code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class UpperCAmelCase_ :
'''simple docstring'''
_lowercase : int
_lowercase : int
class UpperCAmelCase_ :
'''simple docstring'''
def __init__( self , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = [[] for _ in range(_lowercase )]
_lowerCAmelCase = size
def __getitem__( self , _lowercase ):
"""simple docstring"""
return iter(self._graph[vertex] )
@property
def _lowercase ( self ):
"""simple docstring"""
return self._size
def _lowercase ( self , _lowercase , _lowercase , _lowercase ):
"""simple docstring"""
if weight not in (0, 1):
raise ValueError("""Edge weight must be either 0 or 1.""" )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError("""Vertex indexes must be in [0; size).""" )
self._graph[from_vertex].append(Edge(_lowercase , _lowercase ) )
def _lowercase ( self , _lowercase , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = deque([start_vertex] )
_lowerCAmelCase = [None] * self.size
_lowerCAmelCase = 0
while queue:
_lowerCAmelCase = queue.popleft()
_lowerCAmelCase = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
_lowerCAmelCase = current_distance + edge.weight
_lowerCAmelCase = distances[edge.destination_vertex]
if (
isinstance(_lowercase , _lowercase )
and new_distance >= dest_vertex_distance
):
continue
_lowerCAmelCase = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError("""No path from start_vertex to finish_vertex.""" )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 |
'''simple docstring'''
import functools
def A (__lowerCamelCase :list[int] , __lowerCamelCase :list[int] ):
# Validation
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for day in days ):
raise ValueError("""The parameter days should be a list of integers""" )
if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for cost in costs ):
raise ValueError("""The parameter costs should be a list of three integers""" )
if len(__lowerCamelCase ) == 0:
return 0
if min(__lowerCamelCase ) <= 0:
raise ValueError("""All days elements should be greater than 0""" )
if max(__lowerCamelCase ) >= 366:
raise ValueError("""All days elements should be less than 366""" )
_lowerCAmelCase = set(__lowerCamelCase )
@functools.cache
def dynamic_programming(__lowerCamelCase :int ) -> int:
if index > 365:
return 0
if index not in days_set:
return dynamic_programming(index + 1 )
return min(
costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , )
return dynamic_programming(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 1 |
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
_lowercase : Optional[int] = IFInpaintingSuperResolutionPipeline
_lowercase : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''}
_lowercase : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} )
_lowercase : List[str] = PipelineTesterMixin.required_optional_params - {'''latents'''}
def _lowercase ( self ):
"""simple docstring"""
return self._get_superresolution_dummy_components()
def _lowercase ( self , _lowercase , _lowercase=0 ):
"""simple docstring"""
if str(_lowercase ).startswith("""mps""" ):
_lowerCAmelCase = torch.manual_seed(_lowercase )
else:
_lowerCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
_lowerCAmelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(_lowercase ) ).to(_lowercase )
_lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase )
_lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase )
_lowerCAmelCase = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""original_image""": original_image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def _lowercase ( self ):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def _lowercase ( self ):
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def _lowercase ( self ):
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1e-1 )
def _lowercase ( self ):
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def _lowercase ( self ):
"""simple docstring"""
self._test_save_load_local()
def _lowercase ( self ):
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 5 |
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def A (__lowerCamelCase :List[Any] ):
_lowerCAmelCase = 384
if "tiny" in model_name:
_lowerCAmelCase = [3, 3, 9, 3]
_lowerCAmelCase = [96, 192, 384, 768]
if "small" in model_name:
_lowerCAmelCase = [3, 3, 27, 3]
_lowerCAmelCase = [96, 192, 384, 768]
if "base" in model_name:
_lowerCAmelCase = [3, 3, 27, 3]
_lowerCAmelCase = [128, 256, 512, 1024]
_lowerCAmelCase = 512
if "large" in model_name:
_lowerCAmelCase = [3, 3, 27, 3]
_lowerCAmelCase = [192, 384, 768, 1536]
_lowerCAmelCase = 768
if "xlarge" in model_name:
_lowerCAmelCase = [3, 3, 27, 3]
_lowerCAmelCase = [256, 512, 1024, 2048]
_lowerCAmelCase = 1024
# set label information
_lowerCAmelCase = 150
_lowerCAmelCase = """huggingface/label-files"""
_lowerCAmelCase = """ade20k-id2label.json"""
_lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) )
_lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
_lowerCAmelCase = {v: k for k, v in idalabel.items()}
_lowerCAmelCase = ConvNextConfig(
depths=__lowerCamelCase , hidden_sizes=__lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] )
_lowerCAmelCase = UperNetConfig(
backbone_config=__lowerCamelCase , auxiliary_in_channels=__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , )
return config
def A (__lowerCamelCase :Optional[Any] ):
_lowerCAmelCase = []
# fmt: off
# stem
rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") )
rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") )
rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") )
rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') )
rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') )
if i > 0:
rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') )
rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') )
rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') )
rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') )
rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') )
rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') )
# decode head
rename_keys.extend(
[
("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""),
("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""),
("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""),
("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""),
] )
# fmt: on
return rename_keys
def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict , __lowerCamelCase :Tuple ):
_lowerCAmelCase = dct.pop(__lowerCamelCase )
_lowerCAmelCase = val
def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ):
_lowerCAmelCase = {
"""upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""",
"""upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""",
"""upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""",
"""upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""",
"""upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""",
}
_lowerCAmelCase = model_name_to_url[model_name]
_lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""state_dict"""]
_lowerCAmelCase = get_upernet_config(__lowerCamelCase )
_lowerCAmelCase = UperNetForSemanticSegmentation(__lowerCamelCase )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
_lowerCAmelCase = state_dict.pop(__lowerCamelCase )
if "bn" in key:
_lowerCAmelCase = key.replace("""bn""" , """batch_norm""" )
_lowerCAmelCase = val
# rename keys
_lowerCAmelCase = create_rename_keys(__lowerCamelCase )
for src, dest in rename_keys:
rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
model.load_state_dict(__lowerCamelCase )
# verify on image
_lowerCAmelCase = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"""
_lowerCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" )
_lowerCAmelCase = SegformerImageProcessor()
_lowerCAmelCase = processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values
with torch.no_grad():
_lowerCAmelCase = model(__lowerCamelCase )
if model_name == "upernet-convnext-tiny":
_lowerCAmelCase = torch.tensor(
[[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] )
elif model_name == "upernet-convnext-small":
_lowerCAmelCase = torch.tensor(
[[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] )
elif model_name == "upernet-convnext-base":
_lowerCAmelCase = torch.tensor(
[[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] )
elif model_name == "upernet-convnext-large":
_lowerCAmelCase = torch.tensor(
[[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] )
elif model_name == "upernet-convnext-xlarge":
_lowerCAmelCase = torch.tensor(
[[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] )
print("""Logits:""" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(__lowerCamelCase )
print(f'Saving processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(__lowerCamelCase )
if push_to_hub:
print(f'Pushing model and processor for {model_name} to hub' )
model.push_to_hub(f'openmmlab/{model_name}' )
processor.push_to_hub(f'openmmlab/{model_name}' )
if __name__ == "__main__":
_lowercase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""upernet-convnext-tiny""",
type=str,
choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]],
help="""Name of the ConvNext UperNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
_lowercase = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 5 | 1 |
'''simple docstring'''
def A (__lowerCamelCase :int = 2000000 ):
_lowerCAmelCase = [0 for i in range(n + 1 )]
_lowerCAmelCase = 1
_lowerCAmelCase = 1
for i in range(2 , int(n**0.5 ) + 1 ):
if primality_list[i] == 0:
for j in range(i * i , n + 1 , __lowerCamelCase ):
_lowerCAmelCase = 1
_lowerCAmelCase = 0
for i in range(__lowerCamelCase ):
if primality_list[i] == 0:
sum_of_primes += i
return sum_of_primes
if __name__ == "__main__":
print(F"""{solution() = }""")
| 5 |
'''simple docstring'''
from itertools import product
def A (__lowerCamelCase :int , __lowerCamelCase :int ):
_lowerCAmelCase = sides_number
_lowerCAmelCase = max_face_number * dice_number
_lowerCAmelCase = [0] * (max_total + 1)
_lowerCAmelCase = 1
_lowerCAmelCase = range(__lowerCamelCase , max_face_number + 1 )
for dice_numbers in product(__lowerCamelCase , repeat=__lowerCamelCase ):
_lowerCAmelCase = sum(__lowerCamelCase )
totals_frequencies[total] += 1
return totals_frequencies
def A ():
_lowerCAmelCase = total_frequency_distribution(
sides_number=4 , dice_number=9 )
_lowerCAmelCase = total_frequency_distribution(
sides_number=6 , dice_number=6 )
_lowerCAmelCase = 0
_lowerCAmelCase = 9
_lowerCAmelCase = 4 * 9
_lowerCAmelCase = 6
for peter_total in range(__lowerCamelCase , max_peter_total + 1 ):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total] )
_lowerCAmelCase = (4**9) * (6**6)
_lowerCAmelCase = peter_wins_count / total_games_number
_lowerCAmelCase = round(__lowerCamelCase , ndigits=7 )
return rounded_peter_win_probability
if __name__ == "__main__":
print(F"""{solution() = }""")
| 5 | 1 |
'''simple docstring'''
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class UpperCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
_lowercase : List[Any] = JukeboxTokenizer
_lowercase : int = {
'''artist''': '''Zac Brown Band''',
'''genres''': '''Country''',
'''lyrics''': '''I met a traveller from an antique land,
Who said "Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
''',
}
@require_torch
def _lowercase ( self ):
"""simple docstring"""
import torch
_lowerCAmelCase = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" )
_lowerCAmelCase = tokenizer(**self.metas )["""input_ids"""]
# fmt: off
_lowerCAmelCase = [
torch.tensor([[
0, 0, 0, 7_169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1_069, 11]] ),
torch.tensor([[0, 0, 0, 1_069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def _lowercase ( self ):
"""simple docstring"""
import torch
_lowerCAmelCase = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" )
_lowerCAmelCase = tokenizer(**self.metas )["""input_ids"""]
# fmt: off
_lowerCAmelCase = [
torch.tensor([[
0, 0, 0, 1_069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 5 |
'''simple docstring'''
from manim import *
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = Rectangle(height=0.5 , width=0.5 )
_lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_lowerCAmelCase = [mem.copy() for i in range(6 )]
_lowerCAmelCase = [mem.copy() for i in range(6 )]
_lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = Text("""CPU""" , font_size=24 )
_lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_lowercase )
_lowerCAmelCase = [mem.copy() for i in range(1 )]
_lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = Text("""GPU""" , font_size=24 )
_lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase )
gpu.align_to(_lowercase , _lowercase )
gpu.set_x(gpu.get_x() - 1 )
self.add(_lowercase )
_lowerCAmelCase = [mem.copy() for i in range(6 )]
_lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = Text("""Model""" , font_size=24 )
_lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase )
model.move_to([3, -1.0, 0] )
self.play(
Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , )
_lowerCAmelCase = MarkupText(
F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , )
_lowerCAmelCase = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_lowerCAmelCase = MarkupText(
F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
step_a.move_to([2, 2, 0] )
self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) )
self.add(_lowercase )
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
for i, rect in enumerate(_lowercase ):
_lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 )
cpu_target.move_to(_lowercase )
cpu_target.generate_target()
_lowerCAmelCase = 0.46 / 4
_lowerCAmelCase = 0.46 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase )
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 )
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 )
else:
cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 )
cpu_targs.append(_lowercase )
first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) )
second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) )
self.play(*_lowercase )
self.play(*_lowercase )
self.wait()
| 5 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_lowercase = logging.get_logger(__name__)
_lowercase = {
"""nielsr/canine-s""": 2048,
}
# Unicode defines 1,114,112 total “codepoints”
_lowercase = 1114112
# Below: Constants defining canonical codepoints for special, pseudo-characters.
# Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py
_lowercase = 0
_lowercase = 0xE0_00
_lowercase = 0xE0_01
_lowercase = 0xE0_02
_lowercase = 0xE0_03
_lowercase = 0xE0_04
# Maps special codepoints to human-readable names.
_lowercase = {
# Special symbols are represented using codepoints values that are valid,
# but designated as "Private Use", meaning that they will never be assigned
# characters by the Unicode Consortium, and are thus safe for use here.
#
# NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly
# excluded and should fail with a hard error.
CLS: "[CLS]",
SEP: "[SEP]",
BOS: "[BOS]",
MASK: "[MASK]",
PAD: "[PAD]",
RESERVED: "[RESERVED]",
}
# Maps special codepoint human-readable names to their codepoint values.
_lowercase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()}
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , _lowercase=chr(_lowercase ) , _lowercase=chr(_lowercase ) , _lowercase=chr(_lowercase ) , _lowercase=chr(_lowercase ) , _lowercase=chr(_lowercase ) , _lowercase=chr(_lowercase ) , _lowercase=False , _lowercase=2_048 , **_lowercase , ):
"""simple docstring"""
_lowerCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else bos_token
_lowerCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else eos_token
_lowerCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else sep_token
_lowerCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else cls_token
_lowerCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token
super().__init__(
bos_token=_lowercase , eos_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , add_prefix_space=_lowercase , model_max_length=_lowercase , **_lowercase , )
# Creates a mapping for looking up the IDs of special symbols.
_lowerCAmelCase = {}
for codepoint, name in SPECIAL_CODEPOINTS.items():
_lowerCAmelCase = codepoint
# Creates a mapping for looking up the string forms of special symbol IDs.
_lowerCAmelCase = {
codepoint: name for name, codepoint in self._special_codepoints.items()
}
_lowerCAmelCase = UNICODE_VOCAB_SIZE
_lowerCAmelCase = len(self._special_codepoints )
@property
def _lowercase ( self ):
"""simple docstring"""
return self._unicode_vocab_size
def _lowercase ( self , _lowercase ):
"""simple docstring"""
return list(_lowercase )
def _lowercase ( self , _lowercase ):
"""simple docstring"""
try:
return ord(_lowercase )
except TypeError:
raise ValueError(F'invalid token: \'{token}\'' )
def _lowercase ( self , _lowercase ):
"""simple docstring"""
try:
if index in SPECIAL_CODEPOINTS:
return SPECIAL_CODEPOINTS[index]
return chr(_lowercase )
except TypeError:
raise ValueError(F'invalid id: {index}' )
def _lowercase ( self , _lowercase ):
"""simple docstring"""
return "".join(_lowercase )
def _lowercase ( self , _lowercase , _lowercase = None ):
"""simple docstring"""
_lowerCAmelCase = [self.sep_token_id]
_lowerCAmelCase = [self.cls_token_id]
_lowerCAmelCase = cls + token_ids_a + sep
if token_ids_a is not None:
result += token_ids_a + sep
return result
def _lowercase ( self , _lowercase , _lowercase = None , _lowercase = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase )
_lowerCAmelCase = [1] + ([0] * len(_lowercase )) + [1]
if token_ids_a is not None:
result += ([0] * len(_lowercase )) + [1]
return result
def _lowercase ( self , _lowercase , _lowercase = None ):
"""simple docstring"""
_lowerCAmelCase = [self.sep_token_id]
_lowerCAmelCase = [self.cls_token_id]
_lowerCAmelCase = len(cls + token_ids_a + sep ) * [0]
if token_ids_a is not None:
result += len(token_ids_a + sep ) * [1]
return result
def _lowercase ( self , _lowercase , _lowercase = None ):
"""simple docstring"""
return ()
| 5 |
'''simple docstring'''
import builtins
import sys
from ...utils.imports import _is_package_available
from . import cursor, input
from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor
from .keymap import KEYMAP
_lowercase = False
try:
_lowercase = _is_package_available("""google.colab""")
except ModuleNotFoundError:
pass
@input.register
class UpperCAmelCase_ :
'''simple docstring'''
def __init__( self , _lowercase = None , _lowercase = [] ):
"""simple docstring"""
_lowerCAmelCase = 0
_lowerCAmelCase = choices
_lowerCAmelCase = prompt
if sys.platform == "win32":
_lowerCAmelCase = """*"""
else:
_lowerCAmelCase = """➔ """
def _lowercase ( self , _lowercase , _lowercase = "" ):
"""simple docstring"""
if sys.platform != "win32":
writeColor(self.choices[index] , 32 , _lowercase )
else:
forceWrite(self.choices[index] , _lowercase )
def _lowercase ( self , _lowercase ):
"""simple docstring"""
if index == self.position:
forceWrite(F' {self.arrow_char} ' )
self.write_choice(_lowercase )
else:
forceWrite(F' {self.choices[index]}' )
reset_cursor()
def _lowercase ( self , _lowercase , _lowercase = 1 ):
"""simple docstring"""
_lowerCAmelCase = self.position
if direction == Direction.DOWN:
if self.position + 1 >= len(self.choices ):
return
self.position += num_spaces
else:
if self.position - 1 < 0:
return
self.position -= num_spaces
clear_line()
self.print_choice(_lowercase )
move_cursor(_lowercase , direction.name )
self.print_choice(self.position )
@input.mark(KEYMAP["""up"""] )
def _lowercase ( self ):
"""simple docstring"""
self.move_direction(Direction.UP )
@input.mark(KEYMAP["""down"""] )
def _lowercase ( self ):
"""simple docstring"""
self.move_direction(Direction.DOWN )
@input.mark(KEYMAP["""newline"""] )
def _lowercase ( self ):
"""simple docstring"""
move_cursor(len(self.choices ) - self.position , """DOWN""" )
return self.position
@input.mark(KEYMAP["""interrupt"""] )
def _lowercase ( self ):
"""simple docstring"""
move_cursor(len(self.choices ) - self.position , """DOWN""" )
raise KeyboardInterrupt
@input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = int(chr(self.current_selection ) )
_lowerCAmelCase = index - self.position
if index == self.position:
return
if index < len(self.choices ):
if self.position > index:
self.move_direction(Direction.UP , -movement )
elif self.position < index:
self.move_direction(Direction.DOWN , _lowercase )
else:
return
else:
return
def _lowercase ( self , _lowercase = 0 ):
"""simple docstring"""
if self.prompt:
linebreak()
forceWrite(self.prompt , """\n""" )
if in_colab:
forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" )
else:
forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" )
_lowerCAmelCase = default_choice
for i in range(len(self.choices ) ):
self.print_choice(_lowercase )
forceWrite("""\n""" )
move_cursor(len(self.choices ) - self.position , """UP""" )
with cursor.hide():
while True:
if in_colab:
try:
_lowerCAmelCase = int(builtins.input() )
except ValueError:
_lowerCAmelCase = default_choice
else:
_lowerCAmelCase = self.handle_input()
if choice is not None:
reset_cursor()
for _ in range(len(self.choices ) + 1 ):
move_cursor(1 , """UP""" )
clear_line()
self.write_choice(_lowercase , """\n""" )
return choice
| 5 | 1 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
_lowercase = logging.get_logger(__name__)
_lowercase = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""adapter_layer""": """encoder.layers.*.adapter_layer""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
"""pooling_layer.linear""": """projector""",
"""pooling_layer.projection""": """classifier""",
}
_lowercase = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""projector""",
"""classifier""",
]
def A (__lowerCamelCase :Optional[int] ):
_lowerCAmelCase = {}
with open(__lowerCamelCase , """r""" ) as file:
for line_number, line in enumerate(__lowerCamelCase ):
_lowerCAmelCase = line.strip()
if line:
_lowerCAmelCase = line.split()
_lowerCAmelCase = line_number
_lowerCAmelCase = words[0]
_lowerCAmelCase = value
return result
def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any] , __lowerCamelCase :List[str] ):
for attribute in key.split(""".""" ):
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__lowerCamelCase ):
_lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]]
_lowerCAmelCase = """param"""
if weight_type is not None and weight_type != "param":
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape
elif weight_type is not None and weight_type == "param":
_lowerCAmelCase = hf_pointer
for attribute in hf_param_name.split(""".""" ):
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = shape_pointer.shape
# let's reduce dimension
_lowerCAmelCase = value[0]
else:
_lowerCAmelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
_lowerCAmelCase = value
elif weight_type == "weight_g":
_lowerCAmelCase = value
elif weight_type == "weight_v":
_lowerCAmelCase = value
elif weight_type == "bias":
_lowerCAmelCase = value
elif weight_type == "param":
for attribute in hf_param_name.split(""".""" ):
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = value
else:
_lowerCAmelCase = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] , __lowerCamelCase :int ):
_lowerCAmelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__lowerCamelCase ):
_lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]]
_lowerCAmelCase = """param"""
if weight_type is not None and weight_type != "param":
_lowerCAmelCase = """.""".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
_lowerCAmelCase = """.""".join([key, hf_param_name] )
else:
_lowerCAmelCase = key
_lowerCAmelCase = value if """lm_head""" in full_key else value[0]
_lowercase = {
"""W_a""": """linear_1.weight""",
"""W_b""": """linear_2.weight""",
"""b_a""": """linear_1.bias""",
"""b_b""": """linear_2.bias""",
"""ln_W""": """norm.weight""",
"""ln_b""": """norm.bias""",
}
def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :List[str]=None , __lowerCamelCase :List[Any]=None ):
_lowerCAmelCase = False
for key, mapped_key in MAPPING.items():
_lowerCAmelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
_lowerCAmelCase = True
if "*" in mapped_key:
_lowerCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2]
_lowerCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase )
if "weight_g" in name:
_lowerCAmelCase = """weight_g"""
elif "weight_v" in name:
_lowerCAmelCase = """weight_v"""
elif "bias" in name:
_lowerCAmelCase = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
_lowerCAmelCase = """weight"""
else:
_lowerCAmelCase = None
if hf_dict is not None:
rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
else:
set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
return is_used
return is_used
def A (__lowerCamelCase :Any , __lowerCamelCase :Dict , __lowerCamelCase :Dict ):
_lowerCAmelCase = []
_lowerCAmelCase = fairseq_model.state_dict()
_lowerCAmelCase = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
_lowerCAmelCase = False
if "conv_layers" in name:
load_conv_layer(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , )
_lowerCAmelCase = True
else:
_lowerCAmelCase = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if not is_used:
unused_weights.append(__lowerCamelCase )
logger.warning(f'Unused weights: {unused_weights}' )
def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any , __lowerCamelCase :List[Any] , __lowerCamelCase :List[Any] ):
_lowerCAmelCase = full_name.split("""conv_layers.""" )[-1]
_lowerCAmelCase = name.split(""".""" )
_lowerCAmelCase = int(items[0] )
_lowerCAmelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
_lowerCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
_lowerCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
_lowerCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
_lowerCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(__lowerCamelCase )
@torch.no_grad()
def A (__lowerCamelCase :List[str] , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any]=None , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :str=True , __lowerCamelCase :str=False ):
if config_path is not None:
_lowerCAmelCase = WavaVecaConfig.from_pretrained(__lowerCamelCase )
else:
_lowerCAmelCase = WavaVecaConfig()
if is_seq_class:
_lowerCAmelCase = read_txt_into_dict(__lowerCamelCase )
_lowerCAmelCase = idalabel
_lowerCAmelCase = WavaVecaForSequenceClassification(__lowerCamelCase )
_lowerCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
feature_extractor.save_pretrained(__lowerCamelCase )
elif is_finetuned:
if dict_path:
_lowerCAmelCase = Dictionary.load(__lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_lowerCAmelCase = target_dict.pad_index
_lowerCAmelCase = target_dict.bos_index
_lowerCAmelCase = target_dict.eos_index
_lowerCAmelCase = len(target_dict.symbols )
_lowerCAmelCase = os.path.join(__lowerCamelCase , """vocab.json""" )
if not os.path.isdir(__lowerCamelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) )
return
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
_lowerCAmelCase = target_dict.indices
# fairseq has the <pad> and <s> switched
_lowerCAmelCase = 0
_lowerCAmelCase = 1
with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = WavaVecaCTCTokenizer(
__lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , )
_lowerCAmelCase = True if config.feat_extract_norm == """layer""" else False
_lowerCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
_lowerCAmelCase = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase )
processor.save_pretrained(__lowerCamelCase )
_lowerCAmelCase = WavaVecaForCTC(__lowerCamelCase )
else:
_lowerCAmelCase = WavaVecaForPreTraining(__lowerCamelCase )
if is_finetuned or is_seq_class:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
_lowerCAmelCase = argparse.Namespace(task="""audio_pretraining""" )
_lowerCAmelCase = fairseq.tasks.setup_task(__lowerCamelCase )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase )
_lowerCAmelCase = model[0].eval()
recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned )
hf_wavavec.save_pretrained(__lowerCamelCase )
if __name__ == "__main__":
_lowercase = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
parser.add_argument(
"""--is_seq_class""",
action="""store_true""",
help="""Whether the model to convert is a fine-tuned sequence classification model or not""",
)
_lowercase = parser.parse_args()
_lowercase = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 5 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
_lowercase = logging.get_logger(__name__)
_lowercase = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""adapter_layer""": """encoder.layers.*.adapter_layer""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
"""pooling_layer.linear""": """projector""",
"""pooling_layer.projection""": """classifier""",
}
_lowercase = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""projector""",
"""classifier""",
]
def A (__lowerCamelCase :Optional[int] ):
_lowerCAmelCase = {}
with open(__lowerCamelCase , """r""" ) as file:
for line_number, line in enumerate(__lowerCamelCase ):
_lowerCAmelCase = line.strip()
if line:
_lowerCAmelCase = line.split()
_lowerCAmelCase = line_number
_lowerCAmelCase = words[0]
_lowerCAmelCase = value
return result
def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any] , __lowerCamelCase :List[str] ):
for attribute in key.split(""".""" ):
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__lowerCamelCase ):
_lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]]
_lowerCAmelCase = """param"""
if weight_type is not None and weight_type != "param":
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape
elif weight_type is not None and weight_type == "param":
_lowerCAmelCase = hf_pointer
for attribute in hf_param_name.split(""".""" ):
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = shape_pointer.shape
# let's reduce dimension
_lowerCAmelCase = value[0]
else:
_lowerCAmelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
_lowerCAmelCase = value
elif weight_type == "weight_g":
_lowerCAmelCase = value
elif weight_type == "weight_v":
_lowerCAmelCase = value
elif weight_type == "bias":
_lowerCAmelCase = value
elif weight_type == "param":
for attribute in hf_param_name.split(""".""" ):
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = value
else:
_lowerCAmelCase = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] , __lowerCamelCase :int ):
_lowerCAmelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__lowerCamelCase ):
_lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]]
_lowerCAmelCase = """param"""
if weight_type is not None and weight_type != "param":
_lowerCAmelCase = """.""".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
_lowerCAmelCase = """.""".join([key, hf_param_name] )
else:
_lowerCAmelCase = key
_lowerCAmelCase = value if """lm_head""" in full_key else value[0]
_lowercase = {
"""W_a""": """linear_1.weight""",
"""W_b""": """linear_2.weight""",
"""b_a""": """linear_1.bias""",
"""b_b""": """linear_2.bias""",
"""ln_W""": """norm.weight""",
"""ln_b""": """norm.bias""",
}
def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :List[str]=None , __lowerCamelCase :List[Any]=None ):
_lowerCAmelCase = False
for key, mapped_key in MAPPING.items():
_lowerCAmelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
_lowerCAmelCase = True
if "*" in mapped_key:
_lowerCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2]
_lowerCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase )
if "weight_g" in name:
_lowerCAmelCase = """weight_g"""
elif "weight_v" in name:
_lowerCAmelCase = """weight_v"""
elif "bias" in name:
_lowerCAmelCase = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
_lowerCAmelCase = """weight"""
else:
_lowerCAmelCase = None
if hf_dict is not None:
rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
else:
set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
return is_used
return is_used
def A (__lowerCamelCase :Any , __lowerCamelCase :Dict , __lowerCamelCase :Dict ):
_lowerCAmelCase = []
_lowerCAmelCase = fairseq_model.state_dict()
_lowerCAmelCase = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
_lowerCAmelCase = False
if "conv_layers" in name:
load_conv_layer(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , )
_lowerCAmelCase = True
else:
_lowerCAmelCase = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if not is_used:
unused_weights.append(__lowerCamelCase )
logger.warning(f'Unused weights: {unused_weights}' )
def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any , __lowerCamelCase :List[Any] , __lowerCamelCase :List[Any] ):
_lowerCAmelCase = full_name.split("""conv_layers.""" )[-1]
_lowerCAmelCase = name.split(""".""" )
_lowerCAmelCase = int(items[0] )
_lowerCAmelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
_lowerCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
_lowerCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
_lowerCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
_lowerCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(__lowerCamelCase )
@torch.no_grad()
def A (__lowerCamelCase :List[str] , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any]=None , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :str=True , __lowerCamelCase :str=False ):
if config_path is not None:
_lowerCAmelCase = WavaVecaConfig.from_pretrained(__lowerCamelCase )
else:
_lowerCAmelCase = WavaVecaConfig()
if is_seq_class:
_lowerCAmelCase = read_txt_into_dict(__lowerCamelCase )
_lowerCAmelCase = idalabel
_lowerCAmelCase = WavaVecaForSequenceClassification(__lowerCamelCase )
_lowerCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
feature_extractor.save_pretrained(__lowerCamelCase )
elif is_finetuned:
if dict_path:
_lowerCAmelCase = Dictionary.load(__lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_lowerCAmelCase = target_dict.pad_index
_lowerCAmelCase = target_dict.bos_index
_lowerCAmelCase = target_dict.eos_index
_lowerCAmelCase = len(target_dict.symbols )
_lowerCAmelCase = os.path.join(__lowerCamelCase , """vocab.json""" )
if not os.path.isdir(__lowerCamelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) )
return
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
_lowerCAmelCase = target_dict.indices
# fairseq has the <pad> and <s> switched
_lowerCAmelCase = 0
_lowerCAmelCase = 1
with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = WavaVecaCTCTokenizer(
__lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , )
_lowerCAmelCase = True if config.feat_extract_norm == """layer""" else False
_lowerCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
_lowerCAmelCase = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase )
processor.save_pretrained(__lowerCamelCase )
_lowerCAmelCase = WavaVecaForCTC(__lowerCamelCase )
else:
_lowerCAmelCase = WavaVecaForPreTraining(__lowerCamelCase )
if is_finetuned or is_seq_class:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
_lowerCAmelCase = argparse.Namespace(task="""audio_pretraining""" )
_lowerCAmelCase = fairseq.tasks.setup_task(__lowerCamelCase )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase )
_lowerCAmelCase = model[0].eval()
recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned )
hf_wavavec.save_pretrained(__lowerCamelCase )
if __name__ == "__main__":
_lowercase = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
parser.add_argument(
"""--is_seq_class""",
action="""store_true""",
help="""Whether the model to convert is a fine-tuned sequence classification model or not""",
)
_lowercase = parser.parse_args()
_lowercase = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 5 | 1 |
'''simple docstring'''
_lowercase = """
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
_lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
_lowercase = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 5 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase = logging.get_logger(__name__)
_lowercase = {
"""edbeeching/decision-transformer-gym-hopper-medium""": (
"""https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json"""
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : List[str] = '''decision_transformer'''
_lowercase : Optional[Any] = ['''past_key_values''']
_lowercase : str = {
'''max_position_embeddings''': '''n_positions''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self , _lowercase=17 , _lowercase=4 , _lowercase=128 , _lowercase=4_096 , _lowercase=True , _lowercase=1 , _lowercase=1_024 , _lowercase=3 , _lowercase=1 , _lowercase=None , _lowercase="relu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=False , _lowercase=False , **_lowercase , ):
"""simple docstring"""
_lowerCAmelCase = state_dim
_lowerCAmelCase = act_dim
_lowerCAmelCase = hidden_size
_lowerCAmelCase = max_ep_len
_lowerCAmelCase = action_tanh
_lowerCAmelCase = vocab_size
_lowerCAmelCase = n_positions
_lowerCAmelCase = n_layer
_lowerCAmelCase = n_head
_lowerCAmelCase = n_inner
_lowerCAmelCase = activation_function
_lowerCAmelCase = resid_pdrop
_lowerCAmelCase = embd_pdrop
_lowerCAmelCase = attn_pdrop
_lowerCAmelCase = layer_norm_epsilon
_lowerCAmelCase = initializer_range
_lowerCAmelCase = scale_attn_weights
_lowerCAmelCase = use_cache
_lowerCAmelCase = scale_attn_by_inverse_layer_idx
_lowerCAmelCase = reorder_and_upcast_attn
_lowerCAmelCase = bos_token_id
_lowerCAmelCase = eos_token_id
super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
| 5 | 1 |
'''simple docstring'''
def A (__lowerCamelCase :int = 3 , __lowerCamelCase :int = 7 , __lowerCamelCase :int = 1000000 ):
_lowerCAmelCase = 0
_lowerCAmelCase = 1
for current_denominator in range(1 , limit + 1 ):
_lowerCAmelCase = current_denominator * numerator // denominator
if current_denominator % denominator == 0:
current_numerator -= 1
if current_numerator * max_denominator > current_denominator * max_numerator:
_lowerCAmelCase = current_numerator
_lowerCAmelCase = current_denominator
return max_numerator
if __name__ == "__main__":
print(solution(numerator=3, denominator=7, limit=1000000))
| 5 |
'''simple docstring'''
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"""The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"""
)
_lowercase = None
_lowercase = {
"""7B""": 11008,
"""13B""": 13824,
"""30B""": 17920,
"""65B""": 22016,
"""70B""": 28672,
}
_lowercase = {
"""7B""": 1,
"""7Bf""": 1,
"""13B""": 2,
"""13Bf""": 2,
"""30B""": 4,
"""65B""": 8,
"""70B""": 8,
"""70Bf""": 8,
}
def A (__lowerCamelCase :int , __lowerCamelCase :Optional[Any]=1 , __lowerCamelCase :List[Any]=256 ):
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of)
def A (__lowerCamelCase :Any ):
with open(__lowerCamelCase , """r""" ) as f:
return json.load(__lowerCamelCase )
def A (__lowerCamelCase :List[Any] , __lowerCamelCase :int ):
with open(__lowerCamelCase , """w""" ) as f:
json.dump(__lowerCamelCase , __lowerCamelCase )
def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple=True ):
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
_lowerCAmelCase = os.path.join(__lowerCamelCase , """tmp""" )
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
_lowerCAmelCase = read_json(os.path.join(__lowerCamelCase , """params.json""" ) )
_lowerCAmelCase = NUM_SHARDS[model_size]
_lowerCAmelCase = params["""n_layers"""]
_lowerCAmelCase = params["""n_heads"""]
_lowerCAmelCase = n_heads // num_shards
_lowerCAmelCase = params["""dim"""]
_lowerCAmelCase = dim // n_heads
_lowerCAmelCase = 10_000.0
_lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , __lowerCamelCase , 2 ).float() / dims_per_head))
if "n_kv_heads" in params:
_lowerCAmelCase = params["""n_kv_heads"""] # for GQA / MQA
_lowerCAmelCase = n_heads_per_shard // num_key_value_heads
_lowerCAmelCase = dim // num_key_value_heads
else: # compatibility with other checkpoints
_lowerCAmelCase = n_heads
_lowerCAmelCase = n_heads_per_shard
_lowerCAmelCase = dim
# permute for sliced rotary
def permute(__lowerCamelCase :Optional[int] , __lowerCamelCase :str=n_heads , __lowerCamelCase :str=dim , __lowerCamelCase :List[Any]=dim ):
return w.view(__lowerCamelCase , dima // n_heads // 2 , 2 , __lowerCamelCase ).transpose(1 , 2 ).reshape(__lowerCamelCase , __lowerCamelCase )
print(f'Fetching all parameters from the checkpoint at {input_base_path}.' )
# Load weights
if model_size == "7B":
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
_lowerCAmelCase = torch.load(os.path.join(__lowerCamelCase , """consolidated.00.pth""" ) , map_location="""cpu""" )
else:
# Sharded
_lowerCAmelCase = [
torch.load(os.path.join(__lowerCamelCase , f'consolidated.{i:02d}.pth' ) , map_location="""cpu""" )
for i in range(__lowerCamelCase )
]
_lowerCAmelCase = 0
_lowerCAmelCase = {"""weight_map""": {}}
for layer_i in range(__lowerCamelCase ):
_lowerCAmelCase = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin'
if model_size == "7B":
# Unsharded
_lowerCAmelCase = {
f'model.layers.{layer_i}.self_attn.q_proj.weight': permute(
loaded[f'layers.{layer_i}.attention.wq.weight'] ),
f'model.layers.{layer_i}.self_attn.k_proj.weight': permute(
loaded[f'layers.{layer_i}.attention.wk.weight'] ),
f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'],
f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'],
f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'],
f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'],
f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'],
f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'],
f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
_lowerCAmelCase = {
f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][
f'layers.{layer_i}.attention_norm.weight'
].clone(),
f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][
f'layers.{layer_i}.ffn_norm.weight'
].clone(),
}
_lowerCAmelCase = permute(
torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
for i in range(__lowerCamelCase )
] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) )
_lowerCAmelCase = permute(
torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wk.weight'].view(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
for i in range(__lowerCamelCase )
] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , )
_lowerCAmelCase = torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wv.weight'].view(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
for i in range(__lowerCamelCase )
] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = torch.cat(
[loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(__lowerCamelCase )] , dim=1 )
_lowerCAmelCase = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__lowerCamelCase )] , dim=0 )
_lowerCAmelCase = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__lowerCamelCase )] , dim=1 )
_lowerCAmelCase = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__lowerCamelCase )] , dim=0 )
_lowerCAmelCase = inv_freq
for k, v in state_dict.items():
_lowerCAmelCase = filename
param_count += v.numel()
torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) )
_lowerCAmelCase = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin'
if model_size == "7B":
# Unsharded
_lowerCAmelCase = {
"""model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""],
"""model.norm.weight""": loaded["""norm.weight"""],
"""lm_head.weight""": loaded["""output.weight"""],
}
else:
_lowerCAmelCase = {
"""model.norm.weight""": loaded[0]["""norm.weight"""],
"""model.embed_tokens.weight""": torch.cat(
[loaded[i]["""tok_embeddings.weight"""] for i in range(__lowerCamelCase )] , dim=1 ),
"""lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__lowerCamelCase )] , dim=0 ),
}
for k, v in state_dict.items():
_lowerCAmelCase = filename
param_count += v.numel()
torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) )
# Write configs
_lowerCAmelCase = {"""total_size""": param_count * 2}
write_json(__lowerCamelCase , os.path.join(__lowerCamelCase , """pytorch_model.bin.index.json""" ) )
_lowerCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1
_lowerCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256
_lowerCAmelCase = LlamaConfig(
hidden_size=__lowerCamelCase , intermediate_size=compute_intermediate_size(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=__lowerCamelCase , )
config.save_pretrained(__lowerCamelCase )
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print("""Loading the checkpoint in a Llama model.""" )
_lowerCAmelCase = LlamaForCausalLM.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=__lowerCamelCase )
