CASE ( a ) -> Optional[int]: # Make sure the supplied data is a bytes-like object if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __A : Union[str, Any] = F"""a bytes-like object is required, not \'{data.__class__.__name__}\'""" raise TypeError(_UpperCAmelCase ) __A : Dict = ''.join(bin(_UpperCAmelCase )[2:].zfill(8 ) for byte in data ) __A : Optional[int] = len(_UpperCAmelCase ) % 6 != 0 if padding_needed: # The padding that will be added later __A : Dict = b'=' * ((6 - len(_UpperCAmelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_UpperCAmelCase ) % 6) else: __A : Dict = b'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_UpperCAmelCase ) , 6 ) ).encode() + padding ) def _SCREAMING_SNAKE_CASE ( a ) -> List[str]: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __A : Dict = ( 'argument should be a bytes-like object or ASCII string, ' F"""not \'{encoded_data.__class__.__name__}\'""" ) raise TypeError(_UpperCAmelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_UpperCAmelCase , _UpperCAmelCase ): try: __A : Dict = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) __A : Tuple = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_UpperCAmelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __A : Dict = encoded_data[:-padding] __A : Dict = ''.join( bin(B64_CHARSET.index(_UpperCAmelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __A : str = ''.join( bin(B64_CHARSET.index(_UpperCAmelCase ) )[2:].zfill(6 ) for char in encoded_data ) __A : Dict = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_UpperCAmelCase ) , 8 ) ] return bytes(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
239
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , use_stable_embedding=_snake_case , ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = OpenLlamaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = OpenLlamaModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , ) lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() # first forward pass lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , use_cache=_snake_case , ) lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , past_key_values=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) snake_case__ = (OpenLlamaForCausalLM,) if is_torch_available() else () snake_case__ = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenLlamaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase = type self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'single_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'multi_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = OpenLlamaModel(_snake_case ) original_model.to(_snake_case ) original_model.eval() lowerCAmelCase = original_model(_snake_case ).last_hidden_state lowerCAmelCase = original_model(_snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = {'type': scaling_type, 'factor': 10.0} lowerCAmelCase = OpenLlamaModel(_snake_case ) scaled_model.to(_snake_case ) scaled_model.eval() lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
4
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging a = logging.get_logger(__name__) a = {'''vocab_file''': '''spiece.model'''} a = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } a = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) a = 0 a = 1 a = 2 a = 3 a = 4 class __a ( a__ ): __UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES __UpperCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[Any] = 'left' def __init__( self : str ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : str=False ,lowerCamelCase : Any=True ,lowerCamelCase : Union[str, Any]=False ,lowerCamelCase : Optional[int]="<s>" ,lowerCamelCase : int="</s>" ,lowerCamelCase : List[str]="<unk>" ,lowerCamelCase : int="<sep>" ,lowerCamelCase : List[Any]="<pad>" ,lowerCamelCase : Optional[int]="<cls>" ,lowerCamelCase : List[Any]="<mask>" ,lowerCamelCase : Optional[int]=["<eop>", "<eod>"] ,lowerCamelCase : Dict = None ,**lowerCamelCase : str ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = AddedToken(_snake_case ,lstrip=_snake_case ,rstrip=_snake_case ) if isinstance(_snake_case ,_snake_case ) else mask_token __SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_snake_case ,remove_space=_snake_case ,keep_accents=_snake_case ,bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,pad_token=_snake_case ,cls_token=_snake_case ,mask_token=_snake_case ,additional_special_tokens=_snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**_snake_case ,) __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = do_lower_case __SCREAMING_SNAKE_CASE = remove_space __SCREAMING_SNAKE_CASE = keep_accents __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) @property def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return len(self.sp_model ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.__dict__.copy() __SCREAMING_SNAKE_CASE = None return state def __setstate__( self : Union[str, Any] ,lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ ( self : int ,lowerCamelCase : Tuple ): '''simple docstring''' if self.remove_space: __SCREAMING_SNAKE_CASE = """ """.join(inputs.strip().split() ) else: __SCREAMING_SNAKE_CASE = inputs __SCREAMING_SNAKE_CASE = outputs.replace("""``""" ,"""\"""" ).replace("""\'\'""" ,"""\"""" ) if not self.keep_accents: __SCREAMING_SNAKE_CASE = unicodedata.normalize("""NFKD""" ,_snake_case ) __SCREAMING_SNAKE_CASE = """""".join([c for c in outputs if not unicodedata.combining(_snake_case )] ) if self.do_lower_case: __SCREAMING_SNAKE_CASE = outputs.lower() return outputs def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.preprocess_text(_snake_case ) __SCREAMING_SNAKE_CASE = self.sp_model.encode(_snake_case ,out_type=_snake_case ) __SCREAMING_SNAKE_CASE = [] for piece in pieces: if len(_snake_case ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): __SCREAMING_SNAKE_CASE = self.sp_model.EncodeAsPieces(piece[:-1].replace(_snake_case ,"""""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __SCREAMING_SNAKE_CASE = cur_pieces[1:] else: __SCREAMING_SNAKE_CASE = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_snake_case ) else: new_pieces.append(_snake_case ) return new_pieces def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : List[Any] ): '''simple docstring''' return self.sp_model.PieceToId(_snake_case ) def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : Dict ): '''simple docstring''' return self.sp_model.IdToPiece(_snake_case ) def UpperCAmelCase__ ( self : Any ,lowerCamelCase : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """""".join(_snake_case ).replace(_snake_case ,""" """ ).strip() return out_string def UpperCAmelCase__ ( self : int ,lowerCamelCase : Tuple ,lowerCamelCase : Dict = False ,lowerCamelCase : Union[str, Any] = None ,lowerCamelCase : Optional[Any] = True ,**lowerCamelCase : int ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = kwargs.pop("""use_source_tokenizer""" ,_snake_case ) __SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(_snake_case ,skip_special_tokens=_snake_case ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_snake_case ) ) __SCREAMING_SNAKE_CASE = [] sub_texts.append(_snake_case ) else: current_sub_text.append(_snake_case ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_snake_case ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens __SCREAMING_SNAKE_CASE = """""".join(_snake_case ) __SCREAMING_SNAKE_CASE = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __SCREAMING_SNAKE_CASE = self.clean_up_tokenization(_snake_case ) return clean_text else: return text def UpperCAmelCase__ ( self : Any ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Optional[int] = None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : List[str] ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : Tuple = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case ,token_ids_a=_snake_case ,already_has_special_tokens=_snake_case ) if token_ids_a is not None: return ([0] * len(_snake_case )) + [1] + ([0] * len(_snake_case )) + [1, 1] return ([0] * len(_snake_case )) + [1, 1] def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Dict ,lowerCamelCase : Union[str, Any] = None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Optional[int] = None ): '''simple docstring''' if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __SCREAMING_SNAKE_CASE = os.path.join( _snake_case ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case ,"""wb""" ) as fi: __SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
109
"""simple docstring""" from typing import Any class a : def __init__( self , _snake_case ): """simple docstring""" lowerCAmelCase = data lowerCAmelCase = None def __repr__( self ): """simple docstring""" return F'Node({self.data})' class a : def __init__( self ): """simple docstring""" lowerCAmelCase = None def __iter__( self ): """simple docstring""" lowerCAmelCase = self.head while node: yield node.data lowerCAmelCase = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(_snake_case ) for item in self] ) def __getitem__( self , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase = self.head for _ in range(_snake_case ): lowerCAmelCase = current.next lowerCAmelCase = data def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(len(self ) , _snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(0 , _snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase = Node(_snake_case ) if self.head is None: lowerCAmelCase = new_node elif index == 0: lowerCAmelCase = self.head # link new_node to head lowerCAmelCase = new_node else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = new_node def UpperCamelCase__ ( self ): # print every node data """simple docstring""" print(self ) def UpperCamelCase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def UpperCamelCase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def UpperCamelCase__ ( self , _snake_case = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase = self.head # default first node if index == 0: lowerCAmelCase = self.head.next else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = temp.next.next return delete_node.data def UpperCamelCase__ ( self ): """simple docstring""" return self.head is None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = None lowerCAmelCase = self.head while current: # Store the current node's next node. lowerCAmelCase = current.next # Make the current node's next point backwards lowerCAmelCase = prev # Make the previous node be the current node lowerCAmelCase = current # Make the current node the next node (to progress iteration) lowerCAmelCase = next_node # Return prev in order to put the head at the end lowerCAmelCase = prev def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = LinkedList() assert linked_list.is_empty() is True assert str(_UpperCAmelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_UpperCAmelCase ) == i linked_list.insert_nth(_UpperCAmelCase , i + 1 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_UpperCAmelCase ) == 9 assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(-8 , 1 ) ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = [ -9, 100, Node(7734_5112 ), 'dlrow olleH', 7, 5555, 0, -192.5_5555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase = LinkedList() for i in test_input: linked_list.insert_tail(_UpperCAmelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase = linked_list.delete_head() assert result == -9 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_UpperCAmelCase ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_UpperCAmelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _SCREAMING_SNAKE_CASE (): from doctest import testmod testmod() lowerCAmelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_UpperCAmelCase ) print('\nReading/changing Node data using indexing:' ) print(F'Element at Position 1: {linked_list[1]}' ) lowerCAmelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_UpperCAmelCase ) print(F'length of linked_list is : {len(_UpperCAmelCase )}' ) if __name__ == "__main__": main()
4
0
import argparse from collections import defaultdict def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(_UpperCAmelCase , "r" ) as f: lowerCamelCase = f.readlines() lowerCamelCase = F"""class {class_name}(""" lowerCamelCase = F"""{4 * " "}def {test_name}(""" lowerCamelCase = F"""{8 * " "}{correct_line.split()[0]}""" lowerCamelCase = F"""{16 * " "}{correct_line.split()[0]}""" lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = 0 lowerCamelCase = 0 lowerCamelCase = [] for line in lines: if line.startswith(_UpperCAmelCase ): lowerCamelCase = True elif in_class and line.startswith(_UpperCAmelCase ): lowerCamelCase = True elif in_class and in_func and (line.startswith(_UpperCAmelCase ) or line.startswith(_UpperCAmelCase )): lowerCamelCase = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: lowerCamelCase = True if in_class and in_func and in_line: if ")" not in line: continue else: lowerCamelCase = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) lowerCamelCase = lowerCamelCase = lowerCamelCase = lowerCamelCase = False else: new_lines.append(_UpperCAmelCase ) with open(_UpperCAmelCase , "w" ) as f: for line in new_lines: f.write(_UpperCAmelCase ) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__=None ): """simple docstring""" if fail is not None: with open(_UpperCAmelCase , "r" ) as f: lowerCamelCase = {l.strip() for l in f.readlines()} else: lowerCamelCase = None with open(_UpperCAmelCase , "r" ) as f: lowerCamelCase = f.readlines() lowerCamelCase = defaultdict(_UpperCAmelCase ) for line in correct_lines: lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = line.split(";" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": a_ : List[Any] = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) a_ : Dict = parser.parse_args() main(args.correct_filename, args.fail_filename)
623
"""simple docstring""" from __future__ import annotations import requests def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(_UpperCAmelCase ).json() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' lowerCAmelCase = requests.get(_UpperCAmelCase ).json()[:max_stories] return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = hackernews_top_stories(_UpperCAmelCase ) return "\n".join('* [{title}]({url})'.format(**_UpperCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
0
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCamelCase :Dict = logging.get_logger(__name__) @add_end_docstrings(a__ ) class _lowerCAmelCase ( a__ ): def __init__(self , **lowercase ): super().__init__(**_snake_case ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__(self , lowercase , **lowercase ): return super().__call__(_snake_case , **_snake_case ) def _a (self , **lowercase ): A_ : int = {} if "candidate_labels" in kwargs: A_ : str = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: A_ : List[str] = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _a (self , lowercase , lowercase=None , lowercase="This is a photo of {}." ): A_ : Any = load_image(_snake_case ) A_ : List[Any] = self.image_processor(images=[image] , return_tensors=self.framework ) A_ : int = candidate_labels A_ : List[Any] = [hypothesis_template.format(_snake_case ) for x in candidate_labels] A_ : Optional[int] = self.tokenizer(_snake_case , return_tensors=self.framework , padding=_snake_case ) A_ : Tuple = [text_inputs] return inputs def _a (self , lowercase ): A_ : Optional[Any] = model_inputs.pop("""candidate_labels""" ) A_ : Dict = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _snake_case ): A_ : Dict = text_inputs[0] else: # Batching case. A_ : Optional[Any] = text_inputs[0][0] A_ : str = self.model(**_snake_case , **_snake_case ) A_ : Optional[int] = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def _a (self , lowercase ): A_ : int = model_outputs.pop("""candidate_labels""" ) A_ : Optional[Any] = model_outputs["""logits"""][0] if self.framework == "pt": A_ : List[str] = logits.softmax(dim=-1 ).squeeze(-1 ) A_ : Dict = probs.tolist() if not isinstance(_snake_case , _snake_case ): A_ : Union[str, Any] = [scores] elif self.framework == "tf": A_ : Dict = stable_softmax(_snake_case , axis=-1 ) A_ : Union[str, Any] = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) A_ : Any = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_snake_case , _snake_case ) , key=lambda lowercase : -x[0] ) ] return result
