code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def A (__lowerCamelCase :Optional[int] ): return x + 2 class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """x = 3""" _lowerCAmelCase = {} _lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase ) assert result == 3 self.assertDictEqual(_lowercase , {"""x""": 3} ) _lowerCAmelCase = """x = y""" _lowerCAmelCase = {"""y""": 5} _lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_lowercase , {"""x""": 5, """y""": 5} ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """y = add_two(x)""" _lowerCAmelCase = {"""x""": 3} _lowerCAmelCase = evaluate(_lowercase , {"""add_two""": add_two} , state=_lowercase ) assert result == 5 self.assertDictEqual(_lowercase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: _lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase ) assert result is None assert "tried to execute add_two" in out.out def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """x = 3""" _lowerCAmelCase = {} _lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase ) assert result == 3 self.assertDictEqual(_lowercase , {"""x""": 3} ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """test_dict = {'x': x, 'y': add_two(x)}""" _lowerCAmelCase = {"""x""": 3} _lowerCAmelCase = evaluate(_lowercase , {"""add_two""": add_two} , state=_lowercase ) self.assertDictEqual(_lowercase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(_lowercase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """x = 3\ny = 5""" _lowerCAmelCase = {} _lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_lowercase , {"""x""": 3, """y""": 5} ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """text = f'This is x: {x}.'""" _lowerCAmelCase = {"""x""": 3} _lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_lowercase , {"""x""": 3, """text""": """This is x: 3."""} ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """if x <= 3:\n y = 2\nelse:\n y = 5""" _lowerCAmelCase = {"""x""": 3} _lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_lowercase , {"""x""": 3, """y""": 2} ) _lowerCAmelCase = {"""x""": 8} _lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_lowercase , {"""x""": 8, """y""": 5} ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """test_list = [x, add_two(x)]""" _lowerCAmelCase = {"""x""": 3} _lowerCAmelCase = evaluate(_lowercase , {"""add_two""": add_two} , state=_lowercase ) self.assertListEqual(_lowercase , [3, 5] ) self.assertDictEqual(_lowercase , {"""x""": 3, """test_list""": [3, 5]} ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """y = x""" _lowerCAmelCase = {"""x""": 3} _lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase ) assert result == 3 self.assertDictEqual(_lowercase , {"""x""": 3, """y""": 3} ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """test_list = [x, add_two(x)]\ntest_list[1]""" _lowerCAmelCase = {"""x""": 3} _lowerCAmelCase = evaluate(_lowercase , {"""add_two""": add_two} , state=_lowercase ) assert result == 5 self.assertDictEqual(_lowercase , {"""x""": 3, """test_list""": [3, 5]} ) _lowerCAmelCase = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" _lowerCAmelCase = {"""x""": 3} _lowerCAmelCase = evaluate(_lowercase , {"""add_two""": add_two} , state=_lowercase ) assert result == 5 self.assertDictEqual(_lowercase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """x = 0\nfor i in range(3):\n x = i""" _lowerCAmelCase = {} _lowerCAmelCase = evaluate(_lowercase , {"""range""": range} , state=_lowercase ) assert result == 2 self.assertDictEqual(_lowercase , {"""x""": 2, """i""": 2} )
5
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = ['''input_values''', '''padding_mask'''] def __init__( self , _lowercase = 1 , _lowercase = 24_000 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , **_lowercase , ): """simple docstring""" super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) _lowerCAmelCase = chunk_length_s _lowerCAmelCase = overlap @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , _lowercase , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs _lowerCAmelCase = True _lowerCAmelCase = bool( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_lowercase , np.ndarray ): _lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _lowerCAmelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [np.asarray(_lowercase ).T] # verify inputs are valid for idx, example in enumerate(_lowercase ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) _lowerCAmelCase = None _lowerCAmelCase = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _lowerCAmelCase = min(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.floor(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _lowerCAmelCase = max(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.ceil(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length _lowerCAmelCase = """max_length""" else: _lowerCAmelCase = input_values # normal padding on batch if padded_inputs is None: _lowerCAmelCase = self.pad( _lowercase , max_length=_lowercase , truncation=_lowercase , padding=_lowercase , return_attention_mask=_lowercase , ) if padding: _lowerCAmelCase = padded_inputs.pop("""attention_mask""" ) _lowerCAmelCase = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: _lowerCAmelCase = example[..., None] input_values.append(example.T ) _lowerCAmelCase = input_values if return_tensors is not None: _lowerCAmelCase = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
5
1
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase , _lowercase=14 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_labels _lowerCAmelCase = use_mc_token_ids _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope _lowerCAmelCase = self.vocab_size - 1 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None if self.use_mc_token_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() _lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def _lowercase ( self ): """simple docstring""" return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , *_lowercase ): """simple docstring""" _lowerCAmelCase = CTRLModel(config=_lowercase ) model.to(_lowercase ) model.eval() model(_lowercase , token_type_ids=_lowercase , head_mask=_lowercase ) model(_lowercase , token_type_ids=_lowercase ) _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , *_lowercase ): """simple docstring""" _lowerCAmelCase = CTRLLMHeadModel(_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask} return config, inputs_dict def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , *_lowercase ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = CTRLForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : List[str] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () _lowercase : List[str] = (CTRLLMHeadModel,) if is_torch_available() else () _lowercase : Dict = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) _lowercase : Any = True _lowercase : Dict = False _lowercase : Dict = False def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = CTRLModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowercase , n_embd=37 ) def _lowercase ( self ): """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_lowercase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowercase ( self ): """simple docstring""" pass @slow def _lowercase ( self ): """simple docstring""" for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = CTRLModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def _lowercase ( self ): """simple docstring""" pass @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(_lowercase ) _lowerCAmelCase = torch.tensor( [[11_859, 0, 1_611, 8]] , dtype=torch.long , device=_lowercase ) # Legal the president is _lowerCAmelCase = [ 11_859, 0, 1_611, 8, 5, 150, 26_449, 2, 19, 348, 469, 3, 2_595, 48, 20_740, 246_533, 246_533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a _lowerCAmelCase = model.generate(_lowercase , do_sample=_lowercase ) self.assertListEqual(output_ids[0].tolist() , _lowercase )
5
'''simple docstring''' _lowercase = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
5
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' import functools def A (__lowerCamelCase :list[int] , __lowerCamelCase :list[int] ): # Validation if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(__lowerCamelCase ) >= 366: raise ValueError("""All days elements should be less than 366""" ) _lowerCAmelCase = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase :int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _lowercase = """platform""" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def A (__lowerCamelCase :int , __lowerCamelCase :Any , __lowerCamelCase :Optional[int]=None , __lowerCamelCase :int=None , __lowerCamelCase :str=None , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :Any=None , __lowerCamelCase :Any=None , ): if attention_mask is None: _lowerCAmelCase = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _lowerCAmelCase = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _lowerCAmelCase = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCAmelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowerCAmelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=False , _lowercase=99 , _lowercase=16 , _lowercase=2 , _lowercase=4 , _lowercase=4 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=32 , _lowercase=2 , _lowercase=1 , _lowercase=0 , _lowercase=0.02 , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = eos_token_id _lowerCAmelCase = pad_token_id _lowerCAmelCase = bos_token_id _lowerCAmelCase = initializer_range def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _lowerCAmelCase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _lowerCAmelCase = shift_tokens_right(_lowercase , 1 , 2 ) _lowerCAmelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowercase , ) _lowerCAmelCase = prepare_blenderbot_inputs_dict(_lowercase , _lowercase , _lowercase ) return config, inputs_dict def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = 20 _lowerCAmelCase = model_class_name(_lowercase ) _lowerCAmelCase = model.encode(inputs_dict["""input_ids"""] ) _lowerCAmelCase , _lowerCAmelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _lowerCAmelCase = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase ) _lowerCAmelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) _lowerCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowerCAmelCase = model.decode( decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , ) _lowerCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _lowerCAmelCase = model.decode( decoder_input_ids[:, -1:] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowercase , ) _lowerCAmelCase = model.decode(_lowercase , _lowercase ) _lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = 20 _lowerCAmelCase = model_class_name(_lowercase ) _lowerCAmelCase = model.encode(inputs_dict["""input_ids"""] ) _lowerCAmelCase , _lowerCAmelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _lowerCAmelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _lowerCAmelCase = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase ) _lowerCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowerCAmelCase = model.decode( decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , ) _lowerCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _lowerCAmelCase = model.decode( decoder_input_ids[:, -1:] , _lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowercase , decoder_position_ids=_lowercase , ) _lowerCAmelCase = model.decode(_lowercase , _lowercase , decoder_attention_mask=_lowercase ) _lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) @require_flax class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' _lowercase : str = 9_9 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _lowerCAmelCase = input_ids.shape[0] _lowerCAmelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self._get_config_and_data() _lowerCAmelCase = FlaxBlenderbotForConditionalGeneration(_lowercase ) _lowerCAmelCase = lm_model(input_ids=_lowercase ) _lowerCAmelCase = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _lowerCAmelCase = FlaxBlenderbotForConditionalGeneration(_lowercase ) _lowerCAmelCase = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _lowerCAmelCase = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _lowerCAmelCase = lm_model(input_ids=_lowercase , decoder_input_ids=_lowercase ) _lowerCAmelCase = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _lowerCAmelCase = shift_tokens_right(_lowercase , 1 , 2 ) _lowerCAmelCase = np.equal(_lowercase , 1 ).astype(np.floataa ).sum() _lowerCAmelCase = np.equal(_lowercase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowercase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase , _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = True _lowercase : Tuple = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) _lowercase : Tuple = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = FlaxBlenderbotModelTester(self ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowercase , _lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowercase , _lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) _lowerCAmelCase = model_class(_lowercase ) @jax.jit def encode_jitted(_lowercase , _lowercase=None , **_lowercase ): return model.encode(input_ids=_lowercase , attention_mask=_lowercase ) with self.subTest("""JIT Enabled""" ): _lowerCAmelCase = encode_jitted(**_lowercase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _lowerCAmelCase = encode_jitted(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for jitted_output, output in zip(_lowercase , _lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) _lowerCAmelCase = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(_lowercase , _lowercase , _lowercase ): return model.decode( decoder_input_ids=_lowercase , decoder_attention_mask=_lowercase , encoder_outputs=_lowercase , ) with self.subTest("""JIT Enabled""" ): _lowerCAmelCase = decode_jitted(**_lowercase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _lowerCAmelCase = decode_jitted(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for jitted_output, output in zip(_lowercase , _lowercase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowercase ( self ): """simple docstring""" for model_class_name in self.all_model_classes: _lowerCAmelCase = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _lowerCAmelCase = np.ones((1, 1) ) * model.config.eos_token_id _lowerCAmelCase = model(_lowercase ) self.assertIsNotNone(_lowercase ) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" ) @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} _lowerCAmelCase = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} _lowerCAmelCase = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=_lowercase ) _lowerCAmelCase = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" ) _lowerCAmelCase = ["""Sam"""] _lowerCAmelCase = tokenizer(_lowercase , return_tensors="""jax""" ) _lowerCAmelCase = model.generate(**_lowercase , **_lowercase ) _lowerCAmelCase = """Sam is a great name. It means \"sun\" in Gaelic.""" _lowerCAmelCase = tokenizer.batch_decode(_lowercase , **_lowercase ) assert generated_txt[0].strip() == tgt_text
5
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 384 if "tiny" in model_name: _lowerCAmelCase = [3, 3, 9, 3] _lowerCAmelCase = [96, 192, 384, 768] if "small" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [96, 192, 384, 768] if "base" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [128, 256, 512, 1024] _lowerCAmelCase = 512 if "large" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [192, 384, 768, 1536] _lowerCAmelCase = 768 if "xlarge" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [256, 512, 1024, 2048] _lowerCAmelCase = 1024 # set label information _lowerCAmelCase = 150 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """ade20k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = ConvNextConfig( depths=__lowerCamelCase , hidden_sizes=__lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) _lowerCAmelCase = UperNetConfig( backbone_config=__lowerCamelCase , auxiliary_in_channels=__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , ) return config def A (__lowerCamelCase :Optional[Any] ): _lowerCAmelCase = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict , __lowerCamelCase :Tuple ): _lowerCAmelCase = dct.pop(__lowerCamelCase ) _lowerCAmelCase = val def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ): _lowerCAmelCase = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } _lowerCAmelCase = model_name_to_url[model_name] _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""state_dict"""] _lowerCAmelCase = get_upernet_config(__lowerCamelCase ) _lowerCAmelCase = UperNetForSemanticSegmentation(__lowerCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase = state_dict.pop(__lowerCamelCase ) if "bn" in key: _lowerCAmelCase = key.replace("""bn""" , """batch_norm""" ) _lowerCAmelCase = val # rename keys _lowerCAmelCase = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # verify on image _lowerCAmelCase = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _lowerCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" ) _lowerCAmelCase = SegformerImageProcessor() _lowerCAmelCase = processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values with torch.no_grad(): _lowerCAmelCase = model(__lowerCamelCase ) if model_name == "upernet-convnext-tiny": _lowerCAmelCase = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _lowerCAmelCase = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _lowerCAmelCase = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _lowerCAmelCase = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _lowerCAmelCase = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
5
1
'''simple docstring''' def A (__lowerCamelCase :int , __lowerCamelCase :int ): if b == 0: return 1 if (b % 2) == 0: return actual_power(__lowerCamelCase , int(b / 2 ) ) * actual_power(__lowerCamelCase , int(b / 2 ) ) else: return a * actual_power(__lowerCamelCase , int(b / 2 ) ) * actual_power(__lowerCamelCase , int(b / 2 ) ) def A (__lowerCamelCase :int , __lowerCamelCase :int ): if b < 0: return 1 / actual_power(__lowerCamelCase , __lowerCamelCase ) return actual_power(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": print(power(-2, -3))
5
'''simple docstring''' from itertools import product def A (__lowerCamelCase :int , __lowerCamelCase :int ): _lowerCAmelCase = sides_number _lowerCAmelCase = max_face_number * dice_number _lowerCAmelCase = [0] * (max_total + 1) _lowerCAmelCase = 1 _lowerCAmelCase = range(__lowerCamelCase , max_face_number + 1 ) for dice_numbers in product(__lowerCamelCase , repeat=__lowerCamelCase ): _lowerCAmelCase = sum(__lowerCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def A (): _lowerCAmelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) _lowerCAmelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) _lowerCAmelCase = 0 _lowerCAmelCase = 9 _lowerCAmelCase = 4 * 9 _lowerCAmelCase = 6 for peter_total in range(__lowerCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _lowerCAmelCase = (4**9) * (6**6) _lowerCAmelCase = peter_wins_count / total_games_number _lowerCAmelCase = round(__lowerCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
5
1
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = '''mvp''' _lowercase : Any = ['''past_key_values'''] _lowercase : Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , _lowercase=50_267 , _lowercase=1_024 , _lowercase=12 , _lowercase=4_096 , _lowercase=16 , _lowercase=12 , _lowercase=4_096 , _lowercase=16 , _lowercase=0.0 , _lowercase=0.0 , _lowercase="gelu" , _lowercase=1_024 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=0.0 , _lowercase=False , _lowercase=True , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase=True , _lowercase=2 , _lowercase=2 , _lowercase=False , _lowercase=100 , _lowercase=800 , **_lowercase , ): """simple docstring""" _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = d_model _lowerCAmelCase = encoder_ffn_dim _lowerCAmelCase = encoder_layers _lowerCAmelCase = encoder_attention_heads _lowerCAmelCase = decoder_ffn_dim _lowerCAmelCase = decoder_layers _lowerCAmelCase = decoder_attention_heads _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = activation_function _lowerCAmelCase = init_std _lowerCAmelCase = encoder_layerdrop _lowerCAmelCase = decoder_layerdrop _lowerCAmelCase = classifier_dropout _lowerCAmelCase = use_cache _lowerCAmelCase = encoder_layers _lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCAmelCase = use_prompt _lowerCAmelCase = prompt_length _lowerCAmelCase = prompt_mid_dim super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , **_lowercase , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , _lowercase ): _lowerCAmelCase = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' """The config can simply be saved and uploaded again to be fixed.""" )
5
'''simple docstring''' from manim import * class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""CPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(1 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""GPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.align_to(_lowercase , _lowercase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""Model""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , ) _lowerCAmelCase = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) _lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) ) self.add(_lowercase ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for i, rect in enumerate(_lowercase ): _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 ) cpu_target.move_to(_lowercase ) cpu_target.generate_target() _lowerCAmelCase = 0.46 / 4 _lowerCAmelCase = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 ) cpu_targs.append(_lowercase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) ) second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) ) self.play(*_lowercase ) self.play(*_lowercase ) self.wait()
5
1
'''simple docstring''' import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for a, b in zip(_lowercase , _lowercase ): self.assertAlmostEqual(_lowercase , _lowercase , delta=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_lowercase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = None ops.enable_eager_execution_internal() _lowerCAmelCase = tf.config.list_physical_devices("""CPU""" ) if len(_lowercase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) _lowerCAmelCase = tf.config.list_logical_devices(device_type="""CPU""" ) _lowerCAmelCase = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): _lowerCAmelCase = GradientAccumulator() _lowerCAmelCase = tf.Variable([4.0, 3.0] ) _lowerCAmelCase , _lowerCAmelCase = create_optimizer(5e-5 , 10 , 5 ) _lowerCAmelCase = tf.Variable([0.0, 0.0] , trainable=_lowercase ) def accumulate_on_replica(_lowercase ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(_lowercase , _lowercase ): with strategy.scope(): _lowerCAmelCase = strategy.experimental_local_results(_lowercase ) local_variables[0].assign(_lowercase ) local_variables[1].assign(_lowercase ) strategy.run(_lowercase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_lowercase ) def _check_local_values(_lowercase , _lowercase ): _lowerCAmelCase = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _lowercase , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , _lowercase , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
5
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowercase = False try: _lowercase = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase = None , _lowercase = [] ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = choices _lowerCAmelCase = prompt if sys.platform == "win32": _lowerCAmelCase = """*""" else: _lowerCAmelCase = """➔ """ def _lowercase ( self , _lowercase , _lowercase = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , _lowercase ) else: forceWrite(self.choices[index] , _lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(_lowercase ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def _lowercase ( self , _lowercase , _lowercase = 1 ): """simple docstring""" _lowerCAmelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowercase ) move_cursor(_lowercase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = int(chr(self.current_selection ) ) _lowerCAmelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowercase ) else: return else: return def _lowercase ( self , _lowercase = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) _lowerCAmelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowercase ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase = int(builtins.input() ) except ValueError: _lowerCAmelCase = default_choice else: _lowerCAmelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(_lowercase , """\n""" ) return choice
5
1
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def A (__lowerCamelCase :int ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X20000 and cp <= 0X2a6df) # or (cp >= 0X2a700 and cp <= 0X2b73f) # or (cp >= 0X2b740 and cp <= 0X2b81f) # or (cp >= 0X2b820 and cp <= 0X2ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2f800 and cp <= 0X2fa1f) # ): # return True return False def A (__lowerCamelCase :str ): # word like '180' or '身高' or '神' for char in word: _lowerCAmelCase = ord(__lowerCamelCase ) if not _is_chinese_char(__lowerCamelCase ): return 0 return 1 def A (__lowerCamelCase :List[str] ): _lowerCAmelCase = set() for token in tokens: _lowerCAmelCase = len(__lowerCamelCase ) > 1 and is_chinese(__lowerCamelCase ) if chinese_word: word_set.add(__lowerCamelCase ) _lowerCAmelCase = list(__lowerCamelCase ) return word_list def A (__lowerCamelCase :List[str] , __lowerCamelCase :set() ): if not chinese_word_set: return bert_tokens _lowerCAmelCase = max([len(__lowerCamelCase ) for w in chinese_word_set] ) _lowerCAmelCase = bert_tokens _lowerCAmelCase , _lowerCAmelCase = 0, len(__lowerCamelCase ) while start < end: _lowerCAmelCase = True if is_chinese(bert_word[start] ): _lowerCAmelCase = min(end - start , __lowerCamelCase ) for i in range(__lowerCamelCase , 1 , -1 ): _lowerCAmelCase = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowerCAmelCase = """##""" + bert_word[j] _lowerCAmelCase = start + i _lowerCAmelCase = False break if single_word: start += 1 return bert_word def A (__lowerCamelCase :List[str] , __lowerCamelCase :LTP , __lowerCamelCase :BertTokenizer ): _lowerCAmelCase = [] for i in range(0 , len(__lowerCamelCase ) , 100 ): _lowerCAmelCase = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowerCAmelCase = [get_chinese_word(__lowerCamelCase ) for r in res] ltp_res.extend(__lowerCamelCase ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ) _lowerCAmelCase = [] for i in range(0 , len(__lowerCamelCase ) , 100 ): _lowerCAmelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__lowerCamelCase , truncation=__lowerCamelCase , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ) _lowerCAmelCase = [] for input_ids, chinese_word in zip(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase = [] for id in input_ids: _lowerCAmelCase = bert_tokenizer._convert_id_to_token(__lowerCamelCase ) input_tokens.append(__lowerCamelCase ) _lowerCAmelCase = add_sub_symbol(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCamelCase ): if token[:2] == "##": _lowerCAmelCase = token[2:] # save chinese tokens' pos if len(__lowerCamelCase ) == 1 and _is_chinese_char(ord(__lowerCamelCase ) ): ref_id.append(__lowerCamelCase ) ref_ids.append(__lowerCamelCase ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ) return ref_ids def A (__lowerCamelCase :List[Any] ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: _lowerCAmelCase = f.readlines() _lowerCAmelCase = [line.strip() for line in data if len(__lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowerCAmelCase = LTP(args.ltp ) # faster in GPU device _lowerCAmelCase = BertTokenizer.from_pretrained(args.bert ) _lowerCAmelCase = prepare_ref(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: _lowerCAmelCase = [json.dumps(__lowerCamelCase ) + """\n""" for ref in ref_ids] f.writelines(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _lowercase = parser.parse_args() main(args)
5
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } _lowercase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def A (__lowerCamelCase :Optional[int] ): _lowerCAmelCase = {} with open(__lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(__lowerCamelCase ): _lowerCAmelCase = line.strip() if line: _lowerCAmelCase = line.split() _lowerCAmelCase = line_number _lowerCAmelCase = words[0] _lowerCAmelCase = value return result def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any] , __lowerCamelCase :List[str] ): for attribute in key.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": _lowerCAmelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = shape_pointer.shape # let's reduce dimension _lowerCAmelCase = value[0] else: _lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCAmelCase = value elif weight_type == "weight_g": _lowerCAmelCase = value elif weight_type == "weight_v": _lowerCAmelCase = value elif weight_type == "bias": _lowerCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = value else: _lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] , __lowerCamelCase :int ): _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _lowerCAmelCase = """.""".join([key, hf_param_name] ) else: _lowerCAmelCase = key _lowerCAmelCase = value if """lm_head""" in full_key else value[0] _lowercase = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :List[str]=None , __lowerCamelCase :List[Any]=None ): _lowerCAmelCase = False for key, mapped_key in MAPPING.items(): _lowerCAmelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCAmelCase = True if "*" in mapped_key: _lowerCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase = """weight_g""" elif "weight_v" in name: _lowerCAmelCase = """weight_v""" elif "bias" in name: _lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase = """weight""" else: _lowerCAmelCase = None if hf_dict is not None: rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return is_used return is_used def A (__lowerCamelCase :Any , __lowerCamelCase :Dict , __lowerCamelCase :Dict ): _lowerCAmelCase = [] _lowerCAmelCase = fairseq_model.state_dict() _lowerCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) _lowerCAmelCase = True else: _lowerCAmelCase = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any , __lowerCamelCase :List[Any] , __lowerCamelCase :List[Any] ): _lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase = name.split(""".""" ) _lowerCAmelCase = int(items[0] ) _lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def A (__lowerCamelCase :List[str] , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any]=None , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :str=True , __lowerCamelCase :str=False ): if config_path is not None: _lowerCAmelCase = WavaVecaConfig.from_pretrained(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaConfig() if is_seq_class: _lowerCAmelCase = read_txt_into_dict(__lowerCamelCase ) _lowerCAmelCase = idalabel _lowerCAmelCase = WavaVecaForSequenceClassification(__lowerCamelCase ) _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) feature_extractor.save_pretrained(__lowerCamelCase ) elif is_finetuned: if dict_path: _lowerCAmelCase = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCAmelCase = target_dict.pad_index _lowerCAmelCase = target_dict.bos_index _lowerCAmelCase = target_dict.eos_index _lowerCAmelCase = len(target_dict.symbols ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """vocab.json""" ) if not os.path.isdir(__lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCAmelCase = 0 _lowerCAmelCase = 1 with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , ) _lowerCAmelCase = True if config.feat_extract_norm == """layer""" else False _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) _lowerCAmelCase = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) _lowerCAmelCase = WavaVecaForCTC(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaForPreTraining(__lowerCamelCase ) if is_finetuned or is_seq_class: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _lowerCAmelCase = argparse.Namespace(task="""audio_pretraining""" ) _lowerCAmelCase = fairseq.tasks.setup_task(__lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase ) _lowerCAmelCase = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) _lowercase = parser.parse_args() _lowercase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
5
1
'''simple docstring''' import os import sys import unittest _lowercase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _lowercase = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") _lowercase = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = get_test_to_tester_mapping(_lowercase ) _lowerCAmelCase = get_test_to_tester_mapping(_lowercase ) _lowerCAmelCase = {"""BertModelTest""": """BertModelTester"""} _lowerCAmelCase = { """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(_lowercase ) , _lowercase ) self.assertEqual(get_test_info.to_json(_lowercase ) , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = get_model_to_test_mapping(_lowercase ) _lowerCAmelCase = get_model_to_test_mapping(_lowercase ) _lowerCAmelCase = { """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } _lowerCAmelCase = { """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(_lowercase ) , _lowercase ) self.assertEqual(get_test_info.to_json(_lowercase ) , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = get_model_to_tester_mapping(_lowercase ) _lowerCAmelCase = get_model_to_tester_mapping(_lowercase ) _lowerCAmelCase = { """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } _lowerCAmelCase = { """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(_lowercase ) , _lowercase ) self.assertEqual(get_test_info.to_json(_lowercase ) , _lowercase )
5
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = '''decision_transformer''' _lowercase : Optional[Any] = ['''past_key_values'''] _lowercase : str = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowercase=17 , _lowercase=4 , _lowercase=128 , _lowercase=4_096 , _lowercase=True , _lowercase=1 , _lowercase=1_024 , _lowercase=3 , _lowercase=1 , _lowercase=None , _lowercase="relu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=False , _lowercase=False , **_lowercase , ): """simple docstring""" _lowerCAmelCase = state_dim _lowerCAmelCase = act_dim _lowerCAmelCase = hidden_size _lowerCAmelCase = max_ep_len _lowerCAmelCase = action_tanh _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = scale_attn_by_inverse_layer_idx _lowerCAmelCase = reorder_and_upcast_attn _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
5
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Any = '''gpt_neo''' _lowercase : Dict = ['''past_key_values'''] _lowercase : str = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , _lowercase=50_257 , _lowercase=2_048 , _lowercase=2_048 , _lowercase=24 , _lowercase=[[["global", "local"], 12]] , _lowercase=16 , _lowercase=None , _lowercase=256 , _lowercase="gelu_new" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , **_lowercase , ): """simple docstring""" _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = hidden_size _lowerCAmelCase = num_layers _lowerCAmelCase = num_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = window_size _lowerCAmelCase = activation_function _lowerCAmelCase = resid_dropout _lowerCAmelCase = embed_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = classifier_dropout _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = use_cache _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id _lowerCAmelCase = attention_types _lowerCAmelCase = self.expand_attention_types_params(_lowercase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ F'but is `len(config.attention_layers) = {len(self.attention_layers )}`, ' F'`config.num_layers = {self.num_layers}`. ' """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) @staticmethod def _lowercase ( _lowercase ): """simple docstring""" _lowerCAmelCase = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] , __lowerCamelCase :List[str] , __lowerCamelCase :int ): import torch _lowerCAmelCase = input.size() _lowerCAmelCase = len(__lowerCamelCase ) _lowerCAmelCase = shape[dimension] _lowerCAmelCase = torch.arange(0 , __lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = torch.div(sizedim - size , __lowerCamelCase , rounding_mode="""floor""" ) + 1 _lowerCAmelCase = torch.arange(__lowerCamelCase ) + low_indices[:min_length][:, None] _lowerCAmelCase = [slice(__lowerCamelCase )] * rank _lowerCAmelCase = indices _lowerCAmelCase = input[s] _lowerCAmelCase = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(__lowerCamelCase ) def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :List[Any] ): import torch _lowerCAmelCase = torch.arange(1 , __lowerCamelCase ) _lowerCAmelCase = torch.remainder(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = remainders == 0 _lowerCAmelCase = candidates[divisor_indices] _lowerCAmelCase = torch.max(__lowerCamelCase ) return largest_divisor, torch.div(__lowerCamelCase , __lowerCamelCase , rounding_mode="""floor""" ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(_lowercase , direction="""inputs""" ) _lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def _lowercase ( self ): """simple docstring""" return self._config.num_heads def _lowercase ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , ): """simple docstring""" _lowerCAmelCase = super(_lowercase , self ).generate_dummy_inputs( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) # We need to order the input in the way they appears in the forward() _lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _lowerCAmelCase = seqlen + 2 _lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowerCAmelCase = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(self.num_layers ) ] _lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: _lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype _lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) return ordered_inputs @property def _lowercase ( self ): """simple docstring""" return 13
5