# Avoid saving this as part of the config.
del model.config._name_or_path
print("""Saving in the Transformers format.""" )
model.save_pretrained(__lowerCamelCase , safe_serialization=__lowerCamelCase )
shutil.rmtree(__lowerCamelCase )
def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any] ):
# Initialize the tokenizer based on the `spm` model
_lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' )
_lowerCAmelCase = tokenizer_class(__lowerCamelCase )
tokenizer.save_pretrained(__lowerCamelCase )
def A ():
_lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument(
"""--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , )
parser.add_argument(
"""--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , )
parser.add_argument(
"""--output_dir""" , help="""Location to write HF model and tokenizer""" , )
parser.add_argument("""--safe_serialization""" , type=__lowerCamelCase , help="""Whether or not to save using `safetensors`.""" )
_lowerCAmelCase = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , )
_lowerCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" )
write_tokenizer(args.output_dir , __lowerCamelCase )
if __name__ == "__main__":
main()
| 5 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_lowercase = logging.get_logger(__name__)
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : Any = ['''pixel_values''']
def __init__( self , _lowercase = True , _lowercase = None , _lowercase = PIL.Image.BICUBIC , _lowercase = True , _lowercase = None , _lowercase = 1 / 255 , _lowercase = True , _lowercase = True , _lowercase = None , _lowercase = None , **_lowercase , ):
"""simple docstring"""
super().__init__(**_lowercase )
_lowerCAmelCase = size if size is not None else {"""height""": 256, """width""": 256}
_lowerCAmelCase = get_size_dict(_lowercase )
_lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
_lowerCAmelCase = get_size_dict(_lowercase , param_name="""crop_size""" )
_lowerCAmelCase = do_resize
_lowerCAmelCase = size
_lowerCAmelCase = resample
_lowerCAmelCase = do_center_crop
_lowerCAmelCase = crop_size
_lowerCAmelCase = do_rescale
_lowerCAmelCase = rescale_factor
_lowerCAmelCase = do_normalize
_lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_lowerCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _lowercase ( self , _lowercase , _lowercase , _lowercase = PIL.Image.BICUBIC , _lowercase = None , **_lowercase , ):
"""simple docstring"""
_lowerCAmelCase = get_size_dict(_lowercase )
if "height" not in size or "width" not in size:
raise ValueError(F'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' )
return resize(
_lowercase , size=(size["""height"""], size["""width"""]) , resample=_lowercase , data_format=_lowercase , **_lowercase )
def _lowercase ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase , ):
"""simple docstring"""
_lowerCAmelCase = get_size_dict(_lowercase )
if "height" not in size or "width" not in size:
raise ValueError(F'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' )
return center_crop(_lowercase , size=(size["""height"""], size["""width"""]) , data_format=_lowercase , **_lowercase )
def _lowercase ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase , ):
"""simple docstring"""
return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase )
def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase = None , **_lowercase , ):
"""simple docstring"""
return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase )
def _lowercase ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase=None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , **_lowercase , ):
"""simple docstring"""
_lowerCAmelCase = do_resize if do_resize is not None else self.do_resize
_lowerCAmelCase = resample if resample is not None else self.resample
_lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
_lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
_lowerCAmelCase = image_mean if image_mean is not None else self.image_mean
_lowerCAmelCase = image_std if image_std is not None else self.image_std
_lowerCAmelCase = size if size is not None else self.size
_lowerCAmelCase = get_size_dict(_lowercase )
_lowerCAmelCase = crop_size if crop_size is not None else self.crop_size
_lowerCAmelCase = get_size_dict(_lowercase , param_name="""crop_size""" )
_lowerCAmelCase = make_list_of_images(_lowercase )
if not valid_images(_lowercase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
_lowerCAmelCase = [to_numpy_array(_lowercase ) for image in images]
if do_resize:
_lowerCAmelCase = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images]
if do_center_crop:
_lowerCAmelCase = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images]
if do_rescale:
_lowerCAmelCase = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images]
if do_normalize:
_lowerCAmelCase = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images]
_lowerCAmelCase = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images]
_lowerCAmelCase = {"""pixel_values""": images}
return BatchFeature(data=_lowercase , tensor_type=_lowercase )
| 5 |
'''simple docstring'''
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : Tuple = (DDPMScheduler,)
def _lowercase ( self , **_lowercase ):
"""simple docstring"""
_lowerCAmelCase = {
"""num_train_timesteps""": 1_000,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**_lowercase )
return config
def _lowercase ( self ):
"""simple docstring"""
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
self.check_over_configs(thresholding=_lowercase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , )
def _lowercase ( self ):
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for t in [0, 500, 999]:
self.check_over_forward(time_step=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = len(_lowercase )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
_lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(_lowercase ) ):
# 1. predict noise residual
_lowerCAmelCase = model(_lowercase , _lowercase )
# 2. predict previous mean of sample x_t-1
_lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
_lowerCAmelCase = pred_prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowercase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 258.9606 ) < 1e-2
assert abs(result_mean.item() - 0.3372 ) < 1e-3
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" )
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = len(_lowercase )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
_lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(_lowercase ) ):
# 1. predict noise residual
_lowerCAmelCase = model(_lowercase , _lowercase )
# 2. predict previous mean of sample x_t-1
_lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
_lowerCAmelCase = pred_prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowercase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 202.0296 ) < 1e-2
assert abs(result_mean.item() - 0.2631 ) < 1e-3
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=_lowercase )
_lowerCAmelCase = scheduler.timesteps
for i, timestep in enumerate(_lowercase ):
if i == len(_lowercase ) - 1:
_lowerCAmelCase = -1
else:
_lowerCAmelCase = timesteps[i + 1]
_lowerCAmelCase = scheduler.previous_timestep(_lowercase )
_lowerCAmelCase = prev_t.item()
self.assertEqual(_lowercase , _lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = [100, 87, 50, 51, 0]
with self.assertRaises(_lowercase , msg="""`custom_timesteps` must be in descending order.""" ):
scheduler.set_timesteps(timesteps=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = [100, 87, 50, 1, 0]
_lowerCAmelCase = len(_lowercase )
with self.assertRaises(_lowercase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ):
scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_lowercase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=_lowercase )
| 5 | 1 |
'''simple docstring'''
import math
import random
def A (__lowerCamelCase :float , __lowerCamelCase :bool = False ):
if deriv:
return value * (1 - value)
return 1 / (1 + math.exp(-value ))
# Initial Value
_lowercase = 0.02
def A (__lowerCamelCase :int , __lowerCamelCase :int ):
_lowerCAmelCase = float(2 * (random.randint(1 , 100 )) - 1 )
for _ in range(__lowerCamelCase ):
# Forward propagation
_lowerCAmelCase = sigmoid_function(INITIAL_VALUE * weight )
# How much did we miss?
_lowerCAmelCase = (expected / 100) - layer_a
# Error delta
_lowerCAmelCase = layer_1_error * sigmoid_function(__lowerCamelCase , __lowerCamelCase )
# Update weight
weight += INITIAL_VALUE * layer_1_delta
return layer_a * 100
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase = int(input("""Expected value: """))
_lowercase = int(input("""Number of propagations: """))
print(forward_propagation(expected, number_propagations))
| 5 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
_lowercase = logging.get_logger(__name__)
_lowercase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
_lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class UpperCAmelCase_ :
'''simple docstring'''
_lowercase : str = field(
default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_SCREAMING_SNAKE_CASE )} )
_lowercase : str = field(
default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} )
_lowercase : int = field(
default=1_2_8 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
_lowercase : int = field(
default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , )
_lowercase : int = field(
default=6_4 , metadata={
'''help''': (
'''The maximum number of tokens for the question. Questions longer than this will '''
'''be truncated to this length.'''
)
} , )
_lowercase : int = field(
default=3_0 , metadata={
'''help''': (
'''The maximum length of an answer that can be generated. This is needed because the start '''
'''and end predictions are not conditioned on one another.'''
)
} , )
_lowercase : bool = field(
default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
_lowercase : bool = field(
default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} )
_lowercase : float = field(
default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
_lowercase : int = field(
default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
_lowercase : int = field(
default=0 , metadata={
'''help''': (
'''language id of input for language-specific xlm models (see'''
''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'''
)
} , )
_lowercase : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} )
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : str = '''train'''
_lowercase : Union[str, Any] = '''dev'''
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : SquadDataTrainingArguments
_lowercase : List[SquadFeatures]
_lowercase : Split
_lowercase : bool
def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = False , _lowercase = None , _lowercase = "pt" , ):
"""simple docstring"""
_lowerCAmelCase = args
_lowerCAmelCase = is_language_sensitive
_lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(_lowercase , _lowercase ):
try:
_lowerCAmelCase = Split[mode]
except KeyError:
raise KeyError("""mode is not a valid split name""" )
_lowerCAmelCase = mode
# Load data features from cache or dataset file
_lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1"""
_lowerCAmelCase = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
_lowerCAmelCase = cached_features_file + """.lock"""
with FileLock(_lowercase ):
if os.path.exists(_lowercase ) and not args.overwrite_cache:
_lowerCAmelCase = time.time()
_lowerCAmelCase = torch.load(_lowercase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
_lowerCAmelCase = self.old_features["""features"""]
_lowerCAmelCase = self.old_features.get("""dataset""" , _lowercase )
_lowerCAmelCase = self.old_features.get("""examples""" , _lowercase )
logger.info(
F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'
""" future run""" )
else:
if mode == Split.dev:
_lowerCAmelCase = self.processor.get_dev_examples(args.data_dir )
else:
_lowerCAmelCase = self.processor.get_train_examples(args.data_dir )
_lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features(
examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , )
_lowerCAmelCase = time.time()
torch.save(
{"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowercase , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' )
def __len__( self ):
"""simple docstring"""
return len(self.features )
def __getitem__( self , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = self.features[i]
_lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float )
_lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float )
_lowerCAmelCase = {
"""input_ids""": input_ids,
"""attention_mask""": attention_mask,
"""token_type_ids""": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"""is_impossible""": is_impossible} )
if self.is_language_sensitive:
inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
_lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} )
return inputs
| 5 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowercase = logging.get_logger(__name__)
_lowercase = {
"""kssteven/ibert-roberta-base""": """https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json""",
"""kssteven/ibert-roberta-large""": """https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json""",
"""kssteven/ibert-roberta-large-mnli""": (
"""https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"""
),
}
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : int = '''ibert'''
def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=False , _lowercase="none" , **_lowercase , ):
"""simple docstring"""
super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = hidden_act
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = type_vocab_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = position_embedding_type
_lowerCAmelCase = quant_mode
_lowerCAmelCase = force_dequant
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def _lowercase ( self ):
"""simple docstring"""
if self.task == "multiple-choice":
_lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_lowerCAmelCase = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 5 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase = logging.get_logger(__name__)
_lowercase = {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json"""
),
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json"""
),
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json"""
),
}
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : str = '''dpr'''
def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase="absolute" , _lowercase = 0 , **_lowercase , ):
"""simple docstring"""
super().__init__(pad_token_id=_lowercase , **_lowercase )
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = hidden_act
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = type_vocab_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = projection_dim
_lowerCAmelCase = position_embedding_type
| 5 | 1 |
'''simple docstring'''
from typing import List
import datasets
from datasets.tasks import AudioClassification
from ..folder_based_builder import folder_based_builder
_lowercase = datasets.utils.logging.get_logger(__name__)
class UpperCAmelCase_ ( folder_based_builder.FolderBasedBuilderConfig ):
'''simple docstring'''
_lowercase : bool = None
_lowercase : bool = None
class UpperCAmelCase_ ( folder_based_builder.FolderBasedBuilder ):
'''simple docstring'''
_lowercase : List[str] = datasets.Audio()
_lowercase : Dict = '''audio'''
_lowercase : List[str] = AudioFolderConfig
_lowercase : List[str] # definition at the bottom of the script
_lowercase : Optional[Any] = AudioClassification(audio_column='''audio''' , label_column='''label''' )
_lowercase = [
""".aiff""",
""".au""",
""".avr""",
""".caf""",
""".flac""",
""".htk""",
""".svx""",
""".mat4""",
""".mat5""",
""".mpc2k""",
""".ogg""",
""".paf""",
""".pvf""",
""".raw""",
""".rf64""",
""".sd2""",
""".sds""",
""".ircam""",
""".voc""",
""".w64""",
""".wav""",
""".nist""",
""".wavex""",
""".wve""",
""".xi""",
""".mp3""",
""".opus""",
]
_lowercase = AUDIO_EXTENSIONS
| 5 |
'''simple docstring'''
from sklearn.metrics import mean_squared_error
import datasets
_lowercase = """\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
"""
_lowercase = """\
Mean Squared Error(MSE) is the average of the square of difference between the predicted
and actual values.
"""
_lowercase = """
Args:
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
sample_weight: array-like of shape (n_samples,), default=None
Sample weights.
multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
\"raw_values\" : Returns a full set of errors in case of multioutput input.
\"uniform_average\" : Errors of all outputs are averaged with uniform weight.
squared : bool, default=True
If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.
Returns:
mse : mean squared error.
Examples:
>>> mse_metric = datasets.load_metric(\"mse\")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.375}
>>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
>>> print(rmse_result)
{'mse': 0.6123724356957945}
If you're using multi-dimensional lists, then set the config as follows :
>>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
>>> references = [[0, 2], [-1, 2], [8, -5]]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.7083333333333334}
>>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mse': array([0.41666667, 1. ])}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def _lowercase ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"""
] , )
def _lowercase ( self ):
"""simple docstring"""
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("""float""" ) ),
"references": datasets.Sequence(datasets.Value("""float""" ) ),
}
else:
return {
"predictions": datasets.Value("""float""" ),
"references": datasets.Value("""float""" ),
}
def _lowercase ( self , _lowercase , _lowercase , _lowercase=None , _lowercase="uniform_average" , _lowercase=True ):
"""simple docstring"""
_lowerCAmelCase = mean_squared_error(
_lowercase , _lowercase , sample_weight=_lowercase , multioutput=_lowercase , squared=_lowercase )
return {"mse": mse}
| 5 | 1 |
'''simple docstring'''
from typing import Dict
from .base import GenericTensor, Pipeline
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def _lowercase ( self , _lowercase=None , _lowercase=None , _lowercase=None , **_lowercase ):
"""simple docstring"""
if tokenize_kwargs is None:
_lowerCAmelCase = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
"""truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" )
_lowerCAmelCase = truncation
_lowerCAmelCase = tokenize_kwargs
_lowerCAmelCase = {}
if return_tensors is not None:
_lowerCAmelCase = return_tensors
return preprocess_params, {}, postprocess_params
def _lowercase ( self , _lowercase , **_lowercase ):
"""simple docstring"""
_lowerCAmelCase = self.framework
_lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase )
return model_inputs
def _lowercase ( self , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = self.model(**_lowercase )
return model_outputs
def _lowercase ( self , _lowercase , _lowercase=False ):
"""simple docstring"""
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self , *_lowercase , **_lowercase ):
"""simple docstring"""
return super().__call__(*_lowercase , **_lowercase )
| 5 |
'''simple docstring'''
def A ():
for n in range(1 , 1000000 ):
yield n * (n + 1) // 2
def A (__lowerCamelCase :List[Any] ):
_lowerCAmelCase = 1
_lowerCAmelCase = 2
while i * i <= n:
_lowerCAmelCase = 0
while n % i == 0:
n //= i
multiplicity += 1
divisors_count *= multiplicity + 1
i += 1
if n > 1:
divisors_count *= 2
return divisors_count
def A ():
return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 )
if __name__ == "__main__":
print(solution())
| 5 | 1 |
'''simple docstring'''
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
_lowercase = logging.get_logger(__name__)
_lowercase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
_lowercase = {
"""vocab_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""",
},
"""merges_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""",
},
}
_lowercase = {
"""allenai/led-base-16384""": 16384,
}
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : List[str] = VOCAB_FILES_NAMES
_lowercase : int = PRETRAINED_VOCAB_FILES_MAP
_lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase : str = LEDTokenizer
_lowercase : Optional[Any] = ['''input_ids''', '''attention_mask''']
def __init__( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase="replace" , _lowercase="<s>" , _lowercase="</s>" , _lowercase="</s>" , _lowercase="<s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase="<mask>" , _lowercase=False , _lowercase=True , **_lowercase , ):
"""simple docstring"""
super().__init__(
_lowercase , _lowercase , tokenizer_file=_lowercase , errors=_lowercase , bos_token=_lowercase , eos_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase , **_lowercase , )
_lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , _lowercase ) != add_prefix_space:
_lowerCAmelCase = getattr(_lowercase , pre_tok_state.pop("""type""" ) )
_lowerCAmelCase = add_prefix_space
_lowerCAmelCase = pre_tok_class(**_lowercase )
_lowerCAmelCase = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
_lowerCAmelCase = """post_processor"""
_lowerCAmelCase = getattr(self.backend_tokenizer , _lowercase , _lowercase )
if tokenizer_component_instance:
_lowerCAmelCase = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
_lowerCAmelCase = tuple(state["""sep"""] )
if "cls" in state:
_lowerCAmelCase = tuple(state["""cls"""] )
_lowerCAmelCase = False
if state.get("""add_prefix_space""" , _lowercase ) != add_prefix_space:
_lowerCAmelCase = add_prefix_space
_lowerCAmelCase = True
if state.get("""trim_offsets""" , _lowercase ) != trim_offsets:
_lowerCAmelCase = trim_offsets
_lowerCAmelCase = True
if changes_to_apply:
_lowerCAmelCase = getattr(_lowercase , state.pop("""type""" ) )
_lowerCAmelCase = component_class(**_lowercase )
setattr(self.backend_tokenizer , _lowercase , _lowercase )
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def _lowercase ( self ):
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""" )
return None
return str(self._mask_token )
@mask_token.setter
def _lowercase ( self , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else value
_lowerCAmelCase = value
def _lowercase ( self , *_lowercase , **_lowercase ):
"""simple docstring"""
_lowerCAmelCase = kwargs.get("""is_split_into_words""" , _lowercase )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"""to use it with pretokenized inputs.""" )
return super()._batch_encode_plus(*_lowercase , **_lowercase )
def _lowercase ( self , *_lowercase , **_lowercase ):
"""simple docstring"""
_lowerCAmelCase = kwargs.get("""is_split_into_words""" , _lowercase )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"""to use it with pretokenized inputs.""" )
return super()._encode_plus(*_lowercase , **_lowercase )
def _lowercase ( self , _lowercase , _lowercase = None ):
"""simple docstring"""
_lowerCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase )
return tuple(_lowercase )
def _lowercase ( self , _lowercase , _lowercase=None ):
"""simple docstring"""
_lowerCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowercase ( self , _lowercase , _lowercase = None ):
"""simple docstring"""
_lowerCAmelCase = [self.sep_token_id]
_lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowercase ( self , _lowercase , _lowercase = None , _lowercase = PaddingStrategy.DO_NOT_PAD , _lowercase = None , _lowercase = None , ):
"""simple docstring"""
_lowerCAmelCase = super()._pad(
encoded_inputs=_lowercase , max_length=_lowercase , padding_strategy=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , )
# Load from model defaults
if return_attention_mask is None:
_lowerCAmelCase = """attention_mask""" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
_lowerCAmelCase = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
_lowerCAmelCase = len(encoded_inputs["""global_attention_mask"""] ) != len(_lowercase )
if needs_to_be_padded:
_lowerCAmelCase = len(_lowercase ) - len(encoded_inputs["""global_attention_mask"""] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
_lowerCAmelCase = (
encoded_inputs["""global_attention_mask"""] + [-1] * difference
)
elif self.padding_side == "left":
_lowerCAmelCase = [-1] * difference + encoded_inputs[
"""global_attention_mask"""
]
else:
raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) )
return encoded_inputs
| 5 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_donut import DonutImageProcessor
_lowercase = logging.get_logger(__name__)
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , *_lowercase , **_lowercase ):
"""simple docstring"""
warnings.warn(
"""The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use DonutImageProcessor instead.""" , _lowercase , )
super().__init__(*_lowercase , **_lowercase )
| 5 | 1 |
'''simple docstring'''
from manim import *
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = Rectangle(height=0.5 , width=0.5 )
_lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_lowerCAmelCase = [mem.copy() for i in range(6 )]
_lowerCAmelCase = [mem.copy() for i in range(6 )]
_lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = Text("""CPU""" , font_size=24 )
_lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_lowercase )
_lowerCAmelCase = [mem.copy() for i in range(1 )]
_lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = Text("""GPU""" , font_size=24 )
_lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase )
gpu.align_to(_lowercase , _lowercase )
gpu.set_x(gpu.get_x() - 1 )
self.add(_lowercase )
_lowerCAmelCase = [mem.copy() for i in range(6 )]
_lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = Text("""Model""" , font_size=24 )
_lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase )
model.move_to([3, -1.0, 0] )
self.play(
Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , )
_lowerCAmelCase = MarkupText(
F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , )
_lowerCAmelCase = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_lowerCAmelCase = MarkupText(
F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
step_a.move_to([2, 2, 0] )
self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) )
self.add(_lowercase )
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
for i, rect in enumerate(_lowercase ):
_lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 )
cpu_target.move_to(_lowercase )
cpu_target.generate_target()
_lowerCAmelCase = 0.46 / 4
_lowerCAmelCase = 0.46 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase )
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 )
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 )
else:
cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 )
cpu_targs.append(_lowercase )
first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) )
second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) )
self.play(*_lowercase )
self.play(*_lowercase )
self.wait()
| 5 |
'''simple docstring'''
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 5 | 1 |
'''simple docstring'''
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@staticmethod
@abstractmethod
def _lowercase ( _lowercase ):
"""simple docstring"""
raise NotImplementedError()
@abstractmethod
def _lowercase ( self ):
"""simple docstring"""
raise NotImplementedError()
| 5 |
'''simple docstring'''
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print("""Googling.....""")
_lowercase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:])
_lowercase = requests.get(url, headers={"""UserAgent""": UserAgent().random})
# res.raise_for_status()
with open("""project1a.html""", """wb""") as out_file: # only for knowing the class
for data in res.iter_content(10000):
out_file.write(data)
_lowercase = BeautifulSoup(res.text, """html.parser""")
_lowercase = list(soup.select(""".eZt8xd"""))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get("""href"""))
else:
webbrowser.open(F"""https://google.com{link.get('href')}""")
| 5 | 1 |
'''simple docstring'''
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 5 |
'''simple docstring'''
import os
from datetime import datetime as dt
from github import Github
_lowercase = [
"""good first issue""",
"""good second issue""",
"""good difficult issue""",
"""enhancement""",
"""new pipeline/model""",
"""new scheduler""",
"""wip""",
]
def A ():
_lowerCAmelCase = Github(os.environ["""GITHUB_TOKEN"""] )
_lowerCAmelCase = g.get_repo("""huggingface/diffusers""" )
_lowerCAmelCase = repo.get_issues(state="""open""" )
for issue in open_issues:
_lowerCAmelCase = sorted(issue.get_comments() , key=lambda __lowerCamelCase : i.created_at , reverse=__lowerCamelCase )
_lowerCAmelCase = comments[0] if len(__lowerCamelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state="""closed""" )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state="""open""" )
issue.remove_from_labels("""stale""" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
issue.add_to_labels("""stale""" )
if __name__ == "__main__":
main()
| 5 | 1 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
_lowercase = transforms.Compose(
[
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def A (__lowerCamelCase :List[str] ):
if isinstance(__lowerCamelCase , torch.Tensor ):
return image
elif isinstance(__lowerCamelCase , PIL.Image.Image ):
_lowerCAmelCase = [image]
_lowerCAmelCase = [trans(img.convert("""RGB""" ) ) for img in image]
_lowerCAmelCase = torch.stack(__lowerCamelCase )
return image
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , _lowercase , _lowercase ):
"""simple docstring"""
super().__init__()
# make sure scheduler can always be converted to DDIM
_lowerCAmelCase = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=_lowercase , scheduler=_lowercase )
def _lowercase ( self , _lowercase ):
"""simple docstring"""
if strength < 0 or strength > 1:
raise ValueError(F'The value of strength should in [0.0, 1.0] but is {strength}' )
def _lowercase ( self , _lowercase , _lowercase , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = min(int(num_inference_steps * strength ) , _lowercase )
_lowerCAmelCase = max(num_inference_steps - init_timestep , 0 )
_lowerCAmelCase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ):
"""simple docstring"""
if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}' )
_lowerCAmelCase = image.to(device=_lowercase , dtype=_lowercase )
if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size:
raise ValueError(
F'You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch'
F' size of {batch_size}. Make sure the batch size matches the length of the generators.' )
_lowerCAmelCase = init_latents.shape
_lowerCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase )
# get latents
print("""add noise to latents at timestep""" , _lowercase )
_lowerCAmelCase = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase )
_lowerCAmelCase = init_latents
return latents
@torch.no_grad()
def __call__( self , _lowercase = None , _lowercase = 0.8 , _lowercase = 1 , _lowercase = None , _lowercase = 0.0 , _lowercase = 50 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ):
"""simple docstring"""
self.check_inputs(_lowercase )
# 2. Preprocess image
_lowerCAmelCase = preprocess(_lowercase )
# 3. set timesteps
self.scheduler.set_timesteps(_lowercase , device=self.device )
_lowerCAmelCase , _lowerCAmelCase = self.get_timesteps(_lowercase , _lowercase , self.device )
_lowerCAmelCase = timesteps[:1].repeat(_lowercase )
# 4. Prepare latent variables
_lowerCAmelCase = self.prepare_latents(_lowercase , _lowercase , _lowercase , self.unet.dtype , self.device , _lowercase )
_lowerCAmelCase = latents
# 5. Denoising loop
for t in self.progress_bar(_lowercase ):
# 1. predict noise model_output
_lowerCAmelCase = self.unet(_lowercase , _lowercase ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
_lowerCAmelCase = self.scheduler.step(
_lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase , ).prev_sample
_lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 )
_lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_lowerCAmelCase = self.numpy_to_pil(_lowercase )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=_lowercase )
| 5 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
ImageTextPipelineOutput,
UniDiffuserPipeline,
)
else:
from .modeling_text_decoder import UniDiffuserTextDecoder
from .modeling_uvit import UniDiffuserModel, UTransformeraDModel
from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
| 5 | 1 |
'''simple docstring'''
from collections import defaultdict
def A (__lowerCamelCase :str , __lowerCamelCase :str ):
_lowerCAmelCase = first_str.lower().strip()
_lowerCAmelCase = second_str.lower().strip()
# Remove whitespace
_lowerCAmelCase = first_str.replace(""" """ , """""" )
_lowerCAmelCase = second_str.replace(""" """ , """""" )
# Strings of different lengths are not anagrams
if len(__lowerCamelCase ) != len(__lowerCamelCase ):
return False
# Default values for count should be 0
_lowerCAmelCase = defaultdict(__lowerCamelCase )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(__lowerCamelCase ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
_lowercase = input("""Enter the first string """).strip()
_lowercase = input("""Enter the second string """).strip()
_lowercase = check_anagrams(input_a, input_b)
print(F"""{input_a} and {input_b} are {'' if status else 'not '}anagrams.""")
| 5 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_lowercase = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = [
"""VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ViTMAEForPreTraining""",
"""ViTMAELayer""",
"""ViTMAEModel""",
"""ViTMAEPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = [
"""TFViTMAEForPreTraining""",
"""TFViTMAEModel""",
"""TFViTMAEPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_mae import (
VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMAEForPreTraining,
ViTMAELayer,
ViTMAEModel,
ViTMAEPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel
else:
import sys
_lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 5 | 1 |
'''simple docstring'''
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
from transformers.models.esm.modeling_esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
EsmEmbeddings,
create_position_ids_from_input_ids,
)
class UpperCAmelCase_ :
'''simple docstring'''
def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=False , _lowercase=True , _lowercase=False , _lowercase=True , _lowercase=33 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , ):
"""simple docstring"""
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = seq_length
_lowerCAmelCase = is_training
_lowerCAmelCase = use_input_mask
_lowerCAmelCase = use_token_type_ids
_lowerCAmelCase = use_labels
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = type_vocab_size
_lowerCAmelCase = type_sequence_label_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = num_labels
_lowerCAmelCase = num_choices
_lowerCAmelCase = scope
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowerCAmelCase = None
if self.use_input_mask:
_lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase = None
_lowerCAmelCase = None
_lowerCAmelCase = None
if self.use_labels:
_lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
_lowerCAmelCase = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowercase ( self ):
"""simple docstring"""
return EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = EsmModel(config=_lowercase )
model.to(_lowercase )
model.eval()
_lowerCAmelCase = model(_lowercase , attention_mask=_lowercase )
_lowerCAmelCase = model(_lowercase )
_lowerCAmelCase = model(_lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = EsmForMaskedLM(config=_lowercase )
model.to(_lowercase )
model.eval()
_lowerCAmelCase = model(_lowercase , attention_mask=_lowercase , labels=_lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = self.num_labels
_lowerCAmelCase = EsmForTokenClassification(config=_lowercase )
model.to(_lowercase )
model.eval()
_lowerCAmelCase = model(_lowercase , attention_mask=_lowercase , labels=_lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) = config_and_inputs
_lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
_lowercase : List[str] = False
_lowercase : Tuple = (
(
EsmForMaskedLM,
EsmModel,
EsmForSequenceClassification,
EsmForTokenClassification,
)
if is_torch_available()
else ()
)
_lowercase : Tuple = ()
_lowercase : Optional[int] = (
{
'''feature-extraction''': EsmModel,
'''fill-mask''': EsmForMaskedLM,
'''text-classification''': EsmForSequenceClassification,
'''token-classification''': EsmForTokenClassification,
'''zero-shot''': EsmForSequenceClassification,
}
if is_torch_available()
else {}
)
_lowercase : int = True
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = EsmModelTester(self )
_lowerCAmelCase = ConfigTester(self , config_class=_lowercase , hidden_size=37 )
def _lowercase ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_lowerCAmelCase = type
self.model_tester.create_and_check_model(*_lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_lowercase )
@slow
def _lowercase ( self ):
"""simple docstring"""
for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase = EsmModel.from_pretrained(_lowercase )
self.assertIsNotNone(_lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()[0]
_lowerCAmelCase = EsmEmbeddings(config=_lowercase )
_lowerCAmelCase = torch.as_tensor([[12, 31, 13, model.padding_idx]] )
_lowerCAmelCase = torch.as_tensor(
[
[
0 + model.padding_idx + 1,
1 + model.padding_idx + 1,
2 + model.padding_idx + 1,
model.padding_idx,
]
] )
_lowerCAmelCase = create_position_ids_from_input_ids(_lowercase , model.padding_idx )
self.assertEqual(position_ids.shape , expected_positions.shape )
self.assertTrue(torch.all(torch.eq(_lowercase , _lowercase ) ) )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()[0]
_lowerCAmelCase = EsmEmbeddings(config=_lowercase )
_lowerCAmelCase = torch.empty(2 , 4 , 30 )
_lowerCAmelCase = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
_lowerCAmelCase = torch.as_tensor([expected_single_positions, expected_single_positions] )
_lowerCAmelCase = embeddings.create_position_ids_from_inputs_embeds(_lowercase )
self.assertEqual(position_ids.shape , expected_positions.shape )
self.assertTrue(torch.all(torch.eq(_lowercase , _lowercase ) ) )
@unittest.skip("""Esm does not support embedding resizing""" )
def _lowercase ( self ):
"""simple docstring"""
pass
@unittest.skip("""Esm does not support embedding resizing""" )
def _lowercase ( self ):
"""simple docstring"""
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def _lowercase ( self ):
"""simple docstring"""
pass
@require_torch
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@slow
def _lowercase ( self ):
"""simple docstring"""
with torch.no_grad():
_lowerCAmelCase = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" )
model.eval()
_lowerCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] )
_lowerCAmelCase = model(_lowercase )[0]
_lowerCAmelCase = 33
_lowerCAmelCase = torch.Size((1, 6, vocab_size) )
self.assertEqual(output.shape , _lowercase )
_lowerCAmelCase = torch.tensor(
[[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _lowercase , atol=1e-4 ) )
@slow
def _lowercase ( self ):
"""simple docstring"""
with torch.no_grad():
_lowerCAmelCase = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" )
model.eval()
_lowerCAmelCase = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
_lowerCAmelCase = model(_lowercase )[0]
# compare the actual values for a slice.
_lowerCAmelCase = torch.tensor(
[[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _lowercase , atol=1e-4 ) )
| 5 |
'''simple docstring'''
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
_lowercase = logging.get_logger(__name__)
@add_end_docstrings(_SCREAMING_SNAKE_CASE )
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , **_lowercase ):
"""simple docstring"""
super().__init__(**_lowercase )
if self.framework != "pt":
raise ValueError(F'The {self.__class__} is only available in PyTorch.' )
# No specific FOR_XXX available yet
def __call__( self , _lowercase , **_lowercase ):
"""simple docstring"""
return super().__call__(_lowercase , **_lowercase )
def _lowercase ( self , **_lowercase ):
"""simple docstring"""
_lowerCAmelCase = {}
if "candidate_labels" in kwargs:
_lowerCAmelCase = kwargs["""candidate_labels"""]
if "hypothesis_template" in kwargs:
_lowerCAmelCase = kwargs["""hypothesis_template"""]
return preprocess_params, {}, {}
def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a sound of {}." ):
"""simple docstring"""
if isinstance(_lowercase , _lowercase ):
if audio.startswith("""http://""" ) or audio.startswith("""https://""" ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
_lowerCAmelCase = requests.get(_lowercase ).content
else:
with open(_lowercase , """rb""" ) as f:
_lowerCAmelCase = f.read()
if isinstance(_lowercase , _lowercase ):
_lowerCAmelCase = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate )
if not isinstance(_lowercase , np.ndarray ):
raise ValueError("""We expect a numpy ndarray as input""" )
if len(audio.shape ) != 1:
raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" )
_lowerCAmelCase = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" )
_lowerCAmelCase = candidate_labels
_lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels]
_lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase )
_lowerCAmelCase = [text_inputs]
return inputs
def _lowercase ( self , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = model_inputs.pop("""candidate_labels""" )
_lowerCAmelCase = model_inputs.pop("""text_inputs""" )
if isinstance(text_inputs[0] , _lowercase ):
_lowerCAmelCase = text_inputs[0]
else:
# Batching case.
_lowerCAmelCase = text_inputs[0][0]
_lowerCAmelCase = self.model(**_lowercase , **_lowercase )
_lowerCAmelCase = {
"""candidate_labels""": candidate_labels,
"""logits""": outputs.logits_per_audio,
}
return model_outputs
def _lowercase ( self , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = model_outputs.pop("""candidate_labels""" )
_lowerCAmelCase = model_outputs["""logits"""][0]
if self.framework == "pt":
_lowerCAmelCase = logits.softmax(dim=0 )
_lowerCAmelCase = probs.tolist()
else:
raise ValueError("""`tf` framework not supported.""" )
_lowerCAmelCase = [
{"""score""": score, """label""": candidate_label}
for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] )
]
return result
| 5 | 1 |
def __lowercase ( snake_case ):
"""simple docstring"""
if not isinstance(snake_case, snake_case ):
raise TypeError('''only integers accepted as input''' )
else:
__magic_name__ :List[Any] = str(abs(snake_case ) )
__magic_name__ :Dict = [list(snake_case ) for char in range(len(snake_case ) )]
for index in range(len(snake_case ) ):
num_transpositions[index].pop(snake_case )
return max(
int(''''''.join(list(snake_case ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__("""doctest""").testmod()
| 0 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
_lowercase = logging.get_logger(__name__)
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : List[str] = ['''input_values''', '''padding_mask''']
def __init__( self , _lowercase = 1 , _lowercase = 24_000 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , **_lowercase , ):
"""simple docstring"""
super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase )
_lowerCAmelCase = chunk_length_s
_lowerCAmelCase = overlap
@property
def _lowercase ( self ):
"""simple docstring"""
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def _lowercase ( self ):
"""simple docstring"""
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self , _lowercase , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ):
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of'
F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'
F' {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
if padding and truncation:
raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" )
elif padding is None:
# by default let's pad the inputs
_lowerCAmelCase = True
_lowerCAmelCase = bool(
isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) )
if is_batched:
_lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(_lowercase , np.ndarray ):
_lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa )
elif isinstance(_lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
_lowerCAmelCase = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
_lowerCAmelCase = [np.asarray(_lowercase ).T]
# verify inputs are valid
for idx, example in enumerate(_lowercase ):
if example.ndim > 2:
raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' )
_lowerCAmelCase = None
_lowerCAmelCase = BatchFeature({"""input_values""": raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
_lowerCAmelCase = min(array.shape[0] for array in raw_audio )
_lowerCAmelCase = int(np.floor(max_length / self.chunk_stride ) )
_lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
_lowerCAmelCase = max(array.shape[0] for array in raw_audio )
_lowerCAmelCase = int(np.ceil(max_length / self.chunk_stride ) )
_lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length
_lowerCAmelCase = """max_length"""
else:
_lowerCAmelCase = input_values
# normal padding on batch
if padded_inputs is None:
_lowerCAmelCase = self.pad(
_lowercase , max_length=_lowercase , truncation=_lowercase , padding=_lowercase , return_attention_mask=_lowercase , )
if padding:
_lowerCAmelCase = padded_inputs.pop("""attention_mask""" )
_lowerCAmelCase = []
for example in padded_inputs.pop("""input_values""" ):
if self.feature_size == 1:
_lowerCAmelCase = example[..., None]
input_values.append(example.T )
_lowerCAmelCase = input_values
if return_tensors is not None:
_lowerCAmelCase = padded_inputs.convert_to_tensors(_lowercase )
return padded_inputs
| 5 | 0 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class __lowerCamelCase (unittest.TestCase ):
@slow
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' )
__UpperCamelCase = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]],dtype=tf.intaa,) # J'aime le camembert !"
__UpperCamelCase = model(A_ )['last_hidden_state']
__UpperCamelCase = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape,A_ )
# compare the actual values for a slice.
__UpperCamelCase = tf.convert_to_tensor(
[[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]],dtype=tf.floataa,)
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy(),expected_slice.numpy(),atol=1E-4 ) )
| 1 |
'''simple docstring'''
_lowercase = """
# Transformers 설치 방법
! pip install transformers datasets
# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
_lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
_lowercase = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 5 | 0 |
import os
from pathlib import Path
def SCREAMING_SNAKE_CASE_ ( ) -> Dict:
from torch.utils.cpp_extension import load
_A = Path(_snake_case ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr'''
_A = [
root / filename
for filename in [
'''vision.cpp''',
os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ),
os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ),
]
]
load(
'''MultiScaleDeformableAttention''' , _snake_case , with_cuda=_snake_case , extra_include_paths=[str(_snake_case )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[
'''-DCUDA_HAS_FP16=1''',
'''-D__CUDA_NO_HALF_OPERATORS__''',
'''-D__CUDA_NO_HALF_CONVERSIONS__''',
'''-D__CUDA_NO_HALF2_OPERATORS__''',
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 2 |
'''simple docstring'''
import functools
def A (__lowerCamelCase :list[int] , __lowerCamelCase :list[int] ):
# Validation
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for day in days ):
raise ValueError("""The parameter days should be a list of integers""" )
if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for cost in costs ):
raise ValueError("""The parameter costs should be a list of three integers""" )
if len(__lowerCamelCase ) == 0:
return 0
if min(__lowerCamelCase ) <= 0:
raise ValueError("""All days elements should be greater than 0""" )
if max(__lowerCamelCase ) >= 366:
raise ValueError("""All days elements should be less than 366""" )
_lowerCAmelCase = set(__lowerCamelCase )
@functools.cache
def dynamic_programming(__lowerCamelCase :int ) -> int:
if index > 365:
return 0
if index not in days_set:
return dynamic_programming(index + 1 )
return min(
costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , )
return dynamic_programming(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 0 |
'''simple docstring'''
from math import factorial
def A_( A : int = 20):
UpperCamelCase = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
UpperCamelCase = n // 2
return int(factorial(A) / (factorial(A) * factorial(n - k)))
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
lowerCAmelCase : int = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 3 |
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def A (__lowerCamelCase :List[Any] ):
_lowerCAmelCase = 384
if "tiny" in model_name:
_lowerCAmelCase = [3, 3, 9, 3]
_lowerCAmelCase = [96, 192, 384, 768]
if "small" in model_name:
_lowerCAmelCase = [3, 3, 27, 3]
_lowerCAmelCase = [96, 192, 384, 768]
if "base" in model_name:
_lowerCAmelCase = [3, 3, 27, 3]
_lowerCAmelCase = [128, 256, 512, 1024]
_lowerCAmelCase = 512
if "large" in model_name:
_lowerCAmelCase = [3, 3, 27, 3]
_lowerCAmelCase = [192, 384, 768, 1536]
_lowerCAmelCase = 768
if "xlarge" in model_name:
_lowerCAmelCase = [3, 3, 27, 3]
_lowerCAmelCase = [256, 512, 1024, 2048]
_lowerCAmelCase = 1024
# set label information
_lowerCAmelCase = 150
_lowerCAmelCase = """huggingface/label-files"""
_lowerCAmelCase = """ade20k-id2label.json"""
_lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) )
_lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
_lowerCAmelCase = {v: k for k, v in idalabel.items()}
_lowerCAmelCase = ConvNextConfig(
depths=__lowerCamelCase , hidden_sizes=__lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] )
_lowerCAmelCase = UperNetConfig(
backbone_config=__lowerCamelCase , auxiliary_in_channels=__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , )
return config
def A (__lowerCamelCase :Optional[Any] ):
_lowerCAmelCase = []
# fmt: off
# stem
rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") )
rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") )
rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") )
rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') )
rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') )
if i > 0:
rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') )
rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') )
rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') )
rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') )
rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') )
rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') )
# decode head
rename_keys.extend(
[
("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""),
("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""),
("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""),
("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""),
] )
# fmt: on
return rename_keys
def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict , __lowerCamelCase :Tuple ):
_lowerCAmelCase = dct.pop(__lowerCamelCase )
_lowerCAmelCase = val
def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ):
_lowerCAmelCase = {
"""upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""",
"""upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""",
"""upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""",
"""upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""",
"""upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""",
}
_lowerCAmelCase = model_name_to_url[model_name]
_lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""state_dict"""]
_lowerCAmelCase = get_upernet_config(__lowerCamelCase )
_lowerCAmelCase = UperNetForSemanticSegmentation(__lowerCamelCase )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
_lowerCAmelCase = state_dict.pop(__lowerCamelCase )
if "bn" in key:
_lowerCAmelCase = key.replace("""bn""" , """batch_norm""" )
_lowerCAmelCase = val
# rename keys
_lowerCAmelCase = create_rename_keys(__lowerCamelCase )
for src, dest in rename_keys:
rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
model.load_state_dict(__lowerCamelCase )
# verify on image
_lowerCAmelCase = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"""
_lowerCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" )
_lowerCAmelCase = SegformerImageProcessor()
_lowerCAmelCase = processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values
with torch.no_grad():
_lowerCAmelCase = model(__lowerCamelCase )
if model_name == "upernet-convnext-tiny":
_lowerCAmelCase = torch.tensor(
[[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] )
elif model_name == "upernet-convnext-small":
_lowerCAmelCase = torch.tensor(
[[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] )
elif model_name == "upernet-convnext-base":
_lowerCAmelCase = torch.tensor(
[[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] )
elif model_name == "upernet-convnext-large":
_lowerCAmelCase = torch.tensor(
[[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] )
elif model_name == "upernet-convnext-xlarge":
_lowerCAmelCase = torch.tensor(
[[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] )
print("""Logits:""" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(__lowerCamelCase )
print(f'Saving processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(__lowerCamelCase )
if push_to_hub:
print(f'Pushing model and processor for {model_name} to hub' )
model.push_to_hub(f'openmmlab/{model_name}' )
processor.push_to_hub(f'openmmlab/{model_name}' )
if __name__ == "__main__":
_lowercase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""upernet-convnext-tiny""",
type=str,
choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]],
help="""Name of the ConvNext UperNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
_lowercase = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 5 | 0 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class a ( a__ , a__ , a__ , unittest.TestCase ):
snake_case__ = AltDiffusionPipeline
snake_case__ = TEXT_TO_IMAGE_PARAMS
snake_case__ = TEXT_TO_IMAGE_BATCH_PARAMS
snake_case__ = TEXT_TO_IMAGE_IMAGE_PARAMS
snake_case__ = TEXT_TO_IMAGE_IMAGE_PARAMS
def UpperCamelCase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
lowerCAmelCase = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , )
torch.manual_seed(0 )
lowerCAmelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
# TODO: address the non-deterministic text encoder (fails for save-load tests)
# torch.manual_seed(0)
# text_encoder_config = RobertaSeriesConfig(
# hidden_size=32,
# project_dim=32,
# intermediate_size=37,
# layer_norm_eps=1e-05,
# num_attention_heads=4,
# num_hidden_layers=5,
# vocab_size=5002,
# )
# text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
torch.manual_seed(0 )
lowerCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_02 , )
lowerCAmelCase = CLIPTextModel(_snake_case )
lowerCAmelCase = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' )
lowerCAmelCase = 77
lowerCAmelCase = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ):
"""simple docstring"""
if str(_snake_case ).startswith('mps' ):
lowerCAmelCase = torch.manual_seed(_snake_case )
else:
lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowerCAmelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase = self.get_dummy_components()
torch.manual_seed(0 )
lowerCAmelCase = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , )
# TODO: remove after fixing the non-deterministic text encoder
lowerCAmelCase = RobertaSeriesModelWithTransformation(_snake_case )
lowerCAmelCase = text_encoder
lowerCAmelCase = AltDiffusionPipeline(**_snake_case )
lowerCAmelCase = alt_pipe.to(_snake_case )
alt_pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = self.get_dummy_inputs(_snake_case )
lowerCAmelCase = 'A photo of an astronaut'
lowerCAmelCase = alt_pipe(**_snake_case )
lowerCAmelCase = output.images
lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase = np.array(
[0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase = self.get_dummy_components()
lowerCAmelCase = PNDMScheduler(skip_prk_steps=_snake_case )
torch.manual_seed(0 )
lowerCAmelCase = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , )
# TODO: remove after fixing the non-deterministic text encoder
lowerCAmelCase = RobertaSeriesModelWithTransformation(_snake_case )
lowerCAmelCase = text_encoder
lowerCAmelCase = AltDiffusionPipeline(**_snake_case )
lowerCAmelCase = alt_pipe.to(_snake_case )
alt_pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = self.get_dummy_inputs(_snake_case )
lowerCAmelCase = alt_pipe(**_snake_case )
lowerCAmelCase = output.images
lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase = np.array(
[0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , safety_checker=_snake_case )
lowerCAmelCase = alt_pipe.to(_snake_case )
alt_pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = 'A painting of a squirrel eating a burger'
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = alt_pipe([prompt] , generator=_snake_case , guidance_scale=6.0 , num_inference_steps=20 , output_type='np' )
lowerCAmelCase = output.images
lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowerCAmelCase = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = DDIMScheduler.from_pretrained('BAAI/AltDiffusion' , subfolder='scheduler' )
lowerCAmelCase = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , scheduler=_snake_case , safety_checker=_snake_case )
lowerCAmelCase = alt_pipe.to(_snake_case )
alt_pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = 'A painting of a squirrel eating a burger'
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = alt_pipe([prompt] , generator=_snake_case , num_inference_steps=2 , output_type='numpy' )
lowerCAmelCase = output.images
lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowerCAmelCase = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 4 |
'''simple docstring'''
from itertools import product
def A (__lowerCamelCase :int , __lowerCamelCase :int ):
_lowerCAmelCase = sides_number
_lowerCAmelCase = max_face_number * dice_number
_lowerCAmelCase = [0] * (max_total + 1)
_lowerCAmelCase = 1
_lowerCAmelCase = range(__lowerCamelCase , max_face_number + 1 )
for dice_numbers in product(__lowerCamelCase , repeat=__lowerCamelCase ):
_lowerCAmelCase = sum(__lowerCamelCase )
totals_frequencies[total] += 1
return totals_frequencies
def A ():
_lowerCAmelCase = total_frequency_distribution(
sides_number=4 , dice_number=9 )
_lowerCAmelCase = total_frequency_distribution(
sides_number=6 , dice_number=6 )
_lowerCAmelCase = 0
_lowerCAmelCase = 9
_lowerCAmelCase = 4 * 9
_lowerCAmelCase = 6
for peter_total in range(__lowerCamelCase , max_peter_total + 1 ):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total] )
_lowerCAmelCase = (4**9) * (6**6)
_lowerCAmelCase = peter_wins_count / total_games_number
_lowerCAmelCase = round(__lowerCamelCase , ndigits=7 )
return rounded_peter_win_probability
if __name__ == "__main__":
print(F"""{solution() = }""")
| 5 | 0 |
from collections import Counter
from pathlib import Path
from typing import Optional, Tuple
import yaml
class UpperCamelCase_ ( yaml.SafeLoader ):
def _snake_case ( self :List[str] , __A :List[Any] ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self.constructed_objects[key_node] for key_node, _ in node.value]
SCREAMING_SNAKE_CASE__ = [tuple(__A ) if isinstance(__A , __A ) else key for key in keys]
SCREAMING_SNAKE_CASE__ = Counter(__A )
SCREAMING_SNAKE_CASE__ = [key for key in counter if counter[key] > 1]
if duplicate_keys:
raise TypeError(f'''Got duplicate yaml keys: {duplicate_keys}''' )
def _snake_case ( self :Optional[int] , __A :List[Any] , __A :Union[str, Any]=False ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = super().construct_mapping(__A , deep=__A )
self._check_no_duplicates_on_constructed_node(__A )
return mapping
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = list(readme_content.splitlines() )
if full_content and full_content[0] == "---" and "---" in full_content[1:]:
SCREAMING_SNAKE_CASE__ = full_content[1:].index("""---""" ) + 1
SCREAMING_SNAKE_CASE__ = """\n""".join(full_content[1:sep_idx] )
return yamlblock, "\n".join(full_content[sep_idx + 1 :] )
return None, "\n".join(UpperCamelCase__ )
class UpperCamelCase_ ( UpperCamelCase__ ):
# class attributes
lowerCamelCase_ = {"train_eval_index"} # train-eval-index in the YAML metadata
@classmethod
def _snake_case ( cls :int , __A :Path ) -> "DatasetMetadata":
"""simple docstring"""
with open(__A , encoding="""utf-8""" ) as readme_file:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = _split_yaml_from_readme(readme_file.read() )
if yaml_string is not None:
return cls.from_yaml_string(__A )
else:
return cls()
def _snake_case ( self :int , __A :Path ) -> str:
"""simple docstring"""
if path.exists():
with open(__A , encoding="""utf-8""" ) as readme_file:
SCREAMING_SNAKE_CASE__ = readme_file.read()
else:
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = self._to_readme(__A )
with open(__A , """w""" , encoding="""utf-8""" ) as readme_file:
readme_file.write(__A )
def _snake_case ( self :int , __A :Optional[str] = None ) -> str:
"""simple docstring"""
if readme_content is not None:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = _split_yaml_from_readme(__A )
SCREAMING_SNAKE_CASE__ = """---\n""" + self.to_yaml_string() + """---\n""" + content
else:
SCREAMING_SNAKE_CASE__ = """---\n""" + self.to_yaml_string() + """---\n"""
return full_content
@classmethod
def _snake_case ( cls :Tuple , __A :str ) -> "DatasetMetadata":
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = yaml.load(__A , Loader=_NoDuplicateSafeLoader ) or {}
# Convert the YAML keys to DatasetMetadata fields
SCREAMING_SNAKE_CASE__ = {
(key.replace("""-""" , """_""" ) if key.replace("""-""" , """_""" ) in cls._FIELDS_WITH_DASHES else key): value
for key, value in metadata_dict.items()
}
return cls(**__A )
def _snake_case ( self :Union[str, Any] ) -> str:
"""simple docstring"""
return yaml.safe_dump(
{
(key.replace("""_""" , """-""" ) if key in self._FIELDS_WITH_DASHES else key): value
for key, value in self.items()
} , sort_keys=__A , allow_unicode=__A , encoding="""utf-8""" , ).decode("""utf-8""" )
_lowerCamelCase = {
'image-classification': [],
'translation': [],
'image-segmentation': [],
'fill-mask': [],
'automatic-speech-recognition': [],
'token-classification': [],
'sentence-similarity': [],
'audio-classification': [],
'question-answering': [],
'summarization': [],
'zero-shot-classification': [],
'table-to-text': [],
'feature-extraction': [],
'other': [],
'multiple-choice': [],
'text-classification': [],
'text-to-image': [],
'text2text-generation': [],
'zero-shot-image-classification': [],
'tabular-classification': [],
'tabular-regression': [],
'image-to-image': [],
'tabular-to-text': [],
'unconditional-image-generation': [],
'text-retrieval': [],
'text-to-speech': [],
'object-detection': [],
'audio-to-audio': [],
'text-generation': [],
'conversational': [],
'table-question-answering': [],
'visual-question-answering': [],
'image-to-text': [],
'reinforcement-learning': [],
'voice-activity-detection': [],
'time-series-forecasting': [],
'document-question-answering': [],
}
if __name__ == "__main__":
from argparse import ArgumentParser
_lowerCamelCase = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.')
ap.add_argument('readme_filepath')
_lowerCamelCase = ap.parse_args()
_lowerCamelCase = Path(args.readme_filepath)
_lowerCamelCase = DatasetMetadata.from_readme(readme_filepath)
print(dataset_metadata)
dataset_metadata.to_readme(readme_filepath) | 6 |
'''simple docstring'''
from manim import *
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = Rectangle(height=0.5 , width=0.5 )
_lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_lowerCAmelCase = [mem.copy() for i in range(6 )]
_lowerCAmelCase = [mem.copy() for i in range(6 )]
_lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = Text("""CPU""" , font_size=24 )
_lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_lowercase )
_lowerCAmelCase = [mem.copy() for i in range(1 )]
_lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = Text("""GPU""" , font_size=24 )
_lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase )
gpu.align_to(_lowercase , _lowercase )
gpu.set_x(gpu.get_x() - 1 )
self.add(_lowercase )
_lowerCAmelCase = [mem.copy() for i in range(6 )]
_lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = Text("""Model""" , font_size=24 )
_lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase )
model.move_to([3, -1.0, 0] )
self.play(
Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , )
_lowerCAmelCase = MarkupText(
F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , )
_lowerCAmelCase = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_lowerCAmelCase = MarkupText(
F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
step_a.move_to([2, 2, 0] )
self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) )
self.add(_lowercase )
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
for i, rect in enumerate(_lowercase ):
_lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 )
cpu_target.move_to(_lowercase )
cpu_target.generate_target()
_lowerCAmelCase = 0.46 / 4
_lowerCAmelCase = 0.46 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase )
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 )
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 )
else:
cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 )
cpu_targs.append(_lowercase )
first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) )
second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) )
self.play(*_lowercase )
self.play(*_lowercase )
self.wait()
| 5 | 0 |
"""simple docstring"""
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto.configuration_auto import CONFIG_MAPPING
a = logging.get_logger(__name__)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = '''upernet'''
def __init__( self : str , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Optional[Any]=512 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Union[str, Any]=[1, 2, 3, 6] , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=0.4 , _UpperCAmelCase : Any=384 , _UpperCAmelCase : Dict=256 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=255 , **_UpperCAmelCase : Dict , ):
super().__init__(**_UpperCAmelCase )
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' )
_A = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_A = backbone_config.get('model_type' )
_A = CONFIG_MAPPING[backbone_model_type]
_A = config_class.from_dict(_UpperCAmelCase )
_A = backbone_config
_A = hidden_size
_A = initializer_range
_A = pool_scales
_A = use_auxiliary_head
_A = auxiliary_loss_weight
_A = auxiliary_in_channels
_A = auxiliary_channels
_A = auxiliary_num_convs
_A = auxiliary_concat_input
_A = loss_ignore_index
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = copy.deepcopy(self.__dict__ )
_A = self.backbone_config.to_dict()
_A = self.__class__.model_type
return output
| 7 |
'''simple docstring'''
import builtins
import sys
from ...utils.imports import _is_package_available
from . import cursor, input
from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor
from .keymap import KEYMAP
_lowercase = False
try:
_lowercase = _is_package_available("""google.colab""")
except ModuleNotFoundError:
pass
@input.register
class UpperCAmelCase_ :
'''simple docstring'''
def __init__( self , _lowercase = None , _lowercase = [] ):
"""simple docstring"""
_lowerCAmelCase = 0
_lowerCAmelCase = choices
_lowerCAmelCase = prompt
if sys.platform == "win32":
_lowerCAmelCase = """*"""
else:
_lowerCAmelCase = """➔ """
def _lowercase ( self , _lowercase , _lowercase = "" ):
"""simple docstring"""
if sys.platform != "win32":
writeColor(self.choices[index] , 32 , _lowercase )
else:
forceWrite(self.choices[index] , _lowercase )
def _lowercase ( self , _lowercase ):
"""simple docstring"""
if index == self.position:
forceWrite(F' {self.arrow_char} ' )
self.write_choice(_lowercase )
else:
forceWrite(F' {self.choices[index]}' )
reset_cursor()
def _lowercase ( self , _lowercase , _lowercase = 1 ):
"""simple docstring"""
_lowerCAmelCase = self.position
if direction == Direction.DOWN:
if self.position + 1 >= len(self.choices ):
return
self.position += num_spaces
else:
if self.position - 1 < 0:
return
self.position -= num_spaces
clear_line()
self.print_choice(_lowercase )
move_cursor(_lowercase , direction.name )
self.print_choice(self.position )
@input.mark(KEYMAP["""up"""] )
def _lowercase ( self ):
"""simple docstring"""
self.move_direction(Direction.UP )
@input.mark(KEYMAP["""down"""] )
def _lowercase ( self ):
"""simple docstring"""
self.move_direction(Direction.DOWN )
@input.mark(KEYMAP["""newline"""] )
def _lowercase ( self ):
"""simple docstring"""
move_cursor(len(self.choices ) - self.position , """DOWN""" )
return self.position
@input.mark(KEYMAP["""interrupt"""] )
def _lowercase ( self ):
"""simple docstring"""
move_cursor(len(self.choices ) - self.position , """DOWN""" )
raise KeyboardInterrupt
@input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = int(chr(self.current_selection ) )
_lowerCAmelCase = index - self.position
if index == self.position:
return
if index < len(self.choices ):
if self.position > index:
self.move_direction(Direction.UP , -movement )
elif self.position < index:
self.move_direction(Direction.DOWN , _lowercase )
else:
return
else:
return
def _lowercase ( self , _lowercase = 0 ):
"""simple docstring"""
if self.prompt:
linebreak()
forceWrite(self.prompt , """\n""" )
if in_colab:
forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" )
else:
forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" )
_lowerCAmelCase = default_choice
for i in range(len(self.choices ) ):
self.print_choice(_lowercase )
forceWrite("""\n""" )
move_cursor(len(self.choices ) - self.position , """UP""" )
with cursor.hide():
while True:
if in_colab:
try:
_lowerCAmelCase = int(builtins.input() )
except ValueError:
_lowerCAmelCase = default_choice
else:
_lowerCAmelCase = self.handle_input()
if choice is not None:
reset_cursor()
for _ in range(len(self.choices ) + 1 ):
move_cursor(1 , """UP""" )
clear_line()
self.write_choice(_lowercase , """\n""" )
return choice
| 5 | 0 |
'''simple docstring'''
import argparse
import torch
from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert
from transformers.utils import logging
logging.set_verbosity_info()
def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] ) -> Dict:
# Initialise PyTorch model
__A : Tuple = LxmertConfig.from_json_file(__snake_case )
print(f'Building PyTorch model from configuration: {config}' )
__A : List[str] = LxmertForPreTraining(__snake_case )
# Load weights from tf checkpoint
load_tf_weights_in_lxmert(__snake_case , __snake_case , __snake_case )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict() , __snake_case )
if __name__ == "__main__":
lowercase__ : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
lowercase__ : Dict = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path) | 8 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
_lowercase = logging.get_logger(__name__)
_lowercase = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""adapter_layer""": """encoder.layers.*.adapter_layer""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
"""pooling_layer.linear""": """projector""",
"""pooling_layer.projection""": """classifier""",
}
_lowercase = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""projector""",
"""classifier""",
]
def A (__lowerCamelCase :Optional[int] ):
_lowerCAmelCase = {}
with open(__lowerCamelCase , """r""" ) as file:
for line_number, line in enumerate(__lowerCamelCase ):
_lowerCAmelCase = line.strip()
if line:
_lowerCAmelCase = line.split()
_lowerCAmelCase = line_number
_lowerCAmelCase = words[0]
_lowerCAmelCase = value
return result
def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any] , __lowerCamelCase :List[str] ):
for attribute in key.split(""".""" ):
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__lowerCamelCase ):
_lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]]
_lowerCAmelCase = """param"""
if weight_type is not None and weight_type != "param":
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape
elif weight_type is not None and weight_type == "param":
_lowerCAmelCase = hf_pointer
for attribute in hf_param_name.split(""".""" ):
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = shape_pointer.shape
# let's reduce dimension
_lowerCAmelCase = value[0]
else:
_lowerCAmelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
_lowerCAmelCase = value
elif weight_type == "weight_g":
_lowerCAmelCase = value
elif weight_type == "weight_v":
_lowerCAmelCase = value
elif weight_type == "bias":
_lowerCAmelCase = value
elif weight_type == "param":
for attribute in hf_param_name.split(""".""" ):
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = value
else:
_lowerCAmelCase = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] , __lowerCamelCase :int ):
_lowerCAmelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__lowerCamelCase ):
_lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]]
_lowerCAmelCase = """param"""
if weight_type is not None and weight_type != "param":
_lowerCAmelCase = """.""".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
_lowerCAmelCase = """.""".join([key, hf_param_name] )
else:
_lowerCAmelCase = key
_lowerCAmelCase = value if """lm_head""" in full_key else value[0]
_lowercase = {
"""W_a""": """linear_1.weight""",
"""W_b""": """linear_2.weight""",
"""b_a""": """linear_1.bias""",
"""b_b""": """linear_2.bias""",
"""ln_W""": """norm.weight""",
"""ln_b""": """norm.bias""",
}
def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :List[str]=None , __lowerCamelCase :List[Any]=None ):
_lowerCAmelCase = False
for key, mapped_key in MAPPING.items():
_lowerCAmelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
_lowerCAmelCase = True
if "*" in mapped_key:
_lowerCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2]
_lowerCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase )
if "weight_g" in name:
_lowerCAmelCase = """weight_g"""
elif "weight_v" in name:
_lowerCAmelCase = """weight_v"""
elif "bias" in name:
_lowerCAmelCase = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
_lowerCAmelCase = """weight"""
else:
_lowerCAmelCase = None
if hf_dict is not None:
rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
else:
set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
return is_used
return is_used
def A (__lowerCamelCase :Any , __lowerCamelCase :Dict , __lowerCamelCase :Dict ):
_lowerCAmelCase = []
_lowerCAmelCase = fairseq_model.state_dict()
_lowerCAmelCase = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
_lowerCAmelCase = False
if "conv_layers" in name:
load_conv_layer(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , )
_lowerCAmelCase = True
else:
_lowerCAmelCase = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if not is_used:
unused_weights.append(__lowerCamelCase )
logger.warning(f'Unused weights: {unused_weights}' )
def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any , __lowerCamelCase :List[Any] , __lowerCamelCase :List[Any] ):
_lowerCAmelCase = full_name.split("""conv_layers.""" )[-1]
_lowerCAmelCase = name.split(""".""" )
_lowerCAmelCase = int(items[0] )
_lowerCAmelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
_lowerCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
_lowerCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
_lowerCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
_lowerCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(__lowerCamelCase )
@torch.no_grad()
def A (__lowerCamelCase :List[str] , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any]=None , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :str=True , __lowerCamelCase :str=False ):
if config_path is not None:
_lowerCAmelCase = WavaVecaConfig.from_pretrained(__lowerCamelCase )
else:
_lowerCAmelCase = WavaVecaConfig()
if is_seq_class:
_lowerCAmelCase = read_txt_into_dict(__lowerCamelCase )
_lowerCAmelCase = idalabel
_lowerCAmelCase = WavaVecaForSequenceClassification(__lowerCamelCase )
_lowerCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
feature_extractor.save_pretrained(__lowerCamelCase )
elif is_finetuned:
if dict_path:
_lowerCAmelCase = Dictionary.load(__lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_lowerCAmelCase = target_dict.pad_index
_lowerCAmelCase = target_dict.bos_index
_lowerCAmelCase = target_dict.eos_index
_lowerCAmelCase = len(target_dict.symbols )
_lowerCAmelCase = os.path.join(__lowerCamelCase , """vocab.json""" )
if not os.path.isdir(__lowerCamelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) )
return
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
_lowerCAmelCase = target_dict.indices
# fairseq has the <pad> and <s> switched
_lowerCAmelCase = 0
_lowerCAmelCase = 1
with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = WavaVecaCTCTokenizer(
__lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , )
_lowerCAmelCase = True if config.feat_extract_norm == """layer""" else False
_lowerCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
_lowerCAmelCase = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase )
processor.save_pretrained(__lowerCamelCase )
_lowerCAmelCase = WavaVecaForCTC(__lowerCamelCase )
else:
_lowerCAmelCase = WavaVecaForPreTraining(__lowerCamelCase )
if is_finetuned or is_seq_class:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
_lowerCAmelCase = argparse.Namespace(task="""audio_pretraining""" )
_lowerCAmelCase = fairseq.tasks.setup_task(__lowerCamelCase )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase )
_lowerCAmelCase = model[0].eval()
recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned )
hf_wavavec.save_pretrained(__lowerCamelCase )
if __name__ == "__main__":
_lowercase = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
parser.add_argument(
"""--is_seq_class""",
action="""store_true""",
help="""Whether the model to convert is a fine-tuned sequence classification model or not""",
)
_lowercase = parser.parse_args()
_lowercase = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 5 | 0 |
# flake8: noqa
# Lint as: python3
SCREAMING_SNAKE_CASE__ = [
'''VerificationMode''',
'''Version''',
'''disable_progress_bar''',
'''enable_progress_bar''',
'''is_progress_bar_enabled''',
'''experimental''',
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 9 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase = logging.get_logger(__name__)
_lowercase = {
"""edbeeching/decision-transformer-gym-hopper-medium""": (
"""https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json"""
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : List[str] = '''decision_transformer'''
_lowercase : Optional[Any] = ['''past_key_values''']
_lowercase : str = {
'''max_position_embeddings''': '''n_positions''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self , _lowercase=17 , _lowercase=4 , _lowercase=128 , _lowercase=4_096 , _lowercase=True , _lowercase=1 , _lowercase=1_024 , _lowercase=3 , _lowercase=1 , _lowercase=None , _lowercase="relu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=False , _lowercase=False , **_lowercase , ):
"""simple docstring"""
_lowerCAmelCase = state_dim
_lowerCAmelCase = act_dim
_lowerCAmelCase = hidden_size
_lowerCAmelCase = max_ep_len
_lowerCAmelCase = action_tanh
_lowerCAmelCase = vocab_size
_lowerCAmelCase = n_positions
_lowerCAmelCase = n_layer
_lowerCAmelCase = n_head
_lowerCAmelCase = n_inner
_lowerCAmelCase = activation_function
_lowerCAmelCase = resid_pdrop
_lowerCAmelCase = embd_pdrop
_lowerCAmelCase = attn_pdrop
_lowerCAmelCase = layer_norm_epsilon
_lowerCAmelCase = initializer_range
_lowerCAmelCase = scale_attn_weights
_lowerCAmelCase = use_cache
_lowerCAmelCase = scale_attn_by_inverse_layer_idx
_lowerCAmelCase = reorder_and_upcast_attn
_lowerCAmelCase = bos_token_id
_lowerCAmelCase = eos_token_id
super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
| 5 | 0 |
from __future__ import annotations
import unittest
from transformers import DebertaVaConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
TFDebertaVaModel,
)
class lowerCAmelCase_ :
def __init__( self : Dict , _A : Optional[Any] , _A : Dict=13 , _A : int=7 , _A : List[str]=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : Optional[Any]=True , _A : List[Any]=99 , _A : Any=32 , _A : Union[str, Any]=2 , _A : Optional[int]=4 , _A : int=37 , _A : Any="gelu" , _A : int=0.1 , _A : Dict=0.1 , _A : Any=512 , _A : List[Any]=16 , _A : Tuple=2 , _A : List[Any]=0.02 , _A : List[Any]=False , _A : int=True , _A : Union[str, Any]="None" , _A : Optional[Any]=3 , _A : Dict=4 , _A : Any=None , ):
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_input_mask
_UpperCamelCase = use_token_type_ids
_UpperCamelCase = use_labels
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = type_vocab_size
_UpperCamelCase = type_sequence_label_size
_UpperCamelCase = initializer_range
_UpperCamelCase = num_labels
_UpperCamelCase = num_choices
_UpperCamelCase = relative_attention
_UpperCamelCase = position_biased_input
_UpperCamelCase = pos_att_type
_UpperCamelCase = scope
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = None
if self.use_input_mask:
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCamelCase = None
if self.use_token_type_ids:
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCamelCase = None
_UpperCamelCase = None
_UpperCamelCase = None
if self.use_labels:
_UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCamelCase = DebertaVaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=_A , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase_ ( self : List[str] , _A : Optional[Any] , _A : Tuple , _A : Optional[Any] , _A : str , _A : str , _A : Optional[Any] , _A : Dict ):
_UpperCamelCase = TFDebertaVaModel(config=_A )
_UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCamelCase = [input_ids, input_mask]
_UpperCamelCase = model(_A )
_UpperCamelCase = model(_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : Optional[Any] , _A : int , _A : List[str] , _A : str , _A : Tuple , _A : List[Any] , _A : Dict , _A : Union[str, Any] ):
_UpperCamelCase = TFDebertaVaForMaskedLM(config=_A )
_UpperCamelCase = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
_UpperCamelCase = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase_ ( self : int , _A : str , _A : str , _A : Union[str, Any] , _A : int , _A : Optional[Any] , _A : str , _A : Dict ):
_UpperCamelCase = self.num_labels
_UpperCamelCase = TFDebertaVaForSequenceClassification(config=_A )
_UpperCamelCase = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
_UpperCamelCase = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : List[Any] , _A : List[str] , _A : Tuple , _A : int , _A : int , _A : Tuple , _A : Tuple , _A : int ):
_UpperCamelCase = self.num_labels
_UpperCamelCase = TFDebertaVaForTokenClassification(config=_A )
_UpperCamelCase = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
_UpperCamelCase = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase_ ( self : Dict , _A : Any , _A : Union[str, Any] , _A : List[str] , _A : Dict , _A : Tuple , _A : Any , _A : Union[str, Any] ):
_UpperCamelCase = TFDebertaVaForQuestionAnswering(config=_A )
_UpperCamelCase = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
_UpperCamelCase = model(_A )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self : Union[str, Any] ):
_UpperCamelCase = self.prepare_config_and_inputs()
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) = config_and_inputs
_UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ):
UpperCAmelCase = (
(
TFDebertaVaModel,
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
)
if is_tf_available()
else ()
)
UpperCAmelCase = (
{
"feature-extraction": TFDebertaVaModel,
"fill-mask": TFDebertaVaForMaskedLM,
"question-answering": TFDebertaVaForQuestionAnswering,
"text-classification": TFDebertaVaForSequenceClassification,
"token-classification": TFDebertaVaForTokenClassification,
"zero-shot": TFDebertaVaForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCAmelCase = False
UpperCAmelCase = False
def UpperCamelCase_ ( self : Tuple ):
_UpperCamelCase = TFDebertaVaModelTester(self )
_UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 )
def UpperCamelCase_ ( self : Dict ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : Optional[Any] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_A )
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_A )
def UpperCamelCase_ ( self : Tuple ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_A )
def UpperCamelCase_ ( self : Optional[Any] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_A )
@slow
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' )
self.assertIsNotNone(_A )
@require_tf
class lowerCAmelCase_ ( unittest.TestCase ):
@unittest.skip(reason='''Model not available yet''' )
def UpperCamelCase_ ( self : int ):
pass
@slow
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' )
_UpperCamelCase = tf.constant([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] )
_UpperCamelCase = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
_UpperCamelCase = model(_A , attention_mask=_A )[0]
_UpperCamelCase = tf.constant(
[[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] )
tf.debugging.assert_near(output[:, 1:4, 1:4] , _A , atol=1e-4 )
| 10 |
'''simple docstring'''
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"""The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"""
)
_lowercase = None
_lowercase = {
"""7B""": 11008,
"""13B""": 13824,
"""30B""": 17920,
"""65B""": 22016,
"""70B""": 28672,
}
_lowercase = {
"""7B""": 1,
"""7Bf""": 1,
"""13B""": 2,
"""13Bf""": 2,
"""30B""": 4,
"""65B""": 8,
"""70B""": 8,
"""70Bf""": 8,
}
def A (__lowerCamelCase :int , __lowerCamelCase :Optional[Any]=1 , __lowerCamelCase :List[Any]=256 ):
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of)
def A (__lowerCamelCase :Any ):
with open(__lowerCamelCase , """r""" ) as f:
return json.load(__lowerCamelCase )
def A (__lowerCamelCase :List[Any] , __lowerCamelCase :int ):
with open(__lowerCamelCase , """w""" ) as f:
json.dump(__lowerCamelCase , __lowerCamelCase )
def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple=True ):
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
_lowerCAmelCase = os.path.join(__lowerCamelCase , """tmp""" )
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
_lowerCAmelCase = read_json(os.path.join(__lowerCamelCase , """params.json""" ) )
_lowerCAmelCase = NUM_SHARDS[model_size]
_lowerCAmelCase = params["""n_layers"""]
_lowerCAmelCase = params["""n_heads"""]
_lowerCAmelCase = n_heads // num_shards
_lowerCAmelCase = params["""dim"""]
_lowerCAmelCase = dim // n_heads
_lowerCAmelCase = 10_000.0
_lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , __lowerCamelCase , 2 ).float() / dims_per_head))
if "n_kv_heads" in params:
_lowerCAmelCase = params["""n_kv_heads"""] # for GQA / MQA
_lowerCAmelCase = n_heads_per_shard // num_key_value_heads
_lowerCAmelCase = dim // num_key_value_heads
else: # compatibility with other checkpoints
_lowerCAmelCase = n_heads
_lowerCAmelCase = n_heads_per_shard
_lowerCAmelCase = dim
# permute for sliced rotary
def permute(__lowerCamelCase :Optional[int] , __lowerCamelCase :str=n_heads , __lowerCamelCase :str=dim , __lowerCamelCase :List[Any]=dim ):
return w.view(__lowerCamelCase , dima // n_heads // 2 , 2 , __lowerCamelCase ).transpose(1 , 2 ).reshape(__lowerCamelCase , __lowerCamelCase )
print(f'Fetching all parameters from the checkpoint at {input_base_path}.' )
# Load weights
if model_size == "7B":
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
_lowerCAmelCase = torch.load(os.path.join(__lowerCamelCase , """consolidated.00.pth""" ) , map_location="""cpu""" )
else:
# Sharded
_lowerCAmelCase = [
torch.load(os.path.join(__lowerCamelCase , f'consolidated.{i:02d}.pth' ) , map_location="""cpu""" )
for i in range(__lowerCamelCase )
]
_lowerCAmelCase = 0
_lowerCAmelCase = {"""weight_map""": {}}
for layer_i in range(__lowerCamelCase ):
_lowerCAmelCase = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin'
if model_size == "7B":
# Unsharded
_lowerCAmelCase = {
f'model.layers.{layer_i}.self_attn.q_proj.weight': permute(
loaded[f'layers.{layer_i}.attention.wq.weight'] ),
f'model.layers.{layer_i}.self_attn.k_proj.weight': permute(
loaded[f'layers.{layer_i}.attention.wk.weight'] ),
f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'],
f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'],
f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'],
f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'],
f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'],
f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'],
f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
_lowerCAmelCase = {
f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][
f'layers.{layer_i}.attention_norm.weight'
].clone(),
f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][
f'layers.{layer_i}.ffn_norm.weight'
].clone(),
}
_lowerCAmelCase = permute(
torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
for i in range(__lowerCamelCase )
] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) )
_lowerCAmelCase = permute(
torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wk.weight'].view(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
for i in range(__lowerCamelCase )
] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , )
_lowerCAmelCase = torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wv.weight'].view(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
for i in range(__lowerCamelCase )
] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = torch.cat(
[loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(__lowerCamelCase )] , dim=1 )
_lowerCAmelCase = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__lowerCamelCase )] , dim=0 )
_lowerCAmelCase = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__lowerCamelCase )] , dim=1 )
_lowerCAmelCase = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__lowerCamelCase )] , dim=0 )
_lowerCAmelCase = inv_freq
for k, v in state_dict.items():
_lowerCAmelCase = filename
param_count += v.numel()
torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) )
_lowerCAmelCase = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin'
if model_size == "7B":
# Unsharded
_lowerCAmelCase = {
"""model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""],
"""model.norm.weight""": loaded["""norm.weight"""],
"""lm_head.weight""": loaded["""output.weight"""],
}
else:
_lowerCAmelCase = {
"""model.norm.weight""": loaded[0]["""norm.weight"""],
"""model.embed_tokens.weight""": torch.cat(
[loaded[i]["""tok_embeddings.weight"""] for i in range(__lowerCamelCase )] , dim=1 ),
"""lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__lowerCamelCase )] , dim=0 ),
}
for k, v in state_dict.items():
_lowerCAmelCase = filename
param_count += v.numel()
torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) )
# Write configs
_lowerCAmelCase = {"""total_size""": param_count * 2}
write_json(__lowerCamelCase , os.path.join(__lowerCamelCase , """pytorch_model.bin.index.json""" ) )
_lowerCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1
_lowerCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256
_lowerCAmelCase = LlamaConfig(
hidden_size=__lowerCamelCase , intermediate_size=compute_intermediate_size(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=__lowerCamelCase , )
config.save_pretrained(__lowerCamelCase )
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print("""Loading the checkpoint in a Llama model.""" )
_lowerCAmelCase = LlamaForCausalLM.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=__lowerCamelCase )