667
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ): lowerCAmelCase = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 48 lowerCAmelCase = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 60 lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCAmelCase = 1 lowerCAmelCase = 1 lowerCAmelCase = 126 lowerCAmelCase = 7 lowerCAmelCase = 255.0 lowerCAmelCase = '' return config def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): if "patch_embed.proj" in name and "layers" not in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCAmelCase = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: lowerCAmelCase = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: lowerCAmelCase = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: lowerCAmelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCAmelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCAmelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCAmelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: lowerCAmelCase = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: lowerCAmelCase = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: lowerCAmelCase = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: lowerCAmelCase = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": lowerCAmelCase = 'layernorm.weight' if name == "norm.bias": lowerCAmelCase = 'layernorm.bias' if "conv_first" in name: lowerCAmelCase = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCAmelCase = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCAmelCase = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: lowerCAmelCase = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: lowerCAmelCase = name.replace('upsample.2' , 'upsample.convolution_1' ) lowerCAmelCase = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": lowerCAmelCase = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) lowerCAmelCase = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: lowerCAmelCase = 'swin2sr.' + name return name def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict ): for key in orig_state_dict.copy().keys(): lowerCAmelCase = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: lowerCAmelCase = key.split('.' ) lowerCAmelCase = int(key_split[1] ) lowerCAmelCase = int(key_split[4] ) lowerCAmelCase = config.embed_dim if "weight" in key: lowerCAmelCase = val[:dim, :] lowerCAmelCase = val[dim : dim * 2, :] lowerCAmelCase = val[-dim:, :] else: lowerCAmelCase = val[:dim] lowerCAmelCase = val[dim : dim * 2] lowerCAmelCase = val[-dim:] pass else: lowerCAmelCase = val return orig_state_dict def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ): lowerCAmelCase = get_config(_UpperCAmelCase ) lowerCAmelCase = SwinaSRForImageSuperResolution(_UpperCAmelCase ) model.eval() lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' ) lowerCAmelCase = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_UpperCAmelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowerCAmelCase = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) lowerCAmelCase = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCAmelCase = 126 if 'Jpeg' in checkpoint_url else 256 lowerCAmelCase = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowerCAmelCase = transforms(_UpperCAmelCase ).unsqueeze(0 ) if config.num_channels == 1: lowerCAmelCase = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCAmelCase = model(_UpperCAmelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-3 ) print('Looks ok!' ) lowerCAmelCase = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } lowerCAmelCase = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') __UpperCamelCase : Optional[int] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
0
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def _lowercase ( __snake_case ) -> Optional[Any]: return 1.0 / (1.0 + np.exp(-_outputs )) def _lowercase ( __snake_case ) -> str: __lowerCAmelCase : Optional[int] = np.max(_outputs ,axis=-1 ,keepdims=_UpperCAmelCase ) __lowerCAmelCase : Optional[int] = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 ,keepdims=_UpperCAmelCase ) class A__ ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'sigmoid' SCREAMING_SNAKE_CASE = 'softmax' SCREAMING_SNAKE_CASE = 'none' @add_end_docstrings( a__ , R'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class A__ ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = ClassificationFunction.NONE def __init__( self: Any , **_SCREAMING_SNAKE_CASE: List[str]) -> Optional[Any]: """simple docstring""" super().__init__(**_snake_case) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: List[str]="" , **_SCREAMING_SNAKE_CASE: List[Any]) -> List[Any]: """simple docstring""" __lowerCAmelCase : Any = tokenizer_kwargs __lowerCAmelCase : int = {} if hasattr(self.model.config , "return_all_scores") and return_all_scores is None: __lowerCAmelCase : int = self.model.config.return_all_scores if isinstance(_snake_case , _snake_case) or top_k is None: __lowerCAmelCase : str = top_k __lowerCAmelCase : List[str] = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." , _snake_case , ) if return_all_scores: __lowerCAmelCase : Dict = None else: __lowerCAmelCase : Optional[Any] = 1 if isinstance(_snake_case , _snake_case): __lowerCAmelCase : List[str] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: __lowerCAmelCase : Any = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self: List[Any] , *_SCREAMING_SNAKE_CASE: Tuple , **_SCREAMING_SNAKE_CASE: List[str]) -> str: """simple docstring""" __lowerCAmelCase : Any = super().__call__(*_snake_case , **_snake_case) # TODO try and retrieve it in a nicer way from _sanitize_parameters. __lowerCAmelCase : List[Any] = "top_k" not in kwargs if isinstance(args[0] , _snake_case) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: int , **_SCREAMING_SNAKE_CASE: Dict) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[str] = self.framework if isinstance(_snake_case , _snake_case): return self.tokenizer(**_snake_case , return_tensors=_snake_case , **_snake_case) elif isinstance(_snake_case , _snake_case) and len(_snake_case) == 1 and isinstance(inputs[0] , _snake_case) and len(inputs[0]) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=_snake_case , **_snake_case) elif isinstance(_snake_case , _snake_case): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair.") return self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case) def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[int]) -> Any: """simple docstring""" return self.model(**_snake_case) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[int]=None , _SCREAMING_SNAKE_CASE: Any=1 , _SCREAMING_SNAKE_CASE: Dict=True) -> Dict: """simple docstring""" if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: __lowerCAmelCase : List[Any] = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: __lowerCAmelCase : str = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , "function_to_apply") and function_to_apply is None: __lowerCAmelCase : Optional[int] = self.model.config.function_to_apply else: __lowerCAmelCase : Any = ClassificationFunction.NONE __lowerCAmelCase : Union[str, Any] = model_outputs["logits"][0] __lowerCAmelCase : int = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: __lowerCAmelCase : str = sigmoid(_snake_case) elif function_to_apply == ClassificationFunction.SOFTMAX: __lowerCAmelCase : Optional[int] = softmax(_snake_case) elif function_to_apply == ClassificationFunction.NONE: __lowerCAmelCase : List[Any] = outputs else: raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""") if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} __lowerCAmelCase : List[str] = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(_snake_case) ] if not _legacy: dict_scores.sort(key=lambda _SCREAMING_SNAKE_CASE: x["score"] , reverse=_snake_case) if top_k is not None: __lowerCAmelCase : Optional[Any] = dict_scores[:top_k] return dict_scores
293
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''megatron-bert''' def __init__( self , _snake_case=2_90_56 , _snake_case=10_24 , _snake_case=24 , _snake_case=16 , _snake_case=40_96 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache
4
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __a: Optional[int] = logging.get_logger(__name__) __a: Union[str, Any] = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "instructblip_vision_model" def __init__( self , __lowerCAmelCase=1408 , __lowerCAmelCase=6144 , __lowerCAmelCase=39 , __lowerCAmelCase=16 , __lowerCAmelCase=224 , __lowerCAmelCase=14 , __lowerCAmelCase="gelu" , __lowerCAmelCase=1E-6 , __lowerCAmelCase=0.0 , __lowerCAmelCase=1E-10 , __lowerCAmelCase=True , **__lowerCAmelCase , ) -> str: super().__init__(**_snake_case ) lowercase__ : Optional[int] = hidden_size lowercase__ : Optional[Any] = intermediate_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Tuple = num_attention_heads lowercase__ : Dict = patch_size lowercase__ : str = image_size lowercase__ : Any = initializer_range lowercase__ : int = attention_dropout lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : Optional[int] = hidden_act lowercase__ : int = qkv_bias @classmethod def _lowerCAmelCase( cls , __lowerCAmelCase , **__lowerCAmelCase ) -> str: cls._set_token_in_kwargs(_snake_case ) lowercase__ , lowercase__ : Optional[Any] = cls.get_config_dict(_snake_case , **_snake_case ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": lowercase__ : int = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_snake_case , **_snake_case ) class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "instructblip_qformer" def __init__( self , __lowerCAmelCase=30522 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=0 , __lowerCAmelCase="absolute" , __lowerCAmelCase=2 , __lowerCAmelCase=1408 , **__lowerCAmelCase , ) -> List[str]: super().__init__(pad_token_id=_snake_case , **_snake_case ) lowercase__ : Any = vocab_size lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : List[Any] = hidden_act lowercase__ : Union[str, Any] = intermediate_size lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Dict = max_position_embeddings lowercase__ : str = initializer_range lowercase__ : Tuple = layer_norm_eps lowercase__ : str = position_embedding_type lowercase__ : Dict = cross_attention_frequency lowercase__ : str = encoder_hidden_size @classmethod def _lowerCAmelCase( cls , __lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: cls._set_token_in_kwargs(_snake_case ) lowercase__ , lowercase__ : Union[str, Any] = cls.get_config_dict(_snake_case , **_snake_case ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": lowercase__ : Optional[int] = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_snake_case , **_snake_case ) class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "instructblip" SCREAMING_SNAKE_CASE = True def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=32 , **__lowerCAmelCase ) -> Optional[int]: super().__init__(**_snake_case ) if vision_config is None: lowercase__ : List[Any] = {} logger.info('''vision_config is None. initializing the InstructBlipVisionConfig with default values.''' ) if qformer_config is None: lowercase__ : Optional[int] = {} logger.info('''qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.''' ) if text_config is None: lowercase__ : List[str] = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) lowercase__ : Dict = InstructBlipVisionConfig(**_snake_case ) lowercase__ : Optional[Any] = InstructBlipQFormerConfig(**_snake_case ) lowercase__ : Optional[int] = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' lowercase__ : Optional[Any] = CONFIG_MAPPING[text_model_type](**_snake_case ) lowercase__ : Any = self.text_config.tie_word_embeddings lowercase__ : List[str] = self.text_config.is_encoder_decoder lowercase__ : Any = num_query_tokens lowercase__ : str = self.vision_config.hidden_size lowercase__ : Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowercase__ : Any = 1.0 lowercase__ : Dict = 0.0_2 @classmethod def _lowerCAmelCase( cls , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase , ) -> int: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_snake_case , ) def _lowerCAmelCase( self ) -> int: lowercase__ : List[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : int = self.vision_config.to_dict() lowercase__ : Optional[int] = self.qformer_config.to_dict() lowercase__ : Union[str, Any] = self.text_config.to_dict() lowercase__ : List[Any] = self.__class__.model_type return output
152
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
4
0
"""simple docstring""" __A : str = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' __A : List[str] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __A : Any = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
499
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class a ( a__ ): snake_case__ = 42 class a ( a__ , a__ ): @register_to_config def __init__( self , _snake_case = 3 , _snake_case = 3 , _snake_case = ("DownEncoderBlock2D",) , _snake_case = ("UpDecoderBlock2D",) , _snake_case = (64,) , _snake_case = 1 , _snake_case = "silu" , _snake_case = 3 , _snake_case = 32 , _snake_case = 2_56 , _snake_case = 32 , _snake_case = None , _snake_case = 0.18_215 , _snake_case = "group" , ): """simple docstring""" super().__init__() # pass init params to Encoder lowerCAmelCase = Encoder( in_channels=_snake_case , out_channels=_snake_case , down_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , double_z=_snake_case , ) lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 ) lowerCAmelCase = VectorQuantizer(_snake_case , _snake_case , beta=0.25 , remap=_snake_case , sane_index_shape=_snake_case ) lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 ) # pass init params to Decoder lowerCAmelCase = Decoder( in_channels=_snake_case , out_channels=_snake_case , up_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , norm_type=_snake_case , ) @apply_forward_hook def UpperCamelCase__ ( self , _snake_case , _snake_case = True ): """simple docstring""" lowerCAmelCase = self.encoder(_snake_case ) lowerCAmelCase = self.quant_conv(_snake_case ) if not return_dict: return (h,) return VQEncoderOutput(latents=_snake_case ) @apply_forward_hook def UpperCamelCase__ ( self , _snake_case , _snake_case = False , _snake_case = True ): """simple docstring""" if not force_not_quantize: lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = self.quantize(_snake_case ) else: lowerCAmelCase = h lowerCAmelCase = self.post_quant_conv(_snake_case ) lowerCAmelCase = self.decoder(_snake_case , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case = True ): """simple docstring""" lowerCAmelCase = sample lowerCAmelCase = self.encode(_snake_case ).latents lowerCAmelCase = self.decode(_snake_case ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_snake_case )
4
0
import unittest from knapsack import greedy_knapsack as kp class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: """simple docstring""" __lowerCAmelCase : int = [10, 20, 30, 40, 50, 60] __lowerCAmelCase : List[Any] = [2, 4, 6, 8, 10, 12] __lowerCAmelCase : List[str] = 1_00 self.assertEqual(kp.calc_profit(_snake_case , _snake_case , _snake_case ) , 2_10 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" self.assertRaisesRegex(_snake_case , """max_weight must greater than zero.""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" self.assertRaisesRegex(_snake_case , """Weight can not be negative.""" ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.assertRaisesRegex(_snake_case , """Profit can not be negative.""" ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: """simple docstring""" self.assertRaisesRegex(_snake_case , """max_weight must greater than zero.""" ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self.assertRaisesRegex( _snake_case , """The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
651