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) _lowercase = None _lowercase = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } _lowercase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def A (__lowerCamelCase :int , __lowerCamelCase :Optional[Any]=1 , __lowerCamelCase :List[Any]=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def A (__lowerCamelCase :Any ): with open(__lowerCamelCase , """r""" ) as f: return json.load(__lowerCamelCase ) def A (__lowerCamelCase :List[Any] , __lowerCamelCase :int ): with open(__lowerCamelCase , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple=True ): os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """tmp""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = read_json(os.path.join(__lowerCamelCase , """params.json""" ) ) _lowerCAmelCase = NUM_SHARDS[model_size] _lowerCAmelCase = params["""n_layers"""] _lowerCAmelCase = params["""n_heads"""] _lowerCAmelCase = n_heads // num_shards _lowerCAmelCase = params["""dim"""] _lowerCAmelCase = dim // n_heads _lowerCAmelCase = 10_000.0 _lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , __lowerCamelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase = params["""n_kv_heads"""] # for GQA / MQA _lowerCAmelCase = n_heads_per_shard // num_key_value_heads _lowerCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase = n_heads _lowerCAmelCase = n_heads_per_shard _lowerCAmelCase = dim # permute for sliced rotary def permute(__lowerCamelCase :Optional[int] , __lowerCamelCase :str=n_heads , __lowerCamelCase :str=dim , __lowerCamelCase :List[Any]=dim ): return w.view(__lowerCamelCase , dima // n_heads // 2 , 2 , __lowerCamelCase ).transpose(1 , 2 ).reshape(__lowerCamelCase , __lowerCamelCase ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase = torch.load(os.path.join(__lowerCamelCase , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded _lowerCAmelCase = [ torch.load(os.path.join(__lowerCamelCase , f'consolidated.{i:02d}.pth' ) , map_location="""cpu""" ) for i in range(__lowerCamelCase ) ] _lowerCAmelCase = 0 _lowerCAmelCase = {"""weight_map""": {}} for layer_i in range(__lowerCamelCase ): _lowerCAmelCase = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _lowerCAmelCase = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = inv_freq for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: _lowerCAmelCase = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(__lowerCamelCase )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__lowerCamelCase )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) # Write configs _lowerCAmelCase = {"""total_size""": param_count * 2} write_json(__lowerCamelCase , os.path.join(__lowerCamelCase , """pytorch_model.bin.index.json""" ) ) _lowerCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 _lowerCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256 _lowerCAmelCase = LlamaConfig( hidden_size=__lowerCamelCase , intermediate_size=compute_intermediate_size(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=__lowerCamelCase , ) config.save_pretrained(__lowerCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) _lowerCAmelCase = LlamaForCausalLM.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=__lowerCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(__lowerCamelCase , safe_serialization=__lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any] ): # Initialize the tokenizer based on the `spm` model _lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase = tokenizer_class(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) def A (): _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=__lowerCamelCase , help="""Whether or not to save using `safetensors`.""" ) _lowerCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , __lowerCamelCase ) if __name__ == "__main__": main()
5
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: _lowerCAmelCase = 1024 _lowerCAmelCase = 4096 _lowerCAmelCase = 24 _lowerCAmelCase = 16 _lowerCAmelCase = [5, 11, 17, 23] _lowerCAmelCase = [256, 512, 1024, 1024] _lowerCAmelCase = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: _lowerCAmelCase = 768 _lowerCAmelCase = [1, 1, 1, 0.5] _lowerCAmelCase = [256, 512, 768, 768] _lowerCAmelCase = 150 _lowerCAmelCase = 16 _lowerCAmelCase = (1, 384, 384) _lowerCAmelCase = False _lowerCAmelCase = """project""" if "ade" in checkpoint_url: _lowerCAmelCase = True _lowerCAmelCase = 768 _lowerCAmelCase = [1, 1, 1, 0.5] _lowerCAmelCase = 150 _lowerCAmelCase = 16 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """ade20k-id2label.json""" _lowerCAmelCase = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) _lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = [1, 150, 480, 480] return config, expected_shape def A (__lowerCamelCase :str ): _lowerCAmelCase = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def A (__lowerCamelCase :Union[str, Any] ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _lowerCAmelCase = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: _lowerCAmelCase = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: _lowerCAmelCase = name.replace("""patch_embed""" , """""" ) if "pos_embed" in name: _lowerCAmelCase = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: _lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: _lowerCAmelCase = name.replace("""proj""" , """projection""" ) if "blocks" in name: _lowerCAmelCase = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: _lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: _lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name and "backbone" not in name: _lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name and "backbone" not in name: _lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: _lowerCAmelCase = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: _lowerCAmelCase = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: _lowerCAmelCase = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: _lowerCAmelCase = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: _lowerCAmelCase = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: _lowerCAmelCase = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: _lowerCAmelCase = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _lowerCAmelCase = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: _lowerCAmelCase = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: _lowerCAmelCase = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: _lowerCAmelCase = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: _lowerCAmelCase = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: _lowerCAmelCase = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _lowerCAmelCase = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: _lowerCAmelCase = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: _lowerCAmelCase = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: _lowerCAmelCase = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: _lowerCAmelCase = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: _lowerCAmelCase = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: _lowerCAmelCase = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: _lowerCAmelCase = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: _lowerCAmelCase = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: _lowerCAmelCase = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: _lowerCAmelCase = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: _lowerCAmelCase = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: _lowerCAmelCase = name.replace("""bn""" , """batch_norm""" ) if "head" in name: _lowerCAmelCase = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: _lowerCAmelCase = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: _lowerCAmelCase = name.replace("""auxlayer""" , """auxiliary_head.head""" ) if "backbone" in name: _lowerCAmelCase = name.replace("""backbone""" , """backbone.bit.encoder""" ) if ".." in name: _lowerCAmelCase = name.replace("""..""" , """.""" ) if "stem.conv" in name: _lowerCAmelCase = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: _lowerCAmelCase = name.replace("""blocks""" , """layers""" ) if "convolution" in name and "backbone" in name: _lowerCAmelCase = name.replace("""convolution""" , """conv""" ) if "layer" in name and "backbone" in name: _lowerCAmelCase = name.replace("""layer""" , """layers""" ) if "backbone.bit.encoder.bit" in name: _lowerCAmelCase = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" ) if "embedder.conv" in name: _lowerCAmelCase = name.replace("""embedder.conv""" , """embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: _lowerCAmelCase = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" ) return name def A (__lowerCamelCase :str , __lowerCamelCase :Any ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) _lowerCAmelCase = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase = in_proj_weight[: config.hidden_size, :] _lowerCAmelCase = in_proj_bias[: config.hidden_size] _lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase = in_proj_bias[-config.hidden_size :] def A (): _lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def A (__lowerCamelCase :List[str] , __lowerCamelCase :int , __lowerCamelCase :Any , __lowerCamelCase :str , __lowerCamelCase :List[str] ): _lowerCAmelCase , _lowerCAmelCase = get_dpt_config(__lowerCamelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") _lowerCAmelCase = torch.load(__lowerCamelCase , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(__lowerCamelCase ) # rename keys for key in state_dict.copy().keys(): _lowerCAmelCase = state_dict.pop(__lowerCamelCase ) _lowerCAmelCase = val # read in qkv matrices read_in_q_k_v(__lowerCamelCase , __lowerCamelCase ) # load HuggingFace model _lowerCAmelCase = DPTForSemanticSegmentation(__lowerCamelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() # Check outputs on an image _lowerCAmelCase = 480 if """ade""" in checkpoint_url else 384 _lowerCAmelCase = DPTImageProcessor(size=__lowerCamelCase ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(__lowerCamelCase , return_tensors="""pt""" ) # forward pass _lowerCAmelCase = model(**__lowerCamelCase ).logits if """ade""" in checkpoint_url else model(**__lowerCamelCase ).predicted_depth if show_prediction: _lowerCAmelCase = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=__lowerCamelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) parser.add_argument( """--show_prediction""", action="""store_true""", ) _lowercase = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
5
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = (DDPMScheduler,) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_lowercase ) return config def _lowercase ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def _lowercase ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def _lowercase ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def _lowercase ( self ): """simple docstring""" self.check_over_configs(thresholding=_lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def _lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowercase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowercase ): if i == len(_lowercase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowercase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowercase , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowercase ) with self.assertRaises(_lowercase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowercase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_lowercase )
5
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["""CLIPFeatureExtractor"""] _lowercase = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowercase = logging.get_logger(__name__) _lowercase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : '''simple docstring''' _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_SCREAMING_SNAKE_CASE )} ) _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) _lowercase : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase : int = field( default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) _lowercase : int = field( default=6_4 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) _lowercase : int = field( default=3_0 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) _lowercase : float = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) _lowercase : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''train''' _lowercase : Union[str, Any] = '''dev''' class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : SquadDataTrainingArguments _lowercase : List[SquadFeatures] _lowercase : Split _lowercase : bool def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = False , _lowercase = None , _lowercase = "pt" , ): """simple docstring""" _lowerCAmelCase = args _lowerCAmelCase = is_language_sensitive _lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowercase , _lowercase ): try: _lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _lowerCAmelCase = mode # Load data features from cache or dataset file _lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" _lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + """.lock""" with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: _lowerCAmelCase = time.time() _lowerCAmelCase = torch.load(_lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase = self.old_features["""features"""] _lowerCAmelCase = self.old_features.get("""dataset""" , _lowercase ) _lowerCAmelCase = self.old_features.get("""examples""" , _lowercase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: _lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: _lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) _lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , ) _lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.features[i] _lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) _lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
5
1
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def A (__lowerCamelCase :int = 1000000 , __lowerCamelCase :int = 10 ): _lowerCAmelCase = defaultdict(__lowerCamelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _lowerCAmelCase = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _lowerCAmelCase = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__lowerCamelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
5
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''dpr''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase="absolute" , _lowercase = 0 , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = projection_dim _lowerCAmelCase = position_embedding_type
5
1
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" super().__init__() _lowerCAmelCase = nn.ModuleList(_lowercase ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , _lowercase = True , ): """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(_lowercase , _lowercase , self.nets ) ): _lowerCAmelCase , _lowerCAmelCase = controlnet( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) # merge samples if i == 0: _lowerCAmelCase , _lowerCAmelCase = down_samples, mid_sample else: _lowerCAmelCase = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(_lowercase , _lowercase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _lowercase ( self , _lowercase , _lowercase = True , _lowercase = None , _lowercase = False , _lowercase = None , ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = save_directory for controlnet in self.nets: controlnet.save_pretrained( _lowercase , is_main_process=_lowercase , save_function=_lowercase , safe_serialization=_lowercase , variant=_lowercase , ) idx += 1 _lowerCAmelCase = model_path_to_save + F'_{idx}' @classmethod def _lowercase ( cls , _lowercase , **_lowercase ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _lowerCAmelCase = pretrained_model_path while os.path.isdir(_lowercase ): _lowerCAmelCase = ControlNetModel.from_pretrained(_lowercase , **_lowercase ) controlnets.append(_lowercase ) idx += 1 _lowerCAmelCase = pretrained_model_path + F'_{idx}' logger.info(F'{len(_lowercase )} controlnets loaded from {pretrained_model_path}.' ) if len(_lowercase ) == 0: raise ValueError( F'No ControlNets found under {os.path.dirname(_lowercase )}. Expected at least {pretrained_model_path + "_0"}.' ) return cls(_lowercase )
5
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _lowercase = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ _lowercase = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ _lowercase = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase ( self ): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase ( self , _lowercase , _lowercase , _lowercase=None , _lowercase="uniform_average" , _lowercase=True ): """simple docstring""" _lowerCAmelCase = mean_squared_error( _lowercase , _lowercase , sample_weight=_lowercase , multioutput=_lowercase , squared=_lowercase ) return {"mse": mse}
5
1
'''simple docstring''' import functools def A (__lowerCamelCase :list[int] , __lowerCamelCase :list[int] ): # Validation if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(__lowerCamelCase ) >= 366: raise ValueError("""All days elements should be less than 366""" ) _lowerCAmelCase = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase :int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
'''simple docstring''' def A (): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: _lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def A (): return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
5
1
'''simple docstring''' def A (__lowerCamelCase :str ): _lowerCAmelCase = len(__lowerCamelCase ) while cur > 1: # Find the maximum number in arr _lowerCAmelCase = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _lowerCAmelCase = arr[mi::-1] + arr[mi + 1 : len(__lowerCamelCase )] # Reverse whole list _lowerCAmelCase = arr[cur - 1 :: -1] + arr[cur : len(__lowerCamelCase )] cur -= 1 return arr if __name__ == "__main__": _lowercase = input("""Enter numbers separated by a comma:\n""").strip() _lowercase = [int(item) for item in user_input.split(""",""")] print(pancake_sort(unsorted))
5
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
5
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
5
1
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _lowercase = logging.get_logger(__name__) def A (__lowerCamelCase :str , __lowerCamelCase :List[str] , __lowerCamelCase :str , __lowerCamelCase :Optional[Any]=False ): try: import torch # noqa: F401 except ImportError: logger.error( """Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise if not is_sharded: _lowerCAmelCase = os.path.abspath(__lowerCamelCase ) logger.info(f'Loading PyTorch weights from {pt_path}' ) _lowerCAmelCase = torch.load(__lowerCamelCase , map_location="""cpu""" ) logger.info(f'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) _lowerCAmelCase = convert_pytorch_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files _lowerCAmelCase = convert_pytorch_sharded_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) return flax_state_dict def A (__lowerCamelCase :Tuple[str] , __lowerCamelCase :np.ndarray , __lowerCamelCase :Dict[str, jnp.ndarray] , __lowerCamelCase :str , ): def is_key_or_prefix_key_in_dict(__lowerCamelCase :Tuple[str] ) -> bool: return len(set(__lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm _lowerCAmelCase = pt_tuple_key[:-1] + ("""scale""",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean _lowerCAmelCase = pt_tuple_key[:-1] + ("""mean""",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var _lowerCAmelCase = pt_tuple_key[:-1] + ("""var""",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding _lowerCAmelCase = pt_tuple_key[:-1] + ("""embedding""",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer _lowerCAmelCase = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): _lowerCAmelCase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _lowerCAmelCase = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): _lowerCAmelCase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _lowerCAmelCase = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _lowerCAmelCase = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 _lowerCAmelCase = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): _lowerCAmelCase = pt_tuple_key[-2] + """_g""" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): _lowerCAmelCase = pt_tuple_key[-2] + """_v""" if name is not None: _lowerCAmelCase = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Dict ): # convert pytorch tensor to numpy _lowerCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} _lowerCAmelCase = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: _lowerCAmelCase = flax_model.params["""params"""] else: _lowerCAmelCase = flax_model.params _lowerCAmelCase = flatten_dict(__lowerCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _lowerCAmelCase = flatten_dict(flax_model.params["""batch_stats"""] ) random_flax_state_dict.update(__lowerCamelCase ) _lowerCAmelCase = {} _lowerCAmelCase = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) _lowerCAmelCase = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _lowerCAmelCase = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary _lowerCAmelCase = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _lowerCAmelCase = pt_tuple_key[1:] # Correctly rename weight parameters _lowerCAmelCase , _lowerCAmelCase = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary _lowerCAmelCase = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _lowerCAmelCase = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: _lowerCAmelCase = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown _lowerCAmelCase = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown _lowerCAmelCase = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def A (__lowerCamelCase :List[str] , __lowerCamelCase :List[str] ): import torch # Load the index _lowerCAmelCase = {} for shard_file in shard_filenames: # load using msgpack utils _lowerCAmelCase = torch.load(__lowerCamelCase ) _lowerCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} _lowerCAmelCase = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _lowerCAmelCase = flax_model.params["""params"""] _lowerCAmelCase = flatten_dict(__lowerCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) ) else: _lowerCAmelCase = flax_model.params _lowerCAmelCase = flatten_dict(__lowerCamelCase ) _lowerCAmelCase = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) _lowerCAmelCase = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _lowerCAmelCase = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary _lowerCAmelCase = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _lowerCAmelCase = pt_tuple_key[1:] # Correctly rename weight parameters _lowerCAmelCase , _lowerCAmelCase = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary _lowerCAmelCase = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _lowerCAmelCase = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: _lowerCAmelCase = jnp.asarray(__lowerCamelCase ) continue if "var" in flax_key[-1]: _lowerCAmelCase = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown _lowerCAmelCase = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown _lowerCAmelCase = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def A (__lowerCamelCase :Tuple , __lowerCamelCase :List[str] ): _lowerCAmelCase = os.path.abspath(__lowerCamelCase ) logger.info(f'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class _lowerCAmelCase = getattr(__lowerCamelCase , """Flax""" + model.__class__.__name__ ) # load flax weight dict with open(__lowerCamelCase , """rb""" ) as state_f: try: _lowerCAmelCase = from_bytes(__lowerCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(f'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(__lowerCamelCase , __lowerCamelCase ) def A (__lowerCamelCase :Optional[int] , __lowerCamelCase :Optional[int] ): try: import torch # noqa: F401 except ImportError: logger.error( """Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights _lowerCAmelCase = flatten_dict(jax.tree_util.tree_map(lambda __lowerCamelCase : x.dtype == jnp.bfloataa , __lowerCamelCase ) ).values() if any(__lowerCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) _lowerCAmelCase = jax.tree_util.tree_map( lambda __lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCamelCase ) _lowerCAmelCase = flatten_dict(__lowerCamelCase ) _lowerCAmelCase = pt_model.state_dict() _lowerCAmelCase = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) _lowerCAmelCase = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys _lowerCAmelCase = [] _lowerCAmelCase = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _lowerCAmelCase = flax_key_tuple[0] == pt_model.base_model_prefix _lowerCAmelCase = """.""".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: _lowerCAmelCase = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: _lowerCAmelCase = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCamelCase ) not in pt_model_dict: # conv layer _lowerCAmelCase = flax_key_tuple[:-1] + ("""weight""",) _lowerCAmelCase = jnp.transpose(__lowerCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ) not in pt_model_dict: # linear layer _lowerCAmelCase = flax_key_tuple[:-1] + ("""weight""",) _lowerCAmelCase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCAmelCase = flax_key_tuple[:-1] + ("""weight""",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: _lowerCAmelCase = flax_key_tuple[:-1] + ("""running_mean""",) elif "var" in flax_key_tuple[-1]: _lowerCAmelCase = flax_key_tuple[:-1] + ("""running_var""",) if "batch_stats" in flax_state: _lowerCAmelCase = """.""".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: _lowerCAmelCase = """.""".join(__lowerCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. _lowerCAmelCase = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: _lowerCAmelCase = key.split(""".""" ) _lowerCAmelCase = None if key_components[-3::2] == ["parametrizations", "original0"]: _lowerCAmelCase = key_components[-2] + """_g""" elif key_components[-3::2] == ["parametrizations", "original1"]: _lowerCAmelCase = key_components[-2] + """_v""" if name is not None: _lowerCAmelCase = key_components[:-3] + [name] _lowerCAmelCase = """.""".join(__lowerCamelCase ) _lowerCAmelCase = key if flax_key in special_pt_names: _lowerCAmelCase = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict _lowerCAmelCase = np.asarray(__lowerCamelCase ) if not isinstance(__lowerCamelCase , np.ndarray ) else flax_tensor _lowerCAmelCase = torch.from_numpy(__lowerCamelCase ) # remove from missing keys missing_keys.remove(__lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCamelCase ) pt_model.load_state_dict(__lowerCamelCase ) # re-transform missing_keys to list _lowerCAmelCase = list(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) else: logger.warning(f'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(__lowerCamelCase ) > 0: logger.warning( f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' """ use it for predictions and inference.""" ) else: logger.warning( f'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' """If your task is similar to the task the model of the checkpoint was trained on, """ f'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
5
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") _lowercase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) _lowercase = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) _lowercase = BeautifulSoup(res.text, """html.parser""") _lowercase = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
5
1
'''simple docstring''' def A (): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: _lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def A (): return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
5
'''simple docstring''' import os from datetime import datetime as dt from github import Github _lowercase = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def A (): _lowerCAmelCase = Github(os.environ["""GITHUB_TOKEN"""] ) _lowerCAmelCase = g.get_repo("""huggingface/diffusers""" ) _lowerCAmelCase = repo.get_issues(state="""open""" ) for issue in open_issues: _lowerCAmelCase = sorted(issue.get_comments() , key=lambda __lowerCamelCase : i.created_at , reverse=__lowerCamelCase ) _lowerCAmelCase = comments[0] if len(__lowerCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
5
1
'''simple docstring''' def A (__lowerCamelCase :Any , __lowerCamelCase :str , __lowerCamelCase :List[Any] , __lowerCamelCase :int , __lowerCamelCase :Tuple , __lowerCamelCase :Any ): if index == r: for j in range(__lowerCamelCase ): print(data[j] , end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location _lowerCAmelCase = arr[i] combination_util(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , index + 1 , __lowerCamelCase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :str , __lowerCamelCase :int ): # A temporary array to store all combination one by one _lowerCAmelCase = [0] * r # Print all combination using temporary array 'data[]' combination_util(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , 0 , __lowerCamelCase , 0 ) if __name__ == "__main__": # Driver code to check the function above _lowercase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
5
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
5
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json""", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''blenderbot-small''' _lowercase : List[Any] = ['''past_key_values'''] _lowercase : List[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , _lowercase=50_265 , _lowercase=512 , _lowercase=8 , _lowercase=2_048 , _lowercase=16 , _lowercase=8 , _lowercase=2_048 , _lowercase=16 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=True , _lowercase=True , _lowercase="gelu" , _lowercase=512 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1 , _lowercase=False , _lowercase=0 , _lowercase=1 , _lowercase=2 , _lowercase=2 , **_lowercase , ): """simple docstring""" _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = d_model _lowerCAmelCase = encoder_ffn_dim _lowerCAmelCase = encoder_layers _lowerCAmelCase = encoder_attention_heads _lowerCAmelCase = decoder_ffn_dim _lowerCAmelCase = decoder_layers _lowerCAmelCase = decoder_attention_heads _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = activation_function _lowerCAmelCase = init_std _lowerCAmelCase = encoder_layerdrop _lowerCAmelCase = decoder_layerdrop _lowerCAmelCase = use_cache _lowerCAmelCase = encoder_layers _lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , **_lowercase , ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: _lowerCAmelCase = {0: """batch"""} _lowerCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """decoder_sequence"""} _lowerCAmelCase = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowercase , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCAmelCase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: _lowerCAmelCase , _lowerCAmelCase = self.num_layers for i in range(_lowercase ): _lowerCAmelCase = {0: """batch""", 2: """past_sequence + sequence"""} _lowerCAmelCase = {0: """batch""", 2: """past_sequence + sequence"""} else: _lowerCAmelCase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def _lowercase ( self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = super().outputs else: _lowerCAmelCase = super(_lowercase , self ).outputs if self.use_past: _lowerCAmelCase , _lowerCAmelCase = self.num_layers for i in range(_lowercase ): _lowerCAmelCase = {0: """batch""", 2: """past_sequence + sequence"""} _lowerCAmelCase = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def _lowercase ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , ): """simple docstring""" _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # Generate decoder inputs _lowerCAmelCase = seq_length if not self.use_past else 1 _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) _lowerCAmelCase = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _lowerCAmelCase = dict(**_lowercase , **_lowercase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["""input_ids"""].shape _lowerCAmelCase = common_inputs["""decoder_input_ids"""].shape[1] _lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads _lowerCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase = decoder_seq_length + 3 _lowerCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCAmelCase = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(_lowercase , _lowercase )] , dim=1 ) _lowerCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCAmelCase , _lowerCAmelCase = self.num_layers _lowerCAmelCase = min(_lowercase , _lowercase ) _lowerCAmelCase = max(_lowercase , _lowercase ) - min_num_layers _lowerCAmelCase = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(_lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowercase ), torch.zeros(_lowercase ), torch.zeros(_lowercase ), torch.zeros(_lowercase ), ) ) # TODO: test this. _lowerCAmelCase = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(_lowercase , _lowercase ): common_inputs["past_key_values"].append((torch.zeros(_lowercase ), torch.zeros(_lowercase )) ) return common_inputs def _lowercase ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , ): """simple docstring""" _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _lowerCAmelCase = seqlen + 2 _lowerCAmelCase , _lowerCAmelCase = self.num_layers _lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads _lowerCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase = common_inputs["""attention_mask"""].dtype _lowerCAmelCase = torch.cat( [common_inputs["""attention_mask"""], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) _lowerCAmelCase = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(_lowercase ) ] return common_inputs def _lowercase ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , ): """simple docstring""" _lowerCAmelCase = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCAmelCase = tokenizer.num_special_tokens_to_add(_lowercase ) _lowerCAmelCase = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowercase ) # Generate dummy inputs according to compute batch and sequence _lowerCAmelCase = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCAmelCase = dict(tokenizer(_lowercase , return_tensors=_lowercase ) ) return common_inputs def _lowercase ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) elif self.task == "causal-lm": _lowerCAmelCase = self._generate_dummy_inputs_for_causal_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) else: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) return common_inputs def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = super()._flatten_past_key_values_(_lowercase , _lowercase , _lowercase , _lowercase ) else: _lowerCAmelCase = super(_lowercase , self )._flatten_past_key_values_( _lowercase , _lowercase , _lowercase , _lowercase )
5
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = ['''input_values''', '''padding_mask'''] def __init__( self , _lowercase = 1 , _lowercase = 24_000 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , **_lowercase , ): """simple docstring""" super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) _lowerCAmelCase = chunk_length_s _lowerCAmelCase = overlap @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , _lowercase , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs _lowerCAmelCase = True _lowerCAmelCase = bool( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_lowercase , np.ndarray ): _lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _lowerCAmelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [np.asarray(_lowercase ).T] # verify inputs are valid for idx, example in enumerate(_lowercase ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) _lowerCAmelCase = None _lowerCAmelCase = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _lowerCAmelCase = min(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.floor(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _lowerCAmelCase = max(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.ceil(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length _lowerCAmelCase = """max_length""" else: _lowerCAmelCase = input_values # normal padding on batch if padded_inputs is None: _lowerCAmelCase = self.pad( _lowercase , max_length=_lowercase , truncation=_lowercase , padding=_lowercase , return_attention_mask=_lowercase , ) if padding: _lowerCAmelCase = padded_inputs.pop("""attention_mask""" ) _lowerCAmelCase = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: _lowerCAmelCase = example[..., None] input_values.append(example.T ) _lowerCAmelCase = input_values if return_tensors is not None: _lowerCAmelCase = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
5
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _lowercase = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_lowercase ): """simple docstring""" super().__init__(**_lowercase ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self , _lowercase , **_lowercase ): """simple docstring""" return super().__call__(_lowercase , **_lowercase ) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a sound of {}." ): """simple docstring""" if isinstance(_lowercase , _lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _lowerCAmelCase = requests.get(_lowercase ).content else: with open(_lowercase , """rb""" ) as f: _lowerCAmelCase = f.read() if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate ) if not isinstance(_lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) _lowerCAmelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) _lowerCAmelCase = [text_inputs] return inputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_inputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _lowercase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**_lowercase , **_lowercase ) _lowerCAmelCase = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_outputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_outputs["""logits"""][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=0 ) _lowerCAmelCase = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) _lowerCAmelCase = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] ) ] return result
5
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging _lowercase = logging.get_logger(__name__) # TODO: upload to AWS _lowercase = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : int = '''retribert''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=8 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=True , _lowercase=128 , _lowercase=0 , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = share_encoders _lowerCAmelCase = projection_dim
5
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = ['''input_values''', '''padding_mask'''] def __init__( self , _lowercase = 1 , _lowercase = 24_000 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , **_lowercase , ): """simple docstring""" super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) _lowerCAmelCase = chunk_length_s _lowerCAmelCase = overlap @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , _lowercase , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs _lowerCAmelCase = True _lowerCAmelCase = bool( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_lowercase , np.ndarray ): _lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _lowerCAmelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [np.asarray(_lowercase ).T] # verify inputs are valid for idx, example in enumerate(_lowercase ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) _lowerCAmelCase = None _lowerCAmelCase = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _lowerCAmelCase = min(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.floor(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _lowerCAmelCase = max(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.ceil(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length _lowerCAmelCase = """max_length""" else: _lowerCAmelCase = input_values # normal padding on batch if padded_inputs is None: _lowerCAmelCase = self.pad( _lowercase , max_length=_lowercase , truncation=_lowercase , padding=_lowercase , return_attention_mask=_lowercase , ) if padding: _lowerCAmelCase = padded_inputs.pop("""attention_mask""" ) _lowerCAmelCase = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: _lowerCAmelCase = example[..., None] input_values.append(example.T ) _lowerCAmelCase = input_values if return_tensors is not None: _lowerCAmelCase = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
5
1