# Avoid saving this as part of the config.
del model.config._name_or_path
print("""Saving in the Transformers format.""" )
model.save_pretrained(__lowerCamelCase , safe_serialization=__lowerCamelCase )
shutil.rmtree(__lowerCamelCase )
def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any] ):
# Initialize the tokenizer based on the `spm` model
_lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' )
_lowerCAmelCase = tokenizer_class(__lowerCamelCase )
tokenizer.save_pretrained(__lowerCamelCase )
def A ():
_lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument(
"""--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , )
parser.add_argument(
"""--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , )
parser.add_argument(
"""--output_dir""" , help="""Location to write HF model and tokenizer""" , )
parser.add_argument("""--safe_serialization""" , type=__lowerCamelCase , help="""Whether or not to save using `safetensors`.""" )
_lowerCAmelCase = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , )
_lowerCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" )
write_tokenizer(args.output_dir , __lowerCamelCase )
if __name__ == "__main__":
main()
| 5 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json",
"Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json",
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json",
"Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json",
"Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json",
"Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json",
"Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json",
"Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json",
"Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json",
"Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json",
"Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json",
"Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json",
}
class __A ( A ):
'''simple docstring'''
__lowerCamelCase : int = 'codegen'
__lowerCamelCase : Dict = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__(self , A=50_400 , A=2_048 , A=2_048 , A=4_096 , A=28 , A=16 , A=64 , A=None , A="gelu_new" , A=0.0 , A=0.0 , A=0.0 , A=1E-5 , A=0.02 , A=True , A=50_256 , A=50_256 , A=False , **A , ) -> Optional[Any]:
"""simple docstring"""
_a = vocab_size
_a = n_ctx
_a = n_positions
_a = n_embd
_a = n_layer
_a = n_head
_a = n_inner
_a = rotary_dim
_a = activation_function
_a = resid_pdrop
_a = embd_pdrop
_a = attn_pdrop
_a = layer_norm_epsilon
_a = initializer_range
_a = use_cache
_a = bos_token_id
_a = eos_token_id
super().__init__(
bos_token_id=A , eos_token_id=A , tie_word_embeddings=A , **A )
class __A ( A ):
'''simple docstring'''
def __init__(self , A , A = "default" , A = None , A = False , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(A , task=A , patching_specs=A , use_past=A )
if not getattr(self._config , '''pad_token_id''' , A ):
# TODO: how to do that better?
_a = 0
@property
def a__ (self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
_a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(A , direction='''inputs''' )
_a = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
_a = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def a__ (self ) -> int:
"""simple docstring"""
return self._config.n_layer
@property
def a__ (self ) -> int:
"""simple docstring"""
return self._config.n_head
def a__ (self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]:
"""simple docstring"""
_a = super(A , self ).generate_dummy_inputs(
A , batch_size=A , seq_length=A , is_pair=A , framework=A )
# We need to order the input in the way they appears in the forward()
_a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
_a = seqlen + 2
_a = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
_a = [
(torch.zeros(A ), torch.zeros(A )) for _ in range(self.num_layers )
]
_a = common_inputs['''attention_mask''']
if self.use_past:
_a = ordered_inputs['''attention_mask'''].dtype
_a = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(A , A , dtype=A )] , dim=1 )
return ordered_inputs
@property
def a__ (self ) -> int:
"""simple docstring"""
return 13
| 11 |
'''simple docstring'''
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : Tuple = (DDPMScheduler,)
def _lowercase ( self , **_lowercase ):
"""simple docstring"""
_lowerCAmelCase = {
"""num_train_timesteps""": 1_000,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**_lowercase )
return config
def _lowercase ( self ):
"""simple docstring"""
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
self.check_over_configs(thresholding=_lowercase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , )
def _lowercase ( self ):
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for t in [0, 500, 999]:
self.check_over_forward(time_step=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = len(_lowercase )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
_lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(_lowercase ) ):
# 1. predict noise residual
_lowerCAmelCase = model(_lowercase , _lowercase )
# 2. predict previous mean of sample x_t-1
_lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
_lowerCAmelCase = pred_prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowercase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 258.9606 ) < 1e-2
assert abs(result_mean.item() - 0.3372 ) < 1e-3
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" )
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = len(_lowercase )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
_lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(_lowercase ) ):
# 1. predict noise residual
_lowerCAmelCase = model(_lowercase , _lowercase )
# 2. predict previous mean of sample x_t-1
_lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
_lowerCAmelCase = pred_prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowercase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 202.0296 ) < 1e-2
assert abs(result_mean.item() - 0.2631 ) < 1e-3
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=_lowercase )
_lowerCAmelCase = scheduler.timesteps
for i, timestep in enumerate(_lowercase ):
if i == len(_lowercase ) - 1:
_lowerCAmelCase = -1
else:
_lowerCAmelCase = timesteps[i + 1]
_lowerCAmelCase = scheduler.previous_timestep(_lowercase )
_lowerCAmelCase = prev_t.item()
self.assertEqual(_lowercase , _lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = [100, 87, 50, 51, 0]
with self.assertRaises(_lowercase , msg="""`custom_timesteps` must be in descending order.""" ):
scheduler.set_timesteps(timesteps=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = [100, 87, 50, 1, 0]
_lowerCAmelCase = len(_lowercase )
with self.assertRaises(_lowercase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ):
scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_lowercase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=_lowercase )
| 5 | 0 |
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = 1
lowercase__ : Optional[int] = 3
lowercase__ : Optional[int] = (32, 32)
lowercase__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(SCREAMING_SNAKE_CASE_)
return image
@property
def lowercase__ ( self):
'''simple docstring'''
torch.manual_seed(0)
lowercase__ : str = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
return model
@property
def lowercase__ ( self):
'''simple docstring'''
torch.manual_seed(0)
lowercase__ : Optional[Any] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def lowercase__ ( self):
'''simple docstring'''
torch.manual_seed(0)
lowercase__ : Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModel(SCREAMING_SNAKE_CASE_)
@property
def lowercase__ ( self):
'''simple docstring'''
def extract(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
class _snake_case :
def __init__( self):
'''simple docstring'''
lowercase__ : List[Any] = torch.ones([0])
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.pixel_values.to(SCREAMING_SNAKE_CASE_)
return self
return Out()
return extract
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowercase__ : str = self.dummy_cond_unet
lowercase__ : str = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Union[str, Any] = self.dummy_vae
lowercase__ : Tuple = self.dummy_text_encoder
lowercase__ : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""")
# make sure here that pndm scheduler skips prk
lowercase__ : Any = StableDiffusionPipeline(
unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=self.dummy_extractor , )
lowercase__ : Optional[Any] = sd_pipe.to(SCREAMING_SNAKE_CASE_)
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_)
lowercase__ : str = """A painting of a squirrel eating a burger"""
lowercase__ : int = torch.Generator(device=SCREAMING_SNAKE_CASE_).manual_seed(0)
lowercase__ : Any = sd_pipe([prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""")
lowercase__ : Dict = output.images
lowercase__ : List[str] = torch.Generator(device=SCREAMING_SNAKE_CASE_).manual_seed(0)
lowercase__ : int = sd_pipe(
[prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=SCREAMING_SNAKE_CASE_ , )[0]
lowercase__ : List[str] = image[0, -3:, -3:, -1]
lowercase__ : List[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowercase__ : Tuple = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowercase__ : Tuple = self.dummy_cond_unet
lowercase__ : Dict = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = self.dummy_vae
lowercase__ : Optional[int] = self.dummy_text_encoder
lowercase__ : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""")
# make sure here that pndm scheduler skips prk
lowercase__ : Tuple = StableDiffusionPipeline(
unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=self.dummy_extractor , )
lowercase__ : List[Any] = sd_pipe.to(SCREAMING_SNAKE_CASE_)
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = """A painting of a squirrel eating a burger"""
lowercase__ : str = torch.Generator(device=SCREAMING_SNAKE_CASE_).manual_seed(0)
lowercase__ : Dict = sd_pipe([prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""")
lowercase__ : Any = output.images
lowercase__ : Union[str, Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_).manual_seed(0)
lowercase__ : Any = sd_pipe(
[prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=SCREAMING_SNAKE_CASE_ , )[0]
lowercase__ : Union[str, Any] = image[0, -3:, -3:, -1]
lowercase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowercase__ : int = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = StableDiffusionPipeline.from_pretrained(
"""hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=SCREAMING_SNAKE_CASE_)
assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
assert isinstance(pipe.scheduler , SCREAMING_SNAKE_CASE_)
assert pipe.safety_checker is None
lowercase__ : Dict = pipe("""example prompt""" , num_inference_steps=2).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_)
# sanity check that the pipeline still works
assert pipe.safety_checker is None
lowercase__ : int = pipe("""example prompt""" , num_inference_steps=2).images[0]
assert image is not None
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""")
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.dummy_cond_unet
lowercase__ : List[str] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_)
lowercase__ : int = self.dummy_vae
lowercase__ : int = self.dummy_text_encoder
lowercase__ : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""")
# put models in fp16
lowercase__ : Optional[Any] = unet.half()
lowercase__ : List[Any] = vae.half()
lowercase__ : Any = bert.half()
# make sure here that pndm scheduler skips prk
lowercase__ : Dict = StableDiffusionPipeline(
unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=self.dummy_extractor , )
lowercase__ : Optional[Any] = sd_pipe.to(SCREAMING_SNAKE_CASE_)
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = """A painting of a squirrel eating a burger"""
lowercase__ : List[Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""").images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=SCREAMING_SNAKE_CASE_)
lowercase__ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
lowercase__ : List[Any] = sd_pipe.to(SCREAMING_SNAKE_CASE_)
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_)
lowercase__ : int = (
"""portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"""
""" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"""
""" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"""
""" children from bahnhof zoo, detailed """
)
lowercase__ : Any = 40_03_66_03_46
lowercase__ : Dict = 7
# without safety guidance (sld_guidance_scale = 0)
lowercase__ : Optional[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = sd_pipe(
[prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , )
lowercase__ : str = output.images
lowercase__ : List[str] = image[0, -3:, -3:, -1]
lowercase__ : List[str] = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6]
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
# without safety guidance (strong configuration)
lowercase__ : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = sd_pipe(
[prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowercase__ : Dict = output.images
lowercase__ : List[str] = image[0, -3:, -3:, -1]
lowercase__ : Union[str, Any] = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9]
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
lowercase__ : Union[str, Any] = sd_pipe.to(SCREAMING_SNAKE_CASE_)
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = """padme amidala taking a bath artwork, safe for work, no nudity"""
lowercase__ : Tuple = 27_34_97_17_55
lowercase__ : List[str] = 7
lowercase__ : Dict = torch.manual_seed(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = sd_pipe(
[prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , )
lowercase__ : Tuple = output.images
lowercase__ : List[str] = image[0, -3:, -3:, -1]
lowercase__ : int = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7]
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
lowercase__ : Optional[int] = torch.manual_seed(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = sd_pipe(
[prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowercase__ : List[str] = output.images
lowercase__ : int = image[0, -3:, -3:, -1]
lowercase__ : List[Any] = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3]
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""")
lowercase__ : Optional[int] = sd_pipe.to(SCREAMING_SNAKE_CASE_)
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = (
"""the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."""
""" leyendecker"""
)
lowercase__ : Any = 10_44_35_52_34
lowercase__ : List[str] = 12
lowercase__ : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = sd_pipe(
[prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , )
lowercase__ : Tuple = output.images
lowercase__ : str = image[0, -3:, -3:, -1]
lowercase__ : Any = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-7
lowercase__ : Optional[int] = torch.manual_seed(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = sd_pipe(
[prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowercase__ : Optional[int] = output.images
lowercase__ : Any = image[0, -3:, -3:, -1]
lowercase__ : Optional[int] = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1])
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
| 12 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
_lowercase = logging.get_logger(__name__)
_lowercase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
_lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class UpperCAmelCase_ :
'''simple docstring'''
_lowercase : str = field(
default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_SCREAMING_SNAKE_CASE )} )
_lowercase : str = field(
default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} )
_lowercase : int = field(
default=1_2_8 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
_lowercase : int = field(
default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , )
_lowercase : int = field(
default=6_4 , metadata={
'''help''': (
'''The maximum number of tokens for the question. Questions longer than this will '''
'''be truncated to this length.'''
)
} , )
_lowercase : int = field(
default=3_0 , metadata={
'''help''': (
'''The maximum length of an answer that can be generated. This is needed because the start '''
'''and end predictions are not conditioned on one another.'''
)
} , )
_lowercase : bool = field(
default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
_lowercase : bool = field(
default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} )
_lowercase : float = field(
default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
_lowercase : int = field(
default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
_lowercase : int = field(
default=0 , metadata={
'''help''': (
'''language id of input for language-specific xlm models (see'''
''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'''
)
} , )
_lowercase : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} )
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : str = '''train'''
_lowercase : Union[str, Any] = '''dev'''
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : SquadDataTrainingArguments
_lowercase : List[SquadFeatures]
_lowercase : Split
_lowercase : bool
def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = False , _lowercase = None , _lowercase = "pt" , ):
"""simple docstring"""
_lowerCAmelCase = args
_lowerCAmelCase = is_language_sensitive
_lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(_lowercase , _lowercase ):
try:
_lowerCAmelCase = Split[mode]
except KeyError:
raise KeyError("""mode is not a valid split name""" )
_lowerCAmelCase = mode
# Load data features from cache or dataset file
_lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1"""
_lowerCAmelCase = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
_lowerCAmelCase = cached_features_file + """.lock"""
with FileLock(_lowercase ):
if os.path.exists(_lowercase ) and not args.overwrite_cache:
_lowerCAmelCase = time.time()
_lowerCAmelCase = torch.load(_lowercase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
_lowerCAmelCase = self.old_features["""features"""]
_lowerCAmelCase = self.old_features.get("""dataset""" , _lowercase )
_lowerCAmelCase = self.old_features.get("""examples""" , _lowercase )
logger.info(
F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'
""" future run""" )
else:
if mode == Split.dev:
_lowerCAmelCase = self.processor.get_dev_examples(args.data_dir )
else:
_lowerCAmelCase = self.processor.get_train_examples(args.data_dir )
_lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features(
examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , )
_lowerCAmelCase = time.time()
torch.save(
{"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowercase , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' )
def __len__( self ):
"""simple docstring"""
return len(self.features )
def __getitem__( self , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = self.features[i]
_lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float )
_lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float )
_lowerCAmelCase = {
"""input_ids""": input_ids,
"""attention_mask""": attention_mask,
"""token_type_ids""": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"""is_impossible""": is_impossible} )
if self.is_language_sensitive:
inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
_lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} )
return inputs
| 5 | 0 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def UpperCAmelCase__ ( UpperCAmelCase_ : str = "AAPL" ) -> str:
__lowerCamelCase : str = F'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}'
__lowerCamelCase : Optional[int] = BeautifulSoup(requests.get(UpperCAmelCase_ ).text , 'html.parser' )
__lowerCamelCase : Optional[Any] = 'My(6px) Pos(r) smartphone_Mt(6px)'
return soup.find('div' , class_=class_ ).find('span' ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
| 13 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase = logging.get_logger(__name__)
_lowercase = {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json"""
),
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json"""
),
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json"""
),
}
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : str = '''dpr'''
def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase="absolute" , _lowercase = 0 , **_lowercase , ):
"""simple docstring"""
super().__init__(pad_token_id=_lowercase , **_lowercase )
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = hidden_act
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = type_vocab_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = projection_dim
_lowerCAmelCase = position_embedding_type
| 5 | 0 |
from __future__ import annotations
a__ = {
'''A''': ['''B''', '''C''', '''E'''],
'''B''': ['''A''', '''D''', '''E'''],
'''C''': ['''A''', '''F''', '''G'''],
'''D''': ['''B'''],
'''E''': ['''A''', '''B''', '''D'''],
'''F''': ['''C'''],
'''G''': ['''C'''],
}
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , _a , _a ) -> None:
_a : List[str] = graph
# mapping node to its parent in resulting breadth first tree
_a : dict[str, str | None] = {}
_a : List[Any] = source_vertex
def __lowercase ( self ) -> None:
_a : Optional[int] = {self.source_vertex}
_a : int = None
_a : str = [self.source_vertex] # first in first out queue
while queue:
_a : Dict = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(_a )
_a : Dict = vertex
queue.append(_a )
def __lowercase ( self , _a ) -> str:
if target_vertex == self.source_vertex:
return self.source_vertex
_a : Tuple = self.parent.get(_a )
if target_vertex_parent is None:
_a : Dict = (
F"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}"""
)
raise ValueError(_a )
return self.shortest_path(_a ) + F"""->{target_vertex}"""
if __name__ == "__main__":
a__ = Graph(graph, '''G''')
g.breath_first_search()
print(g.shortest_path('''D'''))
print(g.shortest_path('''G'''))
print(g.shortest_path('''Foo'''))
| 14 |
'''simple docstring'''
from sklearn.metrics import mean_squared_error
import datasets
_lowercase = """\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
"""
_lowercase = """\
Mean Squared Error(MSE) is the average of the square of difference between the predicted
and actual values.
"""
_lowercase = """
Args:
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
sample_weight: array-like of shape (n_samples,), default=None
Sample weights.
multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
\"raw_values\" : Returns a full set of errors in case of multioutput input.
\"uniform_average\" : Errors of all outputs are averaged with uniform weight.
squared : bool, default=True
If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.
Returns:
mse : mean squared error.
Examples:
>>> mse_metric = datasets.load_metric(\"mse\")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.375}
>>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
>>> print(rmse_result)
{'mse': 0.6123724356957945}
If you're using multi-dimensional lists, then set the config as follows :
>>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
>>> references = [[0, 2], [-1, 2], [8, -5]]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.7083333333333334}
>>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mse': array([0.41666667, 1. ])}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def _lowercase ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"""
] , )
def _lowercase ( self ):
"""simple docstring"""
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("""float""" ) ),
"references": datasets.Sequence(datasets.Value("""float""" ) ),
}
else:
return {
"predictions": datasets.Value("""float""" ),
"references": datasets.Value("""float""" ),
}
def _lowercase ( self , _lowercase , _lowercase , _lowercase=None , _lowercase="uniform_average" , _lowercase=True ):
"""simple docstring"""
_lowerCAmelCase = mean_squared_error(
_lowercase , _lowercase , sample_weight=_lowercase , multioutput=_lowercase , squared=_lowercase )
return {"mse": mse}
| 5 | 0 |
import argparse
import torch
from datasets import load_dataset
from donut import DonutModel
from transformers import (
DonutImageProcessor,
DonutProcessor,
DonutSwinConfig,
DonutSwinModel,
MBartConfig,
MBartForCausalLM,
VisionEncoderDecoderModel,
XLMRobertaTokenizerFast,
)
def UpperCamelCase ( __magic_name__ : Any ) -> int:
"""simple docstring"""
lowercase__ = model.config
lowercase__ = DonutSwinConfig(
image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , )
lowercase__ = MBartConfig(
is_decoder=__magic_name__ , is_encoder_decoder=__magic_name__ , add_cross_attention=__magic_name__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len(
model.decoder.tokenizer ) , scale_embedding=__magic_name__ , add_final_layer_norm=__magic_name__ , )
return encoder_config, decoder_config
def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
if "encoder.model" in name:
lowercase__ = name.replace("""encoder.model""" , """encoder""" )
if "decoder.model" in name:
lowercase__ = name.replace("""decoder.model""" , """decoder""" )
if "patch_embed.proj" in name:
lowercase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
lowercase__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" )
if name.startswith("""encoder""" ):
if "layers" in name:
lowercase__ = """encoder.""" + name
if "attn.proj" in name:
lowercase__ = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name and "mask" not in name:
lowercase__ = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
lowercase__ = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
lowercase__ = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
lowercase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowercase__ = name.replace("""mlp.fc2""" , """output.dense""" )
if name == "encoder.norm.weight":
lowercase__ = """encoder.layernorm.weight"""
if name == "encoder.norm.bias":
lowercase__ = """encoder.layernorm.bias"""
return name
def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : str ) -> Optional[int]:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
lowercase__ = orig_state_dict.pop(__magic_name__ )
if "qkv" in key:
lowercase__ = key.split(""".""" )
lowercase__ = int(key_split[3] )
lowercase__ = int(key_split[5] )
lowercase__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
lowercase__ = val[:dim, :]
lowercase__ = val[dim : dim * 2, :]
lowercase__ = val[-dim:, :]
else:
lowercase__ = val[:dim]
lowercase__ = val[dim : dim * 2]
lowercase__ = val[-dim:]
elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]:
# HuggingFace implementation doesn't use attn_mask buffer
# and model doesn't use final LayerNorms for the encoder
pass
else:
lowercase__ = val
return orig_state_dict
def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : List[Any]=None , __magic_name__ : Dict=False ) -> int:
"""simple docstring"""
lowercase__ = DonutModel.from_pretrained(__magic_name__ ).eval()
# load HuggingFace model
lowercase__ , lowercase__ = get_configs(__magic_name__ )
lowercase__ = DonutSwinModel(__magic_name__ )
lowercase__ = MBartForCausalLM(__magic_name__ )
lowercase__ = VisionEncoderDecoderModel(encoder=__magic_name__ , decoder=__magic_name__ )
model.eval()
lowercase__ = original_model.state_dict()
lowercase__ = convert_state_dict(__magic_name__ , __magic_name__ )
model.load_state_dict(__magic_name__ )
# verify results on scanned document
lowercase__ = load_dataset("""hf-internal-testing/example-documents""" )
lowercase__ = dataset["""test"""][0]["""image"""].convert("""RGB""" )
lowercase__ = XLMRobertaTokenizerFast.from_pretrained(__magic_name__ , from_slow=__magic_name__ )
lowercase__ = DonutImageProcessor(
do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] )
lowercase__ = DonutProcessor(__magic_name__ , __magic_name__ )
lowercase__ = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values
if model_name == "naver-clova-ix/donut-base-finetuned-docvqa":
lowercase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>"""
lowercase__ = """When is the coffee break?"""
lowercase__ = task_prompt.replace("""{user_input}""" , __magic_name__ )
elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip":
lowercase__ = """<s_rvlcdip>"""
elif model_name in [
"naver-clova-ix/donut-base-finetuned-cord-v1",
"naver-clova-ix/donut-base-finetuned-cord-v1-2560",
]:
lowercase__ = """<s_cord>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2":
lowercase__ = """s_cord-v2>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket":
lowercase__ = """<s_zhtrainticket>"""
elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]:
# use a random prompt
lowercase__ = """hello world"""
else:
raise ValueError("""Model name not supported""" )
lowercase__ = original_model.decoder.tokenizer(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors="""pt""" )[
"""input_ids"""
]
lowercase__ = original_model.encoder.model.patch_embed(__magic_name__ )
lowercase__ , lowercase__ = model.encoder.embeddings(__magic_name__ )
assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 )
# verify encoder hidden states
lowercase__ = original_model.encoder(__magic_name__ )
lowercase__ = model.encoder(__magic_name__ ).last_hidden_state
assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-2 )
# verify decoder hidden states
lowercase__ = original_model(__magic_name__ , __magic_name__ , __magic_name__ ).logits
lowercase__ = model(__magic_name__ , decoder_input_ids=__magic_name__ ).logits
assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(__magic_name__ )
processor.save_pretrained(__magic_name__ )
if push_to_hub:
model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" )
processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" )
if __name__ == "__main__":
A : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='naver-clova-ix/donut-base-finetuned-docvqa',
required=False,
type=str,
help='Name of the original model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
required=False,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether or not to push the converted model and processor to the 🤗 hub.',
)
A : Optional[int] = parser.parse_args()
convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 15 |
'''simple docstring'''
def A ():
for n in range(1 , 1000000 ):
yield n * (n + 1) // 2
def A (__lowerCamelCase :List[Any] ):
_lowerCAmelCase = 1
_lowerCAmelCase = 2
while i * i <= n:
_lowerCAmelCase = 0
while n % i == 0:
n //= i
multiplicity += 1
divisors_count *= multiplicity + 1
i += 1
if n > 1:
divisors_count *= 2
return divisors_count
def A ():
return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 )
if __name__ == "__main__":
print(solution())
| 5 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
__A : Union[str, Any] = {
'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig']
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = ['ConvNextFeatureExtractor']
__A : Any = ['ConvNextImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Dict = [
'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'ConvNextForImageClassification',
'ConvNextModel',
'ConvNextPreTrainedModel',
'ConvNextBackbone',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'TFConvNextForImageClassification',
'TFConvNextModel',
'TFConvNextPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
__A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure) | 16 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_donut import DonutImageProcessor
_lowercase = logging.get_logger(__name__)
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , *_lowercase , **_lowercase ):
"""simple docstring"""
warnings.warn(
"""The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use DonutImageProcessor instead.""" , _lowercase , )
super().__init__(*_lowercase , **_lowercase )
| 5 | 0 |
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class lowerCamelCase_ ( unittest.TestCase ):
def lowerCAmelCase_ ( self : Optional[int] ):
__A : str = get_activation("""swish""" )
self.assertIsInstance(__A , nn.SiLU )
self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def lowerCAmelCase_ ( self : Optional[int] ):
__A : List[str] = get_activation("""silu""" )
self.assertIsInstance(__A , nn.SiLU )
self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def lowerCAmelCase_ ( self : Tuple ):
__A : Optional[int] = get_activation("""mish""" )
self.assertIsInstance(__A , nn.Mish )
self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def lowerCAmelCase_ ( self : int ):
__A : int = get_activation("""gelu""" )
self.assertIsInstance(__A , nn.GELU )
self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
| 17 |
'''simple docstring'''
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 5 | 0 |
'''simple docstring'''
def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
if b == 0:
return 1
if (b % 2) == 0:
return actual_power(SCREAMING_SNAKE_CASE_ , int(b / 2 ) ) * actual_power(SCREAMING_SNAKE_CASE_ , int(b / 2 ) )
else:
return a * actual_power(SCREAMING_SNAKE_CASE_ , int(b / 2 ) ) * actual_power(SCREAMING_SNAKE_CASE_ , int(b / 2 ) )
def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
if b < 0:
return 1 / actual_power(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return actual_power(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
print(power(-2, -3))
| 18 |
'''simple docstring'''
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print("""Googling.....""")