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping __UpperCamelCase : Optional[Any] = tuple[int, int] class a : def __init__( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = vertices lowerCAmelCase = { (min(_snake_case ), max(_snake_case )): weight for edge, weight in edges.items() } def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase = weight def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Graph({min(self.vertices )} , {} ) lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase = edge lowerCAmelCase = weight subgraph.add_edge(_snake_case , _snake_case ) return subgraph def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "p107_network.txt" ): lowerCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) ) lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = {} lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 with open(_UpperCAmelCase ) as f: lowerCAmelCase = f.read().strip().split('\n' ) lowerCAmelCase = [line.split(',' ) for line in data] for edgea in range(1 , len(_UpperCAmelCase ) ): for edgea in range(_UpperCAmelCase ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase = Graph(set(range(len(_UpperCAmelCase ) ) ) , _UpperCAmelCase ) lowerCAmelCase = graph.prims_algorithm() lowerCAmelCase = sum(graph.edges.values() ) lowerCAmelCase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
4
0
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ , lowercase_ = analyze_text(_UpperCAmelCase ) lowercase_ = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. lowercase_ = sum(single_char_strings.values() ) # one length string lowercase_ = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowercase_ = single_char_strings[ch] lowercase_ = my_str / all_sum my_fir_sum += prob * math.loga(_UpperCAmelCase ) # entropy formula. # print entropy print(F'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string lowercase_ = sum(two_char_strings.values() ) lowercase_ = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowercase_ = cha + cha if sequence in two_char_strings: lowercase_ = two_char_strings[sequence] lowercase_ = int(_UpperCAmelCase ) / all_sum my_sec_sum += prob * math.loga(_UpperCAmelCase ) # print second entropy print(F'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(F'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = Counter() # type: ignore lowercase_ = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_UpperCAmelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def UpperCAmelCase_ ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
412
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCAmelCase )] ) lowerCAmelCase = np.array(_UpperCAmelCase ) lowerCAmelCase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCAmelCase ) ) , x.transpose() ) , _UpperCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = (1, 2, 1) lowerCAmelCase = (1, 1, 0, 7) lowerCAmelCase = SARIMAX( _UpperCAmelCase , exog=_UpperCAmelCase , order=_UpperCAmelCase , seasonal_order=_UpperCAmelCase ) lowerCAmelCase = model.fit(disp=_UpperCAmelCase , maxiter=600 , method='nm' ) lowerCAmelCase = model_fit.predict(1 , len(_UpperCAmelCase ) , exog=[test_match] ) return result[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list ): lowerCAmelCase = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = regressor.predict(_UpperCAmelCase ) return y_pred[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ): train_user.sort() lowerCAmelCase = np.percentile(_UpperCAmelCase , 25 ) lowerCAmelCase = np.percentile(_UpperCAmelCase , 75 ) lowerCAmelCase = qa - qa lowerCAmelCase = qa - (iqr * 0.1) return low_lim def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : float ): lowerCAmelCase = 0 lowerCAmelCase = 0 for i in list_vote: if i > actual_result: lowerCAmelCase = not_safe + 1 else: if abs(abs(_UpperCAmelCase ) - abs(_UpperCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __UpperCamelCase : Optional[Any] = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] __UpperCamelCase : Any = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) __UpperCamelCase : Dict = Normalizer().fit_transform(data_input_df.values) # split data __UpperCamelCase : Dict = normalize_df[:, 2].tolist() __UpperCamelCase : Union[str, Any] = normalize_df[:, 0].tolist() __UpperCamelCase : List[str] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __UpperCamelCase : Optional[int] = normalize_df[:, [1, 2]].tolist() __UpperCamelCase : Tuple = x[: len(x) - 1] __UpperCamelCase : Any = x[len(x) - 1 :] # for linear regression & sarimax __UpperCamelCase : str = total_date[: len(total_date) - 1] __UpperCamelCase : Union[str, Any] = total_user[: len(total_user) - 1] __UpperCamelCase : List[Any] = total_match[: len(total_match) - 1] __UpperCamelCase : Optional[Any] = total_date[len(total_date) - 1 :] __UpperCamelCase : str = total_user[len(total_user) - 1 :] __UpperCamelCase : str = total_match[len(total_match) - 1 :] # voting system with forecasting __UpperCamelCase : Any = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __UpperCamelCase : List[str] = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('''Today\'s data is {not_str}safe.''')
4
0
def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : int ): __UpperCAmelCase : Tuple = word.split() def justify(__lowerCamelCase : list , __lowerCamelCase : int , __lowerCamelCase : int ) -> str: __UpperCAmelCase : List[Any] = max_width - width __UpperCAmelCase : Tuple = len(_UpperCAmelCase ) if len(_UpperCAmelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: __UpperCAmelCase : Any = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] __UpperCAmelCase : List[Any] = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] __UpperCAmelCase : Optional[Any] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(_UpperCAmelCase ): num_spaces_between_words_list[i] += 1 __UpperCAmelCase : Union[str, Any] = [] for i in range(_UpperCAmelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(_UpperCAmelCase ) __UpperCAmelCase : int = [] __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Tuple = 0 for word in words: if width + len(_UpperCAmelCase ) + len(_UpperCAmelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(_UpperCAmelCase ) width += len(_UpperCAmelCase ) else: # justify the line and add it to result answer.append(justify(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ) # reset new line and new width __UpperCAmelCase , __UpperCAmelCase : Tuple = [word], len(_UpperCAmelCase ) __UpperCAmelCase : str = max_width - width - len(_UpperCAmelCase ) answer.append(""" """.join(_UpperCAmelCase ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
63
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=_UpperCAmelCase , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=_UpperCAmelCase , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=_UpperCAmelCase , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=_UpperCAmelCase , default=0 , help='cuda_id.' , ) lowerCAmelCase = parser.parse_args() return args def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ): if not len(_UpperCAmelCase ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) lowerCAmelCase ,lowerCAmelCase = imgs[0].size lowerCAmelCase = Image.new('RGB' , size=(cols * w, rows * h) ) lowerCAmelCase ,lowerCAmelCase = grid.size for i, img in enumerate(_UpperCAmelCase ): grid.paste(_UpperCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]="robotic cat with wings" , _UpperCAmelCase : Optional[int]=7.5 , _UpperCAmelCase : Dict=50 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=42 , ): lowerCAmelCase = torch.Generator(pipeline.device ).manual_seed(_UpperCAmelCase ) lowerCAmelCase = pipeline( _UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , ).images lowerCAmelCase = int(math.sqrt(_UpperCAmelCase ) ) lowerCAmelCase = image_grid(_UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __UpperCamelCase : Optional[Any] = parse_args() # Load models and create wrapper for stable diffusion __UpperCamelCase : List[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') __UpperCamelCase : str = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') __UpperCamelCase : Optional[int] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') __UpperCamelCase : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') __UpperCamelCase : Tuple = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __UpperCamelCase : Union[str, Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): __UpperCamelCase : Dict = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: __UpperCamelCase : Dict = unet.to(torch.device('''cuda''', args.cuda_id)) __UpperCamelCase : Optional[Any] = pipeline.to(unet.device) __UpperCamelCase ,__UpperCamelCase : List[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) __UpperCamelCase : int = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
4
0
import os from collections.abc import Iterator def a__ ( snake_case = "." ): """simple docstring""" for dir_path, dir_names, filenames in os.walk(_UpperCAmelCase ): __SCREAMING_SNAKE_CASE : List[Any] = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_UpperCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(_UpperCAmelCase , _UpperCAmelCase ).lstrip('''./''' ) def a__ ( snake_case ): """simple docstring""" return F'''{i * " "}*''' if i else "\n##" def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_UpperCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(_UpperCAmelCase )} {new_part.replace("_" , " " ).title()}''' ) return new_path def a__ ( snake_case = "." ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = '''''' for filepath in sorted(good_file_paths(_UpperCAmelCase ) ): __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = os.path.split(_UpperCAmelCase ) if filepath != old_path: __SCREAMING_SNAKE_CASE : Union[str, Any] = print_path(_UpperCAmelCase , _UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = (filepath.count(os.sep ) + 1) if filepath else 0 __SCREAMING_SNAKE_CASE : Union[str, Any] = F'''{filepath}/{filename}'''.replace(''' ''' , '''%20''' ) __SCREAMING_SNAKE_CASE : int = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(F'''{md_prefix(_UpperCAmelCase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(""".""")
74
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : nn.ModuleList , _UpperCAmelCase : List[int] ): lowerCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ), F'{len(_UpperCAmelCase )} != {len(_UpperCAmelCase )}' dest_layers.load_state_dict(layers_to_copy.state_dict() ) __UpperCamelCase : Optional[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } __UpperCamelCase : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ): try: lowerCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first' F' {n_student}' ) return list(range(_UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ): if n_student > n_teacher: raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' ) elif n_teacher == n_student: return list(range(_UpperCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, PreTrainedModel] , _UpperCAmelCase : Union[str, Path] = "student" , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : Union[int, None] = None , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ): lowerCAmelCase = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(_UpperCAmelCase , _UpperCAmelCase ): AutoTokenizer.from_pretrained(_UpperCAmelCase ).save_pretrained(_UpperCAmelCase ) # purely for convenience lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).eval() else: assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), F'teacher must be a model or string got type {type(_UpperCAmelCase )}' lowerCAmelCase = teacher.config.to_diff_dict() try: lowerCAmelCase ,lowerCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: lowerCAmelCase = teacher_e if d is None: lowerCAmelCase = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): lowerCAmelCase ,lowerCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: lowerCAmelCase ,lowerCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: lowerCAmelCase = teacher_e if d is None: lowerCAmelCase = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(_UpperCAmelCase ) # Copy weights lowerCAmelCase = teacher.config_class(**_UpperCAmelCase ) lowerCAmelCase = AutoModelForSeqaSeqLM.from_config(_UpperCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. lowerCAmelCase = student.load_state_dict(teacher.state_dict() , strict=_UpperCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save lowerCAmelCase ,lowerCAmelCase = list(range(_UpperCAmelCase ) ), list(range(_UpperCAmelCase ) ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to' F' {save_path}' ) student.save_pretrained(_UpperCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase ) if d_layers_to_copy is None: lowerCAmelCase = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase ) try: if hasattr( _UpperCAmelCase , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _UpperCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _UpperCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _UpperCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _UpperCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , _UpperCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , _UpperCAmelCase ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' ) lowerCAmelCase = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(_UpperCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
4
0
from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES UpperCAmelCase : Optional[Any] = '''tiny-wmt19-en-ru''' # Build # borrowed from a test UpperCAmelCase : str = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] UpperCAmelCase : Dict = dict(zip(vocab, range(len(vocab)))) UpperCAmelCase : Union[str, Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = Path(tmpdirname) UpperCAmelCase : Optional[int] = build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] UpperCAmelCase : Tuple = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] UpperCAmelCase : List[Any] = build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) UpperCAmelCase : Dict = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) UpperCAmelCase : List[Any] = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=10_00, tgt_vocab_size=10_00, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) UpperCAmelCase : Optional[int] = FSMTForConditionalGeneration(config) print(F"""num of params {tiny_model.num_parameters()}""") # Test UpperCAmelCase : Union[str, Any] = tokenizer(['''Making tiny model'''], return_tensors='''pt''') UpperCAmelCase : Dict = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-ru
239
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Dict = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
0
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE = list(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = list(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = 0 for i in range(len(_UpperCAmelCase ) ): if lista[i] != lista[i]: count += 1 __SCREAMING_SNAKE_CASE = """_""" if count > 1: return False else: return "".join(_UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] while True: __SCREAMING_SNAKE_CASE = ["""$"""] * len(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [] for i in range(len(_UpperCAmelCase ) ): for j in range(i + 1 , len(_UpperCAmelCase ) ): __SCREAMING_SNAKE_CASE = compare_string(binary[i] , binary[j] ) if k is False: __SCREAMING_SNAKE_CASE = """*""" __SCREAMING_SNAKE_CASE = """*""" temp.append("""X""" ) for i in range(len(_UpperCAmelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_UpperCAmelCase ) == 0: return pi __SCREAMING_SNAKE_CASE = list(set(_UpperCAmelCase ) ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] for minterm in minterms: __SCREAMING_SNAKE_CASE = """""" for _ in range(_UpperCAmelCase ): __SCREAMING_SNAKE_CASE = str(minterm % 2 ) + string minterm //= 2 temp.append(_UpperCAmelCase ) return temp def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = list(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = list(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = 0 for i in range(len(_UpperCAmelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [0] * len(_UpperCAmelCase ) for i in range(len(chart[0] ) ): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = -1 for j in range(len(_UpperCAmelCase ) ): if chart[j][i] == 1: count += 1 __SCREAMING_SNAKE_CASE = j if count == 1: __SCREAMING_SNAKE_CASE = 1 for i in range(len(_UpperCAmelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_UpperCAmelCase ) ): __SCREAMING_SNAKE_CASE = 0 temp.append(prime_implicants[i] ) while True: __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = -1 __SCREAMING_SNAKE_CASE = 0 for i in range(len(_UpperCAmelCase ) ): __SCREAMING_SNAKE_CASE = chart[i].count(1 ) if count_n > max_n: __SCREAMING_SNAKE_CASE = count_n __SCREAMING_SNAKE_CASE = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_UpperCAmelCase ) ): __SCREAMING_SNAKE_CASE = 0 def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = [[0 for x in range(len(_UpperCAmelCase ) )] for x in range(len(_UpperCAmelCase ) )] for i in range(len(_UpperCAmelCase ) ): __SCREAMING_SNAKE_CASE = prime_implicants[i].count("""_""" ) for j in range(len(_UpperCAmelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , _UpperCAmelCase ): __SCREAMING_SNAKE_CASE = 1 return chart def __magic_name__ ( ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = int(input("""Enter the no. of variables\n""" ) ) __SCREAMING_SNAKE_CASE = [ float(_UpperCAmelCase ) for x in input( """Enter the decimal representation of Minterms \'Spaces Separated\'\n""" ).split() ] __SCREAMING_SNAKE_CASE = decimal_to_binary(_UpperCAmelCase , _UpperCAmelCase ) __SCREAMING_SNAKE_CASE = check(_UpperCAmelCase ) print("""Prime Implicants are:""" ) print(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = prime_implicant_chart(_UpperCAmelCase , _UpperCAmelCase ) __SCREAMING_SNAKE_CASE = selection(_UpperCAmelCase , _UpperCAmelCase ) print("""Essential Prime Implicants are:""" ) print(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