'''simple docstring''' from manim import * class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""CPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(4 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""GPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.move_to([-1, -1, 0] ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""Model""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.add(_lowercase ) _lowerCAmelCase = [] for i, rect in enumerate(_lowercase ): rect.set_stroke(_lowercase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _lowerCAmelCase = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=_lowercase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=_lowercase , buff=0.0 ) self.add(_lowercase ) cpu_targs.append(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""Loaded Checkpoint""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , aligned_edge=_lowercase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_lowercase , _lowercase ) _lowerCAmelCase = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(_lowercase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _lowerCAmelCase = MarkupText( F'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase ) , Write(_lowercase ) ) self.play(Write(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) ) _lowerCAmelCase = [] _lowerCAmelCase = [] for i, rect in enumerate(_lowercase ): _lowerCAmelCase = fill.copy().set_fill(_lowercase , opacity=0.7 ) target.move_to(_lowercase ) first_animations.append(GrowFromCenter(_lowercase , run_time=1 ) ) _lowerCAmelCase = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) ) self.play(*_lowercase ) self.play(*_lowercase ) self.wait()
5
'''simple docstring''' _lowercase = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
5
1
'''simple docstring''' def A (__lowerCamelCase :str ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
5
'''simple docstring''' import functools def A (__lowerCamelCase :list[int] , __lowerCamelCase :list[int] ): # Validation if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(__lowerCamelCase ) >= 366: raise ValueError("""All days elements should be less than 366""" ) _lowerCAmelCase = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase :int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
'''simple docstring''' def A (__lowerCamelCase :int , __lowerCamelCase :int ): if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) _lowerCAmelCase = str(bin(__lowerCamelCase ) )[2:] # remove the leading "0b" _lowerCAmelCase = str(bin(__lowerCamelCase ) )[2:] # remove the leading "0b" _lowerCAmelCase = max(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__lowerCamelCase ) , b_binary.zfill(__lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
5
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 384 if "tiny" in model_name: _lowerCAmelCase = [3, 3, 9, 3] _lowerCAmelCase = [96, 192, 384, 768] if "small" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [96, 192, 384, 768] if "base" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [128, 256, 512, 1024] _lowerCAmelCase = 512 if "large" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [192, 384, 768, 1536] _lowerCAmelCase = 768 if "xlarge" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [256, 512, 1024, 2048] _lowerCAmelCase = 1024 # set label information _lowerCAmelCase = 150 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """ade20k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = ConvNextConfig( depths=__lowerCamelCase , hidden_sizes=__lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) _lowerCAmelCase = UperNetConfig( backbone_config=__lowerCamelCase , auxiliary_in_channels=__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , ) return config def A (__lowerCamelCase :Optional[Any] ): _lowerCAmelCase = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict , __lowerCamelCase :Tuple ): _lowerCAmelCase = dct.pop(__lowerCamelCase ) _lowerCAmelCase = val def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ): _lowerCAmelCase = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } _lowerCAmelCase = model_name_to_url[model_name] _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""state_dict"""] _lowerCAmelCase = get_upernet_config(__lowerCamelCase ) _lowerCAmelCase = UperNetForSemanticSegmentation(__lowerCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase = state_dict.pop(__lowerCamelCase ) if "bn" in key: _lowerCAmelCase = key.replace("""bn""" , """batch_norm""" ) _lowerCAmelCase = val # rename keys _lowerCAmelCase = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # verify on image _lowerCAmelCase = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _lowerCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" ) _lowerCAmelCase = SegformerImageProcessor() _lowerCAmelCase = processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values with torch.no_grad(): _lowerCAmelCase = model(__lowerCamelCase ) if model_name == "upernet-convnext-tiny": _lowerCAmelCase = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _lowerCAmelCase = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _lowerCAmelCase = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _lowerCAmelCase = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _lowerCAmelCase = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
5
1
'''simple docstring''' import os def A (): with open(os.path.dirname(__lowerCamelCase ) + """/p022_names.txt""" ) as file: _lowerCAmelCase = str(file.readlines()[0] ) _lowerCAmelCase = names.replace("""\"""" , """""" ).split(""",""" ) names.sort() _lowerCAmelCase = 0 _lowerCAmelCase = 0 for i, name in enumerate(__lowerCamelCase ): for letter in name: name_score += ord(__lowerCamelCase ) - 64 total_score += (i + 1) * name_score _lowerCAmelCase = 0 return total_score if __name__ == "__main__": print(solution())
5
'''simple docstring''' from itertools import product def A (__lowerCamelCase :int , __lowerCamelCase :int ): _lowerCAmelCase = sides_number _lowerCAmelCase = max_face_number * dice_number _lowerCAmelCase = [0] * (max_total + 1) _lowerCAmelCase = 1 _lowerCAmelCase = range(__lowerCamelCase , max_face_number + 1 ) for dice_numbers in product(__lowerCamelCase , repeat=__lowerCamelCase ): _lowerCAmelCase = sum(__lowerCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def A (): _lowerCAmelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) _lowerCAmelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) _lowerCAmelCase = 0 _lowerCAmelCase = 9 _lowerCAmelCase = 4 * 9 _lowerCAmelCase = 6 for peter_total in range(__lowerCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _lowerCAmelCase = (4**9) * (6**6) _lowerCAmelCase = peter_wins_count / total_games_number _lowerCAmelCase = round(__lowerCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
5
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ): """simple docstring""" self.test() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = False while not completed: if counter == 1: self.reset() _lowerCAmelCase = self.advance() if not self.does_advance(_lowercase ): raise Exception( """Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.update(_lowercase ) counter += 1 if counter > 10_000: raise Exception("""update() does not fulfill the constraint.""" ) if self.remaining() != 0: raise Exception("""Custom Constraint is not defined correctly.""" ) @abstractmethod def _lowercase ( self ): """simple docstring""" raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def _lowercase ( self , _lowercase ): """simple docstring""" raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def _lowercase ( self , _lowercase ): """simple docstring""" raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def _lowercase ( self ): """simple docstring""" raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def _lowercase ( self ): """simple docstring""" raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def _lowercase ( self , _lowercase=False ): """simple docstring""" raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" super(_lowercase , self ).__init__() if not isinstance(_lowercase , _lowercase ) or len(_lowercase ) == 0: raise ValueError(F'`token_ids` has to be a non-empty list, but is {token_ids}.' ) if any((not isinstance(_lowercase , _lowercase ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.' ) _lowerCAmelCase = token_ids _lowerCAmelCase = len(self.token_ids ) _lowerCAmelCase = -1 # the index of the currently fulfilled step _lowerCAmelCase = False def _lowercase ( self ): """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def _lowercase ( self , _lowercase ): """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise ValueError(F'`token_id` has to be an `int`, but is {token_id} of type {type(_lowercase )}' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def _lowercase ( self , _lowercase ): """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise ValueError(F'`token_id` has to be an `int`, but is {token_id} of type {type(_lowercase )}' ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False if self.does_advance(_lowercase ): self.fulfilled_idx += 1 _lowerCAmelCase = True if self.fulfilled_idx == (self.seqlen - 1): _lowerCAmelCase = True _lowerCAmelCase = completed else: # failed to make progress. _lowerCAmelCase = True self.reset() return stepped, completed, reset def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = 0 def _lowercase ( self ): """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def _lowercase ( self , _lowercase=False ): """simple docstring""" _lowerCAmelCase = PhrasalConstraint(self.token_ids ) if stateful: _lowerCAmelCase = self.seqlen _lowerCAmelCase = self.fulfilled_idx _lowerCAmelCase = self.completed return new_constraint class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase , _lowercase=True ): """simple docstring""" _lowerCAmelCase = max([len(_lowercase ) for one in nested_token_ids] ) _lowerCAmelCase = {} for token_ids in nested_token_ids: _lowerCAmelCase = root for tidx, token_id in enumerate(_lowercase ): if token_id not in level: _lowerCAmelCase = {} _lowerCAmelCase = level[token_id] if no_subsets and self.has_subsets(_lowercase , _lowercase ): raise ValueError( """Each list in `nested_token_ids` can't be a complete subset of another list, but is""" F' {nested_token_ids}.' ) _lowerCAmelCase = root def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.trie for current_token in current_seq: _lowerCAmelCase = start[current_token] _lowerCAmelCase = list(start.keys() ) return next_tokens def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.next_tokens(_lowercase ) return len(_lowercase ) == 0 def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = list(root.values() ) if len(_lowercase ) == 0: return 1 else: return sum([self.count_leaves(_lowercase ) for nn in next_nodes] ) def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.count_leaves(_lowercase ) return len(_lowercase ) != leaf_count class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" super(_lowercase , self ).__init__() if not isinstance(_lowercase , _lowercase ) or len(_lowercase ) == 0: raise ValueError(F'`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.' ) if any(not isinstance(_lowercase , _lowercase ) for token_ids in nested_token_ids ): raise ValueError(F'`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.' ) if any( any((not isinstance(_lowercase , _lowercase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.' ) _lowerCAmelCase = DisjunctiveTrie(_lowercase ) _lowerCAmelCase = nested_token_ids _lowerCAmelCase = self.trie.max_height _lowerCAmelCase = [] _lowerCAmelCase = False def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.trie.next_tokens(self.current_seq ) if len(_lowercase ) == 0: return None else: return token_list def _lowercase ( self , _lowercase ): """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise ValueError(F'`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowercase )}' ) _lowerCAmelCase = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def _lowercase ( self , _lowercase ): """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise ValueError(F'`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowercase )}' ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False if self.does_advance(_lowercase ): self.current_seq.append(_lowercase ) _lowerCAmelCase = True else: _lowerCAmelCase = True self.reset() _lowerCAmelCase = self.trie.reached_leaf(self.current_seq ) _lowerCAmelCase = completed return stepped, completed, reset def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = [] def _lowercase ( self ): """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def _lowercase ( self , _lowercase=False ): """simple docstring""" _lowerCAmelCase = DisjunctiveConstraint(self.token_ids ) if stateful: _lowerCAmelCase = self.seqlen _lowerCAmelCase = self.current_seq _lowerCAmelCase = self.completed return new_constraint class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = constraints # max # of steps required to fulfill a given constraint _lowerCAmelCase = max([c.seqlen for c in constraints] ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = False self.init_state() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = None _lowerCAmelCase = [constraint.copy(stateful=_lowercase ) for constraint in self.constraints] def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" _lowerCAmelCase = constraint.advance() if isinstance(_lowercase , _lowercase ): token_list.append(_lowercase ) elif isinstance(_lowercase , _lowercase ): token_list.extend(_lowercase ) else: _lowerCAmelCase = self.inprogress_constraint.advance() if isinstance(_lowercase , _lowercase ): token_list.append(_lowercase ) elif isinstance(_lowercase , _lowercase ): token_list.extend(_lowercase ) if len(_lowercase ) == 0: return None else: return token_list def _lowercase ( self , _lowercase ): """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint _lowerCAmelCase , _lowerCAmelCase = self.add(_lowercase ) # the entire list of constraints are fulfilled if self.completed: break def _lowercase ( self , _lowercase ): """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise ValueError(F'`token_id` should be an `int`, but is `{token_id}`.' ) _lowerCAmelCase , _lowerCAmelCase = False, False if self.completed: _lowerCAmelCase = True _lowerCAmelCase = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.inprogress_constraint.update(_lowercase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_lowercase ) ) _lowerCAmelCase = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) _lowerCAmelCase = None if len(self.pending_constraints ) == 0: # we're done! _lowerCAmelCase = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_lowercase ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = pending_constraint.update(_lowercase ) if not stepped: raise Exception( """`constraint.update(token_id)` is not yielding incremental progress, """ """even though `constraint.does_advance(token_id)` is true.""" ) if complete: self.complete_constraints.append(_lowercase ) _lowerCAmelCase = None if not complete and stepped: _lowerCAmelCase = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". _lowerCAmelCase = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. _lowerCAmelCase = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def _lowercase ( self , _lowercase=True ): """simple docstring""" _lowerCAmelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: _lowerCAmelCase = [ constraint.copy(stateful=_lowercase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: _lowerCAmelCase = self.inprogress_constraint.copy(stateful=_lowercase ) _lowerCAmelCase = [constraint.copy() for constraint in self.pending_constraints] return new_state
5
'''simple docstring''' from manim import * class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""CPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(1 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""GPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.align_to(_lowercase , _lowercase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""Model""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , ) _lowerCAmelCase = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) _lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) ) self.add(_lowercase ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for i, rect in enumerate(_lowercase ): _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 ) cpu_target.move_to(_lowercase ) cpu_target.generate_target() _lowerCAmelCase = 0.46 / 4 _lowerCAmelCase = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 ) cpu_targs.append(_lowercase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) ) second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) ) self.play(*_lowercase ) self.play(*_lowercase ) self.wait()
5
1
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCAmelCase_ ( unittest.TestCase , _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = load_tool("""text-to-speech""" ) self.tool.setup() def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = self.tool("""hey""" ) _lowerCAmelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = self.tool("""hey""" ) _lowerCAmelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
5
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowercase = False try: _lowercase = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase = None , _lowercase = [] ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = choices _lowerCAmelCase = prompt if sys.platform == "win32": _lowerCAmelCase = """*""" else: _lowerCAmelCase = """➔ """ def _lowercase ( self , _lowercase , _lowercase = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , _lowercase ) else: forceWrite(self.choices[index] , _lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(_lowercase ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def _lowercase ( self , _lowercase , _lowercase = 1 ): """simple docstring""" _lowerCAmelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowercase ) move_cursor(_lowercase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = int(chr(self.current_selection ) ) _lowerCAmelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowercase ) else: return else: return def _lowercase ( self , _lowercase = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) _lowerCAmelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowercase ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase = int(builtins.input() ) except ValueError: _lowerCAmelCase = default_choice else: _lowerCAmelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(_lowercase , """\n""" ) return choice
5
1
'''simple docstring''' import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : str = VideoToVideoSDPipeline _lowercase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'''video'''} ) - {'''image''', '''width''', '''height'''} _lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''video'''} ) - {'''image'''} _lowercase : Tuple = PipelineTesterMixin.required_optional_params - {'''latents'''} _lowercase : Any = False # No `output_type`. _lowercase : Tuple = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) _lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) _lowerCAmelCase = CLIPTextModel(_lowercase ) _lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def _lowercase ( self , _lowercase , _lowercase=0 ): """simple docstring""" _lowerCAmelCase = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase ) if str(_lowercase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(_lowercase ) else: _lowerCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) _lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """video""": video, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = VideoToVideoSDPipeline(**_lowercase ) _lowerCAmelCase = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = self.get_dummy_inputs(_lowercase ) _lowerCAmelCase = """np""" _lowerCAmelCase = sd_pipe(**_lowercase ).frames _lowerCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) _lowerCAmelCase = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _lowercase ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_lowercase , expected_max_diff=5e-3 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" return super().test_progress_bar() @slow @skip_mps class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = VideoToVideoSDPipeline.from_pretrained("""cerspense/zeroscope_v2_XL""" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames _lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase = torch.randn((1, 10, 3, 1_024, 576) , generator=_lowercase ) _lowerCAmelCase = video.to("""cuda""" ) _lowerCAmelCase = """Spiderman is surfing""" _lowerCAmelCase = pipe(_lowercase , video=_lowercase , generator=_lowercase , num_inference_steps=3 , output_type="""pt""" ).frames _lowerCAmelCase = np.array([-1.045_8984, -1.127_9297, -0.966_3086, -0.9150_3906, -0.7509_7656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
5
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } _lowercase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def A (__lowerCamelCase :Optional[int] ): _lowerCAmelCase = {} with open(__lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(__lowerCamelCase ): _lowerCAmelCase = line.strip() if line: _lowerCAmelCase = line.split() _lowerCAmelCase = line_number _lowerCAmelCase = words[0] _lowerCAmelCase = value return result def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any] , __lowerCamelCase :List[str] ): for attribute in key.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": _lowerCAmelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = shape_pointer.shape # let's reduce dimension _lowerCAmelCase = value[0] else: _lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCAmelCase = value elif weight_type == "weight_g": _lowerCAmelCase = value elif weight_type == "weight_v": _lowerCAmelCase = value elif weight_type == "bias": _lowerCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = value else: _lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] , __lowerCamelCase :int ): _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _lowerCAmelCase = """.""".join([key, hf_param_name] ) else: _lowerCAmelCase = key _lowerCAmelCase = value if """lm_head""" in full_key else value[0] _lowercase = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :List[str]=None , __lowerCamelCase :List[Any]=None ): _lowerCAmelCase = False for key, mapped_key in MAPPING.items(): _lowerCAmelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCAmelCase = True if "*" in mapped_key: _lowerCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase = """weight_g""" elif "weight_v" in name: _lowerCAmelCase = """weight_v""" elif "bias" in name: _lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase = """weight""" else: _lowerCAmelCase = None if hf_dict is not None: rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return is_used return is_used def A (__lowerCamelCase :Any , __lowerCamelCase :Dict , __lowerCamelCase :Dict ): _lowerCAmelCase = [] _lowerCAmelCase = fairseq_model.state_dict() _lowerCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) _lowerCAmelCase = True else: _lowerCAmelCase = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any , __lowerCamelCase :List[Any] , __lowerCamelCase :List[Any] ): _lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase = name.split(""".""" ) _lowerCAmelCase = int(items[0] ) _lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def A (__lowerCamelCase :List[str] , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any]=None , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :str=True , __lowerCamelCase :str=False ): if config_path is not None: _lowerCAmelCase = WavaVecaConfig.from_pretrained(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaConfig() if is_seq_class: _lowerCAmelCase = read_txt_into_dict(__lowerCamelCase ) _lowerCAmelCase = idalabel _lowerCAmelCase = WavaVecaForSequenceClassification(__lowerCamelCase ) _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) feature_extractor.save_pretrained(__lowerCamelCase ) elif is_finetuned: if dict_path: _lowerCAmelCase = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCAmelCase = target_dict.pad_index _lowerCAmelCase = target_dict.bos_index _lowerCAmelCase = target_dict.eos_index _lowerCAmelCase = len(target_dict.symbols ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """vocab.json""" ) if not os.path.isdir(__lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCAmelCase = 0 _lowerCAmelCase = 1 with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , ) _lowerCAmelCase = True if config.feat_extract_norm == """layer""" else False _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) _lowerCAmelCase = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) _lowerCAmelCase = WavaVecaForCTC(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaForPreTraining(__lowerCamelCase ) if is_finetuned or is_seq_class: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _lowerCAmelCase = argparse.Namespace(task="""audio_pretraining""" ) _lowerCAmelCase = fairseq.tasks.setup_task(__lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase ) _lowerCAmelCase = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) _lowercase = parser.parse_args() _lowercase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
5
1
'''simple docstring''' import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Any = '''align_text_model''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase="absolute" , _lowercase=True , **_lowercase , ): """simple docstring""" super().__init__(**_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = pad_token_id @classmethod def _lowercase ( cls , _lowercase , **_lowercase ): """simple docstring""" cls._set_token_in_kwargs(_lowercase ) _lowerCAmelCase , _lowerCAmelCase = cls.get_config_dict(_lowercase , **_lowercase ) # get the text config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": _lowerCAmelCase = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_lowercase , **_lowercase ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[Any] = '''align_vision_model''' def __init__( self , _lowercase = 3 , _lowercase = 600 , _lowercase = 2.0 , _lowercase = 3.1 , _lowercase = 8 , _lowercase = [3, 3, 5, 3, 5, 5, 3] , _lowercase = [32, 16, 24, 40, 80, 112, 192] , _lowercase = [16, 24, 40, 80, 112, 192, 320] , _lowercase = [] , _lowercase = [1, 2, 2, 2, 1, 2, 1] , _lowercase = [1, 2, 2, 3, 3, 4, 1] , _lowercase = [1, 6, 6, 6, 6, 6, 6] , _lowercase = 0.25 , _lowercase = "swish" , _lowercase = 2_560 , _lowercase = "mean" , _lowercase = 0.02 , _lowercase = 0.001 , _lowercase = 0.99 , _lowercase = 0.2 , **_lowercase , ): """simple docstring""" super().__init__(**_lowercase ) _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = width_coefficient _lowerCAmelCase = depth_coefficient _lowerCAmelCase = depth_divisor _lowerCAmelCase = kernel_sizes _lowerCAmelCase = in_channels _lowerCAmelCase = out_channels _lowerCAmelCase = depthwise_padding _lowerCAmelCase = strides _lowerCAmelCase = num_block_repeats _lowerCAmelCase = expand_ratios _lowerCAmelCase = squeeze_expansion_ratio _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dim _lowerCAmelCase = pooling_type _lowerCAmelCase = initializer_range _lowerCAmelCase = batch_norm_eps _lowerCAmelCase = batch_norm_momentum _lowerCAmelCase = drop_connect_rate _lowerCAmelCase = sum(_lowercase ) * 4 @classmethod def _lowercase ( cls , _lowercase , **_lowercase ): """simple docstring""" cls._set_token_in_kwargs(_lowercase ) _lowerCAmelCase , _lowerCAmelCase = cls.get_config_dict(_lowercase , **_lowercase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": _lowerCAmelCase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_lowercase , **_lowercase ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = '''align''' _lowercase : Optional[int] = True def __init__( self , _lowercase=None , _lowercase=None , _lowercase=640 , _lowercase=1.0 , _lowercase=0.02 , **_lowercase , ): """simple docstring""" super().__init__(**_lowercase ) if text_config is None: _lowerCAmelCase = {} logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" ) if vision_config is None: _lowerCAmelCase = {} logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" ) _lowerCAmelCase = AlignTextConfig(**_lowercase ) _lowerCAmelCase = AlignVisionConfig(**_lowercase ) _lowerCAmelCase = projection_dim _lowerCAmelCase = temperature_init_value _lowerCAmelCase = initializer_range @classmethod def _lowercase ( cls , _lowercase , _lowercase , **_lowercase ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = copy.deepcopy(self.__dict__ ) _lowerCAmelCase = self.text_config.to_dict() _lowerCAmelCase = self.vision_config.to_dict() _lowerCAmelCase = self.__class__.model_type return output
5
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = '''decision_transformer''' _lowercase : Optional[Any] = ['''past_key_values'''] _lowercase : str = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowercase=17 , _lowercase=4 , _lowercase=128 , _lowercase=4_096 , _lowercase=True , _lowercase=1 , _lowercase=1_024 , _lowercase=3 , _lowercase=1 , _lowercase=None , _lowercase="relu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=False , _lowercase=False , **_lowercase , ): """simple docstring""" _lowerCAmelCase = state_dim _lowerCAmelCase = act_dim _lowerCAmelCase = hidden_size _lowerCAmelCase = max_ep_len _lowerCAmelCase = action_tanh _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = scale_attn_by_inverse_layer_idx _lowerCAmelCase = reorder_and_upcast_attn _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
5
1
'''simple docstring''' from itertools import product def A (__lowerCamelCase :int , __lowerCamelCase :int ): _lowerCAmelCase = sides_number _lowerCAmelCase = max_face_number * dice_number _lowerCAmelCase = [0] * (max_total + 1) _lowerCAmelCase = 1 _lowerCAmelCase = range(__lowerCamelCase , max_face_number + 1 ) for dice_numbers in product(__lowerCamelCase , repeat=__lowerCamelCase ): _lowerCAmelCase = sum(__lowerCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def A (): _lowerCAmelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) _lowerCAmelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) _lowerCAmelCase = 0 _lowerCAmelCase = 9 _lowerCAmelCase = 4 * 9 _lowerCAmelCase = 6 for peter_total in range(__lowerCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _lowerCAmelCase = (4**9) * (6**6) _lowerCAmelCase = peter_wins_count / total_games_number _lowerCAmelCase = round(__lowerCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
5
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) _lowercase = None _lowercase = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } _lowercase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def A (__lowerCamelCase :int , __lowerCamelCase :Optional[Any]=1 , __lowerCamelCase :List[Any]=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def A (__lowerCamelCase :Any ): with open(__lowerCamelCase , """r""" ) as f: return json.load(__lowerCamelCase ) def A (__lowerCamelCase :List[Any] , __lowerCamelCase :int ): with open(__lowerCamelCase , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple=True ): os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """tmp""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = read_json(os.path.join(__lowerCamelCase , """params.json""" ) ) _lowerCAmelCase = NUM_SHARDS[model_size] _lowerCAmelCase = params["""n_layers"""] _lowerCAmelCase = params["""n_heads"""] _lowerCAmelCase = n_heads // num_shards _lowerCAmelCase = params["""dim"""] _lowerCAmelCase = dim // n_heads _lowerCAmelCase = 10_000.0 _lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , __lowerCamelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase = params["""n_kv_heads"""] # for GQA / MQA _lowerCAmelCase = n_heads_per_shard // num_key_value_heads _lowerCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase = n_heads _lowerCAmelCase = n_heads_per_shard _lowerCAmelCase = dim # permute for sliced rotary def permute(__lowerCamelCase :Optional[int] , __lowerCamelCase :str=n_heads , __lowerCamelCase :str=dim , __lowerCamelCase :List[Any]=dim ): return w.view(__lowerCamelCase , dima // n_heads // 2 , 2 , __lowerCamelCase ).transpose(1 , 2 ).reshape(__lowerCamelCase , __lowerCamelCase ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase = torch.load(os.path.join(__lowerCamelCase , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded _lowerCAmelCase = [ torch.load(os.path.join(__lowerCamelCase , f'consolidated.{i:02d}.pth' ) , map_location="""cpu""" ) for i in range(__lowerCamelCase ) ] _lowerCAmelCase = 0 _lowerCAmelCase = {"""weight_map""": {}} for layer_i in range(__lowerCamelCase ): _lowerCAmelCase = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _lowerCAmelCase = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = inv_freq for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: _lowerCAmelCase = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(__lowerCamelCase )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__lowerCamelCase )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) # Write configs _lowerCAmelCase = {"""total_size""": param_count * 2} write_json(__lowerCamelCase , os.path.join(__lowerCamelCase , """pytorch_model.bin.index.json""" ) ) _lowerCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 _lowerCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256 _lowerCAmelCase = LlamaConfig( hidden_size=__lowerCamelCase , intermediate_size=compute_intermediate_size(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=__lowerCamelCase , ) config.save_pretrained(__lowerCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) _lowerCAmelCase = LlamaForCausalLM.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=__lowerCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(__lowerCamelCase , safe_serialization=__lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any] ): # Initialize the tokenizer based on the `spm` model _lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase = tokenizer_class(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) def A (): _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=__lowerCamelCase , help="""Whether or not to save using `safetensors`.""" ) _lowerCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , __lowerCamelCase ) if __name__ == "__main__": main()
5
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = (DDPMScheduler,) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_lowercase ) return config def _lowercase ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def _lowercase ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def _lowercase ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def _lowercase ( self ): """simple docstring""" self.check_over_configs(thresholding=_lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def _lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowercase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowercase ): if i == len(_lowercase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowercase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowercase , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowercase ) with self.assertRaises(_lowercase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowercase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_lowercase )
5
1
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self , _lowercase ): """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): _lowerCAmelCase = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """sshleifer/tiny-gpt2""" _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) _lowerCAmelCase = PyTorchBenchmark(_lowercase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """sgugger/tiny-distilbert-classification""" _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , only_pretrain_model=_lowercase , ) _lowerCAmelCase = PyTorchBenchmark(_lowercase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """sshleifer/tiny-gpt2""" _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , torchscript=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) _lowerCAmelCase = PyTorchBenchmark(_lowercase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """sshleifer/tiny-gpt2""" _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , fpaa=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) _lowerCAmelCase = PyTorchBenchmark(_lowercase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """sshleifer/tiny-gpt2""" _lowerCAmelCase = AutoConfig.from_pretrained(_lowercase ) # set architectures equal to `None` _lowerCAmelCase = None _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) _lowerCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """sshleifer/tiny-gpt2""" _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) _lowerCAmelCase = PyTorchBenchmark(_lowercase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """sshleifer/tiny-gpt2""" _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowercase , multi_process=_lowercase , ) _lowerCAmelCase = PyTorchBenchmark(_lowercase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """sshleifer/tiny-gpt2""" _lowerCAmelCase = AutoConfig.from_pretrained(_lowercase ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) _lowerCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """sshleifer/tinier_bart""" _lowerCAmelCase = AutoConfig.from_pretrained(_lowercase ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) _lowerCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """sshleifer/tiny-gpt2""" _lowerCAmelCase = AutoConfig.from_pretrained(_lowercase ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) _lowerCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """sshleifer/tinier_bart""" _lowerCAmelCase = AutoConfig.from_pretrained(_lowercase ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) _lowerCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , save_to_csv=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowercase , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(_lowercase , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(_lowercase , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(_lowercase , """train_time.csv""" ) , env_info_csv_file=os.path.join(_lowercase , """env.csv""" ) , multi_process=_lowercase , ) _lowerCAmelCase = PyTorchBenchmark(_lowercase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowercase , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , """train_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , """train_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , """env.csv""" ) ).exists() ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(_lowercase ): self.assertTrue(hasattr(_lowercase , """sequential""" ) ) self.assertTrue(hasattr(_lowercase , """cumulative""" ) ) self.assertTrue(hasattr(_lowercase , """current""" ) ) self.assertTrue(hasattr(_lowercase , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowercase , """log.txt""" ) , log_print=_lowercase , trace_memory_line_by_line=_lowercase , multi_process=_lowercase , ) _lowerCAmelCase = PyTorchBenchmark(_lowercase ) _lowerCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowercase , """log.txt""" ) ).exists() )
5