_lowercase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:])
_lowercase = requests.get(url, headers={"""UserAgent""": UserAgent().random})
# res.raise_for_status()
with open("""project1a.html""", """wb""") as out_file: # only for knowing the class
for data in res.iter_content(10000):
out_file.write(data)
_lowercase = BeautifulSoup(res.text, """html.parser""")
_lowercase = list(soup.select(""".eZt8xd"""))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get("""href"""))
else:
webbrowser.open(F"""https://google.com{link.get('href')}""")
| 5 | 0 |
"""simple docstring"""
from abc import ABC, abstractmethod
from typing import Optional, Union
from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit
from ..utils.typing import NestedDataStructureLike, PathLike
class _UpperCAmelCase( lowerCamelCase ):
def __init__( self , __a = None , __a = None , __a = None , __a = None , __a = False , __a = False , __a = None , **__a , ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = path_or_paths
_UpperCamelCase = split if split or isinstance(__a , __a) else '''train'''
_UpperCamelCase = features
_UpperCamelCase = cache_dir
_UpperCamelCase = keep_in_memory
_UpperCamelCase = streaming
_UpperCamelCase = num_proc
_UpperCamelCase = kwargs
@abstractmethod
def UpperCAmelCase ( self) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]:
'''simple docstring'''
pass
class _UpperCAmelCase( lowerCamelCase ):
def __init__( self , __a = None , __a = None , __a = False , __a = False , __a = None , **__a , ) -> Dict:
'''simple docstring'''
_UpperCamelCase = features
_UpperCamelCase = cache_dir
_UpperCamelCase = keep_in_memory
_UpperCamelCase = streaming
_UpperCamelCase = num_proc
_UpperCamelCase = kwargs
@abstractmethod
def UpperCAmelCase ( self) -> Union[Dataset, IterableDataset]:
'''simple docstring'''
pass
| 19 |
'''simple docstring'''
import os
from datetime import datetime as dt
from github import Github
_lowercase = [
"""good first issue""",
"""good second issue""",
"""good difficult issue""",
"""enhancement""",
"""new pipeline/model""",
"""new scheduler""",
"""wip""",
]
def A ():
_lowerCAmelCase = Github(os.environ["""GITHUB_TOKEN"""] )
_lowerCAmelCase = g.get_repo("""huggingface/diffusers""" )
_lowerCAmelCase = repo.get_issues(state="""open""" )
for issue in open_issues:
_lowerCAmelCase = sorted(issue.get_comments() , key=lambda __lowerCamelCase : i.created_at , reverse=__lowerCamelCase )
_lowerCAmelCase = comments[0] if len(__lowerCamelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state="""closed""" )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state="""open""" )
issue.remove_from_labels("""stale""" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
issue.add_to_labels("""stale""" )
if __name__ == "__main__":
main()
| 5 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase: Dict = logging.get_logger(__name__)
_lowerCAmelCase: Tuple = {
'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json',
# See all GLPN models at https://huggingface.co/models?filter=glpn
}
class lowercase_ (lowercase__ ):
snake_case ='glpn'
def __init__( self , lowercase_=3 , lowercase_=4 , lowercase_=[2, 2, 2, 2] , lowercase_=[8, 4, 2, 1] , lowercase_=[32, 64, 160, 256] , lowercase_=[7, 3, 3, 3] , lowercase_=[4, 2, 2, 2] , lowercase_=[1, 2, 5, 8] , lowercase_=[4, 4, 4, 4] , lowercase_="gelu" , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=0.1 , lowercase_=1e-6 , lowercase_=64 , lowercase_=10 , lowercase_=-1 , **lowercase_ , ) -> int:
super().__init__(**lowercase_)
a__ =num_channels
a__ =num_encoder_blocks
a__ =depths
a__ =sr_ratios
a__ =hidden_sizes
a__ =patch_sizes
a__ =strides
a__ =mlp_ratios
a__ =num_attention_heads
a__ =hidden_act
a__ =hidden_dropout_prob
a__ =attention_probs_dropout_prob
a__ =initializer_range
a__ =drop_path_rate
a__ =layer_norm_eps
a__ =decoder_hidden_size
a__ =max_depth
a__ =head_in_index
| 20 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
ImageTextPipelineOutput,
UniDiffuserPipeline,
)
else:
from .modeling_text_decoder import UniDiffuserTextDecoder
from .modeling_uvit import UniDiffuserModel, UTransformeraDModel
from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
| 5 | 0 |
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
UpperCAmelCase_ : Union[str, Any] = logging.getLogger(__name__)
UpperCAmelCase_ : Optional[Any] = 50 # max width of layer names
UpperCAmelCase_ : Optional[int] = 70 # max width of quantizer names
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : Dict =parser.add_argument_group("""quant_trainer arguments""" )
group.add_argument("""--wprec""" , type=lowerCamelCase , default=8 , help="""weight precision""" )
group.add_argument("""--aprec""" , type=lowerCamelCase , default=8 , help="""activation precision""" )
group.add_argument("""--quant-per-tensor""" , action="""store_true""" , help="""per tensor weight scaling""" )
group.add_argument("""--quant-disable""" , action="""store_true""" , help="""disable all quantizers""" )
group.add_argument("""--quant-disable-embeddings""" , action="""store_true""" , help="""disable all embeddings quantizers""" )
group.add_argument("""--quant-disable-keyword""" , type=lowerCamelCase , nargs="""+""" , help="""disable quantizers by keyword""" )
group.add_argument("""--quant-disable-layer-module""" , type=lowerCamelCase , help="""disable quantizers by keyword under layer.""" )
group.add_argument("""--quant-enable-layer-module""" , type=lowerCamelCase , help="""enable quantizers by keyword under layer""" )
group.add_argument("""--calibrator""" , default="""max""" , help="""which quantization range calibrator to use""" )
group.add_argument("""--percentile""" , default=lowerCamelCase , type=lowerCamelCase , help="""percentile for PercentileCalibrator""" )
group.add_argument("""--fuse-qkv""" , action="""store_true""" , help="""use the same scale factor for qkv""" )
group.add_argument("""--clip-gelu""" , metavar="""N""" , type=lowerCamelCase , help="""clip gelu output maximum value to N""" )
group.add_argument(
"""--recalibrate-weights""" , action="""store_true""" , help=(
"""recalibrate weight amaxes by taking the max of the weights."""
""" amaxes will be computed with the current quantization granularity (axis)."""
) , )
def lowerCAmelCase_ ( lowerCamelCase ):
if args.calibrator == "max":
__magic_name__ : str ="""max"""
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError("""Specify --percentile when using percentile calibrator""" )
__magic_name__ : str ="""histogram"""
elif args.calibrator == "mse":
__magic_name__ : Dict ="""histogram"""
else:
raise ValueError(F"Invalid calibrator {args.calibrator}" )
__magic_name__ : Optional[Any] =QuantDescriptor(num_bits=args.aprec , calib_method=lowerCamelCase )
__magic_name__ : int =QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(lowerCamelCase )
quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCamelCase )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=False , lowerCamelCase=False ):
logger.info("""Configuring Model for Quantization""" )
logger.info(F"using quantization package {pytorch_quantization.__file__}" )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(lowerCamelCase , ["""embeddings"""] , which="""weight""" , _disabled=lowerCamelCase )
if args.quant_disable:
set_quantizer_by_name(lowerCamelCase , [""""""] , _disabled=lowerCamelCase )
if args.quant_disable_keyword:
set_quantizer_by_name(lowerCamelCase , args.quant_disable_keyword , _disabled=lowerCamelCase )
if args.quant_disable_layer_module:
set_quantizer_by_name(lowerCamelCase , [R"""layer.\d+.""" + args.quant_disable_layer_module] , _disabled=lowerCamelCase )
if args.quant_enable_layer_module:
set_quantizer_by_name(lowerCamelCase , [R"""layer.\d+.""" + args.quant_enable_layer_module] , _disabled=lowerCamelCase )
if args.recalibrate_weights:
recalibrate_weights(lowerCamelCase )
if args.fuse_qkv:
fuse_qkv(lowerCamelCase , lowerCamelCase )
if args.clip_gelu:
clip_gelu(lowerCamelCase , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(lowerCamelCase )
def lowerCAmelCase_ ( lowerCamelCase ):
logger.info("""Enabling Calibration""" )
for name, module in model.named_modules():
if name.endswith("""_quantizer""" ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(F"{name:80}: {module}" )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
logger.info("""Loading calibrated amax""" )
for name, module in model.named_modules():
if name.endswith("""_quantizer""" ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax("""percentile""" , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(lowerCamelCase )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
def fusea(lowerCamelCase , lowerCamelCase , lowerCamelCase ):
for mod in [qq, qk, qv]:
if not hasattr(lowerCamelCase , """_amax""" ):
print(""" WARNING: NO AMAX BUFFER""" )
return
__magic_name__ : Optional[int] =qq._amax.detach().item()
__magic_name__ : List[str] =qk._amax.detach().item()
__magic_name__ : List[Any] =qv._amax.detach().item()
__magic_name__ : Optional[int] =max(lowerCamelCase , lowerCamelCase , lowerCamelCase )
qq._amax.fill_(lowerCamelCase )
qk._amax.fill_(lowerCamelCase )
qv._amax.fill_(lowerCamelCase )
logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" )
for name, mod in model.named_modules():
if name.endswith(""".attention.self""" ):
logger.info(F"FUSE_QKV: {name:{name_width}}" )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
for name, mod in model.named_modules():
if name.endswith(""".output.dense""" ) and not name.endswith("""attention.output.dense""" ):
__magic_name__ : int =mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=lowerCamelCase )
__magic_name__ : Optional[Any] =mod._input_quantizer._amax.data.detach().item()
logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" )
def lowerCAmelCase_ ( lowerCamelCase ):
for name, mod in model.named_modules():
if hasattr(lowerCamelCase , """_weight_quantizer""" ) and mod._weight_quantizer.axis is not None:
__magic_name__ : int =mod.weight.shape[0]
__magic_name__ : int =mod._weight_quantizer._amax.detach()
__magic_name__ : Tuple =torch.ones(lowerCamelCase , dtype=amax.dtype , device=amax.device ) * amax
print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" )
def lowerCAmelCase_ ( lowerCamelCase ):
for name, mod in model.named_modules():
if hasattr(lowerCamelCase , """_weight_quantizer""" ):
if not hasattr(mod.weight_quantizer , """_amax""" ):
print("""RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER""" )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
__magic_name__ : List[str] =set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
__magic_name__ : List[str] =set(range(len(mod.weight.size() ) ) ) - axis_set
__magic_name__ : List[str] =pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCamelCase , keepdims=lowerCamelCase ).detach()
logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" )
__magic_name__ : Union[str, Any] =amax
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=25 , lowerCamelCase=180 , lowerCamelCase=None ):
if ignore is None:
__magic_name__ : int =[]
elif not isinstance(lowerCamelCase , lowerCamelCase ):
__magic_name__ : Union[str, Any] =[ignore]
__magic_name__ : Tuple =0
for name, mod in model.named_modules():
if not hasattr(lowerCamelCase , """weight""" ):
continue
__magic_name__ : Union[str, Any] =max(lowerCamelCase , len(lowerCamelCase ) )
for name, mod in model.named_modules():
__magic_name__ : int =getattr(lowerCamelCase , """_input_quantizer""" , lowerCamelCase )
__magic_name__ : Tuple =getattr(lowerCamelCase , """_weight_quantizer""" , lowerCamelCase )
if not hasattr(lowerCamelCase , """weight""" ):
continue
if type(lowerCamelCase ) in ignore:
continue
if [True for s in ignore if type(lowerCamelCase ) is str and s in name]:
continue
__magic_name__ : List[str] =F"Act:{input_q.extra_repr()}"
__magic_name__ : Dict =F"Wgt:{weight_q.extra_repr()}"
__magic_name__ : Optional[Any] =F"{name:{name_width}} {act_str} {wgt_str}"
if len(lowerCamelCase ) <= line_width:
logger.info(lowerCamelCase )
else:
logger.info(F"{name:{name_width}} {act_str}" )
logger.info(F"{' ':{name_width}} {wgt_str}" )
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : Union[str, Any] =0
for name, mod in model.named_modules():
if isinstance(lowerCamelCase , pytorch_quantization.nn.TensorQuantizer ):
print(F"{name:80} {mod}" )
count += 1
print(F"{count} TensorQuantizers found in model" )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
__magic_name__ : List[str] =getattr(lowerCamelCase , lowerCamelCase , lowerCamelCase )
if quantizer_mod is not None:
assert hasattr(lowerCamelCase , lowerCamelCase )
setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase )
else:
logger.warning(F"{name} has no {quantizer}" )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase="both" , **lowerCamelCase ):
__magic_name__ : str =F"Warning: changing {which} quantizers of {name:{qname_width}}"
for k, v in kwargs.items():
s += F" {k}={v}"
if which in ["input", "both"]:
set_quantizer(lowerCamelCase , lowerCamelCase , """_input_quantizer""" , lowerCamelCase , lowerCamelCase )
if which in ["weight", "both"]:
set_quantizer(lowerCamelCase , lowerCamelCase , """_weight_quantizer""" , lowerCamelCase , lowerCamelCase )
logger.info(lowerCamelCase )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , **lowerCamelCase ):
for name, mod in model.named_modules():
if hasattr(lowerCamelCase , """_input_quantizer""" ) or hasattr(lowerCamelCase , """_weight_quantizer""" ):
for n in names:
if re.search(lowerCamelCase , lowerCamelCase ):
set_quantizers(lowerCamelCase , lowerCamelCase , **lowerCamelCase )
elif name.endswith("""_quantizer""" ):
for n in names:
if re.search(lowerCamelCase , lowerCamelCase ):
__magic_name__ : Tuple =F"Warning: changing {name:{name_width}}"
for k, v in kwargs.items():
s += F" {k}={v}"
setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase )
logger.info(lowerCamelCase )
| 21 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_lowercase = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = [
"""VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ViTMAEForPreTraining""",
"""ViTMAELayer""",
"""ViTMAEModel""",
"""ViTMAEPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = [
"""TFViTMAEForPreTraining""",
"""TFViTMAEModel""",
"""TFViTMAEPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_mae import (
VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMAEForPreTraining,
ViTMAELayer,
ViTMAEModel,
ViTMAEPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel
else:
import sys
_lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 5 | 0 |
'''simple docstring'''
from typing import Optional
import pyspark
from .. import Features, NamedSplit
from ..download import DownloadMode
from ..packaged_modules.spark.spark import Spark
from .abc import AbstractDatasetReader
class A ( _a ):
def __init__( self : Dict , lowerCAmelCase_ : pyspark.sql.DataFrame , lowerCAmelCase_ : Optional[NamedSplit] = None , lowerCAmelCase_ : Optional[Features] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : str = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : str = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : str = "arrow" , **lowerCAmelCase_ : str , ) -> Optional[int]:
"""simple docstring"""
super().__init__(
split=lowerCAmelCase_ , features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , keep_in_memory=lowerCAmelCase_ , streaming=lowerCAmelCase_ , **lowerCAmelCase_ , )
_a = load_from_cache_file
_a = file_format
_a = Spark(
df=lowerCAmelCase_ , features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , working_dir=lowerCAmelCase_ , **lowerCAmelCase_ , )
def __lowerCAmelCase ( self : Any ) -> List[Any]:
"""simple docstring"""
if self.streaming:
return self.builder.as_streaming_dataset(split=self.split )
_a = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD
self.builder.download_and_prepare(
download_mode=lowerCAmelCase_ , file_format=self._file_format , )
return self.builder.as_dataset(split=self.split )
| 22 |
'''simple docstring'''
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
_lowercase = logging.get_logger(__name__)
@add_end_docstrings(_SCREAMING_SNAKE_CASE )
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , **_lowercase ):
"""simple docstring"""
super().__init__(**_lowercase )
if self.framework != "pt":
raise ValueError(F'The {self.__class__} is only available in PyTorch.' )
# No specific FOR_XXX available yet
def __call__( self , _lowercase , **_lowercase ):
"""simple docstring"""
return super().__call__(_lowercase , **_lowercase )
def _lowercase ( self , **_lowercase ):
"""simple docstring"""
_lowerCAmelCase = {}
if "candidate_labels" in kwargs:
_lowerCAmelCase = kwargs["""candidate_labels"""]
if "hypothesis_template" in kwargs:
_lowerCAmelCase = kwargs["""hypothesis_template"""]
return preprocess_params, {}, {}
def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a sound of {}." ):
"""simple docstring"""
if isinstance(_lowercase , _lowercase ):
if audio.startswith("""http://""" ) or audio.startswith("""https://""" ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
_lowerCAmelCase = requests.get(_lowercase ).content
else:
with open(_lowercase , """rb""" ) as f:
_lowerCAmelCase = f.read()
if isinstance(_lowercase , _lowercase ):
_lowerCAmelCase = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate )
if not isinstance(_lowercase , np.ndarray ):
raise ValueError("""We expect a numpy ndarray as input""" )
if len(audio.shape ) != 1:
raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" )
_lowerCAmelCase = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" )
_lowerCAmelCase = candidate_labels
_lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels]
_lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase )
_lowerCAmelCase = [text_inputs]
return inputs
def _lowercase ( self , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = model_inputs.pop("""candidate_labels""" )
_lowerCAmelCase = model_inputs.pop("""text_inputs""" )
if isinstance(text_inputs[0] , _lowercase ):
_lowerCAmelCase = text_inputs[0]
else:
# Batching case.
_lowerCAmelCase = text_inputs[0][0]
_lowerCAmelCase = self.model(**_lowercase , **_lowercase )
_lowerCAmelCase = {
"""candidate_labels""": candidate_labels,
"""logits""": outputs.logits_per_audio,
}
return model_outputs
def _lowercase ( self , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = model_outputs.pop("""candidate_labels""" )
_lowerCAmelCase = model_outputs["""logits"""][0]
if self.framework == "pt":
_lowerCAmelCase = logits.softmax(dim=0 )
_lowerCAmelCase = probs.tolist()
else:
raise ValueError("""`tf` framework not supported.""" )
_lowerCAmelCase = [
{"""score""": score, """label""": candidate_label}
for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] )
]
return result
| 5 | 0 |
snake_case__ : Optional[Any] = tuple[float, float, float]
snake_case__ : Any = tuple[float, float, float]
def _snake_case (__lowercase , __lowercase):
UpperCamelCase_ = end_pointa[0] - end_pointa[0]
UpperCamelCase_ = end_pointa[1] - end_pointa[1]
UpperCamelCase_ = end_pointa[2] - end_pointa[2]
return (x, y, z)
def _snake_case (__lowercase , __lowercase):
UpperCamelCase_ = ab[1] * ac[2] - ab[2] * ac[1] # *i
UpperCamelCase_ = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j
UpperCamelCase_ = ab[0] * ac[1] - ab[1] * ac[0] # *k
return (x, y, z)
def _snake_case (__lowercase , __lowercase):
return tuple(round(__lowercase , __lowercase) for x in vector) == (0, 0, 0)
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase = 10):
UpperCamelCase_ = create_vector(__lowercase , __lowercase)
UpperCamelCase_ = create_vector(__lowercase , __lowercase)
return is_zero_vector(get_ad_vectors_cross(__lowercase , __lowercase) , __lowercase)
| 23 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
_lowercase = logging.get_logger(__name__)
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : List[str] = ['''input_values''', '''padding_mask''']
def __init__( self , _lowercase = 1 , _lowercase = 24_000 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , **_lowercase , ):
"""simple docstring"""
super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase )
_lowerCAmelCase = chunk_length_s
_lowerCAmelCase = overlap
@property
def _lowercase ( self ):
"""simple docstring"""
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def _lowercase ( self ):
"""simple docstring"""
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self , _lowercase , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ):
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of'
F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'
F' {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
if padding and truncation:
raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" )
elif padding is None:
# by default let's pad the inputs
_lowerCAmelCase = True
_lowerCAmelCase = bool(
isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) )
if is_batched:
_lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(_lowercase , np.ndarray ):
_lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa )
elif isinstance(_lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
_lowerCAmelCase = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
_lowerCAmelCase = [np.asarray(_lowercase ).T]
# verify inputs are valid
for idx, example in enumerate(_lowercase ):
if example.ndim > 2:
raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' )
_lowerCAmelCase = None
_lowerCAmelCase = BatchFeature({"""input_values""": raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
_lowerCAmelCase = min(array.shape[0] for array in raw_audio )
_lowerCAmelCase = int(np.floor(max_length / self.chunk_stride ) )
_lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
_lowerCAmelCase = max(array.shape[0] for array in raw_audio )
_lowerCAmelCase = int(np.ceil(max_length / self.chunk_stride ) )
_lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length
_lowerCAmelCase = """max_length"""
else:
_lowerCAmelCase = input_values
# normal padding on batch
if padded_inputs is None:
_lowerCAmelCase = self.pad(
_lowercase , max_length=_lowercase , truncation=_lowercase , padding=_lowercase , return_attention_mask=_lowercase , )
if padding:
_lowerCAmelCase = padded_inputs.pop("""attention_mask""" )
_lowerCAmelCase = []
for example in padded_inputs.pop("""input_values""" ):
if self.feature_size == 1:
_lowerCAmelCase = example[..., None]
input_values.append(example.T )
_lowerCAmelCase = input_values
if return_tensors is not None:
_lowerCAmelCase = padded_inputs.convert_to_tensors(_lowercase )
return padded_inputs
| 5 | 0 |
'''simple docstring'''
UpperCAmelCase_ : Dict = {
'''Pillow''': '''Pillow''',
'''accelerate''': '''accelerate>=0.11.0''',
'''compel''': '''compel==0.1.8''',
'''black''': '''black~=23.1''',
'''datasets''': '''datasets''',
'''filelock''': '''filelock''',
'''flax''': '''flax>=0.4.1''',
'''hf-doc-builder''': '''hf-doc-builder>=0.3.0''',
'''huggingface-hub''': '''huggingface-hub>=0.13.2''',
'''requests-mock''': '''requests-mock==1.10.0''',
'''importlib_metadata''': '''importlib_metadata''',
'''invisible-watermark''': '''invisible-watermark''',
'''isort''': '''isort>=5.5.4''',
'''jax''': '''jax>=0.2.8,!=0.3.2''',
'''jaxlib''': '''jaxlib>=0.1.65''',
'''Jinja2''': '''Jinja2''',
'''k-diffusion''': '''k-diffusion>=0.0.12''',
'''torchsde''': '''torchsde''',
'''note_seq''': '''note_seq''',
'''librosa''': '''librosa''',
'''numpy''': '''numpy''',
'''omegaconf''': '''omegaconf''',
'''parameterized''': '''parameterized''',
'''protobuf''': '''protobuf>=3.20.3,<4''',
'''pytest''': '''pytest''',
'''pytest-timeout''': '''pytest-timeout''',
'''pytest-xdist''': '''pytest-xdist''',
'''ruff''': '''ruff>=0.0.241''',
'''safetensors''': '''safetensors''',
'''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''',
'''scipy''': '''scipy''',
'''onnx''': '''onnx''',
'''regex''': '''regex!=2019.12.17''',
'''requests''': '''requests''',
'''tensorboard''': '''tensorboard''',
'''torch''': '''torch>=1.4''',
'''torchvision''': '''torchvision''',
'''transformers''': '''transformers>=4.25.1''',
'''urllib3''': '''urllib3<=2.0.0''',
}
| 24 |
'''simple docstring'''
_lowercase = """
# Transformers 설치 방법
! pip install transformers datasets
# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
_lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
_lowercase = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 5 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionInstructPixaPixPipeline,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils import floats_tensor, load_image, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _UpperCamelCase ( __A , __A , __A , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =StableDiffusionInstructPixaPixPipeline
lowerCamelCase__ =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'}
lowerCamelCase__ =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
lowerCamelCase__ =IMAGE_TO_IMAGE_IMAGE_PARAMS
lowerCamelCase__ =IMAGE_TO_IMAGE_IMAGE_PARAMS
def __UpperCamelCase ( self : int ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Union[str, Any] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
SCREAMING_SNAKE_CASE : Optional[Any] = PNDMScheduler(skip_prk_steps=a )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : int = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
SCREAMING_SNAKE_CASE : Tuple = CLIPTextModel(a )
SCREAMING_SNAKE_CASE : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
SCREAMING_SNAKE_CASE : str = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def __UpperCamelCase ( self : Tuple , a : str , a : Dict=0 ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a )
SCREAMING_SNAKE_CASE : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
SCREAMING_SNAKE_CASE : Union[str, Any] = Image.fromarray(np.uinta(a ) ).convert("RGB" )
if str(a ).startswith("mps" ):
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(a )
else:
SCREAMING_SNAKE_CASE : int = torch.Generator(device=a ).manual_seed(a )
SCREAMING_SNAKE_CASE : Any = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"image_guidance_scale": 1,
"output_type": "numpy",
}
return inputs
def __UpperCamelCase ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**a )
SCREAMING_SNAKE_CASE : Any = sd_pipe.to(a )
sd_pipe.set_progress_bar_config(disable=a )
SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_inputs(a )
SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe(**a ).images
SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE : str = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def __UpperCamelCase ( self : int ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : int = StableDiffusionInstructPixaPixPipeline(**a )
SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(a )
sd_pipe.set_progress_bar_config(disable=a )
SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(a )
SCREAMING_SNAKE_CASE : Tuple = "french fries"
SCREAMING_SNAKE_CASE : Dict = sd_pipe(**a , negative_prompt=a )
SCREAMING_SNAKE_CASE : Tuple = output.images
SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE : Dict = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = "cpu" # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : List[str] = StableDiffusionInstructPixaPixPipeline(**a )
SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(a )
sd_pipe.set_progress_bar_config(disable=a )
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs(a )
SCREAMING_SNAKE_CASE : int = [inputs["prompt"]] * 2
SCREAMING_SNAKE_CASE : List[str] = np.array(inputs["image"] ).astype(np.floataa ) / 255.0
SCREAMING_SNAKE_CASE : str = torch.from_numpy(a ).unsqueeze(0 ).to(a )
SCREAMING_SNAKE_CASE : Optional[int] = image / 2 + 0.5
SCREAMING_SNAKE_CASE : str = image.permute(0 , 3 , 1 , 2 )
SCREAMING_SNAKE_CASE : int = image.repeat(2 , 1 , 1 , 1 )
SCREAMING_SNAKE_CASE : Dict = sd_pipe(**a ).images
SCREAMING_SNAKE_CASE : str = image[-1, -3:, -3:, -1]
assert image.shape == (2, 32, 32, 3)
SCREAMING_SNAKE_CASE : List[str] = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def __UpperCamelCase ( self : str ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components()
SCREAMING_SNAKE_CASE : int = EulerAncestralDiscreteScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" )
SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline(**a )
SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(a )
sd_pipe.set_progress_bar_config(disable=a )
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_inputs(a )
SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe(**a ).images
SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE : Any = [round(a , 4 ) for x in image_slice.flatten().tolist()]
print(",".join([str(a ) for x in slice] ) )
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE : Any = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def __UpperCamelCase ( self : str ) -> Any:
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def __UpperCamelCase ( self : Any ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionInstructPixaPixPipeline(**a )
SCREAMING_SNAKE_CASE : str = VaeImageProcessor(do_resize=a , do_normalize=a )
SCREAMING_SNAKE_CASE : Dict = pipe.to(a )
pipe.set_progress_bar_config(disable=a )
SCREAMING_SNAKE_CASE : Optional[int] = pipe(**self.get_dummy_inputs_by_type(a , input_image_type="pt" ) )[0]
SCREAMING_SNAKE_CASE : Optional[int] = components["vae"]
SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs_by_type(a , input_image_type="pt" )
for image_param in self.image_latents_params:
if image_param in inputs.keys():
SCREAMING_SNAKE_CASE : List[Any] = vae.encode(inputs[image_param] ).latent_dist.mode()
SCREAMING_SNAKE_CASE : List[Any] = pipe(**a )[0]
SCREAMING_SNAKE_CASE : List[Any] = np.abs(out - out_latents_inputs ).max()
self.assertLess(a , 1e-4 , "passing latents as image input generate different result from passing image" )
@slow
@require_torch_gpu
class _UpperCamelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self : str ) -> List[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self : Any , a : Union[str, Any]=0 ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(a )
SCREAMING_SNAKE_CASE : Optional[Any] = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg" )
SCREAMING_SNAKE_CASE : Tuple = {
"prompt": "turn him into a cyborg",
"image": image,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"image_guidance_scale": 1.0,
"output_type": "numpy",
}
return inputs
def __UpperCamelCase ( self : Optional[int] ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix" , safety_checker=a )
pipe.to(a )
pipe.set_progress_bar_config(disable=a )
pipe.enable_attention_slicing()
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs()
SCREAMING_SNAKE_CASE : List[Any] = pipe(**a ).images
SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE : Optional[Any] = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def __UpperCamelCase ( self : List[str] ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix" , safety_checker=a )
SCREAMING_SNAKE_CASE : List[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(a )
pipe.set_progress_bar_config(disable=a )
pipe.enable_attention_slicing()
SCREAMING_SNAKE_CASE : int = self.get_inputs()
SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**a ).images
SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def __UpperCamelCase ( self : Tuple ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix" , safety_checker=a )
SCREAMING_SNAKE_CASE : Any = DDIMScheduler.from_config(pipe.scheduler.config )
pipe.to(a )
pipe.set_progress_bar_config(disable=a )
pipe.enable_attention_slicing()
SCREAMING_SNAKE_CASE : int = self.get_inputs()
SCREAMING_SNAKE_CASE : Any = pipe(**a ).images
SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE : Dict = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def __UpperCamelCase ( self : Dict ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = 0
def callback_fn(a : int , a : int , a : torch.FloatTensor ) -> None:
SCREAMING_SNAKE_CASE : str = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
SCREAMING_SNAKE_CASE : Any = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
SCREAMING_SNAKE_CASE : int = latents[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE : List[str] = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
elif step == 2:
SCREAMING_SNAKE_CASE : Optional[int] = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
SCREAMING_SNAKE_CASE : str = latents[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE : List[str] = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
SCREAMING_SNAKE_CASE : List[Any] = False
SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix" , safety_checker=a , torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE : List[str] = pipe.to(a )
pipe.set_progress_bar_config(disable=a )
pipe.enable_attention_slicing()
SCREAMING_SNAKE_CASE : int = self.get_inputs()
pipe(**a , callback=a , callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def __UpperCamelCase ( self : Dict ) -> str:
"""simple docstring"""
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
SCREAMING_SNAKE_CASE : int = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix" , safety_checker=a , torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE : Any = pipe.to(a )
pipe.set_progress_bar_config(disable=a )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
SCREAMING_SNAKE_CASE : List[str] = self.get_inputs()
SCREAMING_SNAKE_CASE : Union[str, Any] = pipe(**a )
SCREAMING_SNAKE_CASE : str = torch.cuda.max_memory_allocated()
# make sure that less than 2.2 GB is allocated
assert mem_bytes < 2.2 * 10**9
def __UpperCamelCase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = self.get_inputs()
# resize to resolution that is divisible by 8 but not 16 or 32
SCREAMING_SNAKE_CASE : List[str] = inputs["image"].resize((504, 504) )
SCREAMING_SNAKE_CASE : List[Any] = "timbrooks/instruct-pix2pix"
SCREAMING_SNAKE_CASE : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained(
a , safety_checker=a , )
pipe.to(a )
pipe.set_progress_bar_config(disable=a )
pipe.enable_attention_slicing()
SCREAMING_SNAKE_CASE : List[Any] = pipe(**a )
SCREAMING_SNAKE_CASE : Tuple = output.images[0]
SCREAMING_SNAKE_CASE : Tuple = image[255:258, 383:386, -1]
assert image.shape == (504, 504, 3)
SCREAMING_SNAKE_CASE : int = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 | 25 |
'''simple docstring'''
import functools
def A (__lowerCamelCase :list[int] , __lowerCamelCase :list[int] ):
# Validation
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for day in days ):
raise ValueError("""The parameter days should be a list of integers""" )
if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for cost in costs ):
raise ValueError("""The parameter costs should be a list of three integers""" )
if len(__lowerCamelCase ) == 0:
return 0
if min(__lowerCamelCase ) <= 0:
raise ValueError("""All days elements should be greater than 0""" )
if max(__lowerCamelCase ) >= 366:
raise ValueError("""All days elements should be less than 366""" )
_lowerCAmelCase = set(__lowerCamelCase )
@functools.cache
def dynamic_programming(__lowerCamelCase :int ) -> int:
if index > 365:
return 0
if index not in days_set:
return dynamic_programming(index + 1 )
return min(
costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , )
return dynamic_programming(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 0 |
'''simple docstring'''
import sys
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
__UpperCamelCase = "python tqdm regex requests packaging filelock numpy tokenizers".split()
if sys.version_info < (3, 7):
pkgs_to_check_at_runtime.append("dataclasses")
if sys.version_info < (3, 8):
pkgs_to_check_at_runtime.append("importlib_metadata")
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""")
def _a ( _lowerCamelCase , _lowerCamelCase=None ) -> Optional[int]:
"""simple docstring"""
require_version(deps[pkg] , _lowerCamelCase )
| 26 |
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def A (__lowerCamelCase :List[Any] ):
_lowerCAmelCase = 384
if "tiny" in model_name:
_lowerCAmelCase = [3, 3, 9, 3]
_lowerCAmelCase = [96, 192, 384, 768]
if "small" in model_name:
_lowerCAmelCase = [3, 3, 27, 3]
_lowerCAmelCase = [96, 192, 384, 768]
if "base" in model_name:
_lowerCAmelCase = [3, 3, 27, 3]
_lowerCAmelCase = [128, 256, 512, 1024]
_lowerCAmelCase = 512
if "large" in model_name:
_lowerCAmelCase = [3, 3, 27, 3]
_lowerCAmelCase = [192, 384, 768, 1536]
_lowerCAmelCase = 768
if "xlarge" in model_name:
_lowerCAmelCase = [3, 3, 27, 3]
_lowerCAmelCase = [256, 512, 1024, 2048]
_lowerCAmelCase = 1024
# set label information
_lowerCAmelCase = 150
_lowerCAmelCase = """huggingface/label-files"""
_lowerCAmelCase = """ade20k-id2label.json"""
_lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) )
_lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
_lowerCAmelCase = {v: k for k, v in idalabel.items()}
_lowerCAmelCase = ConvNextConfig(
depths=__lowerCamelCase , hidden_sizes=__lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] )
_lowerCAmelCase = UperNetConfig(
backbone_config=__lowerCamelCase , auxiliary_in_channels=__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , )
return config
def A (__lowerCamelCase :Optional[Any] ):
_lowerCAmelCase = []
# fmt: off
# stem
rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") )
rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") )
rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") )
rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') )
rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') )
if i > 0:
rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') )
rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') )
rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') )
rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') )
rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') )
rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') )
# decode head
rename_keys.extend(
[
("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""),
("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""),
("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""),
("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""),
] )
# fmt: on
return rename_keys
def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict , __lowerCamelCase :Tuple ):
_lowerCAmelCase = dct.pop(__lowerCamelCase )
_lowerCAmelCase = val
def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ):
_lowerCAmelCase = {
"""upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""",
"""upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""",
"""upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""",
"""upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""",
"""upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""",
}
_lowerCAmelCase = model_name_to_url[model_name]
_lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""state_dict"""]
_lowerCAmelCase = get_upernet_config(__lowerCamelCase )
_lowerCAmelCase = UperNetForSemanticSegmentation(__lowerCamelCase )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
_lowerCAmelCase = state_dict.pop(__lowerCamelCase )
if "bn" in key:
_lowerCAmelCase = key.replace("""bn""" , """batch_norm""" )
_lowerCAmelCase = val
# rename keys
_lowerCAmelCase = create_rename_keys(__lowerCamelCase )
for src, dest in rename_keys:
rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
model.load_state_dict(__lowerCamelCase )
# verify on image
_lowerCAmelCase = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"""
_lowerCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" )
_lowerCAmelCase = SegformerImageProcessor()
_lowerCAmelCase = processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values
with torch.no_grad():
_lowerCAmelCase = model(__lowerCamelCase )
if model_name == "upernet-convnext-tiny":
_lowerCAmelCase = torch.tensor(
[[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] )
elif model_name == "upernet-convnext-small":
_lowerCAmelCase = torch.tensor(
[[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] )
elif model_name == "upernet-convnext-base":
_lowerCAmelCase = torch.tensor(
[[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] )
elif model_name == "upernet-convnext-large":
_lowerCAmelCase = torch.tensor(
[[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] )
elif model_name == "upernet-convnext-xlarge":
_lowerCAmelCase = torch.tensor(
[[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] )
print("""Logits:""" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(__lowerCamelCase )
print(f'Saving processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(__lowerCamelCase )
if push_to_hub:
print(f'Pushing model and processor for {model_name} to hub' )
model.push_to_hub(f'openmmlab/{model_name}' )
processor.push_to_hub(f'openmmlab/{model_name}' )
if __name__ == "__main__":
_lowercase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""upernet-convnext-tiny""",
type=str,
choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]],
help="""Name of the ConvNext UperNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
_lowercase = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 5 | 0 |
import random
import unittest
import torch
from diffusers import IFInpaintingPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
__magic_name__ = IFInpaintingPipeline
__magic_name__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'}
__magic_name__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
__magic_name__ = PipelineTesterMixin.required_optional_params - {'latents'}
def lowerCAmelCase__ ( self ):
return self._get_dummy_components()
def lowerCAmelCase__ ( self , snake_case_ , snake_case_=0 ):
if str(snake_case_ ).startswith('mps' ):
_A = torch.manual_seed(snake_case_ )
else:
_A = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ )
_A = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ )
_A = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ )
_A = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def lowerCAmelCase__ ( self ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def lowerCAmelCase__ ( self ):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' )
def lowerCAmelCase__ ( self ):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1 )
def lowerCAmelCase__ ( self ):
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def lowerCAmelCase__ ( self ):
self._test_save_load_local()
def lowerCAmelCase__ ( self ):
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 27 |
'''simple docstring'''
from itertools import product
def A (__lowerCamelCase :int , __lowerCamelCase :int ):
_lowerCAmelCase = sides_number
_lowerCAmelCase = max_face_number * dice_number
_lowerCAmelCase = [0] * (max_total + 1)
_lowerCAmelCase = 1
_lowerCAmelCase = range(__lowerCamelCase , max_face_number + 1 )
for dice_numbers in product(__lowerCamelCase , repeat=__lowerCamelCase ):
_lowerCAmelCase = sum(__lowerCamelCase )
totals_frequencies[total] += 1
return totals_frequencies
def A ():
_lowerCAmelCase = total_frequency_distribution(
sides_number=4 , dice_number=9 )
_lowerCAmelCase = total_frequency_distribution(
sides_number=6 , dice_number=6 )
_lowerCAmelCase = 0
_lowerCAmelCase = 9
_lowerCAmelCase = 4 * 9
_lowerCAmelCase = 6
for peter_total in range(__lowerCamelCase , max_peter_total + 1 ):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total] )
_lowerCAmelCase = (4**9) * (6**6)
_lowerCAmelCase = peter_wins_count / total_games_number
_lowerCAmelCase = round(__lowerCamelCase , ndigits=7 )
return rounded_peter_win_probability
if __name__ == "__main__":
print(F"""{solution() = }""")
| 5 | 0 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase_ = {
"vocab_file": {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json",
"roberta-large-openai-detector": (
"https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json"
),
},
"merges_file": {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt",
"roberta-large-openai-detector": (
"https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt"
),
},
"tokenizer_file": {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json",
"roberta-base-openai-detector": (
"https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json"
),
"roberta-large-openai-detector": (
"https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase_ = {
"roberta-base": 5_1_2,
"roberta-large": 5_1_2,
"roberta-large-mnli": 5_1_2,
"distilroberta-base": 5_1_2,
"roberta-base-openai-detector": 5_1_2,
"roberta-large-openai-detector": 5_1_2,
}
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Tuple = VOCAB_FILES_NAMES
A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
A : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Union[str, Any] = ['''input_ids''', '''attention_mask''']
A : List[Any] = RobertaTokenizer
def __init__( self, A=None, A=None, A=None, A="replace", A="<s>", A="</s>", A="</s>", A="<s>", A="<unk>", A="<pad>", A="<mask>", A=False, A=True, **A, ):
'''simple docstring'''
super().__init__(
A, A, tokenizer_file=A, errors=A, bos_token=A, eos_token=A, sep_token=A, cls_token=A, unk_token=A, pad_token=A, mask_token=A, add_prefix_space=A, trim_offsets=A, **A, )
SCREAMING_SNAKE_CASE : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space', A ) != add_prefix_space:
SCREAMING_SNAKE_CASE : Any = getattr(A, pre_tok_state.pop('type' ) )
SCREAMING_SNAKE_CASE : Union[str, Any] = add_prefix_space
SCREAMING_SNAKE_CASE : Tuple = pre_tok_class(**A )
SCREAMING_SNAKE_CASE : List[Any] = add_prefix_space
SCREAMING_SNAKE_CASE : str = 'post_processor'
SCREAMING_SNAKE_CASE : str = getattr(self.backend_tokenizer, A, A )
if tokenizer_component_instance:
SCREAMING_SNAKE_CASE : int = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
SCREAMING_SNAKE_CASE : str = tuple(state['sep'] )
if "cls" in state:
SCREAMING_SNAKE_CASE : Union[str, Any] = tuple(state['cls'] )
SCREAMING_SNAKE_CASE : List[str] = False
if state.get('add_prefix_space', A ) != add_prefix_space:
SCREAMING_SNAKE_CASE : int = add_prefix_space
SCREAMING_SNAKE_CASE : Any = True
if state.get('trim_offsets', A ) != trim_offsets:
SCREAMING_SNAKE_CASE : Dict = trim_offsets
SCREAMING_SNAKE_CASE : int = True
if changes_to_apply:
SCREAMING_SNAKE_CASE : str = getattr(A, state.pop('type' ) )
SCREAMING_SNAKE_CASE : Optional[int] = component_class(**A )
setattr(self.backend_tokenizer, A, A )
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = AddedToken(A, lstrip=A, rstrip=A ) if isinstance(A, A ) else value
SCREAMING_SNAKE_CASE : List[Any] = value
def UpperCamelCase_ ( self, *A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = kwargs.get('is_split_into_words', A )
assert self.add_prefix_space or not is_split_into_words, (
F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*A, **A )
def UpperCamelCase_ ( self, *A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = kwargs.get('is_split_into_words', A )
assert self.add_prefix_space or not is_split_into_words, (
F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._encode_plus(*A, **A )
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self._tokenizer.model.save(A, name=A )
return tuple(A )
def UpperCamelCase_ ( self, A, A=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = [self.sep_token_id]
SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 28 |
'''simple docstring'''
from manim import *
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = Rectangle(height=0.5 , width=0.5 )
_lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_lowerCAmelCase = [mem.copy() for i in range(6 )]
_lowerCAmelCase = [mem.copy() for i in range(6 )]
_lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = Text("""CPU""" , font_size=24 )
_lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_lowercase )
_lowerCAmelCase = [mem.copy() for i in range(1 )]
_lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = Text("""GPU""" , font_size=24 )
_lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase )
gpu.align_to(_lowercase , _lowercase )
gpu.set_x(gpu.get_x() - 1 )
self.add(_lowercase )
_lowerCAmelCase = [mem.copy() for i in range(6 )]
_lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = Text("""Model""" , font_size=24 )
_lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase )
model.move_to([3, -1.0, 0] )
self.play(
Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , )
_lowerCAmelCase = MarkupText(
F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , )
_lowerCAmelCase = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_lowerCAmelCase = MarkupText(
F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
step_a.move_to([2, 2, 0] )
self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) )
self.add(_lowercase )
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
for i, rect in enumerate(_lowercase ):
_lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 )
cpu_target.move_to(_lowercase )
cpu_target.generate_target()
_lowerCAmelCase = 0.46 / 4
_lowerCAmelCase = 0.46 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase )
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 )
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 )
else:
cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 )
cpu_targs.append(_lowercase )
first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) )
second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) )
self.play(*_lowercase )
self.play(*_lowercase )
self.wait()
| 5 | 0 |
"""simple docstring"""
import importlib.metadata
import warnings
from copy import deepcopy
from packaging import version
from ..utils import logging
from .import_utils import is_accelerate_available, is_bitsandbytes_available
if is_bitsandbytes_available():
import bitsandbytes as bnb
import torch
import torch.nn as nn
from ..pytorch_utils import ConvaD
if is_accelerate_available():
from accelerate import init_empty_weights
from accelerate.utils import find_tied_parameters
A_ = logging.get_logger(__name__)
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=None ):
# Recurse if needed
if "." in tensor_name:
lowerCamelCase_ = tensor_name.split('''.''' )
for split in splits[:-1]:
lowerCamelCase_ = getattr(lowerCAmelCase__ ,lowerCAmelCase__ )
if new_module is None:
raise ValueError(f"{module} has no attribute {split}." )
lowerCamelCase_ = new_module
lowerCamelCase_ = splits[-1]
if tensor_name not in module._parameters and tensor_name not in module._buffers:
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}." )
lowerCamelCase_ = tensor_name in module._buffers
lowerCamelCase_ = getattr(lowerCAmelCase__ ,lowerCAmelCase__ )
if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None:
raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {device}." )
lowerCamelCase_ = False
lowerCamelCase_ = False
if is_buffer or not is_bitsandbytes_available():
lowerCamelCase_ = False
lowerCamelCase_ = False
else:
lowerCamelCase_ = hasattr(bnb.nn ,'''Params4bit''' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit )
lowerCamelCase_ = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams )
if is_abit or is_abit:
lowerCamelCase_ = module._parameters[tensor_name]
if param.device.type != "cuda":
if value is None:
lowerCamelCase_ = old_value.to(lowerCAmelCase__ )
elif isinstance(lowerCAmelCase__ ,torch.Tensor ):
lowerCamelCase_ = value.to('''cpu''' )
if value.dtype == torch.inta:
lowerCamelCase_ = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse(
'''0.37.2''' )
if not is_abit_serializable:
raise ValueError(
'''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. '''
'''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' )
else:
lowerCamelCase_ = torch.tensor(lowerCAmelCase__ ,device='''cpu''' )
# Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls ,lowerCAmelCase__ ) and fpaa_statistics is None:
lowerCamelCase_ = new_value.T
lowerCamelCase_ = old_value.__dict__
if is_abit:
lowerCamelCase_ = bnb.nn.IntaParams(lowerCAmelCase__ ,requires_grad=lowerCAmelCase__ ,**lowerCAmelCase__ ).to(lowerCAmelCase__ )
elif is_abit:
lowerCamelCase_ = bnb.nn.Paramsabit(lowerCAmelCase__ ,requires_grad=lowerCAmelCase__ ,**lowerCAmelCase__ ).to(lowerCAmelCase__ )
lowerCamelCase_ = new_value
if fpaa_statistics is not None:
setattr(module.weight ,'''SCB''' ,fpaa_statistics.to(lowerCAmelCase__ ) )
else:
if value is None:
lowerCamelCase_ = old_value.to(lowerCAmelCase__ )
elif isinstance(lowerCAmelCase__ ,torch.Tensor ):
lowerCamelCase_ = value.to(lowerCAmelCase__ )
else:
lowerCamelCase_ = torch.tensor(lowerCAmelCase__ ,device=lowerCAmelCase__ )
if is_buffer:
lowerCamelCase_ = new_value
else:
lowerCamelCase_ = nn.Parameter(lowerCAmelCase__ ,requires_grad=old_value.requires_grad )
lowerCamelCase_ = new_value
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=None ,lowerCAmelCase__=None ,lowerCAmelCase__=False ):
for name, module in model.named_children():
if current_key_name is None:
lowerCamelCase_ = []
current_key_name.append(lowerCAmelCase__ )
if (isinstance(lowerCAmelCase__ ,nn.Linear ) or isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
if not any(key in '''.'''.join(lowerCAmelCase__ ) for key in modules_to_not_convert ):
with init_empty_weights():
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ , lowerCamelCase_ = module.weight.shape
else:
lowerCamelCase_ = module.in_features
lowerCamelCase_ = module.out_features
if quantization_config.quantization_method() == "llm_int8":
lowerCamelCase_ = bnb.nn.LinearabitLt(
lowerCAmelCase__ ,lowerCAmelCase__ ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,)
lowerCamelCase_ = True
else:
if (
quantization_config.llm_inta_skip_modules is not None
and name in quantization_config.llm_inta_skip_modules
):
pass
else:
lowerCamelCase_ = bnb.nn.Linearabit(
lowerCAmelCase__ ,lowerCAmelCase__ ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,)
lowerCamelCase_ = True
# Store the module class in case we need to transpose the weight later
lowerCamelCase_ = type(lowerCAmelCase__ )
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(lowerCAmelCase__ )
if len(list(module.children() ) ) > 0:
lowerCamelCase_ , lowerCamelCase_ = _replace_with_bnb_linear(
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,has_been_replaced=lowerCAmelCase__ ,)
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=None ,lowerCAmelCase__=None ):
lowerCamelCase_ = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert
lowerCamelCase_ , lowerCamelCase_ = _replace_with_bnb_linear(
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
if not has_been_replaced:
logger.warning(
'''You are loading your model in 8bit or 4bit but no linear modules were found in your model.'''