109
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ): lowerCAmelCase = 0.00 lowerCAmelCase = 0 for resistor in resistors: if resistor <= 0: lowerCAmelCase = F'Resistor at index {index} has a negative or zero value!' raise ValueError(_UpperCAmelCase ) first_sum += 1 / float(_UpperCAmelCase ) index += 1 return 1 / first_sum def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ): lowerCAmelCase = 0.00 lowerCAmelCase = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowerCAmelCase = F'Resistor at index {index} has a negative value!' raise ValueError(_UpperCAmelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
4
0
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a_ : Any = logging.get_logger(__name__) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None ): """simple docstring""" lowerCamelCase = tesseract_config if tesseract_config is not None else "" # apply OCR lowerCamelCase = to_pil_image(_UpperCAmelCase ) lowerCamelCase , lowerCamelCase = pil_image.size lowerCamelCase = pytesseract.image_to_data(_UpperCAmelCase , lang=_UpperCAmelCase , output_type="dict" , config=_UpperCAmelCase ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates lowerCamelCase = [idx for idx, word in enumerate(_UpperCAmelCase ) if not word.strip()] lowerCamelCase = [word for idx, word in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] lowerCamelCase = [coord for idx, coord in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] lowerCamelCase = [coord for idx, coord in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] lowerCamelCase = [coord for idx, coord in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] lowerCamelCase = [coord for idx, coord in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCamelCase = [] for x, y, w, h in zip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase = [x, y, x + w, y + h] actual_boxes.append(_UpperCAmelCase ) # finally, normalize the bounding boxes lowerCamelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowerCamelCase__ ( a__): """simple docstring""" _A = ['pixel_values'] def __init__(self , __a = True , __a = None , __a = PILImageResampling.BILINEAR , __a = True , __a = None , __a = "" , **__a , ): '''simple docstring''' super().__init__(**_snake_case ) lowerCamelCase = size if size is not None else {"height": 2_24, "width": 2_24} lowerCamelCase = get_size_dict(_snake_case ) lowerCamelCase = do_resize lowerCamelCase = size lowerCamelCase = resample lowerCamelCase = apply_ocr lowerCamelCase = ocr_lang lowerCamelCase = tesseract_config def _a (self , __a , __a , __a = PILImageResampling.BILINEAR , __a = None , **__a , ): '''simple docstring''' lowerCamelCase = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}""" ) lowerCamelCase = (size["height"], size["width"]) return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case ) def _a (self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ): '''simple docstring''' lowerCamelCase = do_resize if do_resize is not None else self.do_resize lowerCamelCase = size if size is not None else self.size lowerCamelCase = get_size_dict(_snake_case ) lowerCamelCase = resample if resample is not None else self.resample lowerCamelCase = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCamelCase = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCamelCase = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCamelCase = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) # All transformations expect numpy arrays. lowerCamelCase = [to_numpy_array(_snake_case ) for image in images] if apply_ocr: requires_backends(self , "pytesseract" ) lowerCamelCase = [] lowerCamelCase = [] for image in images: lowerCamelCase , lowerCamelCase = apply_tesseract(_snake_case , _snake_case , _snake_case ) words_batch.append(_snake_case ) boxes_batch.append(_snake_case ) if do_resize: lowerCamelCase = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) lowerCamelCase = [flip_channel_order(_snake_case ) for image in images] lowerCamelCase = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] lowerCamelCase = BatchFeature(data={"pixel_values": images} , tensor_type=_snake_case ) if apply_ocr: lowerCamelCase = words_batch lowerCamelCase = boxes_batch return data
623
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''', # See all GLPN models at https://huggingface.co/models?filter=glpn } class a ( a__ ): snake_case__ = '''glpn''' def __init__( self , _snake_case=3 , _snake_case=4 , _snake_case=[2, 2, 2, 2] , _snake_case=[8, 4, 2, 1] , _snake_case=[32, 64, 1_60, 2_56] , _snake_case=[7, 3, 3, 3] , _snake_case=[4, 2, 2, 2] , _snake_case=[1, 2, 5, 8] , _snake_case=[4, 4, 4, 4] , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=0.1 , _snake_case=1E-6 , _snake_case=64 , _snake_case=10 , _snake_case=-1 , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = num_channels lowerCAmelCase = num_encoder_blocks lowerCAmelCase = depths lowerCAmelCase = sr_ratios lowerCAmelCase = hidden_sizes lowerCAmelCase = patch_sizes lowerCAmelCase = strides lowerCAmelCase = mlp_ratios lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = drop_path_rate lowerCAmelCase = layer_norm_eps lowerCAmelCase = decoder_hidden_size lowerCAmelCase = max_depth lowerCAmelCase = head_in_index
4
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class _lowerCAmelCase : def __init__(self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=False , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ): A_ : Dict = parent A_ : List[str] = batch_size A_ : str = seq_length A_ : Optional[Any] = is_training A_ : int = use_input_mask A_ : Dict = use_token_type_ids A_ : List[str] = use_labels A_ : Optional[Any] = vocab_size A_ : Union[str, Any] = hidden_size A_ : List[Any] = num_hidden_layers A_ : Any = num_attention_heads A_ : Any = intermediate_size A_ : Optional[Any] = hidden_act A_ : Optional[int] = hidden_dropout_prob A_ : Tuple = attention_probs_dropout_prob A_ : Optional[int] = max_position_embeddings A_ : str = type_vocab_size A_ : int = type_sequence_label_size A_ : List[Any] = initializer_range A_ : Dict = num_labels A_ : Dict = num_choices A_ : Optional[int] = scope def _a (self ): A_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Optional[int] = None if self.use_input_mask: A_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) A_ : Optional[int] = None if self.use_token_type_ids: A_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Tuple = None A_ : List[str] = None A_ : List[Any] = None if self.use_labels: A_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) A_ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a (self ): return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , use_stable_embedding=_snake_case , ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : List[str] = OpenLlamaModel(config=_snake_case ) model.to(_snake_case ) model.eval() A_ : Optional[Any] = model(_snake_case , attention_mask=_snake_case ) A_ : Optional[int] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ): A_ : Optional[Any] = True A_ : List[str] = OpenLlamaModel(_snake_case ) model.to(_snake_case ) model.eval() A_ : List[Any] = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) A_ : Union[str, Any] = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , ) A_ : Tuple = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ): A_ : int = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() A_ : Any = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ): A_ : List[Any] = True A_ : Any = True A_ : int = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() # first forward pass A_ : str = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , use_cache=_snake_case , ) A_ : List[str] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A_ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) A_ : List[str] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A_ : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) A_ : Dict = torch.cat([input_mask, next_mask] , dim=-1 ) A_ : Dict = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_hidden_states=_snake_case , )["""hidden_states"""][0] A_ : List[str] = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , past_key_values=_snake_case , output_hidden_states=_snake_case , )["""hidden_states"""][0] # select random slice A_ : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() A_ : str = output_from_no_past[:, -3:, random_slice_idx].detach() A_ : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) ) def _a (self ): A_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ) : Tuple = config_and_inputs A_ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( a__ , a__ , a__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : int = (OpenLlamaForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[str] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Tuple = False def _a (self ): A_ : str = OpenLlamaModelTester(self ) A_ : int = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def _a (self ): self.config_tester.run_common_tests() def _a (self ): A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _a (self ): A_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ : Any = type self.model_tester.create_and_check_model(*_snake_case ) def _a (self ): A_, A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() A_ : Union[str, Any] = 3 A_ : Any = input_dict["""input_ids"""] A_ : Dict = input_ids.ne(1 ).to(_snake_case ) A_ : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A_ : List[str] = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() A_ : Any = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a (self ): A_, A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Dict = 3 A_ : Optional[int] = """single_label_classification""" A_ : Optional[int] = input_dict["""input_ids"""] A_ : Dict = input_ids.ne(1 ).to(_snake_case ) A_ : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A_ : Union[str, Any] = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() A_ : Tuple = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a (self ): A_, A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() A_ : Dict = 3 A_ : List[Any] = """multi_label_classification""" A_ : Dict = input_dict["""input_ids"""] A_ : Dict = input_ids.ne(1 ).to(_snake_case ) A_ : Tuple = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) A_ : Optional[Any] = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() A_ : Optional[Any] = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _a (self ): pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _a (self , lowercase ): A_, A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Any = ids_tensor([1, 10] , config.vocab_size ) A_ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A_ : Any = OpenLlamaModel(_snake_case ) original_model.to(_snake_case ) original_model.eval() A_ : Optional[Any] = original_model(_snake_case ).last_hidden_state A_ : Optional[Any] = original_model(_snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A_ : Any = {"""type""": scaling_type, """factor""": 10.0} A_ : str = OpenLlamaModel(_snake_case ) scaled_model.to(_snake_case ) scaled_model.eval() A_ : List[str] = scaled_model(_snake_case ).last_hidden_state A_ : Optional[int] = scaled_model(_snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
667
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , _snake_case=10_00 , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = range_bbox def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase = bbox[i, j, 3] lowerCAmelCase = bbox[i, j, 1] lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase = bbox[i, j, 2] lowerCAmelCase = bbox[i, j, 0] lowerCAmelCase = t lowerCAmelCase = tf.convert_to_tensor(_snake_case ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForMaskedLM(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForSequenceClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForTokenClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = True snake_case__ = 1_0 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFLayoutLMModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def _SCREAMING_SNAKE_CASE (): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off lowerCAmelCase = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowerCAmelCase = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the sequence output on [0, :3, :3] lowerCAmelCase = tf.convert_to_tensor( [[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _snake_case , atol=1E-3 ) ) # test the pooled output on [1, :3] lowerCAmelCase = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _snake_case , atol=1E-3 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar lowerCAmelCase = outputs.loss lowerCAmelCase = (2,) self.assertEqual(loss.shape , _snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = (2, 2) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the shape of the logits lowerCAmelCase = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _snake_case ) self.assertEqual(outputs.end_logits.shape , _snake_case )
4
0