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowercase = logging.get_logger(__name__) _lowercase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : '''simple docstring''' _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_SCREAMING_SNAKE_CASE )} ) _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) _lowercase : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase : int = field( default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) _lowercase : int = field( default=6_4 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) _lowercase : int = field( default=3_0 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) _lowercase : float = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) _lowercase : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''train''' _lowercase : Union[str, Any] = '''dev''' class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : SquadDataTrainingArguments _lowercase : List[SquadFeatures] _lowercase : Split _lowercase : bool def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = False , _lowercase = None , _lowercase = "pt" , ): """simple docstring""" _lowerCAmelCase = args _lowerCAmelCase = is_language_sensitive _lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowercase , _lowercase ): try: _lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _lowerCAmelCase = mode # Load data features from cache or dataset file _lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" _lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + """.lock""" with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: _lowerCAmelCase = time.time() _lowerCAmelCase = torch.load(_lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase = self.old_features["""features"""] _lowerCAmelCase = self.old_features.get("""dataset""" , _lowercase ) _lowerCAmelCase = self.old_features.get("""examples""" , _lowercase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: _lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: _lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) _lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , ) _lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.features[i] _lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) _lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
5
1
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _lowercase = logging.get_logger(__name__) _lowercase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED _lowercase = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } _lowercase = { """allenai/led-base-16384""": 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def A (): _lowerCAmelCase = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) _lowerCAmelCase = bs[:] _lowerCAmelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowerCamelCase ) cs.append(2**8 + n ) n += 1 _lowerCAmelCase = [chr(__lowerCamelCase ) for n in cs] return dict(zip(__lowerCamelCase , __lowerCamelCase ) ) def A (__lowerCamelCase :List[str] ): _lowerCAmelCase = set() _lowerCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase = char return pairs class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[int] = VOCAB_FILES_NAMES _lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _lowercase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowercase , _lowercase , _lowercase="replace" , _lowercase="<s>" , _lowercase="</s>" , _lowercase="</s>" , _lowercase="<s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase="<mask>" , _lowercase=False , **_lowercase , ): """simple docstring""" _lowerCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else bos_token _lowerCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else eos_token _lowerCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else sep_token _lowerCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else cls_token _lowerCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else unk_token _lowerCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( errors=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , add_prefix_space=_lowercase , **_lowercase , ) with open(_lowercase , encoding="""utf-8""" ) as vocab_handle: _lowerCAmelCase = json.load(_lowercase ) _lowerCAmelCase = {v: k for k, v in self.encoder.items()} _lowerCAmelCase = errors # how to handle errors in decoding _lowerCAmelCase = bytes_to_unicode() _lowerCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(_lowercase , encoding="""utf-8""" ) as merges_handle: _lowerCAmelCase = merges_handle.read().split("""\n""" )[1:-1] _lowerCAmelCase = [tuple(merge.split() ) for merge in bpe_merges] _lowerCAmelCase = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) _lowerCAmelCase = {} _lowerCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowerCAmelCase = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _lowercase ( self ): """simple docstring""" return len(self.encoder ) def _lowercase ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self , _lowercase ): """simple docstring""" if token in self.cache: return self.cache[token] _lowerCAmelCase = tuple(_lowercase ) _lowerCAmelCase = get_pairs(_lowercase ) if not pairs: return token while True: _lowerCAmelCase = min(_lowercase , key=lambda _lowercase : self.bpe_ranks.get(_lowercase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase , _lowerCAmelCase = bigram _lowerCAmelCase = [] _lowerCAmelCase = 0 while i < len(_lowercase ): try: _lowerCAmelCase = word.index(_lowercase , _lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase = j if word[i] == first and i < len(_lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase = tuple(_lowercase ) _lowerCAmelCase = new_word if len(_lowercase ) == 1: break else: _lowerCAmelCase = get_pairs(_lowercase ) _lowerCAmelCase = """ """.join(_lowercase ) _lowerCAmelCase = word return word def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = [] for token in re.findall(self.pat , _lowercase ): _lowerCAmelCase = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowercase ).split(""" """ ) ) return bpe_tokens def _lowercase ( self , _lowercase ): """simple docstring""" return self.encoder.get(_lowercase , self.encoder.get(self.unk_token ) ) def _lowercase ( self , _lowercase ): """simple docstring""" return self.decoder.get(_lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = """""".join(_lowercase ) _lowerCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" if not os.path.isdir(_lowercase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCAmelCase = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowercase , ensure_ascii=_lowercase ) + """\n""" ) _lowerCAmelCase = 0 with open(_lowercase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowercase : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) _lowerCAmelCase = token_index writer.write(""" """.join(_lowercase ) + """\n""" ) index += 1 return vocab_file, merge_file def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] _lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self , _lowercase , _lowercase = None , _lowercase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1, 1] + ([0] * len(_lowercase )) + [1] def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , _lowercase , _lowercase=False , **_lowercase ): """simple docstring""" _lowerCAmelCase = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowercase ) > 0 and not text[0].isspace()): _lowerCAmelCase = """ """ + text return (text, kwargs) def _lowercase ( self , _lowercase , _lowercase = None , _lowercase = PaddingStrategy.DO_NOT_PAD , _lowercase = None , _lowercase = None , ): """simple docstring""" _lowerCAmelCase = super()._pad( encoded_inputs=_lowercase , max_length=_lowercase , padding_strategy=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , ) # Load from model defaults if return_attention_mask is None: _lowerCAmelCase = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCAmelCase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCAmelCase = len(encoded_inputs["""global_attention_mask"""] ) != len(_lowercase ) if needs_to_be_padded: _lowerCAmelCase = len(_lowercase ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCAmelCase = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": _lowerCAmelCase = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
5
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''dpr''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase="absolute" , _lowercase = 0 , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = projection_dim _lowerCAmelCase = position_embedding_type
5
1
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[int] = ['''audio_values''', '''audio_mask'''] def __init__( self , _lowercase=2_048 , _lowercase=1 , _lowercase=[16, 16] , _lowercase=128 , _lowercase=44_100 , _lowercase=86 , _lowercase=2_048 , _lowercase=0.0 , **_lowercase , ): """simple docstring""" super().__init__( feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase , ) _lowerCAmelCase = spectrogram_length _lowerCAmelCase = num_channels _lowerCAmelCase = patch_size _lowerCAmelCase = feature_size // self.patch_size[1] _lowerCAmelCase = n_fft _lowerCAmelCase = sampling_rate // hop_length_to_sampling_rate _lowerCAmelCase = sampling_rate _lowerCAmelCase = padding_value _lowerCAmelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_lowercase , min_frequency=0.0 , max_frequency=2_2050.0 , sampling_rate=_lowercase , norm="""slaney""" , mel_scale="""slaney""" , ).T def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = spectrogram( _lowercase , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , ) _lowerCAmelCase = log_spec[:, :-1] _lowerCAmelCase = log_spec - 20.0 _lowerCAmelCase = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , _lowercase , _lowercase = None , _lowercase = True , _lowercase = None , _lowercase = False , _lowercase = False , **_lowercase , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" F' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' F' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) _lowerCAmelCase = isinstance(_lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) _lowerCAmelCase = is_batched_numpy or ( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_lowercase , np.ndarray ): _lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis _lowerCAmelCase = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , _lowercase ): _lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask _lowerCAmelCase = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: _lowerCAmelCase = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] _lowerCAmelCase = np.array(_lowercase ).astype(np.floataa ) # convert into correct format for padding _lowerCAmelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch _lowerCAmelCase = np.ones([len(_lowercase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) _lowerCAmelCase = padded_audio_features * self.padding_value for i in range(len(_lowercase ) ): _lowerCAmelCase = audio_features[i] _lowerCAmelCase = feature # return as BatchFeature if return_attention_mask: _lowerCAmelCase = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: _lowerCAmelCase = {"""audio_values""": padded_audio_features} _lowerCAmelCase = BatchFeature(data=_lowercase , tensor_type=_lowercase ) return encoded_inputs
5
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _lowercase = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ _lowercase = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ _lowercase = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase ( self ): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase ( self , _lowercase , _lowercase , _lowercase=None , _lowercase="uniform_average" , _lowercase=True ): """simple docstring""" _lowerCAmelCase = mean_squared_error( _lowercase , _lowercase , sample_weight=_lowercase , multioutput=_lowercase , squared=_lowercase ) return {"mse": mse}
5
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' def A (): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: _lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def A (): return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
5
1
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def A (__lowerCamelCase :str , __lowerCamelCase :Any , __lowerCamelCase :str=None ): # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f'{torch_layer} layer.weight does not match' _lowerCAmelCase = nn.Parameter(__lowerCamelCase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'{torch_layer} layer.bias does not match' _lowerCAmelCase = nn.Parameter(__lowerCamelCase ) def A (__lowerCamelCase :Dict , __lowerCamelCase :Optional[int] , __lowerCamelCase :Tuple ): # set torch weights for 1-to-1 comparison _lowerCAmelCase = np.asarray(weights[0] ) _lowerCAmelCase = np.asarray(weights[1] ) _lowerCAmelCase = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(__lowerCamelCase ).view(-1 , __lowerCamelCase ).contiguous().transpose(0 , 1 ) , ) def A (__lowerCamelCase :Dict , __lowerCamelCase :List[str] , __lowerCamelCase :str ): # set torch weights for 1-to-1 comparison _lowerCAmelCase = np.asarray(weights[0] ) _lowerCAmelCase = np.asarray(weights[1] ) _lowerCAmelCase = np.asarray(weights[2] ) _lowerCAmelCase = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(__lowerCamelCase ).view(-1 , __lowerCamelCase ).contiguous().transpose(0 , 1 ) , ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Dict , __lowerCamelCase :Any ): # layernorm 1 _lowerCAmelCase = weights[0][0][0] _lowerCAmelCase = np.asarray(layer_norm_a[0] ) _lowerCAmelCase = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(__lowerCamelCase ) , torch.tensor(__lowerCamelCase ) , ) # lsh weights + output _lowerCAmelCase = weights[0][1] if len(__lowerCamelCase ) < 4: set_layer_weights_in_torch_lsh(__lowerCamelCase , torch_block.attention , __lowerCamelCase ) else: set_layer_weights_in_torch_local(__lowerCamelCase , torch_block.attention , __lowerCamelCase ) # intermediate weighs _lowerCAmelCase = weights[2][0][1][2] # Chunked Feed Forward if len(__lowerCamelCase ) == 4: _lowerCAmelCase = intermediate_weights[2] # layernorm 2 _lowerCAmelCase = np.asarray(intermediate_weights[0][0] ) _lowerCAmelCase = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__lowerCamelCase ) , torch.tensor(__lowerCamelCase ) , ) # intermediate dense _lowerCAmelCase = np.asarray(intermediate_weights[1][0] ) _lowerCAmelCase = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__lowerCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowerCamelCase ) , ) # intermediate out _lowerCAmelCase = np.asarray(intermediate_weights[4][0] ) _lowerCAmelCase = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(__lowerCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowerCamelCase ) , ) def A (__lowerCamelCase :List[str] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict ): # reformer model _lowerCAmelCase = torch_model.reformer # word embeds _lowerCAmelCase = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__lowerCamelCase ) , ) if isinstance(weights[3] , __lowerCamelCase ): _lowerCAmelCase = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _lowerCAmelCase = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'{position_embeddings[emb_idx]} emb does not match' _lowerCAmelCase = nn.Parameter(torch.tensor(__lowerCamelCase ) ) _lowerCAmelCase = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __lowerCamelCase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _lowerCAmelCase = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # output layer norm _lowerCAmelCase = np.asarray(weights[7][0] ) _lowerCAmelCase = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__lowerCamelCase ) , torch.tensor(__lowerCamelCase ) , ) # output embeddings _lowerCAmelCase = np.asarray(weights[9][0] ) _lowerCAmelCase = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(__lowerCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowerCamelCase ) , ) def A (__lowerCamelCase :List[str] , __lowerCamelCase :List[Any] , __lowerCamelCase :Tuple ): # Initialise PyTorch model _lowerCAmelCase = ReformerConfig.from_json_file(__lowerCamelCase ) print(f'Building PyTorch model from configuration: {config}' ) _lowerCAmelCase = ReformerModelWithLMHead(__lowerCamelCase ) with open(__lowerCamelCase , """rb""" ) as f: _lowerCAmelCase = pickle.load(__lowerCamelCase )["""weights"""] set_model_weights_in_torch(__lowerCamelCase , __lowerCamelCase , config.hidden_size ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _lowercase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
5
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
5
1
'''simple docstring''' from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = '''efficientformer''' def __init__( self , _lowercase = [3, 2, 6, 4] , _lowercase = [48, 96, 224, 448] , _lowercase = [True, True, True, True] , _lowercase = 448 , _lowercase = 32 , _lowercase = 4 , _lowercase = 7 , _lowercase = 5 , _lowercase = 8 , _lowercase = 4 , _lowercase = 0.0 , _lowercase = 16 , _lowercase = 3 , _lowercase = 3 , _lowercase = 3 , _lowercase = 2 , _lowercase = 1 , _lowercase = 0.0 , _lowercase = 1 , _lowercase = True , _lowercase = True , _lowercase = 1e-5 , _lowercase = "gelu" , _lowercase = 0.02 , _lowercase = 1e-12 , _lowercase = 224 , _lowercase = 1e-05 , **_lowercase , ): """simple docstring""" super().__init__(**_lowercase ) _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = hidden_sizes _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = depths _lowerCAmelCase = mlp_expansion_ratio _lowerCAmelCase = downsamples _lowerCAmelCase = dim _lowerCAmelCase = key_dim _lowerCAmelCase = attention_ratio _lowerCAmelCase = resolution _lowerCAmelCase = pool_size _lowerCAmelCase = downsample_patch_size _lowerCAmelCase = downsample_stride _lowerCAmelCase = downsample_pad _lowerCAmelCase = drop_path_rate _lowerCAmelCase = num_metaad_blocks _lowerCAmelCase = distillation _lowerCAmelCase = use_layer_scale _lowerCAmelCase = layer_scale_init_value _lowerCAmelCase = image_size _lowerCAmelCase = batch_norm_eps
5
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
5
1
'''simple docstring''' from __future__ import annotations def A (__lowerCamelCase :str ): return [ord(__lowerCamelCase ) - 96 for elem in plain] def A (__lowerCamelCase :list[int] ): return "".join(chr(elem + 96 ) for elem in encoded ) def A (): _lowerCAmelCase = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , __lowerCamelCase ) print("""Decoded:""" , decode(__lowerCamelCase ) ) if __name__ == "__main__": main()
5
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") _lowercase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) _lowercase = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) _lowercase = BeautifulSoup(res.text, """html.parser""") _lowercase = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
5
1
'''simple docstring''' def A (__lowerCamelCase :int ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") _lowercase = int(input("""Enter number: """).strip()) print(F"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
5
'''simple docstring''' import os from datetime import datetime as dt from github import Github _lowercase = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def A (): _lowerCAmelCase = Github(os.environ["""GITHUB_TOKEN"""] ) _lowerCAmelCase = g.get_repo("""huggingface/diffusers""" ) _lowerCAmelCase = repo.get_issues(state="""open""" ) for issue in open_issues: _lowerCAmelCase = sorted(issue.get_comments() , key=lambda __lowerCamelCase : i.created_at , reverse=__lowerCamelCase ) _lowerCAmelCase = comments[0] if len(__lowerCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
5
1
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def A (__lowerCamelCase :int ): if isinstance(__lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class UpperCAmelCase_ : '''simple docstring''' def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase ): """simple docstring""" _lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowercase , _lowercase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(_lowercase ) _lowerCAmelCase = model(input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowercase , _lowercase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_lowercase , text_model=_lowercase ) _lowerCAmelCase = model(input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowercase , _lowercase ) _lowerCAmelCase = {"""vision_model""": vision_model, """text_model""": text_model} _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowercase ) _lowerCAmelCase = model(input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowercase , _lowercase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_lowercase , text_model=_lowercase ) _lowerCAmelCase = model(input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase ) _lowerCAmelCase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowercase ) _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_lowercase ) _lowerCAmelCase = model(input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase ) _lowerCAmelCase = after_output[0].numpy() _lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowercase , 1e-5 ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowercase , _lowercase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_lowercase , text_model=_lowercase ) _lowerCAmelCase = model( input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , output_attentions=_lowercase ) _lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_lowercase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase = to_atuple(vision_model.config.image_size ) _lowerCAmelCase = to_atuple(vision_model.config.patch_size ) _lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_lowercase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = np.abs((a - b) ).max() self.assertLessEqual(_lowercase , _lowercase , F'Difference between torch and flax is {diff} (>= {tol}).' ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_save_load(**_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowercase ) @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_pretrained_model_and_inputs() _lowerCAmelCase = model_a(**_lowercase ) _lowerCAmelCase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowercase ) _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_lowercase ) _lowerCAmelCase = model_a(**_lowercase ) _lowerCAmelCase = after_outputs[0].numpy() _lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowercase , 1e-5 ) @require_tf class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFViTModel(_lowercase , name="""vision_model""" ) _lowerCAmelCase = TFBertModel(_lowercase , name="""text_model""" ) return vision_model, text_model def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFViTModelTester(self ) _lowerCAmelCase = TFBertModelTester(self ) _lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowercase , _lowercase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_lowercase , text_model=_lowercase ) _lowerCAmelCase = model( input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , output_attentions=_lowercase ) _lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_lowercase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowerCAmelCase = to_atuple(vision_model.config.image_size ) _lowerCAmelCase = to_atuple(vision_model.config.patch_size ) _lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_lowercase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFDeiTModel(_lowercase , name="""vision_model""" ) _lowerCAmelCase = TFRobertaModel(_lowercase , name="""text_model""" ) return vision_model, text_model def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFDeiTModelTester(self ) _lowerCAmelCase = TFRobertaModelTester(self ) _lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFCLIPVisionModel(_lowercase , name="""vision_model""" ) _lowerCAmelCase = TFBertModel(_lowercase , name="""text_model""" ) return vision_model, text_model def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFCLIPVisionModelTester(self ) _lowerCAmelCase = TFBertModelTester(self ) _lowerCAmelCase = clip_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowercase ) _lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _lowerCAmelCase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowercase , padding=_lowercase , return_tensors="""np""" ) _lowerCAmelCase = model(**_lowercase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _lowerCAmelCase = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowercase , atol=1e-3 ) )
5
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
5
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = '''decision_transformer''' _lowercase : Optional[Any] = ['''past_key_values'''] _lowercase : str = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowercase=17 , _lowercase=4 , _lowercase=128 , _lowercase=4_096 , _lowercase=True , _lowercase=1 , _lowercase=1_024 , _lowercase=3 , _lowercase=1 , _lowercase=None , _lowercase="relu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=False , _lowercase=False , **_lowercase , ): """simple docstring""" _lowerCAmelCase = state_dim _lowerCAmelCase = act_dim _lowerCAmelCase = hidden_size _lowerCAmelCase = max_ep_len _lowerCAmelCase = action_tanh _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = scale_attn_by_inverse_layer_idx _lowerCAmelCase = reorder_and_upcast_attn _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
5
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
1
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = (DDPMScheduler,) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_lowercase ) return config def _lowercase ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def _lowercase ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def _lowercase ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def _lowercase ( self ): """simple docstring""" self.check_over_configs(thresholding=_lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def _lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowercase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowercase ): if i == len(_lowercase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowercase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowercase , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowercase ) with self.assertRaises(_lowercase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowercase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_lowercase )
5
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _lowercase = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_lowercase ): """simple docstring""" super().__init__(**_lowercase ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self , _lowercase , **_lowercase ): """simple docstring""" return super().__call__(_lowercase , **_lowercase ) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a sound of {}." ): """simple docstring""" if isinstance(_lowercase , _lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _lowerCAmelCase = requests.get(_lowercase ).content else: with open(_lowercase , """rb""" ) as f: _lowerCAmelCase = f.read() if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate ) if not isinstance(_lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) _lowerCAmelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) _lowerCAmelCase = [text_inputs] return inputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_inputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _lowercase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**_lowercase , **_lowercase ) _lowerCAmelCase = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_outputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_outputs["""logits"""][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=0 ) _lowerCAmelCase = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) _lowerCAmelCase = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] ) ] return result
5
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { """configuration_megatron_bert""": ["""MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegatronBertConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegatronBertForCausalLM""", """MegatronBertForMaskedLM""", """MegatronBertForMultipleChoice""", """MegatronBertForNextSentencePrediction""", """MegatronBertForPreTraining""", """MegatronBertForQuestionAnswering""", """MegatronBertForSequenceClassification""", """MegatronBertForTokenClassification""", """MegatronBertModel""", """MegatronBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = ['''input_values''', '''padding_mask'''] def __init__( self , _lowercase = 1 , _lowercase = 24_000 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , **_lowercase , ): """simple docstring""" super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) _lowerCAmelCase = chunk_length_s _lowerCAmelCase = overlap @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , _lowercase , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs _lowerCAmelCase = True _lowerCAmelCase = bool( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_lowercase , np.ndarray ): _lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _lowerCAmelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [np.asarray(_lowercase ).T] # verify inputs are valid for idx, example in enumerate(_lowercase ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) _lowerCAmelCase = None _lowerCAmelCase = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _lowerCAmelCase = min(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.floor(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _lowerCAmelCase = max(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.ceil(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length _lowerCAmelCase = """max_length""" else: _lowerCAmelCase = input_values # normal padding on batch if padded_inputs is None: _lowerCAmelCase = self.pad( _lowercase , max_length=_lowercase , truncation=_lowercase , padding=_lowercase , return_attention_mask=_lowercase , ) if padding: _lowerCAmelCase = padded_inputs.pop("""attention_mask""" ) _lowerCAmelCase = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: _lowerCAmelCase = example[..., None] input_values.append(example.T ) _lowerCAmelCase = input_values if return_tensors is not None: _lowerCAmelCase = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
5
1
'''simple docstring''' import os def A (): _lowerCAmelCase = os.path.join(os.path.dirname(__lowerCamelCase ) , """num.txt""" ) with open(__lowerCamelCase ) as file_hand: return str(sum(int(__lowerCamelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
5
'''simple docstring''' _lowercase = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
5
1
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowercase = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : List[str] = XLMProphetNetTokenizer _lowercase : str = False _lowercase : List[Any] = True def _lowercase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase = XLMProphetNetTokenizer(_lowercase , keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """[PAD]""" _lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """[PAD]""" ) self.assertEqual(vocab_keys[1] , """[CLS]""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(_lowercase ) , 1_012 ) def _lowercase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_012 ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = XLMProphetNetTokenizer(_lowercase , keep_accents=_lowercase ) _lowerCAmelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowercase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _lowerCAmelCase = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) _lowerCAmelCase = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """[UNK]""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """[UNK]""", """.""", ] , ) @cached_property def _lowercase ( self ): """simple docstring""" return XLMProphetNetTokenizer.from_pretrained("""microsoft/xprophetnet-large-wiki100-cased""" ) @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """Hello World!""" _lowerCAmelCase = [35_389, 6_672, 49, 2] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase ) ) @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = {"""input_ids""": [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name="""microsoft/xprophetnet-large-wiki100-cased""" , revision="""1acad1643ddd54a44df6a1b797ada8373685d90e""" , )
5
'''simple docstring''' import functools def A (__lowerCamelCase :list[int] , __lowerCamelCase :list[int] ): # Validation if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(__lowerCamelCase ) >= 366: raise ValueError("""All days elements should be less than 366""" ) _lowerCAmelCase = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase :int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :str , __lowerCamelCase :str , __lowerCamelCase :Path , __lowerCamelCase :str = None , __lowerCamelCase :str = None , __lowerCamelCase :str = None , ): if config_name_or_path is None: _lowerCAmelCase = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base""" if generator_tokenizer_name_or_path is None: _lowerCAmelCase = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: _lowerCAmelCase = question_encoder_name_or_path _lowerCAmelCase = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration # Save model. _lowerCAmelCase = RagConfig.from_pretrained(__lowerCamelCase ) _lowerCAmelCase = AutoConfig.from_pretrained(__lowerCamelCase ) _lowerCAmelCase = AutoConfig.from_pretrained(__lowerCamelCase ) _lowerCAmelCase = gen_config _lowerCAmelCase = question_encoder_config _lowerCAmelCase = model_class.from_pretrained_question_encoder_generator( __lowerCamelCase , __lowerCamelCase , config=__lowerCamelCase ) rag_model.save_pretrained(__lowerCamelCase ) # Sanity check. model_class.from_pretrained(__lowerCamelCase ) # Save tokenizers. _lowerCAmelCase = AutoTokenizer.from_pretrained(__lowerCamelCase ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) _lowerCAmelCase = AutoTokenizer.from_pretrained(__lowerCamelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( """--model_type""", choices=["""rag_sequence""", """rag_token"""], required=True, type=str, help="""RAG model type: rag_sequence, rag_token""", ) parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""") parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""") parser.add_argument( """--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier""" ) parser.add_argument( """--generator_tokenizer_name_or_path""", type=str, help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""", ) parser.add_argument( """--question_encoder_tokenizer_name_or_path""", type=str, help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""", ) parser.add_argument( """--config_name_or_path""", type=str, help=( """Identifier of the model config to use, if not provided, resolves to a base config for a given""" """ ``model_type``""" ), ) _lowercase = parser.parse_args() _lowercase = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
5
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 384 if "tiny" in model_name: _lowerCAmelCase = [3, 3, 9, 3] _lowerCAmelCase = [96, 192, 384, 768] if "small" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [96, 192, 384, 768] if "base" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [128, 256, 512, 1024] _lowerCAmelCase = 512 if "large" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [192, 384, 768, 1536] _lowerCAmelCase = 768 if "xlarge" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [256, 512, 1024, 2048] _lowerCAmelCase = 1024 # set label information _lowerCAmelCase = 150 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """ade20k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = ConvNextConfig( depths=__lowerCamelCase , hidden_sizes=__lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) _lowerCAmelCase = UperNetConfig( backbone_config=__lowerCamelCase , auxiliary_in_channels=__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , ) return config def A (__lowerCamelCase :Optional[Any] ): _lowerCAmelCase = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict , __lowerCamelCase :Tuple ): _lowerCAmelCase = dct.pop(__lowerCamelCase ) _lowerCAmelCase = val def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ): _lowerCAmelCase = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } _lowerCAmelCase = model_name_to_url[model_name] _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""state_dict"""] _lowerCAmelCase = get_upernet_config(__lowerCamelCase ) _lowerCAmelCase = UperNetForSemanticSegmentation(__lowerCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase = state_dict.pop(__lowerCamelCase ) if "bn" in key: _lowerCAmelCase = key.replace("""bn""" , """batch_norm""" ) _lowerCAmelCase = val # rename keys _lowerCAmelCase = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # verify on image _lowerCAmelCase = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _lowerCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" ) _lowerCAmelCase = SegformerImageProcessor() _lowerCAmelCase = processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values with torch.no_grad(): _lowerCAmelCase = model(__lowerCamelCase ) if model_name == "upernet-convnext-tiny": _lowerCAmelCase = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _lowerCAmelCase = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _lowerCAmelCase = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _lowerCAmelCase = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _lowerCAmelCase = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
5
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase_ : '''simple docstring''' _lowercase : List[str] = MBartConfig _lowercase : Any = {} _lowercase : Union[str, Any] = '''gelu''' def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=False , _lowercase=99 , _lowercase=32 , _lowercase=2 , _lowercase=4 , _lowercase=37 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=20 , _lowercase=2 , _lowercase=1 , _lowercase=0 , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = eos_token_id _lowerCAmelCase = pad_token_id _lowerCAmelCase = bos_token_id def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _lowerCAmelCase = prepare_mbart_inputs_dict(_lowercase , _lowercase , _lowercase ) return config, inputs_dict def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFMBartModel(config=_lowercase ).get_decoder() _lowerCAmelCase = inputs_dict["""input_ids"""] _lowerCAmelCase = input_ids[:1, :] _lowerCAmelCase = inputs_dict["""attention_mask"""][:1, :] _lowerCAmelCase = inputs_dict["""head_mask"""] _lowerCAmelCase = 1 # first forward pass _lowerCAmelCase = model(_lowercase , attention_mask=_lowercase , head_mask=_lowercase , use_cache=_lowercase ) _lowerCAmelCase , _lowerCAmelCase = outputs.to_tuple() _lowerCAmelCase = past_key_values[1] def A (__lowerCamelCase :List[str] , __lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :Optional[int]=None , __lowerCamelCase :Optional[int]=None , __lowerCamelCase :List[Any]=None , __lowerCamelCase :Optional[Any]=None , ): if attention_mask is None: _lowerCAmelCase = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowerCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowerCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : str = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () _lowercase : Optional[int] = (TFMBartForConditionalGeneration,) if is_tf_available() else () _lowercase : Tuple = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) _lowercase : Any = True _lowercase : List[Any] = False _lowercase : str = False def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFMBartModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowercase ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowercase ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' _lowercase : Optional[Any] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] _lowercase : List[Any] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] _lowercase : int = '''facebook/mbart-large-en-ro''' @cached_property def _lowercase ( self ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = self.translate_src_text(**_lowercase ) self.assertListEqual(self.expected_text , _lowercase ) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = self.tokenizer(self.src_text , **_lowercase , return_tensors="""tf""" ) _lowerCAmelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) _lowerCAmelCase = self.tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) return generated_words @slow def _lowercase ( self ): """simple docstring""" self._assert_generated_batch_equal_expected()
5