''' Please double check your model architecture, or submit an issue on github if you think this is'''
''' a bug.''' )
return model
def lowercase ( *lowerCAmelCase__ ,**lowerCAmelCase__ ):
warnings.warn(
'''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' ,lowerCAmelCase__ ,)
return replace_with_bnb_linear(*lowerCAmelCase__ ,**lowerCAmelCase__ )
def lowercase ( *lowerCAmelCase__ ,**lowerCAmelCase__ ):
warnings.warn(
'''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' ,lowerCAmelCase__ ,)
return set_module_quantized_tensor_to_device(*lowerCAmelCase__ ,**lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = deepcopy(lowerCAmelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
tied_model.tie_weights()
lowerCamelCase_ = find_tied_parameters(lowerCAmelCase__ )
# For compatibility with Accelerate < 0.18
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() )
else:
lowerCamelCase_ = sum(lowerCAmelCase__ ,[] )
lowerCamelCase_ = len(lowerCAmelCase__ ) > 0
# Check if it is a base model
lowerCamelCase_ = not hasattr(lowerCAmelCase__ ,model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
lowerCamelCase_ = list(model.named_children() )
lowerCamelCase_ = [list_modules[-1][0]]
# add last module together with tied weights
lowerCamelCase_ = set(lowerCAmelCase__ ) - set(lowerCAmelCase__ )
lowerCamelCase_ = list(set(lowerCAmelCase__ ) ) + list(lowerCAmelCase__ )
# remove ".weight" from the keys
lowerCamelCase_ = ['''.weight''', '''.bias''']
lowerCamelCase_ = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
lowerCamelCase_ = name.replace(lowerCAmelCase__ ,'''''' )
filtered_module_names.append(lowerCAmelCase__ )
return filtered_module_names
| 29 |
'''simple docstring'''
import builtins
import sys
from ...utils.imports import _is_package_available
from . import cursor, input
from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor
from .keymap import KEYMAP
_lowercase = False
try:
_lowercase = _is_package_available("""google.colab""")
except ModuleNotFoundError:
pass
@input.register
class UpperCAmelCase_ :
'''simple docstring'''
def __init__( self , _lowercase = None , _lowercase = [] ):
"""simple docstring"""
_lowerCAmelCase = 0
_lowerCAmelCase = choices
_lowerCAmelCase = prompt
if sys.platform == "win32":
_lowerCAmelCase = """*"""
else:
_lowerCAmelCase = """➔ """
def _lowercase ( self , _lowercase , _lowercase = "" ):
"""simple docstring"""
if sys.platform != "win32":
writeColor(self.choices[index] , 32 , _lowercase )
else:
forceWrite(self.choices[index] , _lowercase )
def _lowercase ( self , _lowercase ):
"""simple docstring"""
if index == self.position:
forceWrite(F' {self.arrow_char} ' )
self.write_choice(_lowercase )
else:
forceWrite(F' {self.choices[index]}' )
reset_cursor()
def _lowercase ( self , _lowercase , _lowercase = 1 ):
"""simple docstring"""
_lowerCAmelCase = self.position
if direction == Direction.DOWN:
if self.position + 1 >= len(self.choices ):
return
self.position += num_spaces
else:
if self.position - 1 < 0:
return
self.position -= num_spaces
clear_line()
self.print_choice(_lowercase )
move_cursor(_lowercase , direction.name )
self.print_choice(self.position )
@input.mark(KEYMAP["""up"""] )
def _lowercase ( self ):
"""simple docstring"""
self.move_direction(Direction.UP )
@input.mark(KEYMAP["""down"""] )
def _lowercase ( self ):
"""simple docstring"""
self.move_direction(Direction.DOWN )
@input.mark(KEYMAP["""newline"""] )
def _lowercase ( self ):
"""simple docstring"""
move_cursor(len(self.choices ) - self.position , """DOWN""" )
return self.position
@input.mark(KEYMAP["""interrupt"""] )
def _lowercase ( self ):
"""simple docstring"""
move_cursor(len(self.choices ) - self.position , """DOWN""" )
raise KeyboardInterrupt
@input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = int(chr(self.current_selection ) )
_lowerCAmelCase = index - self.position
if index == self.position:
return
if index < len(self.choices ):
if self.position > index:
self.move_direction(Direction.UP , -movement )
elif self.position < index:
self.move_direction(Direction.DOWN , _lowercase )
else:
return
else:
return
def _lowercase ( self , _lowercase = 0 ):
"""simple docstring"""
if self.prompt:
linebreak()
forceWrite(self.prompt , """\n""" )
if in_colab:
forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" )
else:
forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" )
_lowerCAmelCase = default_choice
for i in range(len(self.choices ) ):
self.print_choice(_lowercase )
forceWrite("""\n""" )
move_cursor(len(self.choices ) - self.position , """UP""" )
with cursor.hide():
while True:
if in_colab:
try:
_lowerCAmelCase = int(builtins.input() )
except ValueError:
_lowerCAmelCase = default_choice
else:
_lowerCAmelCase = self.handle_input()
if choice is not None:
reset_cursor()
for _ in range(len(self.choices ) + 1 ):
move_cursor(1 , """UP""" )
clear_line()
self.write_choice(_lowercase , """\n""" )
return choice
| 5 | 0 |
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class __a( _a ):
"""simple docstring"""
lowerCAmelCase = (IPNDMScheduler,)
lowerCAmelCase = (('''num_inference_steps''', 50),)
def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Tuple:
UpperCAmelCase_ : Any = {'''num_train_timesteps''': 1_000}
config.update(**_SCREAMING_SNAKE_CASE )
return config
def a__ ( self ,_SCREAMING_SNAKE_CASE=0 ,**_SCREAMING_SNAKE_CASE ) -> Dict:
UpperCAmelCase_ : str = dict(self.forward_default_kwargs )
UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''num_inference_steps''' ,_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : int = self.dummy_sample
UpperCAmelCase_ : Any = 0.1 * sample
UpperCAmelCase_ : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ : Tuple = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : str = scheduler_class(**_SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(_SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
UpperCAmelCase_ : Dict = dummy_past_residuals[:]
if time_step is None:
UpperCAmelCase_ : Optional[Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Dict = scheduler_class.from_pretrained(_SCREAMING_SNAKE_CASE )
new_scheduler.set_timesteps(_SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
UpperCAmelCase_ : List[Any] = dummy_past_residuals[:]
UpperCAmelCase_ : Optional[Any] = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample
UpperCAmelCase_ : Tuple = new_scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
UpperCAmelCase_ : Optional[Any] = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample
UpperCAmelCase_ : str = new_scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def a__ ( self ) -> List[Any]:
pass
def a__ ( self ,_SCREAMING_SNAKE_CASE=0 ,**_SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
UpperCAmelCase_ : List[str] = dict(self.forward_default_kwargs )
UpperCAmelCase_ : List[Any] = kwargs.pop('''num_inference_steps''' ,_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Union[str, Any] = self.dummy_sample
UpperCAmelCase_ : Optional[Any] = 0.1 * sample
UpperCAmelCase_ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ : List[Any] = self.get_scheduler_config()
UpperCAmelCase_ : str = scheduler_class(**_SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(_SCREAMING_SNAKE_CASE )
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase_ : Dict = dummy_past_residuals[:]
if time_step is None:
UpperCAmelCase_ : int = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Optional[Any] = scheduler_class.from_pretrained(_SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
new_scheduler.set_timesteps(_SCREAMING_SNAKE_CASE )
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase_ : str = dummy_past_residuals[:]
UpperCAmelCase_ : List[Any] = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample
UpperCAmelCase_ : Optional[int] = new_scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
UpperCAmelCase_ : int = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample
UpperCAmelCase_ : List[str] = new_scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> List[str]:
UpperCAmelCase_ : Tuple = self.scheduler_classes[0]
UpperCAmelCase_ : Dict = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : str = scheduler_class(**_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : List[str] = 10
UpperCAmelCase_ : Any = self.dummy_model()
UpperCAmelCase_ : Tuple = self.dummy_sample_deter
scheduler.set_timesteps(_SCREAMING_SNAKE_CASE )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase_ : Any = model(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : List[Any] = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase_ : str = model(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Dict = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).prev_sample
return sample
def a__ ( self ) -> str:
UpperCAmelCase_ : Tuple = dict(self.forward_default_kwargs )
UpperCAmelCase_ : List[str] = kwargs.pop('''num_inference_steps''' ,_SCREAMING_SNAKE_CASE )
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ : Any = self.get_scheduler_config()
UpperCAmelCase_ : str = scheduler_class(**_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : List[Any] = self.dummy_sample
UpperCAmelCase_ : Any = 0.1 * sample
if num_inference_steps is not None and hasattr(_SCREAMING_SNAKE_CASE ,'''set_timesteps''' ):
scheduler.set_timesteps(_SCREAMING_SNAKE_CASE )
elif num_inference_steps is not None and not hasattr(_SCREAMING_SNAKE_CASE ,'''set_timesteps''' ):
UpperCAmelCase_ : int = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
UpperCAmelCase_ : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
UpperCAmelCase_ : str = dummy_past_residuals[:]
UpperCAmelCase_ : Union[str, Any] = scheduler.timesteps[5]
UpperCAmelCase_ : Dict = scheduler.timesteps[6]
UpperCAmelCase_ : Optional[Any] = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample
UpperCAmelCase_ : int = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample
self.assertEqual(output_a.shape ,sample.shape )
self.assertEqual(output_a.shape ,output_a.shape )
UpperCAmelCase_ : List[str] = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample
UpperCAmelCase_ : List[Any] = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample
self.assertEqual(output_a.shape ,sample.shape )
self.assertEqual(output_a.shape ,output_a.shape )
def a__ ( self ) -> Tuple:
for timesteps in [100, 1_000]:
self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ,time_step=_SCREAMING_SNAKE_CASE )
def a__ ( self ) -> Optional[int]:
for t, num_inference_steps in zip([1, 5, 10] ,[10, 50, 100] ):
self.check_over_forward(num_inference_steps=_SCREAMING_SNAKE_CASE ,time_step=_SCREAMING_SNAKE_CASE )
def a__ ( self ) -> str:
UpperCAmelCase_ : Union[str, Any] = self.full_loop()
UpperCAmelCase_ : List[Any] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 2_540_529 ) < 10 | 30 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
_lowercase = logging.get_logger(__name__)
_lowercase = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""adapter_layer""": """encoder.layers.*.adapter_layer""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
"""pooling_layer.linear""": """projector""",
"""pooling_layer.projection""": """classifier""",
}
_lowercase = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""projector""",
"""classifier""",
]
def A (__lowerCamelCase :Optional[int] ):
_lowerCAmelCase = {}
with open(__lowerCamelCase , """r""" ) as file:
for line_number, line in enumerate(__lowerCamelCase ):
_lowerCAmelCase = line.strip()
if line:
_lowerCAmelCase = line.split()
_lowerCAmelCase = line_number
_lowerCAmelCase = words[0]
_lowerCAmelCase = value
return result
def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any] , __lowerCamelCase :List[str] ):
for attribute in key.split(""".""" ):
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__lowerCamelCase ):
_lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]]
_lowerCAmelCase = """param"""
if weight_type is not None and weight_type != "param":
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape
elif weight_type is not None and weight_type == "param":
_lowerCAmelCase = hf_pointer
for attribute in hf_param_name.split(""".""" ):
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = shape_pointer.shape
# let's reduce dimension
_lowerCAmelCase = value[0]
else:
_lowerCAmelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
_lowerCAmelCase = value
elif weight_type == "weight_g":
_lowerCAmelCase = value
elif weight_type == "weight_v":
_lowerCAmelCase = value
elif weight_type == "bias":
_lowerCAmelCase = value
elif weight_type == "param":
for attribute in hf_param_name.split(""".""" ):
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = value
else:
_lowerCAmelCase = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] , __lowerCamelCase :int ):
_lowerCAmelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__lowerCamelCase ):
_lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]]
_lowerCAmelCase = """param"""
if weight_type is not None and weight_type != "param":
_lowerCAmelCase = """.""".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
_lowerCAmelCase = """.""".join([key, hf_param_name] )
else:
_lowerCAmelCase = key
_lowerCAmelCase = value if """lm_head""" in full_key else value[0]
_lowercase = {
"""W_a""": """linear_1.weight""",
"""W_b""": """linear_2.weight""",
"""b_a""": """linear_1.bias""",
"""b_b""": """linear_2.bias""",
"""ln_W""": """norm.weight""",
"""ln_b""": """norm.bias""",
}
def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :List[str]=None , __lowerCamelCase :List[Any]=None ):
_lowerCAmelCase = False
for key, mapped_key in MAPPING.items():
_lowerCAmelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
_lowerCAmelCase = True
if "*" in mapped_key:
_lowerCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2]
_lowerCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase )
if "weight_g" in name:
_lowerCAmelCase = """weight_g"""
elif "weight_v" in name:
_lowerCAmelCase = """weight_v"""
elif "bias" in name:
_lowerCAmelCase = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
_lowerCAmelCase = """weight"""
else:
_lowerCAmelCase = None
if hf_dict is not None:
rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
else:
set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
return is_used
return is_used
def A (__lowerCamelCase :Any , __lowerCamelCase :Dict , __lowerCamelCase :Dict ):
_lowerCAmelCase = []
_lowerCAmelCase = fairseq_model.state_dict()
_lowerCAmelCase = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
_lowerCAmelCase = False
if "conv_layers" in name:
load_conv_layer(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , )
_lowerCAmelCase = True
else:
_lowerCAmelCase = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if not is_used:
unused_weights.append(__lowerCamelCase )
logger.warning(f'Unused weights: {unused_weights}' )
def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any , __lowerCamelCase :List[Any] , __lowerCamelCase :List[Any] ):
_lowerCAmelCase = full_name.split("""conv_layers.""" )[-1]
_lowerCAmelCase = name.split(""".""" )
_lowerCAmelCase = int(items[0] )
_lowerCAmelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
_lowerCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
_lowerCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
_lowerCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
_lowerCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(__lowerCamelCase )
@torch.no_grad()
def A (__lowerCamelCase :List[str] , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any]=None , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :str=True , __lowerCamelCase :str=False ):
if config_path is not None:
_lowerCAmelCase = WavaVecaConfig.from_pretrained(__lowerCamelCase )
else:
_lowerCAmelCase = WavaVecaConfig()
if is_seq_class:
_lowerCAmelCase = read_txt_into_dict(__lowerCamelCase )
_lowerCAmelCase = idalabel
_lowerCAmelCase = WavaVecaForSequenceClassification(__lowerCamelCase )
_lowerCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
feature_extractor.save_pretrained(__lowerCamelCase )
elif is_finetuned:
if dict_path:
_lowerCAmelCase = Dictionary.load(__lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_lowerCAmelCase = target_dict.pad_index
_lowerCAmelCase = target_dict.bos_index
_lowerCAmelCase = target_dict.eos_index
_lowerCAmelCase = len(target_dict.symbols )
_lowerCAmelCase = os.path.join(__lowerCamelCase , """vocab.json""" )
if not os.path.isdir(__lowerCamelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) )
return
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
_lowerCAmelCase = target_dict.indices
# fairseq has the <pad> and <s> switched
_lowerCAmelCase = 0
_lowerCAmelCase = 1
with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = WavaVecaCTCTokenizer(
__lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , )
_lowerCAmelCase = True if config.feat_extract_norm == """layer""" else False
_lowerCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
_lowerCAmelCase = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase )
processor.save_pretrained(__lowerCamelCase )
_lowerCAmelCase = WavaVecaForCTC(__lowerCamelCase )
else:
_lowerCAmelCase = WavaVecaForPreTraining(__lowerCamelCase )
if is_finetuned or is_seq_class:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
_lowerCAmelCase = argparse.Namespace(task="""audio_pretraining""" )
_lowerCAmelCase = fairseq.tasks.setup_task(__lowerCamelCase )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase )
_lowerCAmelCase = model[0].eval()
recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned )
hf_wavavec.save_pretrained(__lowerCamelCase )
if __name__ == "__main__":
_lowercase = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
parser.add_argument(
"""--is_seq_class""",
action="""store_true""",
help="""Whether the model to convert is a fine-tuned sequence classification model or not""",
)
_lowercase = parser.parse_args()
_lowercase = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 5 | 0 |
import string
from math import logaa
def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : str ) -> int:
SCREAMING_SNAKE_CASE_ = document.translate(
str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' )
SCREAMING_SNAKE_CASE_ = document_without_punctuation.split(' ' ) # word tokenization
return len([word for word in tokenize_document if word.lower() == term.lower()] )
def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : str ) -> tuple[int, int]:
SCREAMING_SNAKE_CASE_ = corpus.lower().translate(
str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with ''
SCREAMING_SNAKE_CASE_ = corpus_without_punctuation.split('\n' )
SCREAMING_SNAKE_CASE_ = term.lower()
return (len([doc for doc in docs if term in doc] ), len(__UpperCAmelCase ))
def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int=False ) -> float:
if smoothing:
if n == 0:
raise ValueError('log10(0) is undefined.' )
return round(1 + logaa(n / (1 + df) ) , 3 )
if df == 0:
raise ZeroDivisionError('df must be > 0' )
elif n == 0:
raise ValueError('log10(0) is undefined.' )
return round(logaa(n / df ) , 3 )
def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> float:
return round(tf * idf , 3 ) | 31 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase = logging.get_logger(__name__)
_lowercase = {
"""edbeeching/decision-transformer-gym-hopper-medium""": (
"""https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json"""
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : List[str] = '''decision_transformer'''
_lowercase : Optional[Any] = ['''past_key_values''']
_lowercase : str = {
'''max_position_embeddings''': '''n_positions''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self , _lowercase=17 , _lowercase=4 , _lowercase=128 , _lowercase=4_096 , _lowercase=True , _lowercase=1 , _lowercase=1_024 , _lowercase=3 , _lowercase=1 , _lowercase=None , _lowercase="relu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=False , _lowercase=False , **_lowercase , ):
"""simple docstring"""
_lowerCAmelCase = state_dim
_lowerCAmelCase = act_dim
_lowerCAmelCase = hidden_size
_lowerCAmelCase = max_ep_len
_lowerCAmelCase = action_tanh
_lowerCAmelCase = vocab_size
_lowerCAmelCase = n_positions
_lowerCAmelCase = n_layer
_lowerCAmelCase = n_head
_lowerCAmelCase = n_inner
_lowerCAmelCase = activation_function
_lowerCAmelCase = resid_pdrop
_lowerCAmelCase = embd_pdrop
_lowerCAmelCase = attn_pdrop
_lowerCAmelCase = layer_norm_epsilon
_lowerCAmelCase = initializer_range
_lowerCAmelCase = scale_attn_weights
_lowerCAmelCase = use_cache
_lowerCAmelCase = scale_attn_by_inverse_layer_idx
_lowerCAmelCase = reorder_and_upcast_attn
_lowerCAmelCase = bos_token_id
_lowerCAmelCase = eos_token_id
super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
| 5 | 0 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import datasets
import datasets.config
from .utils import require_beam
class __UpperCamelCase ( datasets.BeamBasedBuilder ):
def UpperCamelCase( self ):
return datasets.DatasetInfo(
features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=_UpperCamelCase , )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ):
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )]
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ):
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(_UpperCamelCase )
class __UpperCamelCase ( datasets.BeamBasedBuilder ):
def UpperCamelCase( self ):
return datasets.DatasetInfo(
features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=_UpperCamelCase , )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ):
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} )
]
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ):
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(_UpperCamelCase )
def A__ ( ) -> Dict:
"""simple docstring"""
return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )]
def A__ ( ) -> Dict:
"""simple docstring"""
return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )]
class __UpperCamelCase ( A__ ):
@require_beam
def UpperCamelCase( self ):
_UpperCAmelCase = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
_UpperCAmelCase = DummyBeamDataset(cache_dir=_UpperCamelCase , beam_runner='''DirectRunner''' )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(_UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , f'''{builder.name}-train.arrow''' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) )
_UpperCAmelCase = builder.as_dataset()
self.assertEqual(dset['''train'''].num_rows , _UpperCamelCase )
self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , _UpperCamelCase )
self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] )
self.assertDictEqual(
dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(_UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) )
del dset
@require_beam
def UpperCamelCase( self ):
import apache_beam as beam
_UpperCAmelCase = beam.io.parquetio.WriteToParquet
_UpperCAmelCase = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
_UpperCAmelCase = DummyBeamDataset(cache_dir=_UpperCamelCase , beam_runner='''DirectRunner''' )
with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock:
_UpperCAmelCase = partial(_UpperCamelCase , num_shards=2 )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(
_UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) )
self.assertTrue(
os.path.exists(
os.path.join(
_UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) )
_UpperCAmelCase = builder.as_dataset()
self.assertEqual(dset['''train'''].num_rows , _UpperCamelCase )
self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , _UpperCamelCase )
# Order is not preserved when sharding, so we just check that all the elements are there
self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) )
self.assertTrue(
os.path.exists(os.path.join(_UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) )
del dset
@require_beam
def UpperCamelCase( self ):
with tempfile.TemporaryDirectory() as tmp_cache_dir:
_UpperCAmelCase = DummyBeamDataset(cache_dir=_UpperCamelCase )
self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare )
@require_beam
def UpperCamelCase( self ):
_UpperCAmelCase = len(get_test_nested_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
_UpperCAmelCase = NestedBeamDataset(cache_dir=_UpperCamelCase , beam_runner='''DirectRunner''' )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(_UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , f'''{builder.name}-train.arrow''' ) ) )
self.assertDictEqual(
builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) )
_UpperCAmelCase = builder.as_dataset()
self.assertEqual(dset['''train'''].num_rows , _UpperCamelCase )
self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , _UpperCamelCase )
self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] )
self.assertDictEqual(
dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(_UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) )
del dset | 32 |
'''simple docstring'''
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"""The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"""
)
_lowercase = None
_lowercase = {
"""7B""": 11008,
"""13B""": 13824,
"""30B""": 17920,
"""65B""": 22016,
"""70B""": 28672,
}
_lowercase = {
"""7B""": 1,
"""7Bf""": 1,
"""13B""": 2,
"""13Bf""": 2,
"""30B""": 4,
"""65B""": 8,
"""70B""": 8,
"""70Bf""": 8,
}
def A (__lowerCamelCase :int , __lowerCamelCase :Optional[Any]=1 , __lowerCamelCase :List[Any]=256 ):
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of)
def A (__lowerCamelCase :Any ):
with open(__lowerCamelCase , """r""" ) as f:
return json.load(__lowerCamelCase )
def A (__lowerCamelCase :List[Any] , __lowerCamelCase :int ):
with open(__lowerCamelCase , """w""" ) as f:
json.dump(__lowerCamelCase , __lowerCamelCase )
def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple=True ):
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
_lowerCAmelCase = os.path.join(__lowerCamelCase , """tmp""" )
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
_lowerCAmelCase = read_json(os.path.join(__lowerCamelCase , """params.json""" ) )
_lowerCAmelCase = NUM_SHARDS[model_size]
_lowerCAmelCase = params["""n_layers"""]
_lowerCAmelCase = params["""n_heads"""]
_lowerCAmelCase = n_heads // num_shards
_lowerCAmelCase = params["""dim"""]
_lowerCAmelCase = dim // n_heads
_lowerCAmelCase = 10_000.0
_lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , __lowerCamelCase , 2 ).float() / dims_per_head))
if "n_kv_heads" in params:
_lowerCAmelCase = params["""n_kv_heads"""] # for GQA / MQA
_lowerCAmelCase = n_heads_per_shard // num_key_value_heads
_lowerCAmelCase = dim // num_key_value_heads
else: # compatibility with other checkpoints
_lowerCAmelCase = n_heads
_lowerCAmelCase = n_heads_per_shard
_lowerCAmelCase = dim
# permute for sliced rotary
def permute(__lowerCamelCase :Optional[int] , __lowerCamelCase :str=n_heads , __lowerCamelCase :str=dim , __lowerCamelCase :List[Any]=dim ):
return w.view(__lowerCamelCase , dima // n_heads // 2 , 2 , __lowerCamelCase ).transpose(1 , 2 ).reshape(__lowerCamelCase , __lowerCamelCase )
print(f'Fetching all parameters from the checkpoint at {input_base_path}.' )
# Load weights
if model_size == "7B":
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
_lowerCAmelCase = torch.load(os.path.join(__lowerCamelCase , """consolidated.00.pth""" ) , map_location="""cpu""" )
else:
# Sharded
_lowerCAmelCase = [
torch.load(os.path.join(__lowerCamelCase , f'consolidated.{i:02d}.pth' ) , map_location="""cpu""" )
for i in range(__lowerCamelCase )
]
_lowerCAmelCase = 0
_lowerCAmelCase = {"""weight_map""": {}}
for layer_i in range(__lowerCamelCase ):
_lowerCAmelCase = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin'
if model_size == "7B":
# Unsharded
_lowerCAmelCase = {
f'model.layers.{layer_i}.self_attn.q_proj.weight': permute(
loaded[f'layers.{layer_i}.attention.wq.weight'] ),
f'model.layers.{layer_i}.self_attn.k_proj.weight': permute(
loaded[f'layers.{layer_i}.attention.wk.weight'] ),
f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'],
f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'],
f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'],
f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'],
f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'],
f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'],
f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
_lowerCAmelCase = {
f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][
f'layers.{layer_i}.attention_norm.weight'
].clone(),
f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][
f'layers.{layer_i}.ffn_norm.weight'
].clone(),
}
_lowerCAmelCase = permute(
torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
for i in range(__lowerCamelCase )
] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) )
_lowerCAmelCase = permute(
torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wk.weight'].view(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
for i in range(__lowerCamelCase )
] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , )
_lowerCAmelCase = torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wv.weight'].view(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
for i in range(__lowerCamelCase )
] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = torch.cat(
[loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(__lowerCamelCase )] , dim=1 )
_lowerCAmelCase = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__lowerCamelCase )] , dim=0 )
_lowerCAmelCase = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__lowerCamelCase )] , dim=1 )
_lowerCAmelCase = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__lowerCamelCase )] , dim=0 )
_lowerCAmelCase = inv_freq
for k, v in state_dict.items():
_lowerCAmelCase = filename
param_count += v.numel()
torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) )
_lowerCAmelCase = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin'
if model_size == "7B":
# Unsharded
_lowerCAmelCase = {
"""model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""],
"""model.norm.weight""": loaded["""norm.weight"""],
"""lm_head.weight""": loaded["""output.weight"""],
}
else:
_lowerCAmelCase = {
"""model.norm.weight""": loaded[0]["""norm.weight"""],
"""model.embed_tokens.weight""": torch.cat(
[loaded[i]["""tok_embeddings.weight"""] for i in range(__lowerCamelCase )] , dim=1 ),
"""lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__lowerCamelCase )] , dim=0 ),
}
for k, v in state_dict.items():
_lowerCAmelCase = filename
param_count += v.numel()
torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) )
# Write configs
_lowerCAmelCase = {"""total_size""": param_count * 2}
write_json(__lowerCamelCase , os.path.join(__lowerCamelCase , """pytorch_model.bin.index.json""" ) )
_lowerCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1
_lowerCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256
_lowerCAmelCase = LlamaConfig(
hidden_size=__lowerCamelCase , intermediate_size=compute_intermediate_size(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=__lowerCamelCase , )
config.save_pretrained(__lowerCamelCase )
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print("""Loading the checkpoint in a Llama model.""" )
_lowerCAmelCase = LlamaForCausalLM.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=__lowerCamelCase )