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : str = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} __snake_case : str = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } __snake_case : Optional[Any] = { '''abeja/gpt-neox-japanese-2.7b''': 2_048, } def _lowercase ( __snake_case ,__snake_case ) -> int: with open(_UpperCAmelCase ,"r" ,encoding="utf-8" ) as f: __lowerCAmelCase : List[Any] = json.loads(f.read() ) __lowerCAmelCase : Union[str, Any] = collections.OrderedDict() __lowerCAmelCase : Optional[Any] = collections.OrderedDict() __lowerCAmelCase : List[Any] = collections.OrderedDict() with open(_UpperCAmelCase ,"r" ,encoding="utf-8" ) as f: __lowerCAmelCase : List[str] = f.readlines() __lowerCAmelCase : List[Any] = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(_UpperCAmelCase ): __lowerCAmelCase : Optional[Any] = b __lowerCAmelCase : List[Any] = idx for wd in b: __lowerCAmelCase : List[Any] = idx return vocab, raw_vocab, ids_to_tokens, emoji class A__ ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str]="<|endoftext|>" , _SCREAMING_SNAKE_CASE: int="<|endoftext|>" , _SCREAMING_SNAKE_CASE: str="<|startoftext|>" , _SCREAMING_SNAKE_CASE: Optional[Any]="<|endoftext|>" , _SCREAMING_SNAKE_CASE: Union[str, Any]=False , **_SCREAMING_SNAKE_CASE: Dict , ) -> Union[str, Any]: """simple docstring""" super().__init__( unk_token=_snake_case , pad_token=_snake_case , bos_token=_snake_case , eos_token=_snake_case , do_clean_text=_snake_case , **_snake_case , ) if not os.path.isfile(_snake_case): raise ValueError( F"""Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") if not os.path.isfile(_snake_case): raise ValueError( F"""Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") __lowerCAmelCase : str = do_clean_text __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = load_vocab_and_emoji(_snake_case , _snake_case) __lowerCAmelCase : str = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji) @property def _SCREAMING_SNAKE_CASE ( self: Dict) -> str: """simple docstring""" return len(self.raw_vocab) def _SCREAMING_SNAKE_CASE ( self: Any) -> Dict: """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: int) -> Any: """simple docstring""" return self.subword_tokenizer.tokenize(_snake_case , clean=self.do_clean_text) def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: Union[str, Any]) -> Optional[int]: """simple docstring""" return self.vocab.get(_snake_case , self.vocab.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: int) -> Optional[int]: """simple docstring""" return self.subword_tokenizer.convert_id_to_token(_snake_case) def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: Any) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[str] = "".join(_snake_case).strip() return out_string def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Any]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : str = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_snake_case , add_special_tokens=_snake_case) + [self.eos_token_id]) if len(_snake_case) > self.model_max_length: __lowerCAmelCase : Optional[int] = input_ids[-self.model_max_length :] return input_ids def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: int = None) -> int: """simple docstring""" __lowerCAmelCase : Union[str, Any] = 0 if os.path.isdir(_snake_case): __lowerCAmelCase : Optional[int] = os.path.join( _snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) __lowerCAmelCase : List[str] = os.path.join( _snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"]) else: __lowerCAmelCase : int = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) __lowerCAmelCase : Dict = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(_snake_case , "w" , encoding="utf-8") as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!") __lowerCAmelCase : List[str] = token_index writer.write(",".join(_snake_case) + "\n") index += 1 with open(_snake_case , "w" , encoding="utf-8") as writer: json.dump(self.emoji , _snake_case) return vocab_file, emoji_file class A__ ( a__ ): '''simple docstring''' def __init__( self: Optional[int] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[Any]) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = vocab # same as swe __lowerCAmelCase : str = ids_to_tokens # same as bpe __lowerCAmelCase : Optional[int] = emoji __lowerCAmelCase : int = np.max([len(_snake_case) for w in self.vocab.keys()]) __lowerCAmelCase : str = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)") __lowerCAmelCase : List[Any] = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*") __lowerCAmelCase : Dict = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}") __lowerCAmelCase : Any = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") __lowerCAmelCase : List[Any] = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") __lowerCAmelCase : Optional[int] = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*") __lowerCAmelCase : Optional[int] = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" __lowerCAmelCase : List[Any] = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" __lowerCAmelCase : str = str.maketrans({k: "<BLOCK>" for k in keisen + blocks}) def __len__( self: Dict) -> Dict: """simple docstring""" return len(self.ids_to_tokens) def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: str) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.content_repattera.sub("<URL>" , _snake_case) __lowerCAmelCase : List[Any] = self.content_repattera.sub("<EMAIL>" , _snake_case) __lowerCAmelCase : List[Any] = self.content_repattera.sub("<TEL>" , _snake_case) __lowerCAmelCase : str = self.content_repattera.sub("<DATE>" , _snake_case) __lowerCAmelCase : int = self.content_repattera.sub("<DATE>" , _snake_case) __lowerCAmelCase : List[str] = self.content_repattera.sub("<PRICE>" , _snake_case) __lowerCAmelCase : Dict = content.translate(self.content_transa) while "<BLOCK><BLOCK>" in content: __lowerCAmelCase : str = content.replace("<BLOCK><BLOCK>" , "<BLOCK>") return content def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[Any]=False) -> str: """simple docstring""" __lowerCAmelCase : List[str] = text.replace(" " , "<SP>") __lowerCAmelCase : str = text.replace(" " , "<SP>") __lowerCAmelCase : Any = text.replace("\r\n" , "<BR>") __lowerCAmelCase : int = text.replace("\n" , "<BR>") __lowerCAmelCase : Dict = text.replace("\r" , "<BR>") __lowerCAmelCase : Any = text.replace("\t" , "<TAB>") __lowerCAmelCase : Any = text.replace("—" , "ー") __lowerCAmelCase : Optional[Any] = text.replace("−" , "ー") for k, v in self.emoji["emoji"].items(): if k in text: __lowerCAmelCase : Any = text.replace(_snake_case , _snake_case) if clean: __lowerCAmelCase : Dict = self.clean_text(_snake_case) def check_simbol(_SCREAMING_SNAKE_CASE: int): __lowerCAmelCase : int = x.encode() if len(_snake_case) == 1 and len(_snake_case) == 2: __lowerCAmelCase : List[str] = (int(e[0]) << 8) + int(e[1]) if ( (c >= 0XC2_A1 and c <= 0XC2_BF) or (c >= 0XC7_80 and c <= 0XC7_83) or (c >= 0XCA_B9 and c <= 0XCB_BF) or (c >= 0XCC_80 and c <= 0XCD_A2) ): return True return False def checkuae(_SCREAMING_SNAKE_CASE: Tuple): __lowerCAmelCase : List[Any] = x.encode() if len(_snake_case) == 1 and len(_snake_case) == 3: __lowerCAmelCase : List[Any] = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2]) if c >= 0XE2_80_80 and c <= 0XE2_B0_7F: return True return False __lowerCAmelCase : Tuple = 0 __lowerCAmelCase : Union[str, Any] = [] while pos < len(_snake_case): __lowerCAmelCase : int = min(len(_snake_case) , pos + self.maxlen + 1) if text[pos] == "<" else pos + 3 __lowerCAmelCase : int = [] # (token_id, token, pos) for e in range(_snake_case , _snake_case , -1): __lowerCAmelCase : int = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_snake_case) > 2: __lowerCAmelCase : Optional[int] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e)) if len(_snake_case) > 0: # the smallest token_id is adopted __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Tuple = sorted(_snake_case , key=lambda _SCREAMING_SNAKE_CASE: x[0])[0] result.append(_snake_case) __lowerCAmelCase : Tuple = e else: __lowerCAmelCase : Dict = pos + 1 __lowerCAmelCase : Optional[Any] = text[pos:end] if check_simbol(_snake_case): result.append("<KIGOU>") elif checkuae(_snake_case): result.append("<U2000U2BFF>") else: for i in wd.encode("utf-8"): result.append("<|byte%d|>" % i) __lowerCAmelCase : int = end return result def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str]="\n") -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = [] __lowerCAmelCase : str = [] __lowerCAmelCase : Dict = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2])) else: if len(_snake_case) > 0: words.append(bytearray(_snake_case).decode("utf-8" , errors="replace")) __lowerCAmelCase : Optional[int] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word]) elif word == "<SP>": words.append(" ") elif word == "<BR>": words.append(_snake_case) elif word == "<TAB>": words.append("\t") elif word == "<BLOCK>": words.append("▀") elif word == "<KIGOU>": words.append("ǀ") elif word == "<U2000U2BFF>": words.append("‖") else: words.append(_snake_case) if len(_snake_case) > 0: words.append(bytearray(_snake_case).decode("utf-8" , errors="replace")) __lowerCAmelCase : int = "".join(_snake_case) return text
293
"""simple docstring""" import argparse import os import re import packaging.version __UpperCamelCase : Union[str, Any] = '''examples/''' __UpperCamelCase : str = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __UpperCamelCase : List[str] = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } __UpperCamelCase : Optional[int] = '''README.md''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ): with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.read() lowerCAmelCase ,lowerCAmelCase = REPLACE_PATTERNS[pattern] lowerCAmelCase = replace.replace('VERSION' , _UpperCAmelCase ) lowerCAmelCase = re_pattern.sub(_UpperCAmelCase , _UpperCAmelCase ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ): for folder, directories, fnames in os.walk(_UpperCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , pattern='examples' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not patch: update_version_in_examples(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = '🤗 Transformers currently provides the following architectures' lowerCAmelCase = '1. Want to contribute a new model?' with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.readlines() # Find the start of the list. lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): lowerCAmelCase = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): with open(REPLACE_FILES['init'] , 'r' ) as f: lowerCAmelCase = f.read() lowerCAmelCase = REPLACE_PATTERNS['init'][0].search(_UpperCAmelCase ).groups()[0] return packaging.version.parse(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple=False ): lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: lowerCAmelCase = default_version.base_version elif patch: lowerCAmelCase = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: lowerCAmelCase = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. lowerCAmelCase = input(F'Which version are you releasing? [{default_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = default_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase , patch=_UpperCAmelCase ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = get_version() lowerCAmelCase = F'{current_version.major}.{current_version.minor + 1}.0.dev0' lowerCAmelCase = current_version.base_version # Check with the user we got that right. lowerCAmelCase = input(F'Which version are we developing now? [{dev_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = dev_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __UpperCamelCase : Optional[int] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
4
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() __a: Any = logging.get_logger(__name__) __a: List[Any] = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] __a: List[str] = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : List[Any] = torch.load(_UpperCAmelCase , map_location='''cpu''' ) return sd def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=rename_keys_prefix ): lowercase__ : List[Any] = OrderedDict() lowercase__ : Any = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue lowercase__ : Any = key for name_pair in rename_keys_prefix: lowercase__ : List[str] = new_key.replace(name_pair[0] , name_pair[1] ) lowercase__ : Tuple = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately lowercase__ : Union[str, Any] = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: lowercase__ : Optional[int] = '''pretraining''' if "vcr" in checkpoint_path: lowercase__ : Optional[int] = {'''visual_embedding_dim''': 512} elif "vqa_advanced" in checkpoint_path: lowercase__ : List[str] = {'''visual_embedding_dim''': 2048} elif "vqa" in checkpoint_path: lowercase__ : str = {'''visual_embedding_dim''': 2048} elif "nlvr" in checkpoint_path: lowercase__ : Any = {'''visual_embedding_dim''': 1024} else: raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: lowercase__ : List[str] = {'''visual_embedding_dim''': 512} lowercase__ : Any = '''multichoice''' elif "vqa_advanced" in checkpoint_path: lowercase__ : Optional[int] = {'''visual_embedding_dim''': 2048} lowercase__ : Tuple = '''vqa_advanced''' elif "vqa" in checkpoint_path: lowercase__ : Optional[int] = {'''visual_embedding_dim''': 2048, '''num_labels''': 3129} lowercase__ : Union[str, Any] = '''vqa''' elif "nlvr" in checkpoint_path: lowercase__ : Tuple = { '''visual_embedding_dim''': 1024, '''num_labels''': 2, } lowercase__ : int = '''nlvr''' lowercase__ : Dict = VisualBertConfig(**_UpperCAmelCase ) # Load State Dict lowercase__ : str = load_state_dict(_UpperCAmelCase ) lowercase__ : Dict = get_new_dict(_UpperCAmelCase , _UpperCAmelCase ) if model_type == "pretraining": lowercase__ : List[str] = VisualBertForPreTraining(_UpperCAmelCase ) elif model_type == "vqa": lowercase__ : int = VisualBertForQuestionAnswering(_UpperCAmelCase ) elif model_type == "nlvr": lowercase__ : List[str] = VisualBertForVisualReasoning(_UpperCAmelCase ) elif model_type == "multichoice": lowercase__ : int = VisualBertForMultipleChoice(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) # Save Checkpoints Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __a: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") __a: Optional[Any] = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
152
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __UpperCamelCase : Optional[int] = pytest.mark.integration @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_snake_case ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() lowerCAmelCase = dset.map( lambda _snake_case , _snake_case : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_snake_case , keep_in_memory=_snake_case ) lowerCAmelCase = dset.add_faiss_index('vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_snake_case , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch lowerCAmelCase = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCAmelCase = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_snake_case ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertRaises(_snake_case , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCAmelCase = np.eye(5 , dtype=np.floataa )[::-1] lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) self.assertRaises(_snake_case , index.search_batch , queries[0] ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCAmelCase = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_snake_case ): lowerCAmelCase = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = faiss.IndexFlat(5 ) lowerCAmelCase = FaissIndex(custom_index=_snake_case ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: index.save(tmp_file.name ) lowerCAmelCase = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ): import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCAmelCase = 'index.faiss' lowerCAmelCase = F'mock://{index_name}' index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = Elasticsearch() lowerCAmelCase = {'acknowledged': True} lowerCAmelCase = ElasticSearchIndex(es_client=_snake_case ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case ) # batched queries with timeout lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case , request_timeout=30 ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case )
4