'''simple docstring''' from itertools import product def A (__lowerCamelCase :int , __lowerCamelCase :int ): _lowerCAmelCase = sides_number _lowerCAmelCase = max_face_number * dice_number _lowerCAmelCase = [0] * (max_total + 1) _lowerCAmelCase = 1 _lowerCAmelCase = range(__lowerCamelCase , max_face_number + 1 ) for dice_numbers in product(__lowerCamelCase , repeat=__lowerCamelCase ): _lowerCAmelCase = sum(__lowerCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def A (): _lowerCAmelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) _lowerCAmelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) _lowerCAmelCase = 0 _lowerCAmelCase = 9 _lowerCAmelCase = 4 * 9 _lowerCAmelCase = 6 for peter_total in range(__lowerCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _lowerCAmelCase = (4**9) * (6**6) _lowerCAmelCase = peter_wins_count / total_games_number _lowerCAmelCase = round(__lowerCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
5
1
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[int] = '''vision-encoder-decoder''' _lowercase : Optional[Any] = True def __init__( self , **_lowercase ): """simple docstring""" super().__init__(**_lowercase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F'A configuraton of type {self.model_type} cannot be instantiated because ' F'not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}' ) _lowerCAmelCase = kwargs.pop("""encoder""" ) _lowerCAmelCase = encoder_config.pop("""model_type""" ) _lowerCAmelCase = kwargs.pop("""decoder""" ) _lowerCAmelCase = decoder_config.pop("""model_type""" ) _lowerCAmelCase = AutoConfig.for_model(_lowercase , **_lowercase ) _lowerCAmelCase = AutoConfig.for_model(_lowercase , **_lowercase ) _lowerCAmelCase = True @classmethod def _lowercase ( cls , _lowercase , _lowercase , **_lowercase ): """simple docstring""" logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) _lowerCAmelCase = True _lowerCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = copy.deepcopy(self.__dict__ ) _lowerCAmelCase = self.encoder.to_dict() _lowerCAmelCase = self.decoder.to_dict() _lowerCAmelCase = self.__class__.model_type return output class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[Any] = version.parse('''1.11''' ) @property def _lowercase ( self ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase ( self ): """simple docstring""" return 1e-4 @property def _lowercase ( self ): """simple docstring""" return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = OrderedDict() _lowerCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _lowerCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _lowerCAmelCase = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def _lowercase ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , ): """simple docstring""" import torch _lowerCAmelCase = OrderedDict() _lowerCAmelCase = super().generate_dummy_inputs( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) _lowerCAmelCase , _lowerCAmelCase = dummy_input["""input_ids"""].shape _lowerCAmelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) _lowerCAmelCase = dummy_input.pop("""input_ids""" ) _lowerCAmelCase = dummy_input.pop("""attention_mask""" ) _lowerCAmelCase = torch.zeros(_lowercase ) return common_inputs class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self , _lowercase ): """simple docstring""" return VisionEncoderDecoderEncoderOnnxConfig(_lowercase ) def _lowercase ( self , _lowercase , _lowercase , _lowercase = "default" ): """simple docstring""" _lowerCAmelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_lowercase , _lowercase )
5
'''simple docstring''' from manim import * class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""CPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(1 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""GPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.align_to(_lowercase , _lowercase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""Model""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , ) _lowerCAmelCase = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) _lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) ) self.add(_lowercase ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for i, rect in enumerate(_lowercase ): _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 ) cpu_target.move_to(_lowercase ) cpu_target.generate_target() _lowerCAmelCase = 0.46 / 4 _lowerCAmelCase = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 ) cpu_targs.append(_lowercase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) ) second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) ) self.play(*_lowercase ) self.play(*_lowercase ) self.wait()
5
1
'''simple docstring''' def A (__lowerCamelCase :int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase = f'Input value of [number={number}] must be an integer' raise TypeError(__lowerCamelCase ) if number < 0: return False _lowerCAmelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
5
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowercase = False try: _lowercase = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase = None , _lowercase = [] ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = choices _lowerCAmelCase = prompt if sys.platform == "win32": _lowerCAmelCase = """*""" else: _lowerCAmelCase = """➔ """ def _lowercase ( self , _lowercase , _lowercase = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , _lowercase ) else: forceWrite(self.choices[index] , _lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(_lowercase ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def _lowercase ( self , _lowercase , _lowercase = 1 ): """simple docstring""" _lowerCAmelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowercase ) move_cursor(_lowercase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = int(chr(self.current_selection ) ) _lowerCAmelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowercase ) else: return else: return def _lowercase ( self , _lowercase = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) _lowerCAmelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowercase ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase = int(builtins.input() ) except ValueError: _lowerCAmelCase = default_choice else: _lowerCAmelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(_lowercase , """\n""" ) return choice
5
1
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __get__( self , _lowercase , _lowercase=None ): """simple docstring""" if obj is None: return self if self.fget is None: raise AttributeError("""unreadable attribute""" ) _lowerCAmelCase = """__cached_""" + self.fget.__name__ _lowerCAmelCase = getattr(_lowercase , _lowercase , _lowercase ) if cached is None: _lowerCAmelCase = self.fget(_lowercase ) setattr(_lowercase , _lowercase , _lowercase ) return cached def A (__lowerCamelCase :int ): _lowerCAmelCase = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'invalid truth value {val!r}' ) def A (__lowerCamelCase :Union[str, Any] ): if is_torch_fx_proxy(__lowerCamelCase ): return True if is_torch_available(): import torch if isinstance(__lowerCamelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(__lowerCamelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__lowerCamelCase , (jnp.ndarray, Tracer) ): return True return isinstance(__lowerCamelCase , np.ndarray ) def A (__lowerCamelCase :List[Any] ): return isinstance(__lowerCamelCase , np.ndarray ) def A (__lowerCamelCase :str ): return _is_numpy(__lowerCamelCase ) def A (__lowerCamelCase :Dict ): import torch return isinstance(__lowerCamelCase , torch.Tensor ) def A (__lowerCamelCase :Union[str, Any] ): return False if not is_torch_available() else _is_torch(__lowerCamelCase ) def A (__lowerCamelCase :Union[str, Any] ): import torch return isinstance(__lowerCamelCase , torch.device ) def A (__lowerCamelCase :List[str] ): return False if not is_torch_available() else _is_torch_device(__lowerCamelCase ) def A (__lowerCamelCase :Dict ): import torch if isinstance(__lowerCamelCase , __lowerCamelCase ): if hasattr(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) else: return False return isinstance(__lowerCamelCase , torch.dtype ) def A (__lowerCamelCase :Dict ): return False if not is_torch_available() else _is_torch_dtype(__lowerCamelCase ) def A (__lowerCamelCase :str ): import tensorflow as tf return isinstance(__lowerCamelCase , tf.Tensor ) def A (__lowerCamelCase :Optional[int] ): return False if not is_tf_available() else _is_tensorflow(__lowerCamelCase ) def A (__lowerCamelCase :Tuple ): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__lowerCamelCase , """is_symbolic_tensor""" ): return tf.is_symbolic_tensor(__lowerCamelCase ) return type(__lowerCamelCase ) == tf.Tensor def A (__lowerCamelCase :int ): return False if not is_tf_available() else _is_tf_symbolic_tensor(__lowerCamelCase ) def A (__lowerCamelCase :Optional[int] ): import jax.numpy as jnp # noqa: F811 return isinstance(__lowerCamelCase , jnp.ndarray ) def A (__lowerCamelCase :List[str] ): return False if not is_flax_available() else _is_jax(__lowerCamelCase ) def A (__lowerCamelCase :Dict ): if isinstance(__lowerCamelCase , (dict, UserDict) ): return {k: to_py_obj(__lowerCamelCase ) for k, v in obj.items()} elif isinstance(__lowerCamelCase , (list, tuple) ): return [to_py_obj(__lowerCamelCase ) for o in obj] elif is_tf_tensor(__lowerCamelCase ): return obj.numpy().tolist() elif is_torch_tensor(__lowerCamelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(__lowerCamelCase ): return np.asarray(__lowerCamelCase ).tolist() elif isinstance(__lowerCamelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def A (__lowerCamelCase :Optional[int] ): if isinstance(__lowerCamelCase , (dict, UserDict) ): return {k: to_numpy(__lowerCamelCase ) for k, v in obj.items()} elif isinstance(__lowerCamelCase , (list, tuple) ): return np.array(__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): return obj.numpy() elif is_torch_tensor(__lowerCamelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(__lowerCamelCase ): return np.asarray(__lowerCamelCase ) else: return obj class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = fields(self ) # Safety and consistency checks if not len(_lowercase ): raise ValueError(F'{self.__class__.__name__} has no fields.' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'{self.__class__.__name__} should not have more than one required field.' ) _lowerCAmelCase = getattr(self , class_fields[0].name ) _lowerCAmelCase = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(_lowercase ): if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = first_field.items() _lowerCAmelCase = True else: try: _lowerCAmelCase = iter(_lowercase ) _lowerCAmelCase = True except TypeError: _lowerCAmelCase = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_lowercase ): if ( not isinstance(_lowercase , (list, tuple) ) or not len(_lowercase ) == 2 or not isinstance(element[0] , _lowercase ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _lowerCAmelCase = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'Cannot set key/value for {element}. It needs to be a tuple (key, value).' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: _lowerCAmelCase = element[1] elif first_field is not None: _lowerCAmelCase = first_field else: for field in class_fields: _lowerCAmelCase = getattr(self , field.name ) if v is not None: _lowerCAmelCase = v def __delitem__( self , *_lowercase , **_lowercase ): """simple docstring""" raise Exception(F'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' ) def _lowercase ( self , *_lowercase , **_lowercase ): """simple docstring""" raise Exception(F'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' ) def _lowercase ( self , *_lowercase , **_lowercase ): """simple docstring""" raise Exception(F'You cannot use ``pop`` on a {self.__class__.__name__} instance.' ) def _lowercase ( self , *_lowercase , **_lowercase ): """simple docstring""" raise Exception(F'You cannot use ``update`` on a {self.__class__.__name__} instance.' ) def __getitem__( self , _lowercase ): """simple docstring""" if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , _lowercase , _lowercase ): """simple docstring""" if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_lowercase , _lowercase ) super().__setattr__(_lowercase , _lowercase ) def __setitem__( self , _lowercase , _lowercase ): """simple docstring""" super().__setitem__(_lowercase , _lowercase ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" return tuple(self[k] for k in self.keys() ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' @classmethod def _lowercase ( cls , _lowercase ): """simple docstring""" raise ValueError( F'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : int = '''longest''' _lowercase : str = '''max_length''' _lowercase : List[Any] = '''do_not_pad''' class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[Any] = '''pt''' _lowercase : Optional[Any] = '''tf''' _lowercase : List[str] = '''np''' _lowercase : int = '''jax''' class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = context_managers _lowerCAmelCase = ExitStack() def __enter__( self ): """simple docstring""" for context_manager in self.context_managers: self.stack.enter_context(_lowercase ) def __exit__( self , *_lowercase , **_lowercase ): """simple docstring""" self.stack.__exit__(*_lowercase , **_lowercase ) def A (__lowerCamelCase :str ): _lowerCAmelCase = infer_framework(__lowerCamelCase ) if framework == "tf": _lowerCAmelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _lowerCAmelCase = inspect.signature(model_class.forward ) # PyTorch models else: _lowerCAmelCase = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def A (__lowerCamelCase :List[str] ): _lowerCAmelCase = model_class.__name__ _lowerCAmelCase = infer_framework(__lowerCamelCase ) if framework == "tf": _lowerCAmelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _lowerCAmelCase = inspect.signature(model_class.forward ) # PyTorch models else: _lowerCAmelCase = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def A (__lowerCamelCase :MutableMapping , __lowerCamelCase :str = "" , __lowerCamelCase :str = "." ): def _flatten_dict(__lowerCamelCase :Optional[Any] , __lowerCamelCase :Optional[int]="" , __lowerCamelCase :Dict="." ): for k, v in d.items(): _lowerCAmelCase = str(__lowerCamelCase ) + delimiter + str(__lowerCamelCase ) if parent_key else k if v and isinstance(__lowerCamelCase , __lowerCamelCase ): yield from flatten_dict(__lowerCamelCase , __lowerCamelCase , delimiter=__lowerCamelCase ).items() else: yield key, v return dict(_flatten_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ) @contextmanager def A (__lowerCamelCase :Any , __lowerCamelCase :bool = False ): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def A (__lowerCamelCase :Dict , __lowerCamelCase :List[str]=None ): if is_numpy_array(__lowerCamelCase ): return np.transpose(__lowerCamelCase , axes=__lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.T if axes is None else array.permute(*__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.transpose(__lowerCamelCase , perm=__lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return jnp.transpose(__lowerCamelCase , axes=__lowerCamelCase ) else: raise ValueError(f'Type not supported for transpose: {type(__lowerCamelCase )}.' ) def A (__lowerCamelCase :Tuple , __lowerCamelCase :List[Any] ): if is_numpy_array(__lowerCamelCase ): return np.reshape(__lowerCamelCase , __lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.reshape(*__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.reshape(__lowerCamelCase , __lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return jnp.reshape(__lowerCamelCase , __lowerCamelCase ) else: raise ValueError(f'Type not supported for reshape: {type(__lowerCamelCase )}.' ) def A (__lowerCamelCase :str , __lowerCamelCase :Any=None ): if is_numpy_array(__lowerCamelCase ): return np.squeeze(__lowerCamelCase , axis=__lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.squeeze() if axis is None else array.squeeze(dim=__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.squeeze(__lowerCamelCase , axis=__lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return jnp.squeeze(__lowerCamelCase , axis=__lowerCamelCase ) else: raise ValueError(f'Type not supported for squeeze: {type(__lowerCamelCase )}.' ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Dict ): if is_numpy_array(__lowerCamelCase ): return np.expand_dims(__lowerCamelCase , __lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.unsqueeze(dim=__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.expand_dims(__lowerCamelCase , axis=__lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return jnp.expand_dims(__lowerCamelCase , axis=__lowerCamelCase ) else: raise ValueError(f'Type not supported for expand_dims: {type(__lowerCamelCase )}.' ) def A (__lowerCamelCase :Optional[Any] ): if is_numpy_array(__lowerCamelCase ): return np.size(__lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.numel() elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.size(__lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return array.size else: raise ValueError(f'Type not supported for expand_dims: {type(__lowerCamelCase )}.' ) def A (__lowerCamelCase :List[Any] , __lowerCamelCase :Optional[int] ): for key, value in auto_map.items(): if isinstance(__lowerCamelCase , (tuple, list) ): _lowerCAmelCase = [f'{repo_id}--{v}' if (v is not None and """--""" not in v) else v for v in value] elif value is not None and "--" not in value: _lowerCAmelCase = f'{repo_id}--{value}' return auto_map def A (__lowerCamelCase :Tuple ): for base_class in inspect.getmro(__lowerCamelCase ): _lowerCAmelCase = base_class.__module__ _lowerCAmelCase = base_class.__name__ if module.startswith("""tensorflow""" ) or module.startswith("""keras""" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("""torch""" ) or name == "PreTrainedModel": return "pt" elif module.startswith("""flax""" ) or module.startswith("""jax""" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'Could not infer framework from class {model_class}.' )
5
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } _lowercase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def A (__lowerCamelCase :Optional[int] ): _lowerCAmelCase = {} with open(__lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(__lowerCamelCase ): _lowerCAmelCase = line.strip() if line: _lowerCAmelCase = line.split() _lowerCAmelCase = line_number _lowerCAmelCase = words[0] _lowerCAmelCase = value return result def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any] , __lowerCamelCase :List[str] ): for attribute in key.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": _lowerCAmelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = shape_pointer.shape # let's reduce dimension _lowerCAmelCase = value[0] else: _lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCAmelCase = value elif weight_type == "weight_g": _lowerCAmelCase = value elif weight_type == "weight_v": _lowerCAmelCase = value elif weight_type == "bias": _lowerCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = value else: _lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] , __lowerCamelCase :int ): _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _lowerCAmelCase = """.""".join([key, hf_param_name] ) else: _lowerCAmelCase = key _lowerCAmelCase = value if """lm_head""" in full_key else value[0] _lowercase = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :List[str]=None , __lowerCamelCase :List[Any]=None ): _lowerCAmelCase = False for key, mapped_key in MAPPING.items(): _lowerCAmelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCAmelCase = True if "*" in mapped_key: _lowerCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase = """weight_g""" elif "weight_v" in name: _lowerCAmelCase = """weight_v""" elif "bias" in name: _lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase = """weight""" else: _lowerCAmelCase = None if hf_dict is not None: rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return is_used return is_used def A (__lowerCamelCase :Any , __lowerCamelCase :Dict , __lowerCamelCase :Dict ): _lowerCAmelCase = [] _lowerCAmelCase = fairseq_model.state_dict() _lowerCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) _lowerCAmelCase = True else: _lowerCAmelCase = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any , __lowerCamelCase :List[Any] , __lowerCamelCase :List[Any] ): _lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase = name.split(""".""" ) _lowerCAmelCase = int(items[0] ) _lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def A (__lowerCamelCase :List[str] , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any]=None , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :str=True , __lowerCamelCase :str=False ): if config_path is not None: _lowerCAmelCase = WavaVecaConfig.from_pretrained(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaConfig() if is_seq_class: _lowerCAmelCase = read_txt_into_dict(__lowerCamelCase ) _lowerCAmelCase = idalabel _lowerCAmelCase = WavaVecaForSequenceClassification(__lowerCamelCase ) _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) feature_extractor.save_pretrained(__lowerCamelCase ) elif is_finetuned: if dict_path: _lowerCAmelCase = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCAmelCase = target_dict.pad_index _lowerCAmelCase = target_dict.bos_index _lowerCAmelCase = target_dict.eos_index _lowerCAmelCase = len(target_dict.symbols ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """vocab.json""" ) if not os.path.isdir(__lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCAmelCase = 0 _lowerCAmelCase = 1 with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , ) _lowerCAmelCase = True if config.feat_extract_norm == """layer""" else False _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) _lowerCAmelCase = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) _lowerCAmelCase = WavaVecaForCTC(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaForPreTraining(__lowerCamelCase ) if is_finetuned or is_seq_class: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _lowerCAmelCase = argparse.Namespace(task="""audio_pretraining""" ) _lowerCAmelCase = fairseq.tasks.setup_task(__lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase ) _lowerCAmelCase = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) _lowercase = parser.parse_args() _lowercase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
5
1
'''simple docstring''' def A (__lowerCamelCase :float , __lowerCamelCase :list[float] ): if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) _lowerCAmelCase = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__lowerCamelCase ) ) return round(__lowerCamelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
5
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = '''decision_transformer''' _lowercase : Optional[Any] = ['''past_key_values'''] _lowercase : str = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowercase=17 , _lowercase=4 , _lowercase=128 , _lowercase=4_096 , _lowercase=True , _lowercase=1 , _lowercase=1_024 , _lowercase=3 , _lowercase=1 , _lowercase=None , _lowercase="relu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=False , _lowercase=False , **_lowercase , ): """simple docstring""" _lowerCAmelCase = state_dim _lowerCAmelCase = act_dim _lowerCAmelCase = hidden_size _lowerCAmelCase = max_ep_len _lowerCAmelCase = action_tanh _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = scale_attn_by_inverse_layer_idx _lowerCAmelCase = reorder_and_upcast_attn _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
5
1
'''simple docstring''' import argparse import struct import unittest class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = data # Initialize hash values _lowerCAmelCase = [ 0x6_A_0_9_E_6_6_7, 0xB_B_6_7_A_E_8_5, 0x3_C_6_E_F_3_7_2, 0xA_5_4_F_F_5_3_A, 0x5_1_0_E_5_2_7_F, 0x9_B_0_5_6_8_8_C, 0x1_F_8_3_D_9_A_B, 0x5_B_E_0_C_D_1_9, ] # Initialize round constants _lowerCAmelCase = [ 0x4_2_8_A_2_F_9_8, 0x7_1_3_7_4_4_9_1, 0xB_5_C_0_F_B_C_F, 0xE_9_B_5_D_B_A_5, 0x3_9_5_6_C_2_5_B, 0x5_9_F_1_1_1_F_1, 0x9_2_3_F_8_2_A_4, 0xA_B_1_C_5_E_D_5, 0xD_8_0_7_A_A_9_8, 0x1_2_8_3_5_B_0_1, 0x2_4_3_1_8_5_B_E, 0x5_5_0_C_7_D_C_3, 0x7_2_B_E_5_D_7_4, 0x8_0_D_E_B_1_F_E, 0x9_B_D_C_0_6_A_7, 0xC_1_9_B_F_1_7_4, 0xE_4_9_B_6_9_C_1, 0xE_F_B_E_4_7_8_6, 0x0_F_C_1_9_D_C_6, 0x2_4_0_C_A_1_C_C, 0x2_D_E_9_2_C_6_F, 0x4_A_7_4_8_4_A_A, 0x5_C_B_0_A_9_D_C, 0x7_6_F_9_8_8_D_A, 0x9_8_3_E_5_1_5_2, 0xA_8_3_1_C_6_6_D, 0xB_0_0_3_2_7_C_8, 0xB_F_5_9_7_F_C_7, 0xC_6_E_0_0_B_F_3, 0xD_5_A_7_9_1_4_7, 0x0_6_C_A_6_3_5_1, 0x1_4_2_9_2_9_6_7, 0x2_7_B_7_0_A_8_5, 0x2_E_1_B_2_1_3_8, 0x4_D_2_C_6_D_F_C, 0x5_3_3_8_0_D_1_3, 0x6_5_0_A_7_3_5_4, 0x7_6_6_A_0_A_B_B, 0x8_1_C_2_C_9_2_E, 0x9_2_7_2_2_C_8_5, 0xA_2_B_F_E_8_A_1, 0xA_8_1_A_6_6_4_B, 0xC_2_4_B_8_B_7_0, 0xC_7_6_C_5_1_A_3, 0xD_1_9_2_E_8_1_9, 0xD_6_9_9_0_6_2_4, 0xF_4_0_E_3_5_8_5, 0x1_0_6_A_A_0_7_0, 0x1_9_A_4_C_1_1_6, 0x1_E_3_7_6_C_0_8, 0x2_7_4_8_7_7_4_C, 0x3_4_B_0_B_C_B_5, 0x3_9_1_C_0_C_B_3, 0x4_E_D_8_A_A_4_A, 0x5_B_9_C_C_A_4_F, 0x6_8_2_E_6_F_F_3, 0x7_4_8_F_8_2_E_E, 0x7_8_A_5_6_3_6_F, 0x8_4_C_8_7_8_1_4, 0x8_C_C_7_0_2_0_8, 0x9_0_B_E_F_F_F_A, 0xA_4_5_0_6_C_E_B, 0xB_E_F_9_A_3_F_7, 0xC_6_7_1_7_8_F_2, ] _lowerCAmelCase = self.preprocessing(self.data ) self.final_hash() @staticmethod def _lowercase ( _lowercase ): """simple docstring""" _lowerCAmelCase = B"""\x80""" + (B"""\x00""" * (63 - (len(_lowercase ) + 8) % 64)) _lowerCAmelCase = struct.pack(""">Q""" , (len(_lowercase ) * 8) ) return data + padding + big_endian_integer def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCAmelCase = list(struct.unpack(""">16L""" , _lowercase ) ) # add 48 0-ed integers words += [0] * 48 _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCAmelCase = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) _lowerCAmelCase = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) _lowerCAmelCase = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0_0_0_0_0_0_0_0 # Compression _lowerCAmelCase = self.ror(_lowercase , 6 ) ^ self.ror(_lowercase , 11 ) ^ self.ror(_lowercase , 25 ) _lowerCAmelCase = (e & f) ^ ((~e & 0xF_F_F_F_F_F_F_F) & g) _lowerCAmelCase = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0_0_0_0_0_0_0_0 _lowerCAmelCase = self.ror(_lowercase , 2 ) ^ self.ror(_lowercase , 13 ) ^ self.ror(_lowercase , 22 ) _lowerCAmelCase = (a & b) ^ (a & c) ^ (b & c) _lowerCAmelCase = (sa + maj) % 0x1_0_0_0_0_0_0_0_0 _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = ( g, f, e, ((d + tempa) % 0x1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0x1_0_0_0_0_0_0_0_0), ) _lowerCAmelCase = [a, b, c, d, e, f, g, h] # Modify final values _lowerCAmelCase = [ ((element + mutated_hash_values[index]) % 0x1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] _lowerCAmelCase = """""".join([hex(_lowercase )[2:].zfill(8 ) for value in self.hashes] ) def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" return 0xF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" import hashlib _lowerCAmelCase = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(_lowercase ).hash , hashlib.shaaaa(_lowercase ).hexdigest() ) def A (): import doctest doctest.testmod() _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: _lowerCAmelCase = f.read() else: _lowerCAmelCase = bytes(__lowerCamelCase , """utf-8""" ) print(SHAaaa(__lowerCamelCase ).hash ) if __name__ == "__main__": main()
5
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) _lowercase = None _lowercase = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } _lowercase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def A (__lowerCamelCase :int , __lowerCamelCase :Optional[Any]=1 , __lowerCamelCase :List[Any]=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def A (__lowerCamelCase :Any ): with open(__lowerCamelCase , """r""" ) as f: return json.load(__lowerCamelCase ) def A (__lowerCamelCase :List[Any] , __lowerCamelCase :int ): with open(__lowerCamelCase , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple=True ): os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """tmp""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = read_json(os.path.join(__lowerCamelCase , """params.json""" ) ) _lowerCAmelCase = NUM_SHARDS[model_size] _lowerCAmelCase = params["""n_layers"""] _lowerCAmelCase = params["""n_heads"""] _lowerCAmelCase = n_heads // num_shards _lowerCAmelCase = params["""dim"""] _lowerCAmelCase = dim // n_heads _lowerCAmelCase = 10_000.0 _lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , __lowerCamelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase = params["""n_kv_heads"""] # for GQA / MQA _lowerCAmelCase = n_heads_per_shard // num_key_value_heads _lowerCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase = n_heads _lowerCAmelCase = n_heads_per_shard _lowerCAmelCase = dim # permute for sliced rotary def permute(__lowerCamelCase :Optional[int] , __lowerCamelCase :str=n_heads , __lowerCamelCase :str=dim , __lowerCamelCase :List[Any]=dim ): return w.view(__lowerCamelCase , dima // n_heads // 2 , 2 , __lowerCamelCase ).transpose(1 , 2 ).reshape(__lowerCamelCase , __lowerCamelCase ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase = torch.load(os.path.join(__lowerCamelCase , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded _lowerCAmelCase = [ torch.load(os.path.join(__lowerCamelCase , f'consolidated.{i:02d}.pth' ) , map_location="""cpu""" ) for i in range(__lowerCamelCase ) ] _lowerCAmelCase = 0 _lowerCAmelCase = {"""weight_map""": {}} for layer_i in range(__lowerCamelCase ): _lowerCAmelCase = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _lowerCAmelCase = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = inv_freq for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: _lowerCAmelCase = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(__lowerCamelCase )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__lowerCamelCase )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) # Write configs _lowerCAmelCase = {"""total_size""": param_count * 2} write_json(__lowerCamelCase , os.path.join(__lowerCamelCase , """pytorch_model.bin.index.json""" ) ) _lowerCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 _lowerCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256 _lowerCAmelCase = LlamaConfig( hidden_size=__lowerCamelCase , intermediate_size=compute_intermediate_size(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=__lowerCamelCase , ) config.save_pretrained(__lowerCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) _lowerCAmelCase = LlamaForCausalLM.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=__lowerCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(__lowerCamelCase , safe_serialization=__lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any] ): # Initialize the tokenizer based on the `spm` model _lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase = tokenizer_class(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) def A (): _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=__lowerCamelCase , help="""Whether or not to save using `safetensors`.""" ) _lowerCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , __lowerCamelCase ) if __name__ == "__main__": main()
5
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Any = ['''pixel_values'''] def __init__( self , _lowercase = True , _lowercase = 32 , _lowercase=PILImageResampling.BILINEAR , _lowercase = True , **_lowercase , ): """simple docstring""" _lowerCAmelCase = do_resize _lowerCAmelCase = do_rescale _lowerCAmelCase = size_divisor _lowerCAmelCase = resample super().__init__(**_lowercase ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase = None , **_lowercase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = get_image_size(_lowercase ) # Rounds the height and width down to the closest multiple of size_divisor _lowerCAmelCase = height // size_divisor * size_divisor _lowerCAmelCase = width // size_divisor * size_divisor _lowerCAmelCase = resize(_lowercase , (new_h, new_w) , resample=_lowercase , data_format=_lowercase , **_lowercase ) return image def _lowercase ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase ): """simple docstring""" return rescale(image=_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def _lowercase ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase=None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , **_lowercase , ): """simple docstring""" _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = size_divisor if size_divisor is not None else self.size_divisor _lowerCAmelCase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) _lowerCAmelCase = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. _lowerCAmelCase = [to_numpy_array(_lowercase ) for img in images] if do_resize: _lowerCAmelCase = [self.resize(_lowercase , size_divisor=_lowercase , resample=_lowercase ) for image in images] if do_rescale: _lowerCAmelCase = [self.rescale(_lowercase , scale=1 / 255 ) for image in images] _lowerCAmelCase = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] _lowerCAmelCase = {"""pixel_values""": images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
5
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = (DDPMScheduler,) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_lowercase ) return config def _lowercase ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def _lowercase ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def _lowercase ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def _lowercase ( self ): """simple docstring""" self.check_over_configs(thresholding=_lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def _lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowercase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowercase ): if i == len(_lowercase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowercase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowercase , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowercase ) with self.assertRaises(_lowercase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowercase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_lowercase )
5
1
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _lowercase = re.compile(R"""\s+""") def A (__lowerCamelCase :Optional[int] ): return {"hash": hashlib.mda(re.sub(__lowerCamelCase , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def A (__lowerCamelCase :Optional[Any] ): _lowerCAmelCase = [len(__lowerCamelCase ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(__lowerCamelCase ), "line_max": max(__lowerCamelCase )} def A (__lowerCamelCase :Tuple ): _lowerCAmelCase = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def A (__lowerCamelCase :Dict , __lowerCamelCase :str ): if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any]=5 ): _lowerCAmelCase = ["""auto-generated""", """autogenerated""", """automatically generated"""] _lowerCAmelCase = example["""content"""].splitlines() for _, line in zip(range(__lowerCamelCase ) , __lowerCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A (__lowerCamelCase :Tuple , __lowerCamelCase :Union[str, Any]=5 , __lowerCamelCase :Dict=0.05 ): _lowerCAmelCase = ["""unit tests""", """test file""", """configuration file"""] _lowerCAmelCase = example["""content"""].splitlines() _lowerCAmelCase = 0 _lowerCAmelCase = 0 # first test for _, line in zip(range(__lowerCamelCase ) , __lowerCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCAmelCase = example["""content"""].count("""\n""" ) _lowerCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A (__lowerCamelCase :Tuple ): _lowerCAmelCase = ["""def """, """class """, """for """, """while """] _lowerCAmelCase = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :int=4 ): _lowerCAmelCase = example["""content"""].splitlines() _lowerCAmelCase = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A (__lowerCamelCase :Tuple ): _lowerCAmelCase = tokenizer(example["""content"""] , truncation=__lowerCamelCase )["""input_ids"""] _lowerCAmelCase = len(example["""content"""] ) / len(__lowerCamelCase ) return {"ratio": ratio} def A (__lowerCamelCase :Any ): _lowerCAmelCase = {} results.update(get_hash(__lowerCamelCase ) ) results.update(line_stats(__lowerCamelCase ) ) results.update(alpha_stats(__lowerCamelCase ) ) results.update(char_token_ratio(__lowerCamelCase ) ) results.update(is_autogenerated(__lowerCamelCase ) ) results.update(is_config_or_test(__lowerCamelCase ) ) results.update(has_no_keywords(__lowerCamelCase ) ) results.update(has_few_assignments(__lowerCamelCase ) ) return results def A (__lowerCamelCase :List[Any] , __lowerCamelCase :int , __lowerCamelCase :List[Any] ): if not check_uniques(__lowerCamelCase , __lowerCamelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A (__lowerCamelCase :int ): with open(__lowerCamelCase , """rb""" ) as f_in: with gzip.open(str(__lowerCamelCase ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(__lowerCamelCase , __lowerCamelCase ) os.unlink(__lowerCamelCase ) # Settings _lowercase = HfArgumentParser(PreprocessingArguments) _lowercase = parser.parse_args() if args.num_workers is None: _lowercase = multiprocessing.cpu_count() _lowercase = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _lowercase = time.time() _lowercase = load_dataset(args.dataset_name, split="""train""") print(F"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing _lowercase = time.time() _lowercase = ds.map(preprocess, num_proc=args.num_workers) print(F"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes _lowercase = set(ds.unique("""hash""")) _lowercase = len(uniques) / len(ds) print(F"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics _lowercase = time.time() _lowercase = ds.filter(filter, fn_kwargs={"""uniques""": uniques, """args""": args}) print(F"""Time to filter dataset: {time.time()-t_start:.2f}""") print(F"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _lowercase = time.time() _lowercase , _lowercase = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(F"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file _lowercase = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / """duplicate_clusters.json""", """w""") as f: json.dump(duplicate_clusters, f) _lowercase = output_dir / """data""" data_dir.mkdir(exist_ok=True) _lowercase = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _lowercase = str(data_dir / F"""file-{file_number+1:012}.json""") _lowercase = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"""Time to save dataset: {time.time()-t_start:.2f}""")
5
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowercase = logging.get_logger(__name__) _lowercase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : '''simple docstring''' _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_SCREAMING_SNAKE_CASE )} ) _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) _lowercase : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase : int = field( default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) _lowercase : int = field( default=6_4 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) _lowercase : int = field( default=3_0 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) _lowercase : float = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) _lowercase : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''train''' _lowercase : Union[str, Any] = '''dev''' class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : SquadDataTrainingArguments _lowercase : List[SquadFeatures] _lowercase : Split _lowercase : bool def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = False , _lowercase = None , _lowercase = "pt" , ): """simple docstring""" _lowerCAmelCase = args _lowerCAmelCase = is_language_sensitive _lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowercase , _lowercase ): try: _lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _lowerCAmelCase = mode # Load data features from cache or dataset file _lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" _lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + """.lock""" with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: _lowerCAmelCase = time.time() _lowerCAmelCase = torch.load(_lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase = self.old_features["""features"""] _lowerCAmelCase = self.old_features.get("""dataset""" , _lowercase ) _lowerCAmelCase = self.old_features.get("""examples""" , _lowercase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: _lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: _lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) _lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , ) _lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.features[i] _lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) _lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