# Avoid saving this as part of the config.
del model.config._name_or_path
print("""Saving in the Transformers format.""" )
model.save_pretrained(__lowerCamelCase , safe_serialization=__lowerCamelCase )
shutil.rmtree(__lowerCamelCase )
def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any] ):
# Initialize the tokenizer based on the `spm` model
_lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' )
_lowerCAmelCase = tokenizer_class(__lowerCamelCase )
tokenizer.save_pretrained(__lowerCamelCase )
def A ():
_lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument(
"""--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , )
parser.add_argument(
"""--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , )
parser.add_argument(
"""--output_dir""" , help="""Location to write HF model and tokenizer""" , )
parser.add_argument("""--safe_serialization""" , type=__lowerCamelCase , help="""Whether or not to save using `safetensors`.""" )
_lowerCAmelCase = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , )
_lowerCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" )
write_tokenizer(args.output_dir , __lowerCamelCase )
if __name__ == "__main__":
main()
| 5 | 0 |
lowerCamelCase__ : Optional[int] = """Input must be a string of 8 numbers plus letter"""
lowerCamelCase__ : List[str] = """TRWAGMYFPDXBNJZSQVHLCKE"""
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> bool:
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
snake_case__ = F"""Expected string as input, found {type(__lowerCAmelCase ).__name__}"""
raise TypeError(__lowerCAmelCase )
snake_case__ = spanish_id.replace('''-''' , '''''' ).upper()
if len(__lowerCAmelCase ) != 9:
raise ValueError(__lowerCAmelCase )
try:
snake_case__ = int(spanish_id_clean[0:8] )
snake_case__ = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(__lowerCAmelCase ) from ex
if letter.isdigit():
raise ValueError(__lowerCAmelCase )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 33 |
'''simple docstring'''
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : Tuple = (DDPMScheduler,)
def _lowercase ( self , **_lowercase ):
"""simple docstring"""
_lowerCAmelCase = {
"""num_train_timesteps""": 1_000,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**_lowercase )
return config
def _lowercase ( self ):
"""simple docstring"""
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
self.check_over_configs(thresholding=_lowercase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , )
def _lowercase ( self ):
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for t in [0, 500, 999]:
self.check_over_forward(time_step=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = len(_lowercase )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
_lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(_lowercase ) ):
# 1. predict noise residual
_lowerCAmelCase = model(_lowercase , _lowercase )
# 2. predict previous mean of sample x_t-1
_lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
_lowerCAmelCase = pred_prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowercase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 258.9606 ) < 1e-2
assert abs(result_mean.item() - 0.3372 ) < 1e-3
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" )
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = len(_lowercase )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
_lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(_lowercase ) ):
# 1. predict noise residual
_lowerCAmelCase = model(_lowercase , _lowercase )
# 2. predict previous mean of sample x_t-1
_lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
_lowerCAmelCase = pred_prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowercase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 202.0296 ) < 1e-2
assert abs(result_mean.item() - 0.2631 ) < 1e-3
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=_lowercase )
_lowerCAmelCase = scheduler.timesteps
for i, timestep in enumerate(_lowercase ):
if i == len(_lowercase ) - 1:
_lowerCAmelCase = -1
else:
_lowerCAmelCase = timesteps[i + 1]
_lowerCAmelCase = scheduler.previous_timestep(_lowercase )
_lowerCAmelCase = prev_t.item()
self.assertEqual(_lowercase , _lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = [100, 87, 50, 51, 0]
with self.assertRaises(_lowercase , msg="""`custom_timesteps` must be in descending order.""" ):
scheduler.set_timesteps(timesteps=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = [100, 87, 50, 1, 0]
_lowerCAmelCase = len(_lowercase )
with self.assertRaises(_lowercase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ):
scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_lowercase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=_lowercase )
| 5 | 0 |
"""simple docstring"""
import collections
import os
from typing import List, Optional, Tuple
from transformers.utils import is_jieba_available, requires_backends
if is_jieba_available():
import jieba
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.txt'}
SCREAMING_SNAKE_CASE_ = {
'vocab_file': {
'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt',
},
}
SCREAMING_SNAKE_CASE_ = {
'openbmb/cpm-ant-10b': 1024,
}
def __snake_case ( _lowercase ):
"""simple docstring"""
UpperCamelCase = collections.OrderedDict()
with open(_lowercase ,'''r''' ,encoding='''utf-8''' ) as reader:
UpperCamelCase = reader.readlines()
for index, token in enumerate(_lowercase ):
UpperCamelCase = token.rstrip('''\n''' )
UpperCamelCase = index
return vocab
class snake_case_ ( lowerCamelCase_ ):
"""simple docstring"""
def __init__( self , lowerCamelCase_ , lowerCamelCase_="<unk>" , lowerCamelCase_=2_0_0) -> Any:
UpperCamelCase = vocab
UpperCamelCase = unk_token
UpperCamelCase = max_input_chars_per_word
def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]:
UpperCamelCase = list(lowerCamelCase_)
if len(lowerCamelCase_) > self.max_input_chars_per_word:
return [self.unk_token]
UpperCamelCase = 0
UpperCamelCase = []
while start < len(lowerCamelCase_):
UpperCamelCase = len(lowerCamelCase_)
UpperCamelCase = None
while start < end:
UpperCamelCase = ''''''.join(chars[start:end])
if substr in self.vocab:
UpperCamelCase = substr
break
end -= 1
if cur_substr is None:
sub_tokens.append(self.unk_token)
start += 1
else:
sub_tokens.append(lowerCamelCase_)
UpperCamelCase = end
return sub_tokens
class snake_case_ ( lowerCamelCase_ ):
"""simple docstring"""
A_ = VOCAB_FILES_NAMES
A_ = PRETRAINED_VOCAB_FILES_MAP
A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ = ['''input_ids''', '''attention_mask''']
A_ = False
def __init__( self , lowerCamelCase_ , lowerCamelCase_="<d>" , lowerCamelCase_="</d>" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<unk>" , lowerCamelCase_="</n>" , lowerCamelCase_="</_>" , lowerCamelCase_="left" , **lowerCamelCase_ , ) -> List[str]:
requires_backends(self , ['''jieba'''])
super().__init__(
bod_token=lowerCamelCase_ , eod_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , line_token=lowerCamelCase_ , space_token=lowerCamelCase_ , padding_side=lowerCamelCase_ , **lowerCamelCase_ , )
UpperCamelCase = bod_token
UpperCamelCase = eod_token
UpperCamelCase = load_vocab(lowerCamelCase_)
UpperCamelCase = self.encoder[space_token]
UpperCamelCase = self.encoder[line_token]
del self.encoder[space_token]
del self.encoder[line_token]
UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1]))
UpperCamelCase = {v: k for k, v in self.encoder.items()}
UpperCamelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token)
@property
def UpperCAmelCase__ ( self) -> Dict:
return self.encoder[self.bod_token]
@property
def UpperCAmelCase__ ( self) -> str:
return self.encoder[self.eod_token]
@property
def UpperCAmelCase__ ( self) -> List[Any]:
return self.encoder["\n"]
@property
def UpperCAmelCase__ ( self) -> int:
return len(self.encoder)
def UpperCAmelCase__ ( self) -> Dict:
return dict(self.encoder , **self.added_tokens_encoder)
def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any:
UpperCamelCase = []
for x in jieba.cut(lowerCamelCase_ , cut_all=lowerCamelCase_):
output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase_))
return output_tokens
def UpperCAmelCase__ ( self , lowerCamelCase_ , **lowerCamelCase_) -> Tuple:
UpperCamelCase = [i for i in token_ids if i >= 0]
UpperCamelCase = [
x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id
]
return super()._decode(lowerCamelCase_ , **lowerCamelCase_)
def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict:
return token in self.encoder
def UpperCAmelCase__ ( self , lowerCamelCase_) -> str:
return "".join(lowerCamelCase_)
def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]:
return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token))
def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict:
return self.decoder.get(lowerCamelCase_ , self.unk_token)
def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]:
if os.path.isdir(lowerCamelCase_):
UpperCamelCase = os.path.join(
lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''])
else:
UpperCamelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory
UpperCamelCase = 0
if " " in self.encoder:
UpperCamelCase = self.encoder[''' ''']
del self.encoder[" "]
if "\n" in self.encoder:
UpperCamelCase = self.encoder['''\n''']
del self.encoder["\n"]
UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1]))
with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as writer:
for token, token_index in self.encoder.items():
if index != token_index:
logger.warning(
F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'
''' Please check that the vocabulary is not corrupted!''')
UpperCamelCase = token_index
writer.write(token + '''\n''')
index += 1
return (vocab_file,)
def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]:
if token_ids_a is None:
return [self.bos_token_id] + token_ids_a
return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a
def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_)
if token_ids_a is not None:
return [1] + ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_))
return [1] + ([0] * len(lowerCamelCase_)) | 34 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
_lowercase = logging.get_logger(__name__)
_lowercase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
_lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class UpperCAmelCase_ :
'''simple docstring'''
_lowercase : str = field(
default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_SCREAMING_SNAKE_CASE )} )
_lowercase : str = field(
default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} )
_lowercase : int = field(
default=1_2_8 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
_lowercase : int = field(
default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , )
_lowercase : int = field(
default=6_4 , metadata={
'''help''': (
'''The maximum number of tokens for the question. Questions longer than this will '''
'''be truncated to this length.'''
)
} , )
_lowercase : int = field(
default=3_0 , metadata={
'''help''': (
'''The maximum length of an answer that can be generated. This is needed because the start '''
'''and end predictions are not conditioned on one another.'''
)
} , )
_lowercase : bool = field(
default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
_lowercase : bool = field(
default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} )
_lowercase : float = field(
default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
_lowercase : int = field(
default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
_lowercase : int = field(
default=0 , metadata={
'''help''': (
'''language id of input for language-specific xlm models (see'''
''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'''
)
} , )
_lowercase : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} )
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : str = '''train'''
_lowercase : Union[str, Any] = '''dev'''
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : SquadDataTrainingArguments
_lowercase : List[SquadFeatures]
_lowercase : Split
_lowercase : bool
def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = False , _lowercase = None , _lowercase = "pt" , ):
"""simple docstring"""
_lowerCAmelCase = args
_lowerCAmelCase = is_language_sensitive
_lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(_lowercase , _lowercase ):
try:
_lowerCAmelCase = Split[mode]
except KeyError:
raise KeyError("""mode is not a valid split name""" )
_lowerCAmelCase = mode
# Load data features from cache or dataset file
_lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1"""
_lowerCAmelCase = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
_lowerCAmelCase = cached_features_file + """.lock"""
with FileLock(_lowercase ):
if os.path.exists(_lowercase ) and not args.overwrite_cache:
_lowerCAmelCase = time.time()
_lowerCAmelCase = torch.load(_lowercase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
_lowerCAmelCase = self.old_features["""features"""]
_lowerCAmelCase = self.old_features.get("""dataset""" , _lowercase )
_lowerCAmelCase = self.old_features.get("""examples""" , _lowercase )
logger.info(
F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'
""" future run""" )
else:
if mode == Split.dev:
_lowerCAmelCase = self.processor.get_dev_examples(args.data_dir )
else:
_lowerCAmelCase = self.processor.get_train_examples(args.data_dir )
_lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features(
examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , )
_lowerCAmelCase = time.time()
torch.save(
{"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowercase , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' )
def __len__( self ):
"""simple docstring"""
return len(self.features )
def __getitem__( self , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = self.features[i]
_lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float )
_lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float )
_lowerCAmelCase = {
"""input_ids""": input_ids,
"""attention_mask""": attention_mask,
"""token_type_ids""": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"""is_impossible""": is_impossible} )
if self.is_language_sensitive:
inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
_lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} )
return inputs
| 5 | 0 |
import os
import re
import warnings
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_ta import TaTokenizer
else:
a_ :Union[str, Any] = None
a_ :str = logging.get_logger(__name__)
a_ :str = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
a_ :Union[str, Any] = {
'vocab_file': {
't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model',
't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model',
't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model',
't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model',
't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model',
},
'tokenizer_file': {
't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json',
't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json',
't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json',
't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json',
't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json',
},
}
# TODO(PVP) - this should be removed in Transformers v5
a_ :Optional[int] = {
't5-small': 5_12,
't5-base': 5_12,
't5-large': 5_12,
't5-3b': 5_12,
't5-11b': 5_12,
}
class lowercase ( _UpperCAmelCase ):
lowerCamelCase : Any = VOCAB_FILES_NAMES
lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : str = ['''input_ids''', '''attention_mask''']
lowerCamelCase : Dict = TaTokenizer
lowerCamelCase : List[int] = []
def __init__( self : Optional[int] , _lowercase : Any=None , _lowercase : List[Any]=None , _lowercase : Dict="</s>" , _lowercase : int="<unk>" , _lowercase : int="<pad>" , _lowercase : List[Any]=1_00 , _lowercase : Dict=None , **_lowercase : Tuple , ):
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
SCREAMING_SNAKE_CASE__ : List[str] = [f"""<extra_id_{i}>""" for i in range(_lowercase )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra special tokens
SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(set(filter(lambda _lowercase : bool('''extra_id_''' in str(_lowercase ) ) , _lowercase ) ) )
if extra_tokens != extra_ids:
raise ValueError(
f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"""
''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids'''
''' tokens''' )
super().__init__(
_lowercase , tokenizer_file=_lowercase , eos_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , extra_ids=_lowercase , additional_special_tokens=_lowercase , **_lowercase , )
SCREAMING_SNAKE_CASE__ : int = vocab_file
SCREAMING_SNAKE_CASE__ : List[Any] = False if not self.vocab_file else True
SCREAMING_SNAKE_CASE__ : Tuple = extra_ids
@staticmethod
def lowercase__ ( _lowercase : Any , _lowercase : str , _lowercase : Union[str, Any] ):
if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
'''This tokenizer was incorrectly instantiated with a model max length of'''
f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this"""
''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with'''
''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on'''
f""" {pretrained_model_name_or_path} automatically truncating your input to"""
f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences"""
f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with"""
''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please'''
''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _lowercase , )
return max_model_length
def lowercase__ ( self : List[str] , _lowercase : str , _lowercase : Optional[str] = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(_lowercase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join(
_lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ):
copyfile(self.vocab_file , _lowercase )
logger.info(f"""Copy vocab file to {out_vocab_file}""" )
return (out_vocab_file,)
def lowercase__ ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return self.prefix_tokens + token_ids_a
else:
SCREAMING_SNAKE_CASE__ : Any = token_ids_a + [self.eos_token_id]
return self.prefix_tokens + token_ids_a + token_ids_a
def lowercase__ ( self : List[str] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def lowercase__ ( self : List[str] ):
return list(
set(filter(lambda _lowercase : bool(re.search(R'''<extra_id_\d+>''' , _lowercase ) ) is not None , self.additional_special_tokens ) ) )
def lowercase__ ( self : List[str] ):
return [self.convert_tokens_to_ids(_lowercase ) for token in self.get_sentinel_tokens()]
| 35 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase = logging.get_logger(__name__)
_lowercase = {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json"""
),
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json"""
),
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json"""
),
}
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : str = '''dpr'''
def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase="absolute" , _lowercase = 0 , **_lowercase , ):
"""simple docstring"""
super().__init__(pad_token_id=_lowercase , **_lowercase )
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = hidden_act
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = type_vocab_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = projection_dim
_lowerCAmelCase = position_embedding_type
| 5 | 0 |
import pytest
import requests
from datasets.utils.file_utils import http_head
from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline
@pytest.mark.integration
def lowercase ( ) -> List[str]:
'''simple docstring'''
with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ):
with pytest.raises(__A ):
requests.request("""GET""" , """https://huggingface.co""" )
with pytest.raises(requests.exceptions.ConnectTimeout ):
requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 )
@pytest.mark.integration
def lowercase ( ) -> Optional[int]:
'''simple docstring'''
with offline(OfflineSimulationMode.CONNECTION_FAILS ):
with pytest.raises(requests.exceptions.ConnectionError ):
requests.request("""GET""" , """https://huggingface.co""" )
def lowercase ( ) -> Dict:
'''simple docstring'''
with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ):
with pytest.raises(__A ):
http_head("""https://huggingface.co""" )
| 36 |
'''simple docstring'''
from sklearn.metrics import mean_squared_error
import datasets
_lowercase = """\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
"""
_lowercase = """\
Mean Squared Error(MSE) is the average of the square of difference between the predicted
and actual values.
"""
_lowercase = """
Args:
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
sample_weight: array-like of shape (n_samples,), default=None
Sample weights.
multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
\"raw_values\" : Returns a full set of errors in case of multioutput input.
\"uniform_average\" : Errors of all outputs are averaged with uniform weight.
squared : bool, default=True
If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.
Returns:
mse : mean squared error.
Examples:
>>> mse_metric = datasets.load_metric(\"mse\")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.375}
>>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
>>> print(rmse_result)
{'mse': 0.6123724356957945}
If you're using multi-dimensional lists, then set the config as follows :
>>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
>>> references = [[0, 2], [-1, 2], [8, -5]]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.7083333333333334}
>>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mse': array([0.41666667, 1. ])}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def _lowercase ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"""
] , )
def _lowercase ( self ):
"""simple docstring"""
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("""float""" ) ),
"references": datasets.Sequence(datasets.Value("""float""" ) ),
}
else:
return {
"predictions": datasets.Value("""float""" ),
"references": datasets.Value("""float""" ),
}
def _lowercase ( self , _lowercase , _lowercase , _lowercase=None , _lowercase="uniform_average" , _lowercase=True ):
"""simple docstring"""
_lowerCAmelCase = mean_squared_error(
_lowercase , _lowercase , sample_weight=_lowercase , multioutput=_lowercase , squared=_lowercase )
return {"mse": mse}
| 5 | 0 |
def UpperCamelCase_ ( ) -> List[Any]:
a__ : Optional[int] = []
a__ : Dict = 1
while len(__a ) < 1e6:
constant.append(str(__a ) )
i += 1
a__ : Dict = "".join(__a )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[99] )
* int(constant[999] )
* int(constant[9_999] )
* int(constant[99_999] )
* int(constant[999_999] )
)
if __name__ == "__main__":
print(solution())
| 37 |
'''simple docstring'''
def A ():
for n in range(1 , 1000000 ):
yield n * (n + 1) // 2
def A (__lowerCamelCase :List[Any] ):
_lowerCAmelCase = 1
_lowerCAmelCase = 2
while i * i <= n:
_lowerCAmelCase = 0
while n % i == 0:
n //= i
multiplicity += 1
divisors_count *= multiplicity + 1
i += 1
if n > 1:
divisors_count *= 2
return divisors_count
def A ():
return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 )
if __name__ == "__main__":
print(solution())
| 5 | 0 |
'''simple docstring'''
import random
from .binary_exp_mod import bin_exp_mod
def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : Optional[Any]=10_00 ) -> List[str]:
'''simple docstring'''
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
snake_case__ : int = n - 1
snake_case__ : Union[str, Any] = 0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
snake_case__ : str = 0
while count < prec:
snake_case__ : Any = random.randint(2 , n - 1 )
snake_case__ : Optional[Any] = bin_exp_mod(__magic_name__ , __magic_name__ , __magic_name__ )
if b != 1:
snake_case__ : Optional[int] = True
for _ in range(__magic_name__ ):
if b == n - 1:
snake_case__ : Any = False
break
snake_case__ : List[str] = b * b
b %= n
if flag:
return False
count += 1
return True
if __name__ == "__main__":
A_ : Optional[Any] = abs(int(input("Enter bound : ").strip()))
print("Here's the list of primes:")
print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
| 38 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_donut import DonutImageProcessor
_lowercase = logging.get_logger(__name__)
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , *_lowercase , **_lowercase ):
"""simple docstring"""
warnings.warn(
"""The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use DonutImageProcessor instead.""" , _lowercase , )
super().__init__(*_lowercase , **_lowercase )
| 5 | 0 |
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class snake_case_ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str=2 , _UpperCamelCase : Dict=8 , _UpperCamelCase : str=True , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Any=True , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=9_9 , _UpperCamelCase : Any=1_6 , _UpperCamelCase : List[str]=5 , _UpperCamelCase : Optional[Any]=2 , _UpperCamelCase : str=3_6 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : str=0.0 , _UpperCamelCase : Any=5_1_2 , _UpperCamelCase : int=1_6 , _UpperCamelCase : List[Any]=2 , _UpperCamelCase : Tuple=0.02 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=4 , _UpperCamelCase : Dict=None , ) ->Optional[Any]:
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = num_choices
snake_case_ = scope
def snake_case__( self : List[Any] ) ->List[Any]:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = None
if self.use_input_mask:
snake_case_ = random_attention_mask([self.batch_size, self.seq_length] )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = ids_tensor([self.batch_size] , self.num_choices )
snake_case_ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case__( self : Optional[int] ) ->Optional[Any]:
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , )
def snake_case__( self : List[Any] ) ->str:
snake_case_ = self.get_config()
snake_case_ = 3_0_0
return config
def snake_case__( self : List[str] ) ->Optional[Any]:
(
(
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
),
) = self.prepare_config_and_inputs()
snake_case_ = True
snake_case_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def snake_case__( self : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : int , _UpperCamelCase : Dict ) ->Dict:
snake_case_ = MraModel(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase )
snake_case_ = model(_UpperCamelCase , token_type_ids=_UpperCamelCase )
snake_case_ = model(_UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__( self : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Any , ) ->Optional[Any]:
snake_case_ = True
snake_case_ = MraModel(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(
_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=_UpperCamelCase , )
snake_case_ = model(
_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , )
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__( self : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] ) ->str:
snake_case_ = MraForMaskedLM(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__( self : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : Optional[Any] ) ->Any:
snake_case_ = MraForQuestionAnswering(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(
_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def snake_case__( self : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : List[str] ) ->Optional[Any]:
snake_case_ = self.num_labels
snake_case_ = MraForSequenceClassification(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def snake_case__( self : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : str , _UpperCamelCase : Optional[int] ) ->int:
snake_case_ = self.num_labels
snake_case_ = MraForTokenClassification(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Any ) ->Any:
snake_case_ = self.num_choices
snake_case_ = MraForMultipleChoice(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
snake_case_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
snake_case_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
snake_case_ = model(
_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def snake_case__( self : str ) ->List[str]:
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
),
) = config_and_inputs
snake_case_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class snake_case_ ( __A , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE : Optional[int] = False
SCREAMING_SNAKE_CASE : str = False
SCREAMING_SNAKE_CASE : Optional[int] = False
SCREAMING_SNAKE_CASE : Optional[int] = False
SCREAMING_SNAKE_CASE : List[str] = ()
def snake_case__( self : List[str] ) ->Optional[int]:
snake_case_ = MraModelTester(self )
snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 )
def snake_case__( self : Dict ) ->Optional[int]:
self.config_tester.run_common_tests()
def snake_case__( self : Union[str, Any] ) ->Dict:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCamelCase )
def snake_case__( self : int ) ->Optional[int]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*_UpperCamelCase )
def snake_case__( self : Union[str, Any] ) ->List[Any]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCamelCase )
def snake_case__( self : List[str] ) ->Tuple:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCamelCase )
def snake_case__( self : Any ) ->Optional[int]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase )
def snake_case__( self : str ) ->List[str]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCamelCase )
def snake_case__( self : int ) ->Any:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase )
@slow
def snake_case__( self : int ) ->str:
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = MraModel.from_pretrained(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase )
@unittest.skip(reason='''MRA does not output attentions''' )
def snake_case__( self : Union[str, Any] ) ->Tuple:
return
@require_torch
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def snake_case__( self : List[Any] ) ->Optional[Any]:
snake_case_ = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' )
snake_case_ = torch.arange(2_5_6 ).unsqueeze(0 )
with torch.no_grad():
snake_case_ = model(_UpperCamelCase )[0]
snake_case_ = torch.Size((1, 2_5_6, 7_6_8) )
self.assertEqual(output.shape , _UpperCamelCase )
snake_case_ = torch.tensor(
[[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) )
@slow
def snake_case__( self : List[str] ) ->int:
snake_case_ = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' )
snake_case_ = torch.arange(2_5_6 ).unsqueeze(0 )
with torch.no_grad():
snake_case_ = model(_UpperCamelCase )[0]
snake_case_ = 5_0_2_6_5
snake_case_ = torch.Size((1, 2_5_6, vocab_size) )
self.assertEqual(output.shape , _UpperCamelCase )
snake_case_ = torch.tensor(
[[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) )
@slow
def snake_case__( self : Union[str, Any] ) ->Any:
snake_case_ = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' )
snake_case_ = torch.arange(4_0_9_6 ).unsqueeze(0 )
with torch.no_grad():
snake_case_ = model(_UpperCamelCase )[0]
snake_case_ = 5_0_2_6_5
snake_case_ = torch.Size((1, 4_0_9_6, vocab_size) )
self.assertEqual(output.shape , _UpperCamelCase )
snake_case_ = torch.tensor(
[[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) | 39 |
'''simple docstring'''
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 5 | 0 |
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {'''vocab_file''': '''vocab.json'''}
__UpperCAmelCase = {
'''vocab_file''': {
'''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''',
}
}
__UpperCAmelCase = {'''mgp-str''': 27}
class lowerCAmelCase_ ( a__ ):
UpperCAmelCase__ : List[str] = VOCAB_FILES_NAMES
UpperCAmelCase__ : Tuple = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_="[GO]", SCREAMING_SNAKE_CASE_="[GO]", SCREAMING_SNAKE_CASE_="[s]", SCREAMING_SNAKE_CASE_="[GO]", **SCREAMING_SNAKE_CASE_ ) -> int:
super().__init__(
unk_token=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, )
with open(SCREAMING_SNAKE_CASE_, encoding='utf-8' ) as vocab_handle:
UpperCamelCase : Optional[int] = json.load(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = {v: k for k, v in self.vocab.items()}
@property
def snake_case_ ( self ) -> Any:
return len(self.vocab )
def snake_case_ ( self ) -> List[Any]:
return dict(self.vocab, **self.added_tokens_encoder )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str:
UpperCamelCase : List[Any] = []
for s in text:
char_tokens.extend(SCREAMING_SNAKE_CASE_ )
return char_tokens
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Dict:
return self.vocab.get(SCREAMING_SNAKE_CASE_, self.vocab.get(self.unk_token ) )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str:
return self.decoder.get(SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error('Vocabulary path ({}) should be a directory'.format(SCREAMING_SNAKE_CASE_ ) )
return
UpperCamelCase : Dict = os.path.join(
SCREAMING_SNAKE_CASE_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
with open(SCREAMING_SNAKE_CASE_, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(self.vocab, indent=2, sort_keys=SCREAMING_SNAKE_CASE_, ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '\n' )
return (vocab_file,)
| 40 |
'''simple docstring'''
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print("""Googling.....""")
_lowercase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:])
_lowercase = requests.get(url, headers={"""UserAgent""": UserAgent().random})
# res.raise_for_status()
with open("""project1a.html""", """wb""") as out_file: # only for knowing the class
for data in res.iter_content(10000):
out_file.write(data)
_lowercase = BeautifulSoup(res.text, """html.parser""")
_lowercase = list(soup.select(""".eZt8xd"""))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get("""href"""))
else:
webbrowser.open(F"""https://google.com{link.get('href')}""")
| 5 | 0 |
'''simple docstring'''
from importlib import import_module
from .logging import get_logger
lowerCAmelCase__ = get_logger(__name__)
class lowercase_ :
"""simple docstring"""
def __init__( self : Union[str, Any] ,lowercase__ : Dict ,lowercase__ : Union[str, Any]=None ):
__lowercase = attrs or []
if module is not None:
for key in module.__dict__:
if key in attrs or not key.startswith('''__''' ):
setattr(self ,lowercase__ ,getattr(lowercase__ ,lowercase__ ) )
__lowercase = module._original_module if isinstance(lowercase__ ,_PatchedModuleObj ) else module
class lowercase_ :
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = []
def __init__( self : Tuple ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Any=None ):
__lowercase = obj
__lowercase = target
__lowercase = new
__lowercase = target.split('''.''' )[0]
__lowercase = {}
__lowercase = attrs or []
def __enter__( self : Union[str, Any] ):
*__lowercase , __lowercase = self.target.split('''.''' )
# Patch modules:
# it's used to patch attributes of submodules like "os.path.join";
# in this case we need to patch "os" and "os.path"
for i in range(len(lowercase__ ) ):
try:
__lowercase = import_module('''.'''.join(submodules[: i + 1] ) )
except ModuleNotFoundError:
continue
# We iterate over all the globals in self.obj in case we find "os" or "os.path"
for attr in self.obj.__dir__():
__lowercase = getattr(self.obj ,lowercase__ )
# We don't check for the name of the global, but rather if its value *is* "os" or "os.path".
# This allows to patch renamed modules like "from os import path as ospath".
if obj_attr is submodule or (
(isinstance(lowercase__ ,_PatchedModuleObj ) and obj_attr._original_module is submodule)
):
__lowercase = obj_attr
# patch at top level
setattr(self.obj ,lowercase__ ,_PatchedModuleObj(lowercase__ ,attrs=self.attrs ) )
__lowercase = getattr(self.obj ,lowercase__ )
# construct lower levels patches
for key in submodules[i + 1 :]:
setattr(lowercase__ ,lowercase__ ,_PatchedModuleObj(getattr(lowercase__ ,lowercase__ ,lowercase__ ) ,attrs=self.attrs ) )
__lowercase = getattr(lowercase__ ,lowercase__ )
# finally set the target attribute
setattr(lowercase__ ,lowercase__ ,self.new )
# Patch attribute itself:
# it's used for builtins like "open",
# and also to patch "os.path.join" we may also need to patch "join"
# itself if it was imported as "from os.path import join".
if submodules: # if it's an attribute of a submodule like "os.path.join"
try:
__lowercase = getattr(import_module('''.'''.join(lowercase__ ) ) ,lowercase__ )
except (AttributeError, ModuleNotFoundError):
return
# We iterate over all the globals in self.obj in case we find "os.path.join"
for attr in self.obj.__dir__():