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __A : Any = logging.get_logger(__name__) class lowerCamelCase ( a__ ): lowercase : Any = ['input_features', 'attention_mask'] def __init__( self , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=1_6000 , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ): super().__init__(feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , **_snake_case ) UpperCamelCase : Optional[int] = num_mel_bins UpperCamelCase : Optional[Any] = do_ceptral_normalize UpperCamelCase : Tuple = normalize_means UpperCamelCase : Optional[Any] = normalize_vars UpperCamelCase : Union[str, Any] = True def a_ ( self , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : Optional[Any] = waveform * (2**15) # Kaldi compliance: 16-bit signed integers UpperCamelCase : List[str] = torch.from_numpy(_snake_case ).unsqueeze(0 ) UpperCamelCase : Dict = ta_kaldi.fbank(_snake_case , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def a_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 0.0 , ): if normalize_means: UpperCamelCase : List[Any] = x[:input_length].mean(axis=0 ) UpperCamelCase : int = np.subtract(_snake_case , _snake_case ) if normalize_vars: UpperCamelCase : Union[str, Any] = x[:input_length].std(axis=0 ) UpperCamelCase : Dict = np.divide(_snake_case , _snake_case ) if input_length < x.shape[0]: UpperCamelCase : Optional[int] = padding_value # make sure array is in float32 UpperCamelCase : Optional[Any] = x.astype(np.floataa ) return x def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): UpperCamelCase : Dict = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(_snake_case , _snake_case , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(_snake_case , _snake_case ) ] def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) UpperCamelCase : Optional[Any] = isinstance(_snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) UpperCamelCase : str = is_batched_numpy or ( isinstance(_snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase : Any = [np.asarray(_snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_snake_case , np.ndarray ): UpperCamelCase : int = np.asarray(_snake_case , dtype=np.floataa ) elif isinstance(_snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase : int = [raw_speech] # extract fbank features UpperCamelCase : Dict = [self._extract_fbank_features(_snake_case ) for waveform in raw_speech] # convert into correct format for padding UpperCamelCase : Dict = BatchFeature({"""input_features""": features} ) UpperCamelCase : Optional[int] = self.pad( _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) # make sure list is in array format UpperCamelCase : Any = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , _snake_case ): UpperCamelCase : Any = [np.asarray(_snake_case , dtype=np.floataa ) for feature in input_features] UpperCamelCase : List[str] = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: UpperCamelCase : Union[str, Any] = [np.asarray(_snake_case , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: UpperCamelCase : Tuple = ( np.array(_snake_case , dtype=np.intaa ) if self._get_padding_strategies(_snake_case , max_length=_snake_case ) is not PaddingStrategy.DO_NOT_PAD else None ) UpperCamelCase : Optional[Any] = self.normalize( padded_inputs["""input_features"""] , attention_mask=_snake_case ) if return_tensors is not None: UpperCamelCase : Optional[Any] = padded_inputs.convert_to_tensors(_snake_case ) return padded_inputs
499
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a ( a__ , a__ , unittest.TestCase ): snake_case__ = IFInpaintingPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_dummy_components() def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
4
0
import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCAmelCase = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model __UpperCAmelCase = { # fairseq: '''wmt19-ru-en''': {'''length_penalty''': 1.1}, '''wmt19-en-ru''': {'''length_penalty''': 1.15}, '''wmt19-en-de''': {'''length_penalty''': 1.0}, '''wmt19-de-en''': {'''length_penalty''': 1.1}, # allenai: '''wmt16-en-de-dist-12-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-dist-6-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-12-1''': {'''length_penalty''': 0.8}, '''wmt19-de-en-6-6-base''': {'''length_penalty''': 0.6}, '''wmt19-de-en-6-6-big''': {'''length_penalty''': 0.6}, } # this remaps the different models to their organization names __UpperCAmelCase = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __UpperCAmelCase = '''facebook''' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: __UpperCAmelCase = '''allenai''' def snake_case_ (__A : Union[str, Any] ) -> List[str]: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __lowerCAmelCase : Optional[Any] = dict((re.sub(r"""@@$""" , """""" , _UpperCAmelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , _UpperCAmelCase ), v) for k, v in d.items() ) __lowerCAmelCase : List[str] = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] __lowerCAmelCase : Any = d[k] # restore return da def snake_case_ (__A : str , __A : Any ) -> str: # prep assert os.path.exists(_UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models __lowerCAmelCase : Union[str, Any] = basename(_UpperCAmelCase ) __lowerCAmelCase : Tuple = dirname(_UpperCAmelCase ) __lowerCAmelCase : Union[str, Any] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel __lowerCAmelCase : Optional[Any] = cls.hub_models() __lowerCAmelCase : Any = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""} __lowerCAmelCase : Tuple = """.""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) __lowerCAmelCase : Optional[Any] = hub_utils.from_pretrained( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , archive_map=_UpperCAmelCase , **_UpperCAmelCase ) __lowerCAmelCase : Optional[Any] = vars(chkpt["""args"""]["""model"""] ) __lowerCAmelCase : Optional[Any] = args["""source_lang"""] __lowerCAmelCase : List[Any] = args["""target_lang"""] __lowerCAmelCase : str = dirname(_UpperCAmelCase ) __lowerCAmelCase : int = basename(_UpperCAmelCase ) # dicts __lowerCAmelCase : Tuple = os.path.join(_UpperCAmelCase , f'''dict.{src_lang}.txt''' ) __lowerCAmelCase : int = os.path.join(_UpperCAmelCase , f'''dict.{tgt_lang}.txt''' ) __lowerCAmelCase : Union[str, Any] = Dictionary.load(_UpperCAmelCase ) __lowerCAmelCase : Tuple = rewrite_dict_keys(src_dict.indices ) __lowerCAmelCase : Optional[Any] = len(_UpperCAmelCase ) __lowerCAmelCase : List[str] = os.path.join(_UpperCAmelCase , """vocab-src.json""" ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(_UpperCAmelCase , ensure_ascii=_UpperCAmelCase , indent=_UpperCAmelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab __lowerCAmelCase : int = True for k in src_vocab.keys(): if not k.islower(): __lowerCAmelCase : List[Any] = False break __lowerCAmelCase : Optional[int] = Dictionary.load(_UpperCAmelCase ) __lowerCAmelCase : List[Any] = rewrite_dict_keys(tgt_dict.indices ) __lowerCAmelCase : List[Any] = len(_UpperCAmelCase ) __lowerCAmelCase : int = os.path.join(_UpperCAmelCase , """vocab-tgt.json""" ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(_UpperCAmelCase , ensure_ascii=_UpperCAmelCase , indent=_UpperCAmelCase ) ) # merges_file (bpecodes) __lowerCAmelCase : str = os.path.join(_UpperCAmelCase , VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" __lowerCAmelCase : str = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if os.path.exists(_UpperCAmelCase ): break with open(_UpperCAmelCase , encoding="""utf-8""" ) as fin: __lowerCAmelCase : Optional[Any] = fin.read() __lowerCAmelCase : Optional[Any] = re.sub(r""" \d+$""" , """""" , _UpperCAmelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as fout: fout.write(_UpperCAmelCase ) # model config __lowerCAmelCase : List[str] = os.path.join(_UpperCAmelCase , """config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' __lowerCAmelCase : List[Any] = { """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.02, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with __lowerCAmelCase : Tuple = 5 __lowerCAmelCase : Dict = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: __lowerCAmelCase : List[str] = best_score_hparams[model_dir]["""length_penalty"""] else: __lowerCAmelCase : List[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(_UpperCAmelCase , ensure_ascii=_UpperCAmelCase , indent=_UpperCAmelCase ) ) # tokenizer config __lowerCAmelCase : Union[str, Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) __lowerCAmelCase : Tuple = { """langs""": [src_lang, tgt_lang], """model_max_length""": 1_0_2_4, """do_lower_case""": do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(_UpperCAmelCase , ensure_ascii=_UpperCAmelCase , indent=_UpperCAmelCase ) ) # model __lowerCAmelCase : Union[str, Any] = chkpt["""models"""][0] __lowerCAmelCase : Optional[Any] = model.state_dict() # rename keys to start with 'model.' __lowerCAmelCase : Optional[Any] = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys __lowerCAmelCase : Union[str, Any] = [ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) __lowerCAmelCase : Union[str, Any] = FSMTConfig.from_pretrained(_UpperCAmelCase ) __lowerCAmelCase : List[Any] = FSMTForConditionalGeneration(_UpperCAmelCase ) # check that it loads ok model_new.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) # save __lowerCAmelCase : Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fsmt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCAmelCase = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
651
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = self.vocab_size - 1 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , head_mask=_snake_case ) lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTLMHeadModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = OpenAIGPTDoubleHeadsModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = OpenAIGPTForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case__ = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=False ): """simple docstring""" lowerCAmelCase = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_snake_case , ) lowerCAmelCase = inputs_dict['labels'] lowerCAmelCase = inputs_dict['labels'] lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_snake_case , ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_snake_case ) return inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenAIGPTModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , n_embd=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = OpenAIGPTModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_torch class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(_snake_case ) lowerCAmelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=_snake_case ) # the president is lowerCAmelCase = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCAmelCase = model.generate(_snake_case , do_sample=_snake_case ) self.assertListEqual(output_ids[0].tolist() , _snake_case )
4
0
class UpperCamelCase__ : def __init__( self : List[Any] , UpperCamelCase__ : Any ): '''simple docstring''' lowercase_ = arr.split(""",""" ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = [int(self.array[0] )] * len(self.array ) lowercase_ = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): lowercase_ = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) lowercase_ = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": a = input('please input some numbers:') a = SubArray(whole_array) a = array.solve_sub_array() print(('the results is:', re))
412
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __UpperCamelCase : str = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=_UpperCAmelCase , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=_UpperCAmelCase , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=_UpperCAmelCase , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=_UpperCAmelCase , default='data/dump' , help='The dump file prefix.' ) lowerCAmelCase = parser.parse_args() logger.info(F'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": lowerCAmelCase = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `[CLS]` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCAmelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['cls_token'] # `<s>` lowerCAmelCase = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": lowerCAmelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` lowerCAmelCase = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(F'Loading text from {args.file_path}' ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: lowerCAmelCase = fp.readlines() logger.info('Start encoding' ) logger.info(F'{len(_UpperCAmelCase )} examples to process.' ) lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 1_0000 lowerCAmelCase = time.time() for text in data: lowerCAmelCase = F'{bos} {text.strip()} {sep}' lowerCAmelCase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) rslt.append(_UpperCAmelCase ) iter += 1 if iter % interval == 0: lowerCAmelCase = time.time() logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) lowerCAmelCase = time.time() logger.info('Finished binarization' ) logger.info(F'{len(_UpperCAmelCase )} examples processed.' ) lowerCAmelCase = F'{args.dump_file}.{args.tokenizer_name}.pickle' lowerCAmelCase = tokenizer.vocab_size if vocab_size < (1 << 16): lowerCAmelCase = [np.uintaa(_UpperCAmelCase ) for d in rslt] else: lowerCAmelCase = [np.intaa(_UpperCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'Dump to {dp_file}' ) with open(_UpperCAmelCase , 'wb' ) as handle: pickle.dump(rslt_ , _UpperCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
4
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a__ ) class a ( a__ ): """simple docstring""" a : List[Any] = field(default='summarization' , metadata={'include_in_asdict_even_if_is_default': True} ) a : Optional[Any] = Features({'text': Value('string' )} ) a : int = Features({'summary': Value('string' )} ) a : Union[str, Any] = 'text' a : Optional[Any] = 'summary' @property def UpperCAmelCase ( self : List[str] ) -> Tuple: return {self.text_column: "text", self.summary_column: "summary"}
63
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''bert''' def __init__( self , _snake_case=3_05_22 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache lowerCAmelCase = classifier_dropout class a ( a__ ): @property def UpperCamelCase__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
4
0
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = torch.exp(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE : str = torch.sum(_UpperCAmelCase , dim=1 ) # sum of exp(x_i) __SCREAMING_SNAKE_CASE : int = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(_UpperCAmelCase ) - B / A class __UpperCamelCase ( nn.Module ): """simple docstring""" def __init__( self : int , _A : Optional[int] ): """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE : str = config.output_attentions __SCREAMING_SNAKE_CASE : Any = config.output_hidden_states __SCREAMING_SNAKE_CASE : List[Any] = nn.ModuleList([BertLayer(_snake_case ) for _ in range(config.num_hidden_layers )] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.ModuleList([BertHighway(_snake_case ) for _ in range(config.num_hidden_layers )] ) __SCREAMING_SNAKE_CASE : Any = [-1 for _ in range(config.num_hidden_layers )] def UpperCAmelCase__ ( self : List[str] , _A : Optional[int] ): """simple docstring""" if (type(_snake_case ) is float) or (type(_snake_case ) is int): for i in range(len(self.early_exit_entropy ) ): __SCREAMING_SNAKE_CASE : Any = x else: __SCREAMING_SNAKE_CASE : Tuple = x def UpperCAmelCase__ ( self : str , _A : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def UpperCAmelCase__ ( self : List[Any] , _A : Any , _A : Union[str, Any]=None , _A : Optional[int]=None , _A : List[Any]=None , _A : int=None , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = () __SCREAMING_SNAKE_CASE : Union[str, Any] = () __SCREAMING_SNAKE_CASE : Union[str, Any] = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __SCREAMING_SNAKE_CASE : Dict = all_hidden_states + (hidden_states,) __SCREAMING_SNAKE_CASE : Union[str, Any] = layer_module( _snake_case , _snake_case , head_mask[i] , _snake_case , _snake_case ) __SCREAMING_SNAKE_CASE : Any = layer_outputs[0] if self.output_attentions: __SCREAMING_SNAKE_CASE : Tuple = all_attentions + (layer_outputs[1],) __SCREAMING_SNAKE_CASE : Optional[Any] = (hidden_states,) if self.output_hidden_states: __SCREAMING_SNAKE_CASE : Tuple = current_outputs + (all_hidden_states,) if self.output_attentions: __SCREAMING_SNAKE_CASE : str = current_outputs + (all_attentions,) __SCREAMING_SNAKE_CASE : str = self.highway[i](_snake_case ) # logits, pooled_output if not self.training: __SCREAMING_SNAKE_CASE : Optional[Any] = highway_exit[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = entropy(_snake_case ) __SCREAMING_SNAKE_CASE : str = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __SCREAMING_SNAKE_CASE : str = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __SCREAMING_SNAKE_CASE : Any = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(_snake_case , i + 1 ) else: __SCREAMING_SNAKE_CASE : Union[str, Any] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __SCREAMING_SNAKE_CASE : List[str] = all_hidden_states + (hidden_states,) __SCREAMING_SNAKE_CASE : Any = (hidden_states,) if self.output_hidden_states: __SCREAMING_SNAKE_CASE : Any = outputs + (all_hidden_states,) if self.output_attentions: __SCREAMING_SNAKE_CASE : List[str] = outputs + (all_attentions,) __SCREAMING_SNAKE_CASE : Optional[Any] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( '''The Bert Model transformer with early exiting (DeeBERT). ''' , a__ , ) class __UpperCamelCase ( a__ ): """simple docstring""" def __init__( self : str , _A : List[Any] ): """simple docstring""" super().