5
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Union[str, Any] = '''wavlm''' def __init__( self , _lowercase=32 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.02 , _lowercase=1e-5 , _lowercase="group" , _lowercase="gelu" , _lowercase=(512, 512, 512, 512, 512, 512, 512) , _lowercase=(5, 2, 2, 2, 2, 2, 2) , _lowercase=(10, 3, 3, 3, 3, 2, 2) , _lowercase=False , _lowercase=128 , _lowercase=16 , _lowercase=320 , _lowercase=800 , _lowercase=False , _lowercase=True , _lowercase=0.05 , _lowercase=10 , _lowercase=2 , _lowercase=0.0 , _lowercase=10 , _lowercase=320 , _lowercase=2 , _lowercase=0.1 , _lowercase=100 , _lowercase=256 , _lowercase=256 , _lowercase=0.1 , _lowercase="mean" , _lowercase=False , _lowercase=False , _lowercase=256 , _lowercase=(512, 512, 512, 512, 1_500) , _lowercase=(5, 3, 3, 1, 1) , _lowercase=(1, 2, 3, 1, 1) , _lowercase=512 , _lowercase=80 , _lowercase=0 , _lowercase=1 , _lowercase=2 , _lowercase=False , _lowercase=3 , _lowercase=2 , _lowercase=3 , _lowercase=None , **_lowercase , ): """simple docstring""" super().__init__(**_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = feat_extract_norm _lowerCAmelCase = feat_extract_activation _lowerCAmelCase = list(_lowercase ) _lowerCAmelCase = list(_lowercase ) _lowerCAmelCase = list(_lowercase ) _lowerCAmelCase = conv_bias _lowerCAmelCase = num_buckets _lowerCAmelCase = max_bucket_distance _lowerCAmelCase = num_conv_pos_embeddings _lowerCAmelCase = num_conv_pos_embedding_groups _lowerCAmelCase = len(self.conv_dim ) _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = feat_proj_dropout _lowerCAmelCase = final_dropout _lowerCAmelCase = layerdrop _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = num_ctc_classes _lowerCAmelCase = vocab_size _lowerCAmelCase = do_stable_layer_norm _lowerCAmelCase = use_weighted_layer_sum _lowerCAmelCase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase = apply_spec_augment _lowerCAmelCase = mask_time_prob _lowerCAmelCase = mask_time_length _lowerCAmelCase = mask_time_min_masks _lowerCAmelCase = mask_feature_prob _lowerCAmelCase = mask_feature_length # parameters for pretraining with codevector quantized representations _lowerCAmelCase = num_codevectors_per_group _lowerCAmelCase = num_codevector_groups _lowerCAmelCase = contrastive_logits_temperature _lowerCAmelCase = num_negatives _lowerCAmelCase = codevector_dim _lowerCAmelCase = proj_codevector_dim _lowerCAmelCase = diversity_loss_weight # ctc loss _lowerCAmelCase = ctc_loss_reduction _lowerCAmelCase = ctc_zero_infinity # adapter _lowerCAmelCase = add_adapter _lowerCAmelCase = adapter_kernel_size _lowerCAmelCase = adapter_stride _lowerCAmelCase = num_adapter_layers _lowerCAmelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase = list(_lowercase ) _lowerCAmelCase = list(_lowercase ) _lowerCAmelCase = list(_lowercase ) _lowerCAmelCase = xvector_output_dim @property def _lowercase ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
5
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''dpr''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase="absolute" , _lowercase = 0 , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = projection_dim _lowerCAmelCase = position_embedding_type
5
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Optional[Any] = DiTPipeline _lowercase : List[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _lowercase : List[Any] = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _lowercase : Optional[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _lowercase : Optional[int] = False def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_lowercase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=_lowercase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def _lowercase ( self , _lowercase , _lowercase=0 ): """simple docstring""" if str(_lowercase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(_lowercase ) else: _lowerCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) _lowerCAmelCase = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = self.get_dummy_inputs(_lowercase ) _lowerCAmelCase = pipe(**_lowercase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowercase , 1e-3 ) def _lowercase ( self ): """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_lowercase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _lowercase ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase = pipe.get_label_ids(_lowercase ) _lowerCAmelCase = pipe(_lowercase , generator=_lowercase , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(_lowercase , _lowercase ): _lowerCAmelCase = load_numpy( F'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1e-2 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella"""] _lowerCAmelCase = pipe.get_label_ids(_lowercase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(_lowercase , generator=_lowercase , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(_lowercase , _lowercase ): _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1e-1
5
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _lowercase = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ _lowercase = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ _lowercase = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase ( self ): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase ( self , _lowercase , _lowercase , _lowercase=None , _lowercase="uniform_average" , _lowercase=True ): """simple docstring""" _lowerCAmelCase = mean_squared_error( _lowercase , _lowercase , sample_weight=_lowercase , multioutput=_lowercase , squared=_lowercase ) return {"mse": mse}
5
1
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=2 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = 13 _lowerCAmelCase = 7 _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = 99 _lowerCAmelCase = 384 _lowerCAmelCase = 2 _lowerCAmelCase = 4 _lowerCAmelCase = 37 _lowerCAmelCase = """gelu""" _lowerCAmelCase = 0.1 _lowerCAmelCase = 0.1 _lowerCAmelCase = 512 _lowerCAmelCase = 16 _lowerCAmelCase = 2 _lowerCAmelCase = 0.02 _lowerCAmelCase = 3 _lowerCAmelCase = 4 _lowerCAmelCase = 128 _lowerCAmelCase = 2 _lowerCAmelCase = 9 _lowerCAmelCase = 1 _lowerCAmelCase = None def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_lowercase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFConvBertModel(config=_lowercase ) _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase = [input_ids, input_mask] _lowerCAmelCase = model(_lowercase ) _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFConvBertForMaskedLM(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFConvBertForSequenceClassification(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.num_choices _lowerCAmelCase = TFConvBertForMultipleChoice(config=_lowercase ) _lowerCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFConvBertForTokenClassification(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFConvBertForQuestionAnswering(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Tuple = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _lowercase : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _lowercase : Optional[Any] = False _lowercase : str = False _lowercase : Any = False def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFConvBertModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowercase ) @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True _lowerCAmelCase = True if hasattr(_lowercase , """use_cache""" ): _lowerCAmelCase = True _lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) _lowerCAmelCase = getattr(self.model_tester , """key_length""" , _lowercase ) for model_class in self.all_model_classes: _lowerCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = len(model(_lowercase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowercase , saved_model=_lowercase ) _lowerCAmelCase = os.path.join(_lowercase , """saved_model""" , """1""" ) _lowerCAmelCase = tf.keras.models.load_model(_lowercase ) _lowerCAmelCase = model(_lowercase ) if self.is_encoder_decoder: _lowerCAmelCase = outputs["""encoder_hidden_states"""] _lowerCAmelCase = outputs["""encoder_attentions"""] else: _lowerCAmelCase = outputs["""hidden_states"""] _lowerCAmelCase = outputs["""attentions"""] self.assertEqual(len(_lowercase ) , _lowercase ) _lowerCAmelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True _lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) _lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) _lowerCAmelCase = getattr(self.model_tester , """key_length""" , _lowercase ) _lowerCAmelCase = getattr(self.model_tester , """key_length""" , _lowercase ) def check_decoder_attentions_output(_lowercase ): _lowerCAmelCase = len(_lowercase ) self.assertEqual(out_len % 2 , 0 ) _lowerCAmelCase = outputs.decoder_attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_lowercase ): _lowerCAmelCase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) _lowerCAmelCase = len(_lowercase ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) if self.is_encoder_decoder: _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_decoder_attentions_output(_lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _lowerCAmelCase = True _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) # Check attention is always last and order is fine _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_lowercase ) ) self.assertEqual(model.config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) _lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase = model(_lowercase )[0] _lowerCAmelCase = [1, 6, 768] self.assertEqual(output.shape , _lowercase ) _lowerCAmelCase = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowercase , atol=1e-4 )
5
'''simple docstring''' def A (): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: _lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def A (): return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
5
1
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=16 , _lowercase=36 , _lowercase=6 , _lowercase=6 , _lowercase=6 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = embedding_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_hidden_groups _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self ): """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = AlbertModel(config=_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase ) _lowerCAmelCase = model(_lowercase , token_type_ids=_lowercase ) _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = AlbertForPreTraining(config=_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , sentence_order_label=_lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = AlbertForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = AlbertForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , start_positions=_lowercase , end_positions=_lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = AlbertForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = AlbertForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.num_choices _lowerCAmelCase = AlbertForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Optional[int] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) _lowercase : Union[str, Any] = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) _lowercase : Any = True def _lowercase ( self , _lowercase , _lowercase , _lowercase=False ): """simple docstring""" _lowerCAmelCase = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class in get_values(_lowercase ): _lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowercase ) _lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) return inputs_dict def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = AlbertModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*_lowercase ) @slow def _lowercase ( self ): """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = AlbertModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = AlbertModel.from_pretrained("""albert-base-v2""" ) _lowerCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _lowerCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCAmelCase = model(_lowercase , attention_mask=_lowercase )[0] _lowerCAmelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _lowercase ) _lowerCAmelCase = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1e-4 ) )
5
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
5
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) _lowerCAmelCase = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" _lowerCAmelCase = model(_lowercase )["""last_hidden_state"""] _lowerCAmelCase = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice. _lowerCAmelCase = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
5
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
5
1
'''simple docstring''' from __future__ import annotations class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = text, pattern _lowerCAmelCase , _lowerCAmelCase = len(_lowercase ), len(_lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _lowercase ( self , _lowercase ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = [] for i in range(self.textLen - self.patLen + 1 ): _lowerCAmelCase = self.mismatch_in_text(_lowercase ) if mismatch_index == -1: positions.append(_lowercase ) else: _lowerCAmelCase = self.match_in_pattern(self.text[mismatch_index] ) _lowerCAmelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _lowercase = """ABAABA""" _lowercase = """AB""" _lowercase = BoyerMooreSearch(text, pattern) _lowercase = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
5
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") _lowercase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) _lowercase = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) _lowercase = BeautifulSoup(res.text, """html.parser""") _lowercase = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
5
1
'''simple docstring''' _lowercase = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
5
'''simple docstring''' import os from datetime import datetime as dt from github import Github _lowercase = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def A (): _lowerCAmelCase = Github(os.environ["""GITHUB_TOKEN"""] ) _lowerCAmelCase = g.get_repo("""huggingface/diffusers""" ) _lowerCAmelCase = repo.get_issues(state="""open""" ) for issue in open_issues: _lowerCAmelCase = sorted(issue.get_comments() , key=lambda __lowerCamelCase : i.created_at , reverse=__lowerCamelCase ) _lowerCAmelCase = comments[0] if len(__lowerCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
5
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable _lowercase = list[list[float | int]] def A (__lowerCamelCase :Matrix , __lowerCamelCase :Matrix ): _lowerCAmelCase = len(__lowerCamelCase ) _lowerCAmelCase = [[0 for _ in range(size + 1 )] for _ in range(__lowerCamelCase )] _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 for row in range(__lowerCamelCase ): for col in range(__lowerCamelCase ): _lowerCAmelCase = matrix[row][col] _lowerCAmelCase = vector[row][0] _lowerCAmelCase = 0 _lowerCAmelCase = 0 while row < size and col < size: # pivoting _lowerCAmelCase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCamelCase , __lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCAmelCase , _lowerCAmelCase = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCamelCase ): _lowerCAmelCase = augmented[rowa][col] / augmented[row][col] _lowerCAmelCase = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCamelCase ): for row in range(__lowerCamelCase ): _lowerCAmelCase = augmented[row][col] / augmented[col][col] for cola in range(__lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCamelCase ) ] def A (__lowerCamelCase :list[int] ): _lowerCAmelCase = len(__lowerCamelCase ) _lowerCAmelCase = [[0 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] _lowerCAmelCase = [[0] for _ in range(__lowerCamelCase )] _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 for x_val, y_val in enumerate(__lowerCamelCase ): for col in range(__lowerCamelCase ): _lowerCAmelCase = (x_val + 1) ** (size - col - 1) _lowerCAmelCase = y_val _lowerCAmelCase = solve(__lowerCamelCase , __lowerCamelCase ) def interpolated_func(__lowerCamelCase :int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCamelCase ) ) return interpolated_func def A (__lowerCamelCase :int ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def A (__lowerCamelCase :Callable[[int], int] = question_function , __lowerCamelCase :int = 10 ): _lowerCAmelCase = [func(__lowerCamelCase ) for x_val in range(1 , order + 1 )] _lowerCAmelCase = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowerCAmelCase = 0 _lowerCAmelCase = 42 _lowerCAmelCase = 42 for poly in polynomials: _lowerCAmelCase = 1 while func(__lowerCamelCase ) == poly(__lowerCamelCase ): x_val += 1 ret += poly(__lowerCamelCase ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
5
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
5
1
'''simple docstring''' import math _lowercase = 10 _lowercase = 7 _lowercase = BALLS_PER_COLOUR * NUM_COLOURS def A (__lowerCamelCase :int = 20 ): _lowerCAmelCase = math.comb(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = math.comb(NUM_BALLS - BALLS_PER_COLOUR , __lowerCamelCase ) _lowerCAmelCase = NUM_COLOURS * (1 - missing_colour / total) return f'{result:.9f}' if __name__ == "__main__": print(solution(20))
5
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
1
'''simple docstring''' import argparse import os import re import packaging.version _lowercase = """examples/""" _lowercase = { """examples""": (re.compile(R"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(R"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(R"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), R"""\1version=\"VERSION\","""), """doc""": (re.compile(R"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _lowercase = { """init""": """src/diffusers/__init__.py""", """setup""": """setup.py""", } _lowercase = """README.md""" def A (__lowerCamelCase :Any , __lowerCamelCase :Optional[int] , __lowerCamelCase :Optional[Any] ): with open(__lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _lowerCAmelCase = f.read() _lowerCAmelCase , _lowerCAmelCase = REPLACE_PATTERNS[pattern] _lowerCAmelCase = replace.replace("""VERSION""" , __lowerCamelCase ) _lowerCAmelCase = re_pattern.sub(__lowerCamelCase , __lowerCamelCase ) with open(__lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(__lowerCamelCase ) def A (__lowerCamelCase :Optional[int] ): for folder, directories, fnames in os.walk(__lowerCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , pattern="""examples""" ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any]=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not patch: update_version_in_examples(__lowerCamelCase ) def A (): _lowerCAmelCase = """🤗 Transformers currently provides the following architectures""" _lowerCAmelCase = """1. Want to contribute a new model?""" with open(__lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _lowerCAmelCase = f.readlines() # Find the start of the list. _lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): _lowerCAmelCase = lines[index].replace( """https://huggingface.co/docs/diffusers/main/model_doc""" , """https://huggingface.co/docs/diffusers/model_doc""" , ) index += 1 with open(__lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__lowerCamelCase ) def A (): with open(REPLACE_FILES["""init"""] , """r""" ) as f: _lowerCAmelCase = f.read() _lowerCAmelCase = REPLACE_PATTERNS["""init"""][0].search(__lowerCamelCase ).groups()[0] return packaging.version.parse(__lowerCamelCase ) def A (__lowerCamelCase :Union[str, Any]=False ): _lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: _lowerCAmelCase = default_version.base_version elif patch: _lowerCAmelCase = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: _lowerCAmelCase = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. _lowerCAmelCase = input(f'Which version are you releasing? [{default_version}]' ) if len(__lowerCamelCase ) == 0: _lowerCAmelCase = default_version print(f'Updating version to {version}.' ) global_version_update(__lowerCamelCase , patch=__lowerCamelCase ) def A (): _lowerCAmelCase = get_version() _lowerCAmelCase = f'{current_version.major}.{current_version.minor + 1}.0.dev0' _lowerCAmelCase = current_version.base_version # Check with the user we got that right. _lowerCAmelCase = input(f'Which version are we developing now? [{dev_version}]' ) if len(__lowerCamelCase ) == 0: _lowerCAmelCase = dev_version print(f'Updating version to {version}.' ) global_version_update(__lowerCamelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _lowercase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
5
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _lowercase = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_lowercase ): """simple docstring""" super().__init__(**_lowercase ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self , _lowercase , **_lowercase ): """simple docstring""" return super().__call__(_lowercase , **_lowercase ) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a sound of {}." ): """simple docstring""" if isinstance(_lowercase , _lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _lowerCAmelCase = requests.get(_lowercase ).content else: with open(_lowercase , """rb""" ) as f: _lowerCAmelCase = f.read() if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate ) if not isinstance(_lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) _lowerCAmelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) _lowerCAmelCase = [text_inputs] return inputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_inputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _lowercase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**_lowercase , **_lowercase ) _lowerCAmelCase = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_outputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_outputs["""logits"""][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=0 ) _lowerCAmelCase = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) _lowerCAmelCase = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] ) ] return result
5
1
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _lowercase = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ _lowercase = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ _lowercase = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def _lowercase ( self , _lowercase , _lowercase , _lowercase=4 , _lowercase=False ): """simple docstring""" _lowerCAmelCase = compute_bleu( reference_corpus=_lowercase , translation_corpus=_lowercase , max_order=_lowercase , smooth=_lowercase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
5
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = ['''input_values''', '''padding_mask'''] def __init__( self , _lowercase = 1 , _lowercase = 24_000 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , **_lowercase , ): """simple docstring""" super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) _lowerCAmelCase = chunk_length_s _lowerCAmelCase = overlap @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , _lowercase , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs _lowerCAmelCase = True _lowerCAmelCase = bool( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_lowercase , np.ndarray ): _lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _lowerCAmelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [np.asarray(_lowercase ).T] # verify inputs are valid for idx, example in enumerate(_lowercase ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) _lowerCAmelCase = None _lowerCAmelCase = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _lowerCAmelCase = min(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.floor(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _lowerCAmelCase = max(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.ceil(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length _lowerCAmelCase = """max_length""" else: _lowerCAmelCase = input_values # normal padding on batch if padded_inputs is None: _lowerCAmelCase = self.pad( _lowercase , max_length=_lowercase , truncation=_lowercase , padding=_lowercase , return_attention_mask=_lowercase , ) if padding: _lowerCAmelCase = padded_inputs.pop("""attention_mask""" ) _lowerCAmelCase = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: _lowerCAmelCase = example[..., None] input_values.append(example.T ) _lowerCAmelCase = input_values if return_tensors is not None: _lowerCAmelCase = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
5
1
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("""0.8.3"""): raise Exception("""requires gluonnlp == 0.8.3""") if version.parse(mx.__version__) != version.parse("""1.5.0"""): raise Exception("""requires mxnet == 1.5.0""") logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = """The Nymphenburg Palace is a beautiful palace in Munich!""" def A (__lowerCamelCase :str , __lowerCamelCase :str ): _lowerCAmelCase = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1e-5, """token_type_vocab_size""": 2, } _lowerCAmelCase = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py _lowerCAmelCase = BERTEncoder( attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=__lowerCamelCase , output_all_encodings=__lowerCamelCase , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , __lowerCamelCase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later _lowerCAmelCase = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab _lowerCAmelCase = os.path.join(get_home_dir() , """models""" ) _lowerCAmelCase = _load_vocab(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , cls=__lowerCamelCase ) _lowerCAmelCase = nlp.model.BERTModel( __lowerCamelCase , len(__lowerCamelCase ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=__lowerCamelCase , use_token_type_embed=__lowerCamelCase , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=__lowerCamelCase , use_decoder=__lowerCamelCase , ) original_bort.load_parameters(__lowerCamelCase , cast_dtype=__lowerCamelCase , ignore_extra=__lowerCamelCase ) _lowerCAmelCase = original_bort._collect_params_with_prefix() # Build our config 🤗 _lowerCAmelCase = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(__lowerCamelCase ), } _lowerCAmelCase = BertConfig.from_dict(__lowerCamelCase ) _lowerCAmelCase = BertForMaskedLM(__lowerCamelCase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(__lowerCamelCase :Any ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(__lowerCamelCase :Any , __lowerCamelCase :Tuple ): _lowerCAmelCase = hf_param.shape _lowerCAmelCase = to_torch(params[gluon_param] ) _lowerCAmelCase = gluon_param.shape assert ( shape_hf == shape_gluon ), f'The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers' return gluon_param _lowerCAmelCase = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" ) _lowerCAmelCase = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" ) _lowerCAmelCase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" ) _lowerCAmelCase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) _lowerCAmelCase = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): _lowerCAmelCase = hf_bort_model.bert.encoder.layer[i] # self attention _lowerCAmelCase = layer.attention.self _lowerCAmelCase = check_and_map_params( self_attn.key.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.bias' ) _lowerCAmelCase = check_and_map_params( self_attn.key.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.weight' ) _lowerCAmelCase = check_and_map_params( self_attn.query.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.bias' ) _lowerCAmelCase = check_and_map_params( self_attn.query.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.weight' ) _lowerCAmelCase = check_and_map_params( self_attn.value.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.bias' ) _lowerCAmelCase = check_and_map_params( self_attn.value.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.weight' ) # self attention output _lowerCAmelCase = layer.attention.output _lowerCAmelCase = check_and_map_params( self_output.dense.bias , f'encoder.transformer_cells.{i}.proj.bias' ) _lowerCAmelCase = check_and_map_params( self_output.dense.weight , f'encoder.transformer_cells.{i}.proj.weight' ) _lowerCAmelCase = check_and_map_params( self_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.layer_norm.beta' ) _lowerCAmelCase = check_and_map_params( self_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.layer_norm.gamma' ) # intermediate _lowerCAmelCase = layer.intermediate _lowerCAmelCase = check_and_map_params( intermediate.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_1.bias' ) _lowerCAmelCase = check_and_map_params( intermediate.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_1.weight' ) # output _lowerCAmelCase = layer.output _lowerCAmelCase = check_and_map_params( bert_output.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_2.bias' ) _lowerCAmelCase = check_and_map_params( bert_output.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_2.weight' ) _lowerCAmelCase = check_and_map_params( bert_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.ffn.layer_norm.beta' ) _lowerCAmelCase = check_and_map_params( bert_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.ffn.layer_norm.gamma' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models _lowerCAmelCase = RobertaTokenizer.from_pretrained("""roberta-base""" ) _lowerCAmelCase = tokenizer.encode_plus(__lowerCamelCase )["""input_ids"""] # Get gluon output _lowerCAmelCase = mx.nd.array([input_ids] ) _lowerCAmelCase = original_bort(inputs=__lowerCamelCase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(__lowerCamelCase ) _lowerCAmelCase = BertModel.from_pretrained(__lowerCamelCase ) hf_bort_model.eval() _lowerCAmelCase = tokenizer.encode_plus(__lowerCamelCase , return_tensors="""pt""" ) _lowerCAmelCase = hf_bort_model(**__lowerCamelCase )[0] _lowerCAmelCase = output_gluon[0].asnumpy() _lowerCAmelCase = output_hf[0].detach().numpy() _lowerCAmelCase = np.max(np.abs(hf_layer - gluon_layer ) ).item() _lowerCAmelCase = np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) if success: print("""✔️ Both model do output the same tensors""" ) else: print("""❌ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" , __lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bort_checkpoint_path""", default=None, type=str, required=True, help="""Path the official Bort params file.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _lowercase = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
5
'''simple docstring''' _lowercase = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
5
1
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def A (__lowerCamelCase :Union[str, Any] ): return {key.lstrip("""-""" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def A (): _lowerCAmelCase = ArgumentParser( """HuggingFace Datasets CLI tool""" , usage="""datasets-cli <command> [<args>]""" , allow_abbrev=__lowerCamelCase ) _lowerCAmelCase = parser.add_subparsers(help="""datasets-cli command helpers""" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__lowerCamelCase ) EnvironmentCommand.register_subcommand(__lowerCamelCase ) TestCommand.register_subcommand(__lowerCamelCase ) RunBeamCommand.register_subcommand(__lowerCamelCase ) DummyDataCommand.register_subcommand(__lowerCamelCase ) # Parse args _lowerCAmelCase , _lowerCAmelCase = parser.parse_known_args() if not hasattr(__lowerCamelCase , """func""" ): parser.print_help() exit(1 ) _lowerCAmelCase = parse_unknown_args(__lowerCamelCase ) # Run _lowerCAmelCase = args.func(__lowerCamelCase , **__lowerCamelCase ) service.run() if __name__ == "__main__": main()
5
'''simple docstring''' import functools def A (__lowerCamelCase :list[int] , __lowerCamelCase :list[int] ): # Validation if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(__lowerCamelCase ) >= 366: raise ValueError("""All days elements should be less than 366""" ) _lowerCAmelCase = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase :int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: _lowercase = None _lowercase = logging.get_logger(__name__) _lowercase = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} _lowercase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", }, """tokenizer_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""", }, } _lowercase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } _lowercase = """▁""" # Segments (not really needed) _lowercase = 0 _lowercase = 1 _lowercase = 2 _lowercase = 3 _lowercase = 4 class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = VOCAB_FILES_NAMES _lowercase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : str = '''left''' _lowercase : Optional[int] = XLNetTokenizer def __init__( self , _lowercase=None , _lowercase=None , _lowercase=False , _lowercase=True , _lowercase=False , _lowercase="<s>" , _lowercase="</s>" , _lowercase="<unk>" , _lowercase="<sep>" , _lowercase="<pad>" , _lowercase="<cls>" , _lowercase="<mask>" , _lowercase=["<eop>", "<eod>"] , **_lowercase , ): """simple docstring""" _lowerCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) _lowerCAmelCase = 3 _lowerCAmelCase = do_lower_case _lowerCAmelCase = remove_space _lowerCAmelCase = keep_accents _lowerCAmelCase = vocab_file _lowerCAmelCase = False if not self.vocab_file else True def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_lowercase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCAmelCase = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
5
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 384 if "tiny" in model_name: _lowerCAmelCase = [3, 3, 9, 3] _lowerCAmelCase = [96, 192, 384, 768] if "small" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [96, 192, 384, 768] if "base" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [128, 256, 512, 1024] _lowerCAmelCase = 512 if "large" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [192, 384, 768, 1536] _lowerCAmelCase = 768 if "xlarge" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [256, 512, 1024, 2048] _lowerCAmelCase = 1024 # set label information _lowerCAmelCase = 150 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """ade20k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = ConvNextConfig( depths=__lowerCamelCase , hidden_sizes=__lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) _lowerCAmelCase = UperNetConfig( backbone_config=__lowerCamelCase , auxiliary_in_channels=__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , ) return config def A (__lowerCamelCase :Optional[Any] ): _lowerCAmelCase = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict , __lowerCamelCase :Tuple ): _lowerCAmelCase = dct.pop(__lowerCamelCase ) _lowerCAmelCase = val def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ): _lowerCAmelCase = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } _lowerCAmelCase = model_name_to_url[model_name] _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""state_dict"""] _lowerCAmelCase = get_upernet_config(__lowerCamelCase ) _lowerCAmelCase = UperNetForSemanticSegmentation(__lowerCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase = state_dict.pop(__lowerCamelCase ) if "bn" in key: _lowerCAmelCase = key.replace("""bn""" , """batch_norm""" ) _lowerCAmelCase = val # rename keys _lowerCAmelCase = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # verify on image _lowerCAmelCase = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _lowerCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" ) _lowerCAmelCase = SegformerImageProcessor() _lowerCAmelCase = processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values with torch.no_grad(): _lowerCAmelCase = model(__lowerCamelCase ) if model_name == "upernet-convnext-tiny": _lowerCAmelCase = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _lowerCAmelCase = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _lowerCAmelCase = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _lowerCAmelCase = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _lowerCAmelCase = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
5
1
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _lowercase = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ _lowercase = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ _lowercase = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase ( self ): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase ( self , _lowercase , _lowercase , _lowercase=None , _lowercase="uniform_average" , _lowercase=True ): """simple docstring""" _lowerCAmelCase = mean_squared_error( _lowercase , _lowercase , sample_weight=_lowercase , multioutput=_lowercase , squared=_lowercase ) return {"mse": mse}
5
'''simple docstring''' from itertools import product def A (__lowerCamelCase :int , __lowerCamelCase :int ): _lowerCAmelCase = sides_number _lowerCAmelCase = max_face_number * dice_number _lowerCAmelCase = [0] * (max_total + 1) _lowerCAmelCase = 1 _lowerCAmelCase = range(__lowerCamelCase , max_face_number + 1 ) for dice_numbers in product(__lowerCamelCase , repeat=__lowerCamelCase ): _lowerCAmelCase = sum(__lowerCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def A (): _lowerCAmelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) _lowerCAmelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) _lowerCAmelCase = 0 _lowerCAmelCase = 9 _lowerCAmelCase = 4 * 9 _lowerCAmelCase = 6 for peter_total in range(__lowerCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _lowerCAmelCase = (4**9) * (6**6) _lowerCAmelCase = peter_wins_count / total_games_number _lowerCAmelCase = round(__lowerCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
5
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''dpr''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase="absolute" , _lowercase = 0 , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = projection_dim _lowerCAmelCase = position_embedding_type
5
'''simple docstring''' from manim import * class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""CPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(1 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""GPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.align_to(_lowercase , _lowercase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""Model""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , ) _lowerCAmelCase = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) _lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) ) self.add(_lowercase ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for i, rect in enumerate(_lowercase ): _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 ) cpu_target.move_to(_lowercase ) cpu_target.generate_target() _lowerCAmelCase = 0.46 / 4 _lowerCAmelCase = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 ) cpu_targs.append(_lowercase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) ) second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) ) self.play(*_lowercase ) self.play(*_lowercase ) self.wait()