__init__(_snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = config __SCREAMING_SNAKE_CASE : int = BertEmbeddings(_snake_case ) __SCREAMING_SNAKE_CASE : Dict = DeeBertEncoder(_snake_case ) __SCREAMING_SNAKE_CASE : Tuple = BertPooler(_snake_case ) self.init_weights() def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" self.encoder.init_highway_pooler(self.pooler ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" return self.embeddings.word_embeddings def UpperCAmelCase__ ( self : int , _A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = value def UpperCAmelCase__ ( self : Tuple , _A : List[str] ): """simple docstring""" for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(_snake_case ) @add_start_docstrings_to_model_forward(_snake_case ) def UpperCAmelCase__ ( self : Union[str, Any] , _A : Optional[int]=None , _A : List[str]=None , _A : Any=None , _A : Any=None , _A : Optional[Any]=None , _A : Optional[Any]=None , _A : List[str]=None , _A : int=None , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: __SCREAMING_SNAKE_CASE : Dict = input_ids.size() elif inputs_embeds is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __SCREAMING_SNAKE_CASE : Dict = torch.ones(_snake_case , device=_snake_case ) if encoder_attention_mask is None: __SCREAMING_SNAKE_CASE : str = torch.ones(_snake_case , device=_snake_case ) if token_type_ids is None: __SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros(_snake_case , dtype=torch.long , device=_snake_case ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __SCREAMING_SNAKE_CASE : int = self.get_extended_attention_mask(_snake_case , _snake_case , _snake_case ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __SCREAMING_SNAKE_CASE : Dict = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __SCREAMING_SNAKE_CASE : int = encoder_attention_mask[:, None, None, :] __SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __SCREAMING_SNAKE_CASE : Union[str, Any] = (1.0 - encoder_extended_attention_mask) * -1_0000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __SCREAMING_SNAKE_CASE : Any = self.get_head_mask(_snake_case , self.config.num_hidden_layers ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.embeddings( input_ids=_snake_case , position_ids=_snake_case , token_type_ids=_snake_case , inputs_embeds=_snake_case ) __SCREAMING_SNAKE_CASE : List[str] = self.encoder( _snake_case , attention_mask=_snake_case , head_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_outputs[0] __SCREAMING_SNAKE_CASE : List[Any] = self.pooler(_snake_case ) __SCREAMING_SNAKE_CASE : Dict = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class __UpperCamelCase ( a__ ): """simple docstring""" def __init__( self : List[Any] , _A : Dict , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = message __SCREAMING_SNAKE_CASE : Tuple = exit_layer # start from 1! class __UpperCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Any , _A : List[str] ): """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE : Optional[int] = BertPooler(_snake_case ) __SCREAMING_SNAKE_CASE : Dict = nn.Dropout(config.hidden_dropout_prob ) __SCREAMING_SNAKE_CASE : Dict = nn.Linear(config.hidden_size , config.num_labels ) def UpperCAmelCase__ ( self : Any , _A : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = encoder_outputs[0] __SCREAMING_SNAKE_CASE : int = self.pooler(_snake_case ) # "return" pooler_output # BertModel __SCREAMING_SNAKE_CASE : Dict = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __SCREAMING_SNAKE_CASE : str = bmodel_output[1] __SCREAMING_SNAKE_CASE : List[str] = self.dropout(_snake_case ) __SCREAMING_SNAKE_CASE : List[str] = self.classifier(_snake_case ) return logits, pooled_output @add_start_docstrings( '''Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. ''' , a__ , ) class __UpperCamelCase ( a__ ): """simple docstring""" def __init__( self : Optional[int] , _A : Any ): """simple docstring""" super().__init__(_snake_case ) __SCREAMING_SNAKE_CASE : Dict = config.num_labels __SCREAMING_SNAKE_CASE : int = config.num_hidden_layers __SCREAMING_SNAKE_CASE : List[Any] = DeeBertModel(_snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Dropout(config.hidden_dropout_prob ) __SCREAMING_SNAKE_CASE : Any = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(_snake_case ) def UpperCAmelCase__ ( self : List[str] , _A : List[Any]=None , _A : Union[str, Any]=None , _A : Dict=None , _A : Optional[Any]=None , _A : Optional[Any]=None , _A : List[Any]=None , _A : Union[str, Any]=None , _A : Optional[int]=-1 , _A : int=False , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.num_layers try: __SCREAMING_SNAKE_CASE : List[Any] = self.bert( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , position_ids=_snake_case , head_mask=_snake_case , inputs_embeds=_snake_case , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __SCREAMING_SNAKE_CASE : str = outputs[1] __SCREAMING_SNAKE_CASE : Tuple = self.dropout(_snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = self.classifier(_snake_case ) __SCREAMING_SNAKE_CASE : str = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __SCREAMING_SNAKE_CASE : Tuple = e.message __SCREAMING_SNAKE_CASE : Union[str, Any] = e.exit_layer __SCREAMING_SNAKE_CASE : List[str] = outputs[0] if not self.training: __SCREAMING_SNAKE_CASE : Optional[int] = entropy(_snake_case ) __SCREAMING_SNAKE_CASE : List[str] = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression __SCREAMING_SNAKE_CASE : List[str] = MSELoss() __SCREAMING_SNAKE_CASE : Union[str, Any] = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __SCREAMING_SNAKE_CASE : int = CrossEntropyLoss() __SCREAMING_SNAKE_CASE : Union[str, Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for highway_exit in outputs[-1]: __SCREAMING_SNAKE_CASE : Tuple = highway_exit[0] if not self.training: highway_logits_all.append(_snake_case ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __SCREAMING_SNAKE_CASE : Union[str, Any] = MSELoss() __SCREAMING_SNAKE_CASE : Optional[int] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __SCREAMING_SNAKE_CASE : str = CrossEntropyLoss() __SCREAMING_SNAKE_CASE : Dict = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_snake_case ) if train_highway: __SCREAMING_SNAKE_CASE : str = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __SCREAMING_SNAKE_CASE : str = (loss,) + outputs if not self.training: __SCREAMING_SNAKE_CASE : Dict = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __SCREAMING_SNAKE_CASE : Optional[Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
74
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( a__ , unittest.TestCase ): snake_case__ = DanceDiffusionPipeline snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_snake_case , use_timestep_embedding=_snake_case , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase = IPNDMScheduler() lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = DanceDiffusionPipeline(**_snake_case ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = pipe(**_snake_case ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_local() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
4
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : Tuple = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) UpperCAmelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _SCREAMING_SNAKE_CASE ( a ) -> List[str]: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: __A : Any = model_type_to_module_name(_UpperCAmelCase ) __A : List[str] = importlib.import_module(F""".{module_name}""" , 'transformers.models' ) try: return getattr(_UpperCAmelCase , _UpperCAmelCase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_UpperCAmelCase , '__name__' , _UpperCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __A : Union[str, Any] = importlib.import_module('transformers' ) if hasattr(_UpperCAmelCase , _UpperCAmelCase ): return getattr(_UpperCAmelCase , _UpperCAmelCase ) return None def _SCREAMING_SNAKE_CASE ( a , a = None , a = False , a = False , a = None , a = None , a = None , a = False , **a , ) -> Any: __A : List[str] = get_file_from_repo( _UpperCAmelCase , _UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , resume_download=_UpperCAmelCase , proxies=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , local_files_only=_UpperCAmelCase , ) if resolved_config_file is None: logger.info( 'Could not locate the feature extractor configuration file, will try to use the model config instead.' ) return {} with open(_UpperCAmelCase , encoding='utf-8' ) as reader: return json.load(_UpperCAmelCase ) class _A: """simple docstring""" def __init__( self ): raise EnvironmentError( 'AutoFeatureExtractor is designed to be instantiated ' 'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(_snake_case ) def UpperCAmelCase_ ( cls , _A , **_A ): __A : str = kwargs.pop('config' , _snake_case ) __A : List[str] = kwargs.pop('trust_remote_code' , _snake_case ) __A : Dict = True __A , __A : str = FeatureExtractionMixin.get_feature_extractor_dict(_snake_case , **_snake_case ) __A : List[str] = config_dict.get('feature_extractor_type' , _snake_case ) __A : Any = None if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): __A : str = config_dict['auto_map']['AutoFeatureExtractor'] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_snake_case , _snake_case ): __A : Optional[int] = AutoConfig.from_pretrained(_snake_case , **_snake_case ) # It could be in `config.feature_extractor_type`` __A : int = getattr(_snake_case , 'feature_extractor_type' , _snake_case ) if hasattr(_snake_case , 'auto_map' ) and "AutoFeatureExtractor" in config.auto_map: __A : Any = config.auto_map['AutoFeatureExtractor'] if feature_extractor_class is not None: __A : List[str] = feature_extractor_class_from_name(_snake_case ) __A : Tuple = feature_extractor_auto_map is not None __A : Union[str, Any] = feature_extractor_class is not None or type(_snake_case ) in FEATURE_EXTRACTOR_MAPPING __A : Tuple = resolve_trust_remote_code( _snake_case , _snake_case , _snake_case , _snake_case ) if has_remote_code and trust_remote_code: __A : Tuple = get_class_from_dynamic_module( _snake_case , _snake_case , **_snake_case ) __A : Optional[int] = kwargs.pop('code_revision' , _snake_case ) if os.path.isdir(_snake_case ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_snake_case , **_snake_case ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_snake_case , **_snake_case ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_snake_case ) in FEATURE_EXTRACTOR_MAPPING: __A : List[str] = FEATURE_EXTRACTOR_MAPPING[type(_snake_case )] return feature_extractor_class.from_dict(_snake_case , **_snake_case ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def UpperCAmelCase_ ( _A , _A ): FEATURE_EXTRACTOR_MAPPING.register(_snake_case , _snake_case )
239
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , use_stable_embedding=_snake_case , ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = OpenLlamaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = OpenLlamaModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , ) lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() # first forward pass lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , use_cache=_snake_case , ) lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , past_key_values=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) snake_case__ = (OpenLlamaForCausalLM,) if is_torch_available() else () snake_case__ = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OpenLlamaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase = type self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'single_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'multi_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = OpenLlamaModel(_snake_case ) original_model.to(_snake_case ) original_model.eval() lowerCAmelCase = original_model(_snake_case ).last_hidden_state lowerCAmelCase = original_model(_snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = {'type': scaling_type, 'factor': 10.0} lowerCAmelCase = OpenLlamaModel(_snake_case ) scaled_model.to(_snake_case ) scaled_model.eval() lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1E-5 ) )
4
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def __magic_name__ ( ) -> Optional[Any]: '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
109
"""simple docstring""" from typing import Any class a : def __init__( self , _snake_case ): """simple docstring""" lowerCAmelCase = data lowerCAmelCase = None def __repr__( self ): """simple docstring""" return F'Node({self.data})' class a : def __init__( self ): """simple docstring""" lowerCAmelCase = None def __iter__( self ): """simple docstring""" lowerCAmelCase = self.head while node: yield node.data lowerCAmelCase = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(_snake_case ) for item in self] ) def __getitem__( self , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase = self.head for _ in range(_snake_case ): lowerCAmelCase = current.next lowerCAmelCase = data def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(len(self ) , _snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(0 , _snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase = Node(_snake_case ) if self.head is None: lowerCAmelCase = new_node elif index == 0: lowerCAmelCase = self.head # link new_node to head lowerCAmelCase = new_node else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = new_node def UpperCamelCase__ ( self ): # print every node data """simple docstring""" print(self ) def UpperCamelCase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def UpperCamelCase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def UpperCamelCase__ ( self , _snake_case = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase = self.head # default first node if index == 0: lowerCAmelCase = self.head.next else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = temp.next.next return delete_node.data def UpperCamelCase__ ( self ): """simple docstring""" return self.head is None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = None lowerCAmelCase = self.head while current: # Store the current node's next node. lowerCAmelCase = current.next # Make the current node's next point backwards lowerCAmelCase = prev # Make the previous node be the current node lowerCAmelCase = current # Make the current node the next node (to progress iteration) lowerCAmelCase = next_node # Return prev in order to put the head at the end lowerCAmelCase = prev def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = LinkedList() assert linked_list.is_empty() is True assert str(_UpperCAmelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_UpperCAmelCase ) == i linked_list.insert_nth(_UpperCAmelCase , i + 1 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_UpperCAmelCase ) == 9 assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(-8 , 1 ) ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = [ -9, 100, Node(7734_5112 ), 'dlrow olleH', 7, 5555, 0, -192.5_5555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase = LinkedList() for i in test_input: linked_list.insert_tail(_UpperCAmelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase = linked_list.delete_head() assert result == -9 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_UpperCAmelCase ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_UpperCAmelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _SCREAMING_SNAKE_CASE (): from doctest import testmod testmod() lowerCAmelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_UpperCAmelCase ) print('\nReading/changing Node data using indexing:' ) print(F'Element at Position 1: {linked_list[1]}' ) lowerCAmelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_UpperCAmelCase ) print(F'length of linked_list is : {len(_UpperCAmelCase )}' ) if __name__ == "__main__": main()
4
0
import qiskit def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = qiskit.Aer.get_backend("aer_simulator" ) lowerCamelCase = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator lowerCamelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": a_ : Union[str, Any] = half_adder(1, 1) print(f"""Half Adder Output Qubit Counts: {counts}""")
623
"""simple docstring""" from __future__ import annotations import requests def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(_UpperCAmelCase ).json() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' lowerCAmelCase = requests.get(_UpperCAmelCase ).json()[:max_stories] return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = hackernews_top_stories(_UpperCAmelCase ) return "\n".join('* [{title}]({url})'.format(**_UpperCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase :Tuple = { '''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Optional[Any] = ['''VivitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Optional[Any] = [ '''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VivitModel''', '''VivitPreTrainedModel''', '''VivitForVideoClassification''', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys lowerCamelCase :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
667
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ): lowerCAmelCase = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 48 lowerCAmelCase = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 60 lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCAmelCase = 1 lowerCAmelCase = 1 lowerCAmelCase = 126 lowerCAmelCase = 7 lowerCAmelCase = 255.0 lowerCAmelCase = '' return config def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): if "patch_embed.proj" in name and "layers" not in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCAmelCase = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: lowerCAmelCase = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: lowerCAmelCase = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: lowerCAmelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCAmelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCAmelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCAmelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: lowerCAmelCase = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: lowerCAmelCase = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: lowerCAmelCase = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: lowerCAmelCase = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": lowerCAmelCase = 'layernorm.weight' if name == "norm.bias": lowerCAmelCase = 'layernorm.bias' if "conv_first" in name: lowerCAmelCase = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCAmelCase = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCAmelCase = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: lowerCAmelCase = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: lowerCAmelCase = name.replace('upsample.2' , 'upsample.convolution_1' ) lowerCAmelCase = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": lowerCAmelCase = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) lowerCAmelCase = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: lowerCAmelCase = 'swin2sr.' + name return name def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict ): for key in orig_state_dict.copy().keys(): lowerCAmelCase = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: lowerCAmelCase = key.split('.' ) lowerCAmelCase = int(key_split[1] ) lowerCAmelCase = int(key_split[4] ) lowerCAmelCase = config.embed_dim if "weight" in key: lowerCAmelCase = val[:dim, :] lowerCAmelCase = val[dim : dim * 2, :] lowerCAmelCase = val[-dim:, :] else: lowerCAmelCase = val[:dim] lowerCAmelCase = val[dim : dim * 2] lowerCAmelCase = val[-dim:] pass else: lowerCAmelCase = val return orig_state_dict def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ): lowerCAmelCase = get_config(_UpperCAmelCase ) lowerCAmelCase = SwinaSRForImageSuperResolution(_UpperCAmelCase ) model.eval() lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' ) lowerCAmelCase = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_UpperCAmelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowerCAmelCase = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) lowerCAmelCase = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCAmelCase = 126 if 'Jpeg' in checkpoint_url else 256 lowerCAmelCase = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowerCAmelCase = transforms(_UpperCAmelCase ).unsqueeze(0 ) if config.num_channels == 1: lowerCAmelCase = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCAmelCase = model(_UpperCAmelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-3 ) print('Looks ok!' ) lowerCAmelCase = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } lowerCAmelCase = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') __UpperCamelCase : Optional[int] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class A__ : '''simple docstring''' SCREAMING_SNAKE_CASE = BlenderbotSmallConfig SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = 'gelu' def __init__( self: int , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any]=13 , _SCREAMING_SNAKE_CASE: int=7 , _SCREAMING_SNAKE_CASE: Union[str, Any]=True , _SCREAMING_SNAKE_CASE: Union[str, Any]=False , _SCREAMING_SNAKE_CASE: str=99 , _SCREAMING_SNAKE_CASE: Optional[int]=32 , _SCREAMING_SNAKE_CASE: Optional[int]=2 , _SCREAMING_SNAKE_CASE: Any=4 , _SCREAMING_SNAKE_CASE: Tuple=37 , _SCREAMING_SNAKE_CASE: int=0.1 , _SCREAMING_SNAKE_CASE: int=0.1 , _SCREAMING_SNAKE_CASE: List[Any]=20 , _SCREAMING_SNAKE_CASE: List[str]=2 , _SCREAMING_SNAKE_CASE: int=1 , _SCREAMING_SNAKE_CASE: Dict=0 , ) -> int: """simple docstring""" __lowerCAmelCase : Optional[Any] = parent __lowerCAmelCase : str = batch_size __lowerCAmelCase : Optional[int] = seq_length __lowerCAmelCase : Optional[Any] = is_training __lowerCAmelCase : List[Any] = use_labels __lowerCAmelCase : Any = vocab_size __lowerCAmelCase : Union[str, Any] = hidden_size __lowerCAmelCase : List[str] = num_hidden_layers __lowerCAmelCase : List[str] = num_attention_heads __lowerCAmelCase : int = intermediate_size __lowerCAmelCase : List[str] = hidden_dropout_prob __lowerCAmelCase : List[Any] = attention_probs_dropout_prob __lowerCAmelCase : List[Any] = max_position_embeddings __lowerCAmelCase : List[str] = eos_token_id __lowerCAmelCase : List[Any] = pad_token_id __lowerCAmelCase : Optional[Any] = bos_token_id def _SCREAMING_SNAKE_CASE ( self: int) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) __lowerCAmelCase : List[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) __lowerCAmelCase : str = tf.concat([input_ids, eos_tensor] , axis=1) __lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __lowerCAmelCase : Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowerCAmelCase : Optional[int] = prepare_blenderbot_small_inputs_dict(_snake_case , _snake_case , _snake_case) return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Union[str, Any]) -> Any: """simple docstring""" __lowerCAmelCase : str = TFBlenderbotSmallModel(config=_snake_case).get_decoder() __lowerCAmelCase : List[Any] = inputs_dict["input_ids"] __lowerCAmelCase : List[str] = input_ids[:1, :] __lowerCAmelCase : List[Any] = inputs_dict["attention_mask"][:1, :] __lowerCAmelCase : Optional[Any] = inputs_dict["head_mask"] __lowerCAmelCase : str = 1 # first forward pass __lowerCAmelCase : List[Any] = model(_snake_case , attention_mask=_snake_case , head_mask=_snake_case , use_cache=_snake_case) __lowerCAmelCase , __lowerCAmelCase : Optional[int] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCAmelCase : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size) __lowerCAmelCase : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and __lowerCAmelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1) __lowerCAmelCase : Dict = tf.concat([attention_mask, next_attn_mask] , axis=-1) __lowerCAmelCase : Tuple = model(_snake_case , attention_mask=_snake_case)[0] __lowerCAmelCase : Optional[Any] = model(_snake_case , attention_mask=_snake_case , past_key_values=_snake_case)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice __lowerCAmelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1])) __lowerCAmelCase : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx] __lowerCAmelCase : Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_snake_case , _snake_case , rtol=1e-3) def _lowercase ( __snake_case ,__snake_case ,__snake_case ,__snake_case=None ,__snake_case=None ,__snake_case=None ,__snake_case=None ,__snake_case=None ,) -> Optional[int]: if attention_mask is None: __lowerCAmelCase : int = tf.cast(tf.math.not_equal(_UpperCAmelCase ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: __lowerCAmelCase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: __lowerCAmelCase : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowerCAmelCase : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A__ ( a__ , a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) SCREAMING_SNAKE_CASE = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE = ( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Dict: """simple docstring""" __lowerCAmelCase : List[Any] = TFBlenderbotSmallModelTester(self) __lowerCAmelCase : Dict = ConfigTester(self , config_class=_snake_case) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self: int) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_snake_case) @require_tokenizers @require_tf class A__ ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = [ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] SCREAMING_SNAKE_CASE = 'facebook/blenderbot_small-90M' @cached_property def _SCREAMING_SNAKE_CASE ( self: Dict) -> Optional[Any]: """simple docstring""" return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M") @cached_property def _SCREAMING_SNAKE_CASE ( self: Dict) -> str: """simple docstring""" __lowerCAmelCase : Any = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name) return model @slow def _SCREAMING_SNAKE_CASE ( self: Tuple) -> int: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.tokenizer(self.src_text , return_tensors="tf") __lowerCAmelCase : List[Any] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_snake_case , ) __lowerCAmelCase : Optional[int] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_snake_case)[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
293
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''megatron-bert''' def __init__( self , _snake_case=2_90_56 , _snake_case=10_24 , _snake_case=24 , _snake_case=16 , _snake_case=40_96 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache
4
0
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class UpperCAmelCase ( a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = StableDiffusionControlNetImgaImgPipeline SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) SCREAMING_SNAKE_CASE = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowerCAmelCase( self ) -> Union[str, Any]: torch.manual_seed(0 ) lowercase__ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) lowercase__ : int = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) lowercase__ : Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase__ : Union[str, Any] = CLIPTextModel(_snake_case ) lowercase__ : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ : Tuple = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=0 ) -> List[str]: if str(_snake_case ).startswith('''mps''' ): lowercase__ : str = torch.manual_seed(_snake_case ) else: lowercase__ : str = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : Tuple = 2 lowercase__ : Dict = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ) lowercase__ : Any = floats_tensor(control_image.shape , rng=random.Random(_snake_case ) ).to(_snake_case ) lowercase__ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ : Optional[Any] = Image.fromarray(np.uinta(_snake_case ) ).convert('''RGB''' ).resize((64, 64) ) lowercase__ : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def _lowerCAmelCase( self ) -> Any: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _lowerCAmelCase( self ) -> List[Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def _lowerCAmelCase( self ) -> Optional[Any]: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class UpperCAmelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = StableDiffusionControlNetImgaImgPipeline SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def _lowerCAmelCase( self ) -> List[Any]: torch.manual_seed(0 ) lowercase__ : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(__lowerCAmelCase ): if isinstance(_snake_case , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) lowercase__ : List[str] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) lowercase__ : List[str] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) lowercase__ : List[str] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) lowercase__ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase__ : Optional[Any] = CLIPTextModel(_snake_case ) lowercase__ : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ : str = MultiControlNetModel([controlneta, controlneta] ) lowercase__ : int = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=0 ) -> List[Any]: if str(_snake_case ).startswith('''mps''' ): lowercase__ : List[Any] = torch.manual_seed(_snake_case ) else: lowercase__ : int = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : Tuple = 2 lowercase__ : List[Any] = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ), ] lowercase__ : Optional[int] = floats_tensor(control_image[0].shape , rng=random.Random(_snake_case ) ).to(_snake_case ) lowercase__ : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ : Union[str, Any] = Image.fromarray(np.uinta(_snake_case ) ).convert('''RGB''' ).resize((64, 64) ) lowercase__ : Any = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def _lowerCAmelCase( self ) -> str: lowercase__ : Tuple = self.get_dummy_components() lowercase__ : Dict = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) lowercase__ : List[str] = 1_0.0 lowercase__ : Union[str, Any] = 4 lowercase__ : List[str] = self.get_dummy_inputs(_snake_case ) lowercase__ : Dict = steps lowercase__ : Any = scale lowercase__ : Optional[int] = pipe(**_snake_case )[0] lowercase__ : int = self.get_dummy_inputs(_snake_case ) lowercase__ : Any = steps lowercase__ : int = scale lowercase__ : Any = pipe(**_snake_case , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] lowercase__ : int = self.get_dummy_inputs(_snake_case ) lowercase__ : List[str] = steps lowercase__ : int = scale lowercase__ : Union[str, Any] = pipe(**_snake_case , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] lowercase__ : Any = self.get_dummy_inputs(_snake_case ) lowercase__ : Dict = steps lowercase__ : List[str] = scale lowercase__ : List[str] = pipe(**_snake_case , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def _lowerCAmelCase( self ) -> Optional[Any]: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _lowerCAmelCase( self ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def _lowerCAmelCase( self ) -> List[str]: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : Dict = self.get_dummy_components() lowercase__ : Any = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_snake_case ) except NotImplementedError: pass @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase( self ) -> str: lowercase__ : Any = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) lowercase__ : List[str] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=_snake_case , controlnet=_snake_case ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : int = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ : Any = '''evil space-punk bird''' lowercase__ : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((512, 512) ) lowercase__ : Union[str, Any] = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((512, 512) ) lowercase__ : int = pipe( _snake_case , _snake_case , control_image=_snake_case , generator=_snake_case , output_type='''np''' , num_inference_steps=50 , strength=0.6 , ) lowercase__ : Union[str, Any] = output.images[0] assert image.shape == (512, 512, 3) lowercase__ : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9E-2
152
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
4
0