5
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowercase : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) _lowercase : ClassVar[Features] = Features({'''labels''': ClassLabel} ) _lowercase : str = "text" _lowercase : str = "labels" def _lowercase ( self , _lowercase ): """simple docstring""" if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , _lowercase ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) _lowerCAmelCase = copy.deepcopy(self ) _lowerCAmelCase = self.label_schema.copy() _lowerCAmelCase = features[self.label_column] _lowerCAmelCase = label_schema return task_template @property def _lowercase ( self ): """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
5
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowercase = False try: _lowercase = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase = None , _lowercase = [] ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = choices _lowerCAmelCase = prompt if sys.platform == "win32": _lowerCAmelCase = """*""" else: _lowerCAmelCase = """➔ """ def _lowercase ( self , _lowercase , _lowercase = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , _lowercase ) else: forceWrite(self.choices[index] , _lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(_lowercase ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def _lowercase ( self , _lowercase , _lowercase = 1 ): """simple docstring""" _lowerCAmelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowercase ) move_cursor(_lowercase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = int(chr(self.current_selection ) ) _lowerCAmelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowercase ) else: return else: return def _lowercase ( self , _lowercase = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) _lowerCAmelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowercase ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase = int(builtins.input() ) except ValueError: _lowerCAmelCase = default_choice else: _lowerCAmelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(_lowercase , """\n""" ) return choice
5
1
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _lowercase = 16 _lowercase = 32 def A (__lowerCamelCase :Accelerator , __lowerCamelCase :int = 16 , __lowerCamelCase :str = "bert-base-cased" ): _lowerCAmelCase = AutoTokenizer.from_pretrained(__lowerCamelCase ) _lowerCAmelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__lowerCamelCase :int ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCAmelCase = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=__lowerCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__lowerCamelCase :List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__lowerCamelCase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(__lowerCamelCase , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. _lowerCAmelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) _lowerCAmelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader def A (__lowerCamelCase :Any , __lowerCamelCase :Optional[int] , __lowerCamelCase :Tuple , __lowerCamelCase :Union[str, Any] ): model.eval() _lowerCAmelCase = 0 for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase = model(**__lowerCamelCase ) _lowerCAmelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _lowerCAmelCase , _lowerCAmelCase = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__lowerCamelCase ) - 1: _lowerCAmelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] _lowerCAmelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) _lowerCAmelCase = metric.compute() return eval_metric["accuracy"] def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] ): # Initialize accelerator _lowerCAmelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase = config["""lr"""] _lowerCAmelCase = int(config["""num_epochs"""] ) _lowerCAmelCase = int(config["""seed"""] ) _lowerCAmelCase = int(config["""batch_size"""] ) _lowerCAmelCase = args.model_name_or_path set_seed(__lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = get_dataloaders(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(__lowerCamelCase , return_dict=__lowerCamelCase ) # Instantiate optimizer _lowerCAmelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _lowerCAmelCase = optimizer_cls(params=model.parameters() , lr=__lowerCamelCase ) if accelerator.state.deepspeed_plugin is not None: _lowerCAmelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: _lowerCAmelCase = 1 _lowerCAmelCase = (len(__lowerCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=0 , num_training_steps=__lowerCamelCase , ) else: _lowerCAmelCase = DummyScheduler(__lowerCamelCase , total_num_steps=__lowerCamelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # We need to keep track of how many total steps we have iterated over _lowerCAmelCase = 0 # We also need to keep track of the stating epoch so files are named properly _lowerCAmelCase = 0 _lowerCAmelCase = evaluate.load("""glue""" , """mrpc""" ) _lowerCAmelCase = num_epochs if args.partial_train_epoch is not None: _lowerCAmelCase = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) _lowerCAmelCase = args.resume_from_checkpoint.split("""epoch_""" )[1] _lowerCAmelCase = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break _lowerCAmelCase = int(__lowerCamelCase ) + 1 _lowerCAmelCase = evaluation_loop(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) accelerator.print("""resumed checkpoint performance:""" , __lowerCamelCase ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , """r""" ) as f: _lowerCAmelCase = json.load(__lowerCamelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model _lowerCAmelCase = {} for epoch in range(__lowerCamelCase , __lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): _lowerCAmelCase = model(**__lowerCamelCase ) _lowerCAmelCase = outputs.loss _lowerCAmelCase = loss / gradient_accumulation_steps accelerator.backward(__lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 _lowerCAmelCase = f'epoch_{epoch}' _lowerCAmelCase = os.path.join(args.output_dir , __lowerCamelCase ) accelerator.save_state(__lowerCamelCase ) _lowerCAmelCase = evaluation_loop(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = accuracy _lowerCAmelCase = lr_scheduler.get_lr()[0] _lowerCAmelCase = optimizer.param_groups[0]["""lr"""] _lowerCAmelCase = epoch _lowerCAmelCase = overall_step accelerator.print(f'epoch {epoch}:' , __lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def A (): _lowerCAmelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=__lowerCamelCase , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=__lowerCamelCase , ) parser.add_argument( """--output_dir""" , type=__lowerCamelCase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=__lowerCamelCase , default=__lowerCamelCase , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=__lowerCamelCase , default=__lowerCamelCase , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=__lowerCamelCase , default=2 , help="""Number of train epochs.""" , ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
5
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } _lowercase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def A (__lowerCamelCase :Optional[int] ): _lowerCAmelCase = {} with open(__lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(__lowerCamelCase ): _lowerCAmelCase = line.strip() if line: _lowerCAmelCase = line.split() _lowerCAmelCase = line_number _lowerCAmelCase = words[0] _lowerCAmelCase = value return result def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any] , __lowerCamelCase :List[str] ): for attribute in key.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": _lowerCAmelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = shape_pointer.shape # let's reduce dimension _lowerCAmelCase = value[0] else: _lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCAmelCase = value elif weight_type == "weight_g": _lowerCAmelCase = value elif weight_type == "weight_v": _lowerCAmelCase = value elif weight_type == "bias": _lowerCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = value else: _lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] , __lowerCamelCase :int ): _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _lowerCAmelCase = """.""".join([key, hf_param_name] ) else: _lowerCAmelCase = key _lowerCAmelCase = value if """lm_head""" in full_key else value[0] _lowercase = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :List[str]=None , __lowerCamelCase :List[Any]=None ): _lowerCAmelCase = False for key, mapped_key in MAPPING.items(): _lowerCAmelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCAmelCase = True if "*" in mapped_key: _lowerCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase = """weight_g""" elif "weight_v" in name: _lowerCAmelCase = """weight_v""" elif "bias" in name: _lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase = """weight""" else: _lowerCAmelCase = None if hf_dict is not None: rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return is_used return is_used def A (__lowerCamelCase :Any , __lowerCamelCase :Dict , __lowerCamelCase :Dict ): _lowerCAmelCase = [] _lowerCAmelCase = fairseq_model.state_dict() _lowerCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) _lowerCAmelCase = True else: _lowerCAmelCase = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any , __lowerCamelCase :List[Any] , __lowerCamelCase :List[Any] ): _lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase = name.split(""".""" ) _lowerCAmelCase = int(items[0] ) _lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def A (__lowerCamelCase :List[str] , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any]=None , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :str=True , __lowerCamelCase :str=False ): if config_path is not None: _lowerCAmelCase = WavaVecaConfig.from_pretrained(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaConfig() if is_seq_class: _lowerCAmelCase = read_txt_into_dict(__lowerCamelCase ) _lowerCAmelCase = idalabel _lowerCAmelCase = WavaVecaForSequenceClassification(__lowerCamelCase ) _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) feature_extractor.save_pretrained(__lowerCamelCase ) elif is_finetuned: if dict_path: _lowerCAmelCase = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCAmelCase = target_dict.pad_index _lowerCAmelCase = target_dict.bos_index _lowerCAmelCase = target_dict.eos_index _lowerCAmelCase = len(target_dict.symbols ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """vocab.json""" ) if not os.path.isdir(__lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCAmelCase = 0 _lowerCAmelCase = 1 with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , ) _lowerCAmelCase = True if config.feat_extract_norm == """layer""" else False _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) _lowerCAmelCase = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) _lowerCAmelCase = WavaVecaForCTC(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaForPreTraining(__lowerCamelCase ) if is_finetuned or is_seq_class: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _lowerCAmelCase = argparse.Namespace(task="""audio_pretraining""" ) _lowerCAmelCase = fairseq.tasks.setup_task(__lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase ) _lowerCAmelCase = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) _lowercase = parser.parse_args() _lowercase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
5
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class UpperCAmelCase_ : '''simple docstring''' _lowercase : int _lowercase : Node | None = None _lowercase : Node | None = None def A (): _lowerCAmelCase = Node(1 ) _lowerCAmelCase = Node(2 ) _lowerCAmelCase = Node(3 ) _lowerCAmelCase = Node(4 ) _lowerCAmelCase = Node(5 ) return tree def A (__lowerCamelCase :Node | None ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def A (__lowerCamelCase :Node | None ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def A (__lowerCamelCase :Node | None ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def A (__lowerCamelCase :Node | None ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def A (__lowerCamelCase :Node | None ): _lowerCAmelCase = [] if root is None: return output _lowerCAmelCase = deque([root] ) while process_queue: _lowerCAmelCase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def A (__lowerCamelCase :Node | None , __lowerCamelCase :int ): _lowerCAmelCase = [] def populate_output(__lowerCamelCase :Node | None , __lowerCamelCase :int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__lowerCamelCase , __lowerCamelCase ) return output def A (__lowerCamelCase :Node | None , __lowerCamelCase :int ): _lowerCAmelCase = [] def populate_output(__lowerCamelCase :Node | None , __lowerCamelCase :int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__lowerCamelCase , __lowerCamelCase ) return output def A (__lowerCamelCase :Node | None ): if root is None: return [] _lowerCAmelCase = [] _lowerCAmelCase = 0 _lowerCAmelCase = height(__lowerCamelCase ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = 1 else: output.append(get_nodes_from_right_to_left(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = 0 return output def A (): # Main function for testing. _lowerCAmelCase = make_tree() print(f'In-order Traversal: {inorder(__lowerCamelCase )}' ) print(f'Pre-order Traversal: {preorder(__lowerCamelCase )}' ) print(f'Post-order Traversal: {postorder(__lowerCamelCase )}' , """\n""" ) print(f'Height of Tree: {height(__lowerCamelCase )}' , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(__lowerCamelCase ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(__lowerCamelCase ) + 1 ): print(f'Level {level}:' , get_nodes_from_left_to_right(__lowerCamelCase , level=__lowerCamelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(__lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
5
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = '''decision_transformer''' _lowercase : Optional[Any] = ['''past_key_values'''] _lowercase : str = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowercase=17 , _lowercase=4 , _lowercase=128 , _lowercase=4_096 , _lowercase=True , _lowercase=1 , _lowercase=1_024 , _lowercase=3 , _lowercase=1 , _lowercase=None , _lowercase="relu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=False , _lowercase=False , **_lowercase , ): """simple docstring""" _lowerCAmelCase = state_dim _lowerCAmelCase = act_dim _lowerCAmelCase = hidden_size _lowerCAmelCase = max_ep_len _lowerCAmelCase = action_tanh _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = scale_attn_by_inverse_layer_idx _lowerCAmelCase = reorder_and_upcast_attn _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
5
1
'''simple docstring''' def A (__lowerCamelCase :int = 10 , __lowerCamelCase :int = 22 ): _lowerCAmelCase = range(1 , __lowerCamelCase ) _lowerCAmelCase = range(1 , __lowerCamelCase ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(10, 22) = }""")
5
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) _lowercase = None _lowercase = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } _lowercase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def A (__lowerCamelCase :int , __lowerCamelCase :Optional[Any]=1 , __lowerCamelCase :List[Any]=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def A (__lowerCamelCase :Any ): with open(__lowerCamelCase , """r""" ) as f: return json.load(__lowerCamelCase ) def A (__lowerCamelCase :List[Any] , __lowerCamelCase :int ): with open(__lowerCamelCase , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple=True ): os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """tmp""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = read_json(os.path.join(__lowerCamelCase , """params.json""" ) ) _lowerCAmelCase = NUM_SHARDS[model_size] _lowerCAmelCase = params["""n_layers"""] _lowerCAmelCase = params["""n_heads"""] _lowerCAmelCase = n_heads // num_shards _lowerCAmelCase = params["""dim"""] _lowerCAmelCase = dim // n_heads _lowerCAmelCase = 10_000.0 _lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , __lowerCamelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase = params["""n_kv_heads"""] # for GQA / MQA _lowerCAmelCase = n_heads_per_shard // num_key_value_heads _lowerCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase = n_heads _lowerCAmelCase = n_heads_per_shard _lowerCAmelCase = dim # permute for sliced rotary def permute(__lowerCamelCase :Optional[int] , __lowerCamelCase :str=n_heads , __lowerCamelCase :str=dim , __lowerCamelCase :List[Any]=dim ): return w.view(__lowerCamelCase , dima // n_heads // 2 , 2 , __lowerCamelCase ).transpose(1 , 2 ).reshape(__lowerCamelCase , __lowerCamelCase ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase = torch.load(os.path.join(__lowerCamelCase , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded _lowerCAmelCase = [ torch.load(os.path.join(__lowerCamelCase , f'consolidated.{i:02d}.pth' ) , map_location="""cpu""" ) for i in range(__lowerCamelCase ) ] _lowerCAmelCase = 0 _lowerCAmelCase = {"""weight_map""": {}} for layer_i in range(__lowerCamelCase ): _lowerCAmelCase = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _lowerCAmelCase = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = inv_freq for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: _lowerCAmelCase = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(__lowerCamelCase )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__lowerCamelCase )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) # Write configs _lowerCAmelCase = {"""total_size""": param_count * 2} write_json(__lowerCamelCase , os.path.join(__lowerCamelCase , """pytorch_model.bin.index.json""" ) ) _lowerCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 _lowerCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256 _lowerCAmelCase = LlamaConfig( hidden_size=__lowerCamelCase , intermediate_size=compute_intermediate_size(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=__lowerCamelCase , ) config.save_pretrained(__lowerCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) _lowerCAmelCase = LlamaForCausalLM.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=__lowerCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(__lowerCamelCase , safe_serialization=__lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any] ): # Initialize the tokenizer based on the `spm` model _lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase = tokenizer_class(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) def A (): _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=__lowerCamelCase , help="""Whether or not to save using `safetensors`.""" ) _lowerCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , __lowerCamelCase ) if __name__ == "__main__": main()
5
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = (DDPMScheduler,) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_lowercase ) return config def _lowercase ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def _lowercase ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def _lowercase ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def _lowercase ( self ): """simple docstring""" self.check_over_configs(thresholding=_lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def _lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowercase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowercase ): if i == len(_lowercase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowercase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowercase , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowercase ) with self.assertRaises(_lowercase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowercase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_lowercase )
5
1
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[Any] = '''Wav2Vec2FeatureExtractor''' _lowercase : Optional[Any] = '''AutoTokenizer''' def __init__( self , _lowercase , _lowercase ): """simple docstring""" super().__init__(_lowercase , _lowercase ) _lowerCAmelCase = self.feature_extractor _lowerCAmelCase = False @classmethod def _lowercase ( cls , _lowercase , **_lowercase ): """simple docstring""" try: return super().from_pretrained(_lowercase , **_lowercase ) except OSError: warnings.warn( F'Loading a tokenizer inside {cls.__name__} from a config that does not' """ include a `tokenizer_class` attribute is deprecated and will be """ """removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`""" """ attribute to either your `config.json` or `tokenizer_config.json` """ """file to suppress this warning: """ , _lowercase , ) _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(_lowercase , **_lowercase ) _lowerCAmelCase = WavaVecaCTCTokenizer.from_pretrained(_lowercase , **_lowercase ) return cls(feature_extractor=_lowercase , tokenizer=_lowercase ) def __call__( self , *_lowercase , **_lowercase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) _lowerCAmelCase = kwargs.pop("""raw_speech""" ) else: _lowerCAmelCase = kwargs.pop("""audio""" , _lowercase ) _lowerCAmelCase = kwargs.pop("""sampling_rate""" , _lowercase ) _lowerCAmelCase = kwargs.pop("""text""" , _lowercase ) if len(_lowercase ) > 0: _lowerCAmelCase = args[0] _lowerCAmelCase = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: _lowerCAmelCase = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) if text is not None: _lowerCAmelCase = self.tokenizer(_lowercase , **_lowercase ) if text is None: return inputs elif audio is None: return encodings else: _lowerCAmelCase = encodings["""input_ids"""] return inputs def _lowercase ( self , *_lowercase , **_lowercase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*_lowercase , **_lowercase ) _lowerCAmelCase = kwargs.pop("""input_features""" , _lowercase ) _lowerCAmelCase = kwargs.pop("""labels""" , _lowercase ) if len(_lowercase ) > 0: _lowerCAmelCase = args[0] _lowerCAmelCase = args[1:] if input_features is not None: _lowerCAmelCase = self.feature_extractor.pad(_lowercase , *_lowercase , **_lowercase ) if labels is not None: _lowerCAmelCase = self.tokenizer.pad(_lowercase , **_lowercase ) if labels is None: return input_features elif input_features is None: return labels else: _lowerCAmelCase = labels["""input_ids"""] return input_features def _lowercase ( self , *_lowercase , **_lowercase ): """simple docstring""" return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def _lowercase ( self , *_lowercase , **_lowercase ): """simple docstring""" return self.tokenizer.decode(*_lowercase , **_lowercase ) @contextmanager def _lowercase ( self ): """simple docstring""" warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) _lowerCAmelCase = True _lowerCAmelCase = self.tokenizer yield _lowerCAmelCase = self.feature_extractor _lowerCAmelCase = False
5
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowercase = logging.get_logger(__name__) _lowercase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : '''simple docstring''' _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_SCREAMING_SNAKE_CASE )} ) _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) _lowercase : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase : int = field( default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) _lowercase : int = field( default=6_4 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) _lowercase : int = field( default=3_0 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) _lowercase : float = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) _lowercase : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''train''' _lowercase : Union[str, Any] = '''dev''' class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : SquadDataTrainingArguments _lowercase : List[SquadFeatures] _lowercase : Split _lowercase : bool def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = False , _lowercase = None , _lowercase = "pt" , ): """simple docstring""" _lowerCAmelCase = args _lowerCAmelCase = is_language_sensitive _lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowercase , _lowercase ): try: _lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _lowerCAmelCase = mode # Load data features from cache or dataset file _lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" _lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + """.lock""" with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: _lowerCAmelCase = time.time() _lowerCAmelCase = torch.load(_lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase = self.old_features["""features"""] _lowerCAmelCase = self.old_features.get("""dataset""" , _lowercase ) _lowerCAmelCase = self.old_features.get("""examples""" , _lowercase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: _lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: _lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) _lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , ) _lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.features[i] _lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) _lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
5
1
'''simple docstring''' import cva import numpy as np class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase , _lowercase ): """simple docstring""" if k in (0.04, 0.06): _lowerCAmelCase = k _lowerCAmelCase = window_size else: raise ValueError("""invalid k value""" ) def __str__( self ): """simple docstring""" return str(self.k ) def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = cva.imread(_lowercase , 0 ) _lowerCAmelCase , _lowerCAmelCase = img.shape _lowerCAmelCase = [] _lowerCAmelCase = img.copy() _lowerCAmelCase = cva.cvtColor(_lowercase , cva.COLOR_GRAY2RGB ) _lowerCAmelCase , _lowerCAmelCase = np.gradient(_lowercase ) _lowerCAmelCase = dx**2 _lowerCAmelCase = dy**2 _lowerCAmelCase = dx * dy _lowerCAmelCase = 0.04 _lowerCAmelCase = self.window_size // 2 for y in range(_lowercase , h - offset ): for x in range(_lowercase , w - offset ): _lowerCAmelCase = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowerCAmelCase = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowerCAmelCase = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowerCAmelCase = (wxx * wyy) - (wxy**2) _lowerCAmelCase = wxx + wyy _lowerCAmelCase = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": _lowercase = HarrisCorner(0.04, 3) _lowercase , _lowercase = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
5
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''dpr''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase="absolute" , _lowercase = 0 , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = projection_dim _lowerCAmelCase = position_embedding_type
5
1
'''simple docstring''' from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge _lowercase = [ """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the""" """ final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe""" """ depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.""", """The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal""" """ accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's""" """ founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the""" """ body.""", """Amnesty International releases its annual report on the death penalty. The report catalogs the use of""" """ state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the""" """ world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital""" """ punishment.""", ] _lowercase = [ """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""" """ Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz""" """ had informed his Lufthansa training school of an episode of severe depression, airline says .""", """Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .""" """ Israel and the United States opposed the move, which could open the door to war crimes investigations against""" """ Israelis .""", """Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to""" """ death . Organization claims that governments around the world are using the threat of terrorism to advance""" """ executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death""" """ sentences up by 28% .""", ] def A (): _lowerCAmelCase = calculate_rouge(__lowerCamelCase , __lowerCamelCase , bootstrap_aggregation=__lowerCamelCase , rouge_keys=["""rouge2""", """rougeL"""] ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = calculate_rouge(__lowerCamelCase , __lowerCamelCase , bootstrap_aggregation=__lowerCamelCase , rouge_keys=["""rouge2"""] ) assert ( pd.DataFrame(no_aggregation["""rouge2"""] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["""rouge2"""] ).fmeasure.mean() ) def A (): _lowerCAmelCase = """rougeLsum""" _lowerCAmelCase = calculate_rouge(__lowerCamelCase , __lowerCamelCase , newline_sep=__lowerCamelCase , rouge_keys=[k] )[k] _lowerCAmelCase = calculate_rouge(__lowerCamelCase , __lowerCamelCase , newline_sep=__lowerCamelCase , rouge_keys=[k] )[k] assert score > score_no_sep def A (): _lowerCAmelCase = ["""rouge1""", """rouge2""", """rougeL"""] _lowerCAmelCase = calculate_rouge(__lowerCamelCase , __lowerCamelCase , newline_sep=__lowerCamelCase , rouge_keys=__lowerCamelCase ) _lowerCAmelCase = calculate_rouge(__lowerCamelCase , __lowerCamelCase , newline_sep=__lowerCamelCase , rouge_keys=__lowerCamelCase ) assert score_sep == score_no_sep def A (): _lowerCAmelCase = [ """Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.""", """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""", ] _lowerCAmelCase = [ """Margot Frank, died in 1945, a month earlier than previously thought.""", """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of""" """ the final seconds on board Flight 9525.""", ] assert calculate_rouge(__lowerCamelCase , __lowerCamelCase , newline_sep=__lowerCamelCase ) == calculate_rouge(__lowerCamelCase , __lowerCamelCase , newline_sep=__lowerCamelCase ) def A (): _lowerCAmelCase = [ """\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" """ ] _lowerCAmelCase = [ """ Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .""" ] _lowerCAmelCase = calculate_rouge(__lowerCamelCase , __lowerCamelCase , rouge_keys=["""rougeLsum"""] , newline_sep=__lowerCamelCase )["""rougeLsum"""] _lowerCAmelCase = calculate_rouge(__lowerCamelCase , __lowerCamelCase , rouge_keys=["""rougeLsum"""] )["""rougeLsum"""] assert new_score > prev_score def A (): _lowerCAmelCase = Path("""examples/seq2seq/test_data/wmt_en_ro""" ) _lowerCAmelCase = calculate_rouge_path(data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = calculate_rouge_path( data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) , bootstrap_aggregation=__lowerCamelCase ) assert isinstance(__lowerCamelCase , __lowerCamelCase )
5
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _lowercase = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ _lowercase = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ _lowercase = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase ( self ): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase ( self , _lowercase , _lowercase , _lowercase=None , _lowercase="uniform_average" , _lowercase=True ): """simple docstring""" _lowerCAmelCase = mean_squared_error( _lowercase , _lowercase , sample_weight=_lowercase , multioutput=_lowercase , squared=_lowercase ) return {"mse": mse}
5
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def A (__lowerCamelCase :int ): _lowerCAmelCase = botoa.client("""iam""" ) _lowerCAmelCase = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=__lowerCamelCase , AssumeRolePolicyDocument=json.dumps(__lowerCamelCase , indent=2 ) ) _lowerCAmelCase = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=__lowerCamelCase , PolicyName=f'{role_name}_policy_permission' , PolicyDocument=json.dumps(__lowerCamelCase , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f'role {role_name} already exists. Using existing one' ) def A (__lowerCamelCase :List[str] ): _lowerCAmelCase = botoa.client("""iam""" ) return iam_client.get_role(RoleName=__lowerCamelCase )["Role"]["Arn"] def A (): _lowerCAmelCase = _ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , __lowerCamelCase , ) _lowerCAmelCase = None if credentials_configuration == 0: _lowerCAmelCase = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" ) _lowerCAmelCase = aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) _lowerCAmelCase = _ask_field("""AWS Access Key ID: """ ) _lowerCAmelCase = aws_access_key_id _lowerCAmelCase = _ask_field("""AWS Secret Access Key: """ ) _lowerCAmelCase = aws_secret_access_key _lowerCAmelCase = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" ) _lowerCAmelCase = aws_region _lowerCAmelCase = _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , __lowerCamelCase , ) if role_management == 0: _lowerCAmelCase = _ask_field("""Enter your IAM role name: """ ) else: _lowerCAmelCase = """accelerate_sagemaker_execution_role""" print(f'Accelerate will create an iam role "{iam_role_name}" using the provided credentials' ) _create_iam_role_for_sagemaker(__lowerCamelCase ) _lowerCAmelCase = _ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="""Please enter yes or no.""" , ) _lowerCAmelCase = None if is_custom_docker_image: _lowerCAmelCase = _ask_field("""Enter your Docker image: """ , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() ) _lowerCAmelCase = _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="""Please enter yes or no.""" , ) _lowerCAmelCase = None if is_sagemaker_inputs_enabled: _lowerCAmelCase = _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() , ) _lowerCAmelCase = _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="""Please enter yes or no.""" , ) _lowerCAmelCase = None if is_sagemaker_metrics_enabled: _lowerCAmelCase = _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() , ) _lowerCAmelCase = _ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) _lowerCAmelCase = {} _lowerCAmelCase = _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="""Please enter yes or no.""" , ) if use_dynamo: _lowerCAmelCase = """dynamo_""" _lowerCAmelCase = _ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) _lowerCAmelCase = _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="""Please enter yes or no.""" , ) if use_custom_options: _lowerCAmelCase = _ask_options( """Which mode do you want to use?""" , __lowerCamelCase , lambda __lowerCamelCase : TORCH_DYNAMO_MODES[int(__lowerCamelCase )] , default="""default""" , ) _lowerCAmelCase = _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="""Please enter yes or no.""" , ) _lowerCAmelCase = _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="""Please enter yes or no.""" , ) _lowerCAmelCase = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: _lowerCAmelCase = _ask_options( __lowerCamelCase , __lowerCamelCase , lambda __lowerCamelCase : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(__lowerCamelCase )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" _lowerCAmelCase = _ask_field(__lowerCamelCase , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() , default="""ml.p3.2xlarge""" ) _lowerCAmelCase = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): _lowerCAmelCase = _ask_field( """How many machines do you want use? [1]: """ , __lowerCamelCase , default=1 , ) _lowerCAmelCase = _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=__lowerCamelCase , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=__lowerCamelCase , use_cpu=__lowerCamelCase , dynamo_config=__lowerCamelCase , eca_instance_type=__lowerCamelCase , profile=__lowerCamelCase , region=__lowerCamelCase , iam_role_name=__lowerCamelCase , mixed_precision=__lowerCamelCase , num_machines=__lowerCamelCase , sagemaker_inputs_file=__lowerCamelCase , sagemaker_metrics_file=__lowerCamelCase , )
5
'''simple docstring''' def A (): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: _lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def A (): return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
5
1
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def A (): raise RuntimeError("""CUDA out of memory.""" ) class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self ): """simple docstring""" super().__init__() _lowerCAmelCase = nn.Linear(3 , 4 ) _lowerCAmelCase = nn.BatchNormad(4 ) _lowerCAmelCase = nn.Linear(4 , 5 ) def _lowercase ( self , _lowercase ): """simple docstring""" return self.lineara(self.batchnorm(self.lineara(_lowercase ) ) ) class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(_lowercase ): nonlocal batch_sizes batch_sizes.append(_lowercase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(_lowercase , [128, 64, 32, 16, 8] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(_lowercase , _lowercase ): nonlocal batch_sizes batch_sizes.append(_lowercase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga _lowerCAmelCase , _lowerCAmelCase = mock_training_loop_function("""hello""" ) self.assertListEqual(_lowercase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, """hello"""] ) def _lowercase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(_lowercase ): pass with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def _lowercase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_lowercase ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def _lowercase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(_lowercase , _lowercase , _lowercase ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(_lowercase ) as cm: mock_training_loop_function(128 , """hello""" , """world""" ) self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0] ) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0] ) def _lowercase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_lowercase ): raise ValueError("""Oops, we had an error!""" ) with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0] ) @require_cuda def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = torch.cuda.memory_allocated() _lowerCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , _lowercase ) _lowerCAmelCase = release_memory(_lowercase ) self.assertEqual(torch.cuda.memory_allocated() , _lowercase )
5
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
5
1
'''simple docstring''' from __future__ import annotations def A (__lowerCamelCase :list[int] ): return len(set(__lowerCamelCase ) ) == len(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
5
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
5
1
'''simple docstring''' import os from pathlib import Path def A (): from torch.utils.cpp_extension import load _lowerCAmelCase = Path(__lowerCamelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" _lowerCAmelCase = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , __lowerCamelCase , with_cuda=__lowerCamelCase , extra_include_paths=[str(__lowerCamelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
5
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") _lowercase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) _lowercase = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) _lowercase = BeautifulSoup(res.text, """html.parser""") _lowercase = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
5
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = { """configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """ResNetForImageClassification""", """ResNetModel""", """ResNetPreTrainedModel""", """ResNetBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFResNetForImageClassification""", """TFResNetModel""", """TFResNetPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """FlaxResNetForImageClassification""", """FlaxResNetModel""", """FlaxResNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
5
'''simple docstring''' import os from datetime import datetime as dt from github import Github _lowercase = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def A (): _lowerCAmelCase = Github(os.environ["""GITHUB_TOKEN"""] ) _lowerCAmelCase = g.get_repo("""huggingface/diffusers""" ) _lowerCAmelCase = repo.get_issues(state="""open""" ) for issue in open_issues: _lowerCAmelCase = sorted(issue.get_comments() , key=lambda __lowerCamelCase : i.created_at , reverse=__lowerCamelCase ) _lowerCAmelCase = comments[0] if len(__lowerCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
5
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowercase : ClassVar[Features] = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) _lowercase : ClassVar[Features] = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) _lowercase : str = "question" _lowercase : str = "context" _lowercase : str = "answers" @property def _lowercase ( self ): """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
5
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
5
1
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : str = FunnelTokenizer _lowercase : int = FunnelTokenizerFast _lowercase : str = True _lowercase : Tuple = True def _lowercase ( self ): """simple docstring""" super().setUp() _lowerCAmelCase = [ """<unk>""", """<cls>""", """<sep>""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _lowercase ( self , **_lowercase ): """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def _lowercase ( self , **_lowercase ): """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = """UNwant\u00E9d,running""" _lowerCAmelCase = """unwanted, running""" return input_text, output_text def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.tokenizer_class(self.vocab_file ) _lowerCAmelCase = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(_lowercase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , [7, 4, 5, 10, 8, 9] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: _lowerCAmelCase = tokenizer("""UNwant\u00E9d,running""" ) _lowerCAmelCase = len(inputs["""input_ids"""] ) - 1 self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len ) _lowerCAmelCase = tokenizer("""UNwant\u00E9d,running""" , """UNwant\u00E9d,running""" ) self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len + [1] * sentence_len )
5
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
1
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_SCREAMING_SNAKE_CASE ) , '''Tatoeba directory does not exist.''' ) class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=_lowercase ) @slow def _lowercase ( self ): """simple docstring""" self.resolver.convert_models(["""heb-eng"""] ) @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=_lowercase ) assert mmeta["long_pair"] == "heb-eng"
5
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _lowercase = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_lowercase ): """simple docstring""" super().__init__(**_lowercase ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self , _lowercase , **_lowercase ): """simple docstring""" return super().__call__(_lowercase , **_lowercase ) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a sound of {}." ): """simple docstring""" if isinstance(_lowercase , _lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _lowerCAmelCase = requests.get(_lowercase ).content else: with open(_lowercase , """rb""" ) as f: _lowerCAmelCase = f.read() if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate ) if not isinstance(_lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) _lowerCAmelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) _lowerCAmelCase = [text_inputs] return inputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_inputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _lowercase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**_lowercase , **_lowercase ) _lowerCAmelCase = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_outputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_outputs["""logits"""][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=0 ) _lowerCAmelCase = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) _lowerCAmelCase = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] ) ] return result
5
1
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() _lowercase = logging.get_logger("""transformers.models.encodec""") _lowercase = { """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } _lowercase = { """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } _lowercase = { """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } _lowercase = { """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } _lowercase = { """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } _lowercase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } _lowercase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } _lowercase = [] _lowercase = [] def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :str , __lowerCamelCase :Optional[int] ): for attribute in key.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: _lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCAmelCase = value elif weight_type == "weight_g": _lowerCAmelCase = value elif weight_type == "weight_v": _lowerCAmelCase = value elif weight_type == "bias": _lowerCAmelCase = value elif weight_type == "running_mean": _lowerCAmelCase = value elif weight_type == "running_var": _lowerCAmelCase = value elif weight_type == "num_batches_tracked": _lowerCAmelCase = value elif weight_type == "weight_ih_l0": _lowerCAmelCase = value elif weight_type == "weight_hh_l0": _lowerCAmelCase = value elif weight_type == "bias_ih_l0": _lowerCAmelCase = value elif weight_type == "bias_hh_l0": _lowerCAmelCase = value elif weight_type == "weight_ih_l1": _lowerCAmelCase = value elif weight_type == "weight_hh_l1": _lowerCAmelCase = value elif weight_type == "bias_ih_l1": _lowerCAmelCase = value elif weight_type == "bias_hh_l1": _lowerCAmelCase = value else: _lowerCAmelCase = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def A (__lowerCamelCase :List[str] , __lowerCamelCase :str ): for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _lowerCAmelCase , _lowerCAmelCase = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def A (__lowerCamelCase :Any , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict ): _lowerCAmelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": _lowerCAmelCase = MAPPING_24K elif model_name == "encodec_48khz": _lowerCAmelCase = MAPPING_48K else: raise ValueError(f'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(__lowerCamelCase , __lowerCamelCase ): logger.info(f'{name} was ignored' ) continue _lowerCAmelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: _lowerCAmelCase , _lowerCAmelCase = key.split(""".*.""" ) if prefix in name and suffix in name: _lowerCAmelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ): continue _lowerCAmelCase = True if "*" in mapped_key: _lowerCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase = """weight_g""" elif "weight_v" in name: _lowerCAmelCase = """weight_v""" elif "weight_ih_l0" in name: _lowerCAmelCase = """weight_ih_l0""" elif "weight_hh_l0" in name: _lowerCAmelCase = """weight_hh_l0""" elif "bias_ih_l0" in name: _lowerCAmelCase = """bias_ih_l0""" elif "bias_hh_l0" in name: _lowerCAmelCase = """bias_hh_l0""" elif "weight_ih_l1" in name: _lowerCAmelCase = """weight_ih_l1""" elif "weight_hh_l1" in name: _lowerCAmelCase = """weight_hh_l1""" elif "bias_ih_l1" in name: _lowerCAmelCase = """bias_ih_l1""" elif "bias_hh_l1" in name: _lowerCAmelCase = """bias_hh_l1""" elif "bias" in name: _lowerCAmelCase = """bias""" elif "weight" in name: _lowerCAmelCase = """weight""" elif "running_mean" in name: _lowerCAmelCase = """running_mean""" elif "running_var" in name: _lowerCAmelCase = """running_var""" elif "num_batches_tracked" in name: _lowerCAmelCase = """num_batches_tracked""" else: _lowerCAmelCase = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) @torch.no_grad() def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :List[Any] , __lowerCamelCase :str , __lowerCamelCase :int=None , __lowerCamelCase :str=None , ): if config_path is not None: _lowerCAmelCase = EncodecConfig.from_pretrained(__lowerCamelCase ) else: _lowerCAmelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _lowerCAmelCase = [8, 5, 4, 4] _lowerCAmelCase = [2.2] _lowerCAmelCase = 64 _lowerCAmelCase = 32000 _lowerCAmelCase = 2048 _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False elif model_name == "encodec_48khz": _lowerCAmelCase = [8, 5, 4, 2] _lowerCAmelCase = [3.0, 6.0, 12.0, 24.0] _lowerCAmelCase = 48000 _lowerCAmelCase = 2 _lowerCAmelCase = False _lowerCAmelCase = """time_group_norm""" _lowerCAmelCase = True _lowerCAmelCase = 1.0 _lowerCAmelCase = 0.01 else: raise ValueError(f'Unknown model name: {model_name}' ) _lowerCAmelCase = EncodecModel(__lowerCamelCase ) _lowerCAmelCase = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__lowerCamelCase ) _lowerCAmelCase = torch.load(__lowerCamelCase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _lowerCAmelCase = original_checkpoint["""best_state"""] recursively_load_weights(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) if repo_id: print("""Pushing to the hub...""" ) feature_extractor.push_to_hub(__lowerCamelCase ) model.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _lowercase = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
5
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = ['''input_values''', '''padding_mask'''] def __init__( self , _lowercase = 1 , _lowercase = 24_000 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , **_lowercase , ): """simple docstring""" super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) _lowerCAmelCase = chunk_length_s _lowerCAmelCase = overlap @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , _lowercase , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs _lowerCAmelCase = True _lowerCAmelCase = bool( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_lowercase , np.ndarray ): _lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _lowerCAmelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [np.asarray(_lowercase ).T] # verify inputs are valid for idx, example in enumerate(_lowercase ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) _lowerCAmelCase = None _lowerCAmelCase = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _lowerCAmelCase = min(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.floor(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _lowerCAmelCase = max(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.ceil(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length _lowerCAmelCase = """max_length""" else: _lowerCAmelCase = input_values # normal padding on batch if padded_inputs is None: _lowerCAmelCase = self.pad( _lowercase , max_length=_lowercase , truncation=_lowercase , padding=_lowercase , return_attention_mask=_lowercase , ) if padding: _lowerCAmelCase = padded_inputs.pop("""attention_mask""" ) _lowerCAmelCase = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: _lowerCAmelCase = example[..., None] input_values.append(example.T ) _lowerCAmelCase = input_values if return_tensors is not None: _lowerCAmelCase = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
5
1
'''simple docstring''' import numpy as np def A (__lowerCamelCase :np.array ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
5
'''simple docstring''' _lowercase = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
5
1
'''simple docstring''' def A (__lowerCamelCase :int = 100 ): _lowerCAmelCase = 0 _lowerCAmelCase = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
5
'''simple docstring''' import functools def A (__lowerCamelCase :list[int] , __lowerCamelCase :list[int] ): # Validation if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(__lowerCamelCase ) >= 366: raise ValueError("""All days elements should be less than 366""" ) _lowerCAmelCase = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase :int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _lowercase = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = ['''pixel_values'''] def __init__( self , _lowercase = True , _lowercase = None , _lowercase = PILImageResampling.BICUBIC , _lowercase = True , _lowercase = None , _lowercase = True , _lowercase = 1 / 255 , _lowercase = True , _lowercase = None , _lowercase = None , _lowercase = True , **_lowercase , ): """simple docstring""" super().__init__(**_lowercase ) _lowerCAmelCase = size if size is not None else {"""shortest_edge""": 224} _lowerCAmelCase = get_size_dict(_lowercase , default_to_square=_lowercase ) _lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _lowerCAmelCase = get_size_dict(_lowercase , default_to_square=_lowercase , param_name="""crop_size""" ) _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = resample _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _lowerCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD _lowerCAmelCase = do_convert_rgb def _lowercase ( self , _lowercase , _lowercase , _lowercase = PILImageResampling.BICUBIC , _lowercase = None , **_lowercase , ): """simple docstring""" _lowerCAmelCase = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _lowerCAmelCase = get_resize_output_image_size(_lowercase , size=size["""shortest_edge"""] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def _lowercase ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase , ): """simple docstring""" _lowerCAmelCase = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_lowercase , size=(size["""height"""], size["""width"""]) , data_format=_lowercase , **_lowercase ) def _lowercase ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase , ): """simple docstring""" return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase = None , **_lowercase , ): """simple docstring""" return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def _lowercase ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , **_lowercase , ): """simple docstring""" _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(_lowercase , param_name="""size""" , default_to_square=_lowercase ) _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase = get_size_dict(_lowercase , param_name="""crop_size""" , default_to_square=_lowercase ) _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase = image_std if image_std is not None else self.image_std _lowerCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowerCAmelCase = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowerCAmelCase = [convert_to_rgb(_lowercase ) for image in images] # All transformations expect numpy arrays. _lowerCAmelCase = [to_numpy_array(_lowercase ) for image in images] if do_resize: _lowerCAmelCase = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: _lowerCAmelCase = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: _lowerCAmelCase = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: _lowerCAmelCase = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] _lowerCAmelCase = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] _lowerCAmelCase = {"""pixel_values""": images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
5
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 384 if "tiny" in model_name: _lowerCAmelCase = [3, 3, 9, 3] _lowerCAmelCase = [96, 192, 384, 768] if "small" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [96, 192, 384, 768] if "base" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [128, 256, 512, 1024] _lowerCAmelCase = 512 if "large" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [192, 384, 768, 1536] _lowerCAmelCase = 768 if "xlarge" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [256, 512, 1024, 2048] _lowerCAmelCase = 1024 # set label information _lowerCAmelCase = 150 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """ade20k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = ConvNextConfig( depths=__lowerCamelCase , hidden_sizes=__lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) _lowerCAmelCase = UperNetConfig( backbone_config=__lowerCamelCase , auxiliary_in_channels=__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , ) return config def A (__lowerCamelCase :Optional[Any] ): _lowerCAmelCase = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict , __lowerCamelCase :Tuple ): _lowerCAmelCase = dct.pop(__lowerCamelCase ) _lowerCAmelCase = val def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ): _lowerCAmelCase = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } _lowerCAmelCase = model_name_to_url[model_name] _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""state_dict"""] _lowerCAmelCase = get_upernet_config(__lowerCamelCase ) _lowerCAmelCase = UperNetForSemanticSegmentation(__lowerCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase = state_dict.pop(__lowerCamelCase ) if "bn" in key: _lowerCAmelCase = key.replace("""bn""" , """batch_norm""" ) _lowerCAmelCase = val # rename keys _lowerCAmelCase = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # verify on image _lowerCAmelCase = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _lowerCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" ) _lowerCAmelCase = SegformerImageProcessor() _lowerCAmelCase = processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values with torch.no_grad(): _lowerCAmelCase = model(__lowerCamelCase ) if model_name == "upernet-convnext-tiny": _lowerCAmelCase = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _lowerCAmelCase = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _lowerCAmelCase = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _lowerCAmelCase = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _lowerCAmelCase = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
5
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase = { """configuration_roc_bert""": ["""ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoCBertConfig"""], """tokenization_roc_bert""": ["""RoCBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoCBertForCausalLM""", """RoCBertForMaskedLM""", """RoCBertForMultipleChoice""", """RoCBertForPreTraining""", """RoCBertForQuestionAnswering""", """RoCBertForSequenceClassification""", """RoCBertForTokenClassification""", """RoCBertLayer""", """RoCBertModel""", """RoCBertPreTrainedModel""", """load_tf_weights_in_roc_bert""", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' from itertools import product def A (__lowerCamelCase :int , __lowerCamelCase :int ): _lowerCAmelCase = sides_number _lowerCAmelCase = max_face_number * dice_number _lowerCAmelCase = [0] * (max_total + 1) _lowerCAmelCase = 1 _lowerCAmelCase = range(__lowerCamelCase , max_face_number + 1 ) for dice_numbers in product(__lowerCamelCase , repeat=__lowerCamelCase ): _lowerCAmelCase = sum(__lowerCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def A (): _lowerCAmelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) _lowerCAmelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) _lowerCAmelCase = 0 _lowerCAmelCase = 9 _lowerCAmelCase = 4 * 9 _lowerCAmelCase = 6 for peter_total in range(__lowerCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _lowerCAmelCase = (4**9) * (6**6) _lowerCAmelCase = peter_wins_count / total_games_number _lowerCAmelCase = round(__lowerCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
5
1
'''simple docstring''' import pprint import requests _lowercase = """https://zenquotes.io/api""" def A (): return requests.get(API_ENDPOINT_URL + """/today""" ).json() def A (): return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": _lowercase = random_quotes() pprint.pprint(response)
5
'''simple docstring''' from manim import * class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""CPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(1 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""GPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.align_to(_lowercase , _lowercase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""Model""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , ) _lowerCAmelCase = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) _lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) ) self.add(_lowercase ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for i, rect in enumerate(_lowercase ): _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 ) cpu_target.move_to(_lowercase ) cpu_target.generate_target() _lowerCAmelCase = 0.46 / 4 _lowerCAmelCase = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 ) cpu_targs.append(_lowercase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) ) second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) ) self.play(*_lowercase ) self.play(*_lowercase ) self.wait()
5
1
'''simple docstring''' def A (__lowerCamelCase :List[Any] ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _lowerCAmelCase = len(__lowerCamelCase ) _lowerCAmelCase = max(__lowerCamelCase ) _lowerCAmelCase = min(__lowerCamelCase ) # create the counting array _lowerCAmelCase = coll_max + 1 - coll_min _lowerCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , __lowerCamelCase ): _lowerCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , __lowerCamelCase ) ): _lowerCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def A (__lowerCamelCase :Optional[int] ): return "".join([chr(__lowerCamelCase ) for i in counting_sort([ord(__lowerCamelCase ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" _lowercase = input("""Enter numbers separated by a comma:\n""").strip() _lowercase = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
5
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowercase = False try: _lowercase = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase = None , _lowercase = [] ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = choices _lowerCAmelCase = prompt if sys.platform == "win32": _lowerCAmelCase = """*""" else: _lowerCAmelCase = """➔ """ def _lowercase ( self , _lowercase , _lowercase = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , _lowercase ) else: forceWrite(self.choices[index] , _lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(_lowercase ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def _lowercase ( self , _lowercase , _lowercase = 1 ): """simple docstring""" _lowerCAmelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowercase ) move_cursor(_lowercase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = int(chr(self.current_selection ) ) _lowerCAmelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowercase ) else: return else: return def _lowercase ( self , _lowercase = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) _lowerCAmelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowercase ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase = int(builtins.input() ) except ValueError: _lowerCAmelCase = default_choice else: _lowerCAmelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(_lowercase , """\n""" ) return choice
5
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
5
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } _lowercase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def A (__lowerCamelCase :Optional[int] ): _lowerCAmelCase = {} with open(__lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(__lowerCamelCase ): _lowerCAmelCase = line.strip() if line: _lowerCAmelCase = line.split() _lowerCAmelCase = line_number _lowerCAmelCase = words[0] _lowerCAmelCase = value return result def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any] , __lowerCamelCase :List[str] ): for attribute in key.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": _lowerCAmelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = shape_pointer.shape # let's reduce dimension _lowerCAmelCase = value[0] else: _lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCAmelCase = value elif weight_type == "weight_g": _lowerCAmelCase = value elif weight_type == "weight_v": _lowerCAmelCase = value elif weight_type == "bias": _lowerCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = value else: _lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] , __lowerCamelCase :int ): _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _lowerCAmelCase = """.""".join([key, hf_param_name] ) else: _lowerCAmelCase = key _lowerCAmelCase = value if """lm_head""" in full_key else value[0] _lowercase = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :List[str]=None , __lowerCamelCase :List[Any]=None ): _lowerCAmelCase = False for key, mapped_key in MAPPING.items(): _lowerCAmelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCAmelCase = True if "*" in mapped_key: _lowerCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase = """weight_g""" elif "weight_v" in name: _lowerCAmelCase = """weight_v""" elif "bias" in name: _lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase = """weight""" else: _lowerCAmelCase = None if hf_dict is not None: rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return is_used return is_used def A (__lowerCamelCase :Any , __lowerCamelCase :Dict , __lowerCamelCase :Dict ): _lowerCAmelCase = [] _lowerCAmelCase = fairseq_model.state_dict() _lowerCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) _lowerCAmelCase = True else: _lowerCAmelCase = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any , __lowerCamelCase :List[Any] , __lowerCamelCase :List[Any] ): _lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase = name.split(""".""" ) _lowerCAmelCase = int(items[0] ) _lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def A (__lowerCamelCase :List[str] , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any]=None , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :str=True , __lowerCamelCase :str=False ): if config_path is not None: _lowerCAmelCase = WavaVecaConfig.from_pretrained(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaConfig() if is_seq_class: _lowerCAmelCase = read_txt_into_dict(__lowerCamelCase ) _lowerCAmelCase = idalabel _lowerCAmelCase = WavaVecaForSequenceClassification(__lowerCamelCase ) _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) feature_extractor.save_pretrained(__lowerCamelCase ) elif is_finetuned: if dict_path: _lowerCAmelCase = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCAmelCase = target_dict.pad_index _lowerCAmelCase = target_dict.bos_index _lowerCAmelCase = target_dict.eos_index _lowerCAmelCase = len(target_dict.symbols ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """vocab.json""" ) if not os.path.isdir(__lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCAmelCase = 0 _lowerCAmelCase = 1 with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , ) _lowerCAmelCase = True if config.feat_extract_norm == """layer""" else False _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) _lowerCAmelCase = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) _lowerCAmelCase = WavaVecaForCTC(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaForPreTraining(__lowerCamelCase ) if is_finetuned or is_seq_class: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _lowerCAmelCase = argparse.Namespace(task="""audio_pretraining""" ) _lowerCAmelCase = fairseq.tasks.setup_task(__lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase ) _lowerCAmelCase = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) _lowercase = parser.parse_args() _lowercase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
5
1
'''simple docstring''' import os def A (__lowerCamelCase :Dict ): _lowerCAmelCase = len(grid[0] ) _lowerCAmelCase = len(__lowerCamelCase ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(__lowerCamelCase ): for j in range(n_rows - 3 ): _lowerCAmelCase = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] _lowerCAmelCase = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: _lowerCAmelCase = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: _lowerCAmelCase = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) _lowerCAmelCase = max( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if max_product > largest: _lowerCAmelCase = max_product return largest def A (): _lowerCAmelCase = [] with open(os.path.dirname(__lowerCamelCase ) + """/grid.txt""" ) as file: for line in file: grid.append(line.strip("""\n""" ).split(""" """ ) ) _lowerCAmelCase = [[int(__lowerCamelCase ) for i in grid[j]] for j in range(len(__lowerCamelCase ) )] return largest_product(__lowerCamelCase ) if __name__ == "__main__": print(solution())
5
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = '''decision_transformer''' _lowercase : Optional[Any] = ['''past_key_values'''] _lowercase : str = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowercase=17 , _lowercase=4 , _lowercase=128 , _lowercase=4_096 , _lowercase=True , _lowercase=1 , _lowercase=1_024 , _lowercase=3 , _lowercase=1 , _lowercase=None , _lowercase="relu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=False , _lowercase=False , **_lowercase , ): """simple docstring""" _lowerCAmelCase = state_dim _lowerCAmelCase = act_dim _lowerCAmelCase = hidden_size _lowerCAmelCase = max_ep_len _lowerCAmelCase = action_tanh _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = scale_attn_by_inverse_layer_idx _lowerCAmelCase = reorder_and_upcast_attn _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
5
1
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowercase = False try: _lowercase = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase = None , _lowercase = [] ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = choices _lowerCAmelCase = prompt if sys.platform == "win32": _lowerCAmelCase = """*""" else: _lowerCAmelCase = """➔ """ def _lowercase ( self , _lowercase , _lowercase = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , _lowercase ) else: forceWrite(self.choices[index] , _lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(_lowercase ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def _lowercase ( self , _lowercase , _lowercase = 1 ): """simple docstring""" _lowerCAmelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowercase ) move_cursor(_lowercase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = int(chr(self.current_selection ) ) _lowerCAmelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowercase ) else: return else: return def _lowercase ( self , _lowercase = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) _lowerCAmelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowercase ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase = int(builtins.input() ) except ValueError: _lowerCAmelCase = default_choice else: _lowerCAmelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(_lowercase , """\n""" ) return choice
5
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) _lowercase = None _lowercase = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } _lowercase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def A (__lowerCamelCase :int , __lowerCamelCase :Optional[Any]=1 , __lowerCamelCase :List[Any]=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def A (__lowerCamelCase :Any ): with open(__lowerCamelCase , """r""" ) as f: return json.load(__lowerCamelCase ) def A (__lowerCamelCase :List[Any] , __lowerCamelCase :int ): with open(__lowerCamelCase , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple=True ): os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """tmp""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = read_json(os.path.join(__lowerCamelCase , """params.json""" ) ) _lowerCAmelCase = NUM_SHARDS[model_size] _lowerCAmelCase = params["""n_layers"""] _lowerCAmelCase = params["""n_heads"""] _lowerCAmelCase = n_heads // num_shards _lowerCAmelCase = params["""dim"""] _lowerCAmelCase = dim // n_heads _lowerCAmelCase = 10_000.0 _lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , __lowerCamelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase = params["""n_kv_heads"""] # for GQA / MQA _lowerCAmelCase = n_heads_per_shard // num_key_value_heads _lowerCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase = n_heads _lowerCAmelCase = n_heads_per_shard _lowerCAmelCase = dim # permute for sliced rotary def permute(__lowerCamelCase :Optional[int] , __lowerCamelCase :str=n_heads , __lowerCamelCase :str=dim , __lowerCamelCase :List[Any]=dim ): return w.view(__lowerCamelCase , dima // n_heads // 2 , 2 , __lowerCamelCase ).transpose(1 , 2 ).reshape(__lowerCamelCase , __lowerCamelCase ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase = torch.load(os.path.join(__lowerCamelCase , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded _lowerCAmelCase = [ torch.load(os.path.join(__lowerCamelCase , f'consolidated.{i:02d}.pth' ) , map_location="""cpu""" ) for i in range(__lowerCamelCase ) ] _lowerCAmelCase = 0 _lowerCAmelCase = {"""weight_map""": {}} for layer_i in range(__lowerCamelCase ): _lowerCAmelCase = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _lowerCAmelCase = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = inv_freq for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: _lowerCAmelCase = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(__lowerCamelCase )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__lowerCamelCase )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) # Write configs _lowerCAmelCase = {"""total_size""": param_count * 2} write_json(__lowerCamelCase , os.path.join(__lowerCamelCase , """pytorch_model.bin.index.json""" ) ) _lowerCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 _lowerCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256 _lowerCAmelCase = LlamaConfig( hidden_size=__lowerCamelCase , intermediate_size=compute_intermediate_size(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=__lowerCamelCase , ) config.save_pretrained(__lowerCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) _lowerCAmelCase = LlamaForCausalLM.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=__lowerCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(__lowerCamelCase , safe_serialization=__lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any] ): # Initialize the tokenizer based on the `spm` model _lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase = tokenizer_class(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) def A (): _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=__lowerCamelCase , help="""Whether or not to save using `safetensors`.""" ) _lowerCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , __lowerCamelCase ) if __name__ == "__main__": main()
5
1
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") _lowercase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) _lowercase = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) _lowercase = BeautifulSoup(res.text, """html.parser""") _lowercase = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
5
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = (DDPMScheduler,) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_lowercase ) return config def _lowercase ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def _lowercase ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def _lowercase ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def _lowercase ( self ): """simple docstring""" self.check_over_configs(thresholding=_lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def _lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowercase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowercase ): if i == len(_lowercase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowercase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowercase , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowercase ) with self.assertRaises(_lowercase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowercase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_lowercase )
5
1
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _lowercase = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_lowercase ): """simple docstring""" super().__init__(**_lowercase ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self , _lowercase , **_lowercase ): """simple docstring""" return super().__call__(_lowercase , **_lowercase ) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a sound of {}." ): """simple docstring""" if isinstance(_lowercase , _lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _lowerCAmelCase = requests.get(_lowercase ).content else: with open(_lowercase , """rb""" ) as f: _lowerCAmelCase = f.read() if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate ) if not isinstance(_lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) _lowerCAmelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) _lowerCAmelCase = [text_inputs] return inputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_inputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _lowercase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**_lowercase , **_lowercase ) _lowerCAmelCase = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_outputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_outputs["""logits"""][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=0 ) _lowerCAmelCase = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) _lowerCAmelCase = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] ) ] return result
5
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowercase = logging.get_logger(__name__) _lowercase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : '''simple docstring''' _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_SCREAMING_SNAKE_CASE )} ) _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) _lowercase : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase : int = field( default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) _lowercase : int = field( default=6_4 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) _lowercase : int = field( default=3_0 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) _lowercase : float = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) _lowercase : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''train''' _lowercase : Union[str, Any] = '''dev''' class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : SquadDataTrainingArguments _lowercase : List[SquadFeatures] _lowercase : Split _lowercase : bool def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = False , _lowercase = None , _lowercase = "pt" , ): """simple docstring""" _lowerCAmelCase = args _lowerCAmelCase = is_language_sensitive _lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowercase , _lowercase ): try: _lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _lowerCAmelCase = mode # Load data features from cache or dataset file _lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" _lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + """.lock""" with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: _lowerCAmelCase = time.time() _lowerCAmelCase = torch.load(_lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase = self.old_features["""features"""] _lowerCAmelCase = self.old_features.get("""dataset""" , _lowercase ) _lowerCAmelCase = self.old_features.get("""examples""" , _lowercase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: _lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: _lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) _lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , ) _lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.features[i] _lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) _lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
5
1