# We don't check for the name of the global, but rather if its value *is* "os.path.join".
# This allows to patch renamed attributes like "from os.path import join as pjoin".
if getattr(self.obj ,lowercase__ ) is attr_value:
__lowercase = getattr(self.obj ,lowercase__ )
setattr(self.obj ,lowercase__ ,self.new )
elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open"
__lowercase = globals()['''__builtins__'''][target_attr]
setattr(self.obj ,lowercase__ ,self.new )
else:
raise RuntimeError(F"Tried to patch attribute {target_attr} instead of a submodule." )
def __exit__( self : Tuple ,*lowercase__ : Any ):
for attr in list(self.original ):
setattr(self.obj ,lowercase__ ,self.original.pop(lowercase__ ) )
def SCREAMING_SNAKE_CASE ( self : int ):
self.__enter__()
self._active_patches.append(self )
def SCREAMING_SNAKE_CASE ( self : Dict ):
try:
self._active_patches.remove(self )
except ValueError:
# If the patch hasn't been started this will fail
return None
return self.__exit__()
| 41 |
'''simple docstring'''
import os
from datetime import datetime as dt
from github import Github
_lowercase = [
"""good first issue""",
"""good second issue""",
"""good difficult issue""",
"""enhancement""",
"""new pipeline/model""",
"""new scheduler""",
"""wip""",
]
def A ():
_lowerCAmelCase = Github(os.environ["""GITHUB_TOKEN"""] )
_lowerCAmelCase = g.get_repo("""huggingface/diffusers""" )
_lowerCAmelCase = repo.get_issues(state="""open""" )
for issue in open_issues:
_lowerCAmelCase = sorted(issue.get_comments() , key=lambda __lowerCamelCase : i.created_at , reverse=__lowerCamelCase )
_lowerCAmelCase = comments[0] if len(__lowerCamelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state="""closed""" )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state="""open""" )
issue.remove_from_labels("""stale""" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
issue.add_to_labels("""stale""" )
if __name__ == "__main__":
main()
| 5 | 0 |
'''simple docstring'''
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
A_ = logging.get_logger(__name__)
class UpperCAmelCase :
'''simple docstring'''
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
'''simple docstring'''
lowerCamelCase_ = question_encoder
lowerCamelCase_ = generator
lowerCamelCase_ = self.question_encoder
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> List[str]:
'''simple docstring'''
if os.path.isfile(SCREAMING_SNAKE_CASE_ ):
raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = os.path.join(SCREAMING_SNAKE_CASE_ , 'question_encoder_tokenizer' )
lowerCamelCase_ = os.path.join(SCREAMING_SNAKE_CASE_ , 'generator_tokenizer' )
self.question_encoder.save_pretrained(SCREAMING_SNAKE_CASE_ )
self.generator.save_pretrained(SCREAMING_SNAKE_CASE_ )
@classmethod
def UpperCamelCase( cls , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict:
'''simple docstring'''
from ..auto.tokenization_auto import AutoTokenizer
lowerCamelCase_ = kwargs.pop('config' , SCREAMING_SNAKE_CASE_ )
if config is None:
lowerCamelCase_ = RagConfig.from_pretrained(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = AutoTokenizer.from_pretrained(
SCREAMING_SNAKE_CASE_ , config=config.question_encoder , subfolder='question_encoder_tokenizer' )
lowerCamelCase_ = AutoTokenizer.from_pretrained(
SCREAMING_SNAKE_CASE_ , config=config.generator , subfolder='generator_tokenizer' )
return cls(question_encoder=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ )
def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
'''simple docstring'''
return self.current_tokenizer(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict:
'''simple docstring'''
return self.generator.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict:
'''simple docstring'''
return self.generator.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> Dict:
'''simple docstring'''
lowerCamelCase_ = self.question_encoder
def UpperCamelCase( self ) -> Optional[Any]:
'''simple docstring'''
lowerCamelCase_ = self.generator
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "longest" , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , **SCREAMING_SNAKE_CASE_ , ) -> BatchEncoding:
'''simple docstring'''
warnings.warn(
'`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the '
'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` '
'context manager to prepare your targets. See the documentation of your specific tokenizer for more '
'details' , SCREAMING_SNAKE_CASE_ , )
if max_length is None:
lowerCamelCase_ = self.current_tokenizer.model_max_length
lowerCamelCase_ = self(
SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
lowerCamelCase_ = self.current_tokenizer.model_max_length
lowerCamelCase_ = self(
text_target=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
lowerCamelCase_ = labels['input_ids']
return model_inputs
| 42 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
ImageTextPipelineOutput,
UniDiffuserPipeline,
)
else:
from .modeling_text_decoder import UniDiffuserTextDecoder
from .modeling_uvit import UniDiffuserModel, UTransformeraDModel
from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
| 5 | 0 |
import os
import unittest
from transformers import FunnelTokenizer, FunnelTokenizerFast
from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _a ( UpperCamelCase__ , unittest.TestCase ):
_lowercase : str = FunnelTokenizer
_lowercase : Optional[int] = FunnelTokenizerFast
_lowercase : int = True
_lowercase : Union[str, Any] = True
def lowerCamelCase_ ( self: Any ) -> str:
"""simple docstring"""
super().setUp()
lowercase__ = [
'''<unk>''',
'''<cls>''',
'''<sep>''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def lowerCamelCase_ ( self: Union[str, Any] , **UpperCamelCase_: List[str] ) -> Tuple:
"""simple docstring"""
return FunnelTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ )
def lowerCamelCase_ ( self: List[str] , **UpperCamelCase_: List[str] ) -> str:
"""simple docstring"""
return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase_ )
def lowerCamelCase_ ( self: Any , UpperCamelCase_: Tuple ) -> List[Any]:
"""simple docstring"""
lowercase__ = '''UNwant\u00E9d,running'''
lowercase__ = '''unwanted, running'''
return input_text, output_text
def lowerCamelCase_ ( self: Dict ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.tokenizer_class(self.vocab_file )
lowercase__ = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(UpperCamelCase_ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [7, 4, 5, 10, 8, 9] )
def lowerCamelCase_ ( self: Optional[Any] ) -> Tuple:
"""simple docstring"""
lowercase__ = self.get_tokenizers(do_lower_case=UpperCamelCase_ )
for tokenizer in tokenizers:
lowercase__ = tokenizer('''UNwant\u00E9d,running''' )
lowercase__ = len(inputs['''input_ids'''] ) - 1
self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len )
lowercase__ = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' )
self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
| 43 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_lowercase = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = [
"""VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ViTMAEForPreTraining""",
"""ViTMAELayer""",
"""ViTMAEModel""",
"""ViTMAEPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = [
"""TFViTMAEForPreTraining""",
"""TFViTMAEModel""",
"""TFViTMAEPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_mae import (
VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMAEForPreTraining,
ViTMAELayer,
ViTMAEModel,
ViTMAEPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel
else:
import sys
_lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 5 | 0 |
'''simple docstring'''
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCAmelCase__ :
def __init__( self : List[Any],__A : str,__A : List[str]=1_3,__A : str=3_2,__A : Tuple=2,__A : Any=3,__A : Dict=1_6,__A : Dict=[3_2, 6_4, 1_2_8],__A : List[str]=[1, 2, 1],__A : str=[2, 2, 4],__A : Optional[int]=2,__A : Dict=2.0,__A : str=True,__A : Tuple=0.0,__A : int=0.0,__A : List[str]=0.1,__A : Any="gelu",__A : List[Any]=False,__A : Optional[Any]=True,__A : List[str]=0.02,__A : Tuple=1e-5,__A : Any=True,__A : Tuple=None,__A : Tuple=True,__A : Tuple=1_0,__A : List[Any]=8,__A : Optional[int]=["stage1", "stage2"],__A : int=[1, 2],):
_lowerCamelCase : List[Any] = parent
_lowerCamelCase : Optional[Any] = batch_size
_lowerCamelCase : Optional[int] = image_size
_lowerCamelCase : int = patch_size
_lowerCamelCase : Optional[Any] = num_channels
_lowerCamelCase : int = embed_dim
_lowerCamelCase : int = hidden_sizes
_lowerCamelCase : List[Any] = depths
_lowerCamelCase : Any = num_heads
_lowerCamelCase : List[str] = window_size
_lowerCamelCase : str = mlp_ratio
_lowerCamelCase : Any = qkv_bias
_lowerCamelCase : str = hidden_dropout_prob
_lowerCamelCase : str = attention_probs_dropout_prob
_lowerCamelCase : List[str] = drop_path_rate
_lowerCamelCase : str = hidden_act
_lowerCamelCase : Union[str, Any] = use_absolute_embeddings
_lowerCamelCase : List[Any] = patch_norm
_lowerCamelCase : Tuple = layer_norm_eps
_lowerCamelCase : str = initializer_range
_lowerCamelCase : Optional[int] = is_training
_lowerCamelCase : Tuple = scope
_lowerCamelCase : List[Any] = use_labels
_lowerCamelCase : int = type_sequence_label_size
_lowerCamelCase : Tuple = encoder_stride
_lowerCamelCase : Any = out_features
_lowerCamelCase : Any = out_indices
def lowerCamelCase_ ( self : Any ):
_lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCamelCase : List[Any] = None
if self.use_labels:
_lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size )
_lowerCamelCase : Optional[Any] = self.get_config()
return config, pixel_values, labels
def lowerCamelCase_ ( self : Union[str, Any] ):
return FocalNetConfig(
image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,embed_dim=self.embed_dim,hidden_sizes=self.hidden_sizes,depths=self.depths,num_heads=self.num_heads,window_size=self.window_size,mlp_ratio=self.mlp_ratio,qkv_bias=self.qkv_bias,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,drop_path_rate=self.drop_path_rate,hidden_act=self.hidden_act,use_absolute_embeddings=self.use_absolute_embeddings,path_norm=self.patch_norm,layer_norm_eps=self.layer_norm_eps,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,out_features=self.out_features,out_indices=self.out_indices,)
def lowerCamelCase_ ( self : int,__A : Union[str, Any],__A : Tuple,__A : List[Any] ):
_lowerCamelCase : Optional[Any] = FocalNetModel(config=__A )
model.to(__A )
model.eval()
_lowerCamelCase : Optional[Any] = model(__A )
_lowerCamelCase : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
_lowerCamelCase : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, expected_seq_len, expected_dim) )
def lowerCamelCase_ ( self : int,__A : Optional[int],__A : int,__A : Optional[int] ):
_lowerCamelCase : Any = FocalNetBackbone(config=__A )
model.to(__A )
model.eval()
_lowerCamelCase : List[str] = model(__A )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ),len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ),len(config.out_features ) )
self.parent.assertListEqual(model.channels,config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
_lowerCamelCase : List[str] = None
_lowerCamelCase : List[str] = FocalNetBackbone(config=__A )
model.to(__A )
model.eval()
_lowerCamelCase : str = model(__A )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ),1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ),1 )
self.parent.assertListEqual(model.channels,[config.hidden_sizes[-1]] )
def lowerCamelCase_ ( self : Optional[int],__A : Optional[int],__A : Dict,__A : Dict ):
_lowerCamelCase : List[Any] = FocalNetForMaskedImageModeling(config=__A )
model.to(__A )
model.eval()
_lowerCamelCase : List[str] = model(__A )
self.parent.assertEqual(
result.reconstruction.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
_lowerCamelCase : Dict = 1
_lowerCamelCase : Any = FocalNetForMaskedImageModeling(__A )
model.to(__A )
model.eval()
_lowerCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCamelCase : Optional[int] = model(__A )
self.parent.assertEqual(result.reconstruction.shape,(self.batch_size, 1, self.image_size, self.image_size) )
def lowerCamelCase_ ( self : List[Any],__A : Union[str, Any],__A : List[Any],__A : Optional[Any] ):
_lowerCamelCase : Union[str, Any] = self.type_sequence_label_size
_lowerCamelCase : Optional[Any] = FocalNetForImageClassification(__A )
model.to(__A )
model.eval()
_lowerCamelCase : Optional[int] = model(__A,labels=__A )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_lowerCamelCase : str = 1
_lowerCamelCase : str = FocalNetForImageClassification(__A )
model.to(__A )
model.eval()
_lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCamelCase : List[Any] = model(__A )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) )
def lowerCamelCase_ ( self : Optional[int] ):
_lowerCamelCase : int = self.prepare_config_and_inputs()
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs
_lowerCamelCase : Union[str, Any] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase__ ( A , A , unittest.TestCase ):
lowerCAmelCase_ = (
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
lowerCAmelCase_ = (
{'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification}
if is_torch_available()
else {}
)
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def lowerCamelCase_ ( self : int ):
_lowerCamelCase : Optional[int] = FocalNetModelTester(self )
_lowerCamelCase : int = ConfigTester(self,config_class=__A,embed_dim=3_7,has_text_modality=__A )
def lowerCamelCase_ ( self : Union[str, Any] ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCamelCase_ ( self : List[str] ):
return
def lowerCamelCase_ ( self : Any ):
_lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def lowerCamelCase_ ( self : int ):
_lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__A )
def lowerCamelCase_ ( self : Union[str, Any] ):
_lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__A )
def lowerCamelCase_ ( self : int ):
_lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__A )
@unittest.skip(reason="FocalNet does not use inputs_embeds" )
def lowerCamelCase_ ( self : Optional[int] ):
pass
@unittest.skip(reason="FocalNet does not use feedforward chunking" )
def lowerCamelCase_ ( self : List[str] ):
pass
def lowerCamelCase_ ( self : List[str] ):
_lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
_lowerCamelCase : str = model_class(__A )
self.assertIsInstance(model.get_input_embeddings(),(nn.Module) )
_lowerCamelCase : Any = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__A,nn.Linear ) )
def lowerCamelCase_ ( self : List[Any] ):
_lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
_lowerCamelCase : Union[str, Any] = model_class(__A )
_lowerCamelCase : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCamelCase : int = [*signature.parameters.keys()]
_lowerCamelCase : Union[str, Any] = ["pixel_values"]
self.assertListEqual(arg_names[:1],__A )
def lowerCamelCase_ ( self : Tuple,__A : Any,__A : List[Any],__A : str,__A : Any ):
_lowerCamelCase : Union[str, Any] = model_class(__A )
model.to(__A )
model.eval()
with torch.no_grad():
_lowerCamelCase : Optional[int] = model(**self._prepare_for_class(__A,__A ) )
_lowerCamelCase : Optional[int] = outputs.hidden_states
_lowerCamelCase : int = getattr(
self.model_tester,"expected_num_hidden_layers",len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__A ),__A )
# FocalNet has a different seq_length
_lowerCamelCase : Optional[Any] = (
config.patch_size
if isinstance(config.patch_size,collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ),[num_patches, self.model_tester.embed_dim],)
_lowerCamelCase : Any = outputs.reshaped_hidden_states
self.assertEqual(len(__A ),__A )
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = reshaped_hidden_states[0].shape
_lowerCamelCase : List[str] = (
reshaped_hidden_states[0].view(__A,__A,height * width ).permute(0,2,1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ),[num_patches, self.model_tester.embed_dim],)
def lowerCamelCase_ ( self : Union[str, Any] ):
_lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCamelCase : Optional[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size,collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
_lowerCamelCase : List[Any] = True
self.check_hidden_states_output(__A,__A,__A,__A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCamelCase : List[Any] = True
self.check_hidden_states_output(__A,__A,__A,__A )
def lowerCamelCase_ ( self : Optional[Any] ):
_lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCamelCase : Tuple = 3
_lowerCamelCase : Optional[int] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size,collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
_lowerCamelCase : Tuple = (
config.patch_size
if isinstance(config.patch_size,collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_lowerCamelCase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
_lowerCamelCase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
_lowerCamelCase : List[Any] = True
self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCamelCase : Optional[Any] = True
self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) )
@slow
def lowerCamelCase_ ( self : Tuple ):
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCamelCase : Dict = FocalNetModel.from_pretrained(__A )
self.assertIsNotNone(__A )
def lowerCamelCase_ ( self : Tuple ):
_lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCamelCase : Optional[Any] = _config_zero_init(__A )
for model_class in self.all_model_classes:
_lowerCamelCase : Any = model_class(config=__A )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),[0.0, 1.0],msg=f'Parameter {name} of model {model_class} seems not properly initialized',)
@require_vision
@require_torch
class UpperCAmelCase__ ( unittest.TestCase ):
@cached_property
def lowerCamelCase_ ( self : Union[str, Any] ):
# TODO update organization
return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None
@slow
def lowerCamelCase_ ( self : Union[str, Any] ):
_lowerCamelCase : Any = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(__A )
_lowerCamelCase : int = self.default_image_processor
_lowerCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
_lowerCamelCase : Dict = image_processor(images=__A,return_tensors="pt" ).to(__A )
# forward pass
with torch.no_grad():
_lowerCamelCase : Dict = model(**__A )
# verify the logits
_lowerCamelCase : List[Any] = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape,__A )
_lowerCamelCase : List[str] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(__A )
self.assertTrue(torch.allclose(outputs.logits[0, :3],__A,atol=1e-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item(),2_8_1 )
@require_torch
class UpperCAmelCase__ ( A , unittest.TestCase ):
lowerCAmelCase_ = (FocalNetBackbone,) if is_torch_available() else ()
lowerCAmelCase_ = FocalNetConfig
lowerCAmelCase_ = False
def lowerCamelCase_ ( self : int ):
_lowerCamelCase : int = FocalNetModelTester(self ) | 44 |
'''simple docstring'''
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
_lowercase = logging.get_logger(__name__)
@add_end_docstrings(_SCREAMING_SNAKE_CASE )
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , **_lowercase ):
"""simple docstring"""
super().__init__(**_lowercase )
if self.framework != "pt":
raise ValueError(F'The {self.__class__} is only available in PyTorch.' )
# No specific FOR_XXX available yet
def __call__( self , _lowercase , **_lowercase ):
"""simple docstring"""
return super().__call__(_lowercase , **_lowercase )
def _lowercase ( self , **_lowercase ):
"""simple docstring"""
_lowerCAmelCase = {}
if "candidate_labels" in kwargs:
_lowerCAmelCase = kwargs["""candidate_labels"""]
if "hypothesis_template" in kwargs:
_lowerCAmelCase = kwargs["""hypothesis_template"""]
return preprocess_params, {}, {}
def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a sound of {}." ):
"""simple docstring"""
if isinstance(_lowercase , _lowercase ):
if audio.startswith("""http://""" ) or audio.startswith("""https://""" ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
_lowerCAmelCase = requests.get(_lowercase ).content
else:
with open(_lowercase , """rb""" ) as f:
_lowerCAmelCase = f.read()
if isinstance(_lowercase , _lowercase ):
_lowerCAmelCase = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate )
if not isinstance(_lowercase , np.ndarray ):
raise ValueError("""We expect a numpy ndarray as input""" )
if len(audio.shape ) != 1:
raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" )
_lowerCAmelCase = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" )
_lowerCAmelCase = candidate_labels
_lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels]
_lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase )
_lowerCAmelCase = [text_inputs]
return inputs
def _lowercase ( self , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = model_inputs.pop("""candidate_labels""" )
_lowerCAmelCase = model_inputs.pop("""text_inputs""" )
if isinstance(text_inputs[0] , _lowercase ):
_lowerCAmelCase = text_inputs[0]
else:
# Batching case.
_lowerCAmelCase = text_inputs[0][0]
_lowerCAmelCase = self.model(**_lowercase , **_lowercase )
_lowerCAmelCase = {
"""candidate_labels""": candidate_labels,
"""logits""": outputs.logits_per_audio,
}
return model_outputs
def _lowercase ( self , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = model_outputs.pop("""candidate_labels""" )
_lowerCAmelCase = model_outputs["""logits"""][0]
if self.framework == "pt":
_lowerCAmelCase = logits.softmax(dim=0 )
_lowerCAmelCase = probs.tolist()
else:
raise ValueError("""`tf` framework not supported.""" )
_lowerCAmelCase = [
{"""score""": score, """label""": candidate_label}
for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] )
]
return result
| 5 | 0 |
# flake8: noqa
# Lint as: python3
from typing import Dict, List, Optional, Type
from .. import config
from ..utils import logging
from .formatting import (
ArrowFormatter,
CustomFormatter,
Formatter,
PandasFormatter,
PythonFormatter,
TensorFormatter,
format_table,
query_table,
)
from .np_formatter import NumpyFormatter
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {}
UpperCamelCase = {}
UpperCamelCase = {}
def A ( lowercase__ : type , lowercase__ : Optional[str] , lowercase__ : Optional[List[str]] = None , ) -> int:
UpperCamelCase__ :Union[str, Any] = aliases if aliases is not None else []
if format_type in _FORMAT_TYPES:
logger.warning(
f"""Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})""" )
UpperCamelCase__ :Union[str, Any] = formatter_cls
for alias in set(aliases + [format_type] ):
if alias in _FORMAT_TYPES_ALIASES:
logger.warning(
f"""Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})""" )
UpperCamelCase__ :List[Any] = format_type
def A ( lowercase__ : Exception , lowercase__ : Optional[str] , lowercase__ : Optional[List[str]] = None ) -> List[Any]:
UpperCamelCase__ :Any = aliases if aliases is not None else []
for alias in set(aliases + [format_type] ):
UpperCamelCase__ :Optional[int] = unavailable_error
# Here we define all the available formatting functions that can be used by `Dataset.set_format`
_register_formatter(PythonFormatter, None, aliases=["python"])
_register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"])
_register_formatter(NumpyFormatter, "numpy", aliases=["np"])
_register_formatter(PandasFormatter, "pandas", aliases=["pd"])
_register_formatter(CustomFormatter, "custom")
if config.TORCH_AVAILABLE:
from .torch_formatter import TorchFormatter
_register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"])
else:
UpperCamelCase = ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.")
_register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"])
if config.TF_AVAILABLE:
from .tf_formatter import TFFormatter
_register_formatter(TFFormatter, "tensorflow", aliases=["tf"])
else:
UpperCamelCase = ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.")
_register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"])
if config.JAX_AVAILABLE:
from .jax_formatter import JaxFormatter
_register_formatter(JaxFormatter, "jax", aliases=[])
else:
UpperCamelCase = ValueError("JAX needs to be installed to be able to return JAX arrays.")
_register_unavailable_formatter(_jax_error, "jax", aliases=[])
def A ( lowercase__ : Optional[str] ) -> Optional[str]:
if format_type in _FORMAT_TYPES_ALIASES:
return _FORMAT_TYPES_ALIASES[format_type]
else:
return format_type
def A ( lowercase__ : Optional[str] , **lowercase__ : Optional[Any] ) -> Formatter:
UpperCamelCase__ :Union[str, Any] = get_format_type_from_alias(lowercase__ )
if format_type in _FORMAT_TYPES:
return _FORMAT_TYPES[format_type](**lowercase__ )
if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE:
raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type]
else:
raise ValueError(
f"""Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'""" ) | 45 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
_lowercase = logging.get_logger(__name__)
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : List[str] = ['''input_values''', '''padding_mask''']
def __init__( self , _lowercase = 1 , _lowercase = 24_000 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , **_lowercase , ):
"""simple docstring"""
super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase )
_lowerCAmelCase = chunk_length_s
_lowerCAmelCase = overlap
@property
def _lowercase ( self ):
"""simple docstring"""
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def _lowercase ( self ):
"""simple docstring"""
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self , _lowercase , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ):
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of'
F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'
F' {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
if padding and truncation:
raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" )
elif padding is None:
# by default let's pad the inputs
_lowerCAmelCase = True
_lowerCAmelCase = bool(
isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) )
if is_batched:
_lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(_lowercase , np.ndarray ):
_lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa )
elif isinstance(_lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
_lowerCAmelCase = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
_lowerCAmelCase = [np.asarray(_lowercase ).T]
# verify inputs are valid
for idx, example in enumerate(_lowercase ):
if example.ndim > 2:
raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' )
_lowerCAmelCase = None
_lowerCAmelCase = BatchFeature({"""input_values""": raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
_lowerCAmelCase = min(array.shape[0] for array in raw_audio )
_lowerCAmelCase = int(np.floor(max_length / self.chunk_stride ) )
_lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
_lowerCAmelCase = max(array.shape[0] for array in raw_audio )
_lowerCAmelCase = int(np.ceil(max_length / self.chunk_stride ) )
_lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length
_lowerCAmelCase = """max_length"""
else:
_lowerCAmelCase = input_values
# normal padding on batch
if padded_inputs is None:
_lowerCAmelCase = self.pad(
_lowercase , max_length=_lowercase , truncation=_lowercase , padding=_lowercase , return_attention_mask=_lowercase , )
if padding:
_lowerCAmelCase = padded_inputs.pop("""attention_mask""" )
_lowerCAmelCase = []
for example in padded_inputs.pop("""input_values""" ):
if self.feature_size == 1:
_lowerCAmelCase = example[..., None]
input_values.append(example.T )
_lowerCAmelCase = input_values
if return_tensors is not None:
_lowerCAmelCase = padded_inputs.convert_to_tensors(_lowercase )
return padded_inputs
| 5 | 0 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase = 100 ) -> int:
'''simple docstring'''
_lowerCamelCase : List[str] = set()
_lowerCamelCase : Optional[Any] = 0
_lowerCamelCase : Optional[int] = n + 1 # maximum limit
for a in range(2 , _lowerCamelCase ):
for b in range(2 , _lowerCamelCase ):
_lowerCamelCase : List[str] = a**b # calculates the current power
collect_powers.add(_lowerCamelCase ) # adds the result to the set
return len(_lowerCamelCase )
if __name__ == "__main__":
print('''Number of terms ''', solution(int(str(input()).strip()))) | 46 |
'''simple docstring'''
_lowercase = """
# Transformers 설치 방법
! pip install transformers datasets
# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
_lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
_lowercase = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 5 | 0 |
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 47 |
'''simple docstring'''
import functools
def A (__lowerCamelCase :list[int] , __lowerCamelCase :list[int] ):
# Validation
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for day in days ):
raise ValueError("""The parameter days should be a list of integers""" )
if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for cost in costs ):
raise ValueError("""The parameter costs should be a list of three integers""" )
if len(__lowerCamelCase ) == 0:
return 0
if min(__lowerCamelCase ) <= 0:
raise ValueError("""All days elements should be greater than 0""" )
if max(__lowerCamelCase ) >= 366:
raise ValueError("""All days elements should be less than 366""" )
_lowerCAmelCase = set(__lowerCamelCase )
@functools.cache
def dynamic_programming(__lowerCamelCase :int ) -> int:
if index > 365:
return 0
if index not in days_set:
return dynamic_programming(index + 1 )
return min(
costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , )
return dynamic_programming(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 0 |
'''simple docstring'''
def A ( UpperCamelCase_ : int ) -> str:
'''simple docstring'''
lowerCAmelCase__ = int(UpperCamelCase_ )
if decimal in (0, 1): # Exit cases for the recursion
return str(UpperCamelCase_ )
lowerCAmelCase__ ,lowerCAmelCase__ = divmod(UpperCamelCase_ , 2 )
return binary_recursive(UpperCamelCase_ ) + str(UpperCamelCase_ )
def A ( UpperCamelCase_ : str ) -> str:
'''simple docstring'''
lowerCAmelCase__ = str(UpperCamelCase_ ).strip()
if not number:
raise ValueError("No input value was provided" )
lowerCAmelCase__ = "-" if number.startswith("-" ) else ""
lowerCAmelCase__ = number.lstrip("-" )
if not number.isnumeric():
raise ValueError("Input value is not an integer" )
return F"""{negative}0b{binary_recursive(int(UpperCamelCase_ ) )}"""
if __name__ == "__main__":
from doctest import testmod
testmod()
| 48 |
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def A (__lowerCamelCase :List[Any] ):
_lowerCAmelCase = 384
if "tiny" in model_name:
_lowerCAmelCase = [3, 3, 9, 3]
_lowerCAmelCase = [96, 192, 384, 768]
if "small" in model_name:
_lowerCAmelCase = [3, 3, 27, 3]
_lowerCAmelCase = [96, 192, 384, 768]
if "base" in model_name:
_lowerCAmelCase = [3, 3, 27, 3]
_lowerCAmelCase = [128, 256, 512, 1024]
_lowerCAmelCase = 512
if "large" in model_name:
_lowerCAmelCase = [3, 3, 27, 3]
_lowerCAmelCase = [192, 384, 768, 1536]
_lowerCAmelCase = 768
if "xlarge" in model_name:
_lowerCAmelCase = [3, 3, 27, 3]
_lowerCAmelCase = [256, 512, 1024, 2048]
_lowerCAmelCase = 1024
# set label information
_lowerCAmelCase = 150
_lowerCAmelCase = """huggingface/label-files"""
_lowerCAmelCase = """ade20k-id2label.json"""
_lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) )
_lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
_lowerCAmelCase = {v: k for k, v in idalabel.items()}
_lowerCAmelCase = ConvNextConfig(
depths=__lowerCamelCase , hidden_sizes=__lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] )
_lowerCAmelCase = UperNetConfig(
backbone_config=__lowerCamelCase , auxiliary_in_channels=__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , )
return config
def A (__lowerCamelCase :Optional[Any] ):
_lowerCAmelCase = []
# fmt: off
# stem
rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") )
rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") )
rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") )
rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') )
rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') )
if i > 0:
rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') )
rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') )
rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') )
rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') )
rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') )
rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') )
# decode head
rename_keys.extend(
[
("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""),
("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""),
("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""),
("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""),
] )
# fmt: on
return rename_keys
def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict , __lowerCamelCase :Tuple ):
_lowerCAmelCase = dct.pop(__lowerCamelCase )
_lowerCAmelCase = val
def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ):
_lowerCAmelCase = {
"""upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""",
"""upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""",
"""upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""",
"""upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""",
"""upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""",
}
_lowerCAmelCase = model_name_to_url[model_name]
_lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""state_dict"""]
_lowerCAmelCase = get_upernet_config(__lowerCamelCase )
_lowerCAmelCase = UperNetForSemanticSegmentation(__lowerCamelCase )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
_lowerCAmelCase = state_dict.pop(__lowerCamelCase )
if "bn" in key:
_lowerCAmelCase = key.replace("""bn""" , """batch_norm""" )
_lowerCAmelCase = val
# rename keys
_lowerCAmelCase = create_rename_keys(__lowerCamelCase )
for src, dest in rename_keys:
rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
model.load_state_dict(__lowerCamelCase )
# verify on image
_lowerCAmelCase = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"""
_lowerCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" )
_lowerCAmelCase = SegformerImageProcessor()
_lowerCAmelCase = processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values
with torch.no_grad():
_lowerCAmelCase = model(__lowerCamelCase )
if model_name == "upernet-convnext-tiny":
_lowerCAmelCase = torch.tensor(
[[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] )
elif model_name == "upernet-convnext-small":
_lowerCAmelCase = torch.tensor(
[[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] )
elif model_name == "upernet-convnext-base":
_lowerCAmelCase = torch.tensor(
[[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] )
elif model_name == "upernet-convnext-large":
_lowerCAmelCase = torch.tensor(
[[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] )
elif model_name == "upernet-convnext-xlarge":
_lowerCAmelCase = torch.tensor(
[[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] )
print("""Logits:""" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(__lowerCamelCase )
print(f'Saving processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(__lowerCamelCase )
if push_to_hub:
print(f'Pushing model and processor for {model_name} to hub' )
model.push_to_hub(f'openmmlab/{model_name}' )
processor.push_to_hub(f'openmmlab/{model_name}' )
if __name__ == "__main__":
_lowercase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""upernet-convnext-tiny""",
type=str,
choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]],
help="""Name of the ConvNext UperNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
_lowercase = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 5 | 0 |
"""simple docstring"""
from __future__ import annotations
def lowercase__ ( snake_case_ :list , snake_case_ :int ):
# Checks if the entire collection has been sorted
if len(snake_case_ ) <= 1 or n <= 1:
return
insert_next(snake_case_ , n - 1 )
rec_insertion_sort(snake_case_ , n - 1 )
def lowercase__ ( snake_case_ :list , snake_case_ :int ):
# Checks order between adjacent elements
if index >= len(snake_case_ ) or collection[index - 1] <= collection[index]:
return
# Swaps adjacent elements since they are not in ascending order
__UpperCAmelCase , __UpperCAmelCase = (
collection[index],
collection[index - 1],
)
insert_next(snake_case_ , index + 1 )
if __name__ == "__main__":
_lowercase : Any = input('Enter integers separated by spaces: ')
_lowercase : list[int] = [int(num) for num in numbers.split()]
rec_insertion_sort(number_list, len(number_list))
print(number_list)
| 49 |
'''simple docstring'''
from itertools import product
def A (__lowerCamelCase :int , __lowerCamelCase :int ):
_lowerCAmelCase = sides_number
_lowerCAmelCase = max_face_number * dice_number
_lowerCAmelCase = [0] * (max_total + 1)
_lowerCAmelCase = 1
_lowerCAmelCase = range(__lowerCamelCase , max_face_number + 1 )
for dice_numbers in product(__lowerCamelCase , repeat=__lowerCamelCase ):
_lowerCAmelCase = sum(__lowerCamelCase )
totals_frequencies[total] += 1
return totals_frequencies
def A ():
_lowerCAmelCase = total_frequency_distribution(
sides_number=4 , dice_number=9 )
_lowerCAmelCase = total_frequency_distribution(
sides_number=6 , dice_number=6 )
_lowerCAmelCase = 0
_lowerCAmelCase = 9
_lowerCAmelCase = 4 * 9
_lowerCAmelCase = 6
for peter_total in range(__lowerCamelCase , max_peter_total + 1 ):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total] )
_lowerCAmelCase = (4**9) * (6**6)
_lowerCAmelCase = peter_wins_count / total_games_number
_lowerCAmelCase = round(__lowerCamelCase , ndigits=7 )
return rounded_peter_win_probability
if __name__ == "__main__":
print(F"""{solution() = }""")
| 5 | 0 |
'''simple docstring'''
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
UpperCamelCase : int = {
'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'bert': (BertConfig, BertForMaskedLM, BertTokenizer),
'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def A__ ( __lowerCAmelCase : str ):
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] ):
if args.student_type == "roberta":
lowerCamelCase__ = False
elif args.student_type == "gpt2":
lowerCamelCase__ = False
def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple ):
if args.student_type == "roberta":
lowerCamelCase__ = False
def A__ ( ):
lowerCamelCase__ = argparse.ArgumentParser(description="""Training""" )
parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" )
parser.add_argument(
"""--dump_path""" , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""The output directory (log, checkpoints, parameters, etc.)""" )
parser.add_argument(
"""--data_file""" , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , )
parser.add_argument(
"""--student_type""" , type=__lowerCAmelCase , choices=["""distilbert""", """roberta""", """gpt2"""] , required=__lowerCAmelCase , help="""The student type (DistilBERT, RoBERTa).""" , )
parser.add_argument("""--student_config""" , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""Path to the student configuration.""" )
parser.add_argument(
"""--student_pretrained_weights""" , default=__lowerCAmelCase , type=__lowerCAmelCase , help="""Load student initialization checkpoint.""" )
parser.add_argument(
"""--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=__lowerCAmelCase , help="""Teacher type (BERT, RoBERTa).""" )
parser.add_argument("""--teacher_name""" , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""The teacher model.""" )
parser.add_argument("""--temperature""" , default=2.0 , type=__lowerCAmelCase , help="""Temperature for the softmax temperature.""" )
parser.add_argument(
"""--alpha_ce""" , default=0.5 , type=__lowerCAmelCase , help="""Linear weight for the distillation loss. Must be >=0.""" )
parser.add_argument(
"""--alpha_mlm""" , default=0.0 , type=__lowerCAmelCase , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , )
parser.add_argument("""--alpha_clm""" , default=0.5 , type=__lowerCAmelCase , help="""Linear weight for the CLM loss. Must be >=0.""" )
parser.add_argument("""--alpha_mse""" , default=0.0 , type=__lowerCAmelCase , help="""Linear weight of the MSE loss. Must be >=0.""" )
parser.add_argument(
"""--alpha_cos""" , default=0.0 , type=__lowerCAmelCase , help="""Linear weight of the cosine embedding loss. Must be >=0.""" )
parser.add_argument(
"""--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" )
parser.add_argument(
"""--mlm_mask_prop""" , default=0.15 , type=__lowerCAmelCase , help="""Proportion of tokens for which we need to make a prediction.""" , )
parser.add_argument("""--word_mask""" , default=0.8 , type=__lowerCAmelCase , help="""Proportion of tokens to mask out.""" )
parser.add_argument("""--word_keep""" , default=0.1 , type=__lowerCAmelCase , help="""Proportion of tokens to keep.""" )
parser.add_argument("""--word_rand""" , default=0.1 , type=__lowerCAmelCase , help="""Proportion of tokens to randomly replace.""" )
parser.add_argument(
"""--mlm_smoothing""" , default=0.7 , type=__lowerCAmelCase , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , )
parser.add_argument("""--token_counts""" , type=__lowerCAmelCase , help="""The token counts in the data_file for MLM.""" )
parser.add_argument(
"""--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , )
parser.add_argument(
"""--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , )
parser.add_argument(
"""--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , )
parser.add_argument("""--n_epoch""" , type=__lowerCAmelCase , default=3 , help="""Number of pass on the whole dataset.""" )
parser.add_argument("""--batch_size""" , type=__lowerCAmelCase , default=5 , help="""Batch size (for each process).""" )
parser.add_argument(
"""--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , )
parser.add_argument(
"""--gradient_accumulation_steps""" , type=__lowerCAmelCase , default=50 , help="""Gradient accumulation for larger training batches.""" , )
parser.add_argument("""--warmup_prop""" , default=0.05 , type=__lowerCAmelCase , help="""Linear warmup proportion.""" )
parser.add_argument("""--weight_decay""" , default=0.0 , type=__lowerCAmelCase , help="""Weight decay if we apply some.""" )
parser.add_argument("""--learning_rate""" , default=5e-4 , type=__lowerCAmelCase , help="""The initial learning rate for Adam.""" )
parser.add_argument("""--adam_epsilon""" , default=1e-6 , type=__lowerCAmelCase , help="""Epsilon for Adam optimizer.""" )
parser.add_argument("""--max_grad_norm""" , default=5.0 , type=__lowerCAmelCase , help="""Max gradient norm.""" )
parser.add_argument("""--initializer_range""" , default=0.02 , type=__lowerCAmelCase , help="""Random initialization range.""" )
parser.add_argument(
"""--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , )
parser.add_argument(
"""--fp16_opt_level""" , type=__lowerCAmelCase , default="""O1""" , help=(
"""For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."""
"""See details at https://nvidia.github.io/apex/amp.html"""
) , )
parser.add_argument("""--n_gpu""" , type=__lowerCAmelCase , default=1 , help="""Number of GPUs in the node.""" )
parser.add_argument("""--local_rank""" , type=__lowerCAmelCase , default=-1 , help="""Distributed training - Local rank""" )
parser.add_argument("""--seed""" , type=__lowerCAmelCase , default=56 , help="""Random seed""" )
parser.add_argument("""--log_interval""" , type=__lowerCAmelCase , default=500 , help="""Tensorboard logging interval.""" )
parser.add_argument("""--checkpoint_interval""" , type=__lowerCAmelCase , default=4000 , help="""Checkpoint interval.""" )
lowerCamelCase__ = parser.parse_args()
sanity_checks(__lowerCAmelCase )
# ARGS #
init_gpu_params(__lowerCAmelCase )
set_seed(__lowerCAmelCase )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite'''
""" itUse `--force` if you want to overwrite it""" )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' )
# SAVE PARAMS #
logger.info(F'''Param: {args}''' )
with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f:
json.dump(vars(__lowerCAmelCase ) , __lowerCAmelCase , indent=4 )
git_log(args.dump_path )
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = MODEL_CLASSES[args.student_type]
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
lowerCamelCase__ = teacher_tokenizer_class.from_pretrained(args.teacher_name )
lowerCamelCase__ = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
lowerCamelCase__ = tokenizer.all_special_tokens.index(__lowerCAmelCase )
lowerCamelCase__ = tokenizer.all_special_ids[idx]
logger.info(F'''Special tokens {special_tok_ids}''' )
lowerCamelCase__ = special_tok_ids
lowerCamelCase__ = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(F'''Loading data from {args.data_file}''' )
with open(args.data_file , """rb""" ) as fp:
lowerCamelCase__ = pickle.load(__lowerCAmelCase )
if args.mlm:
logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' )
with open(args.token_counts , """rb""" ) as fp:
lowerCamelCase__ = pickle.load(__lowerCAmelCase )
lowerCamelCase__ = np.maximum(__lowerCAmelCase , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
lowerCamelCase__ = 0.0 # do not predict special tokens
lowerCamelCase__ = torch.from_numpy(__lowerCAmelCase )
else:
lowerCamelCase__ = None
lowerCamelCase__ = LmSeqsDataset(params=__lowerCAmelCase , data=__lowerCAmelCase )
logger.info("""Data loader created.""" )
# STUDENT #
logger.info(F'''Loading student config from {args.student_config}''' )
lowerCamelCase__ = student_config_class.from_pretrained(args.student_config )
lowerCamelCase__ = True
if args.student_pretrained_weights is not None:
logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' )
lowerCamelCase__ = student_model_class.from_pretrained(args.student_pretrained_weights , config=__lowerCAmelCase )
else:
lowerCamelCase__ = student_model_class(__lowerCAmelCase )
if args.n_gpu > 0:
student.to(F'''cuda:{args.local_rank}''' )
logger.info("""Student loaded.""" )
# TEACHER #
lowerCamelCase__ = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__lowerCAmelCase )
if args.n_gpu > 0:
teacher.to(F'''cuda:{args.local_rank}''' )
logger.info(F'''Teacher loaded from {args.teacher_name}.''' )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(__lowerCAmelCase , __lowerCAmelCase )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(__lowerCAmelCase , __lowerCAmelCase )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
lowerCamelCase__ = Distiller(
params=__lowerCAmelCase , dataset=__lowerCAmelCase , token_probs=__lowerCAmelCase , student=__lowerCAmelCase , teacher=__lowerCAmelCase )
distiller.train()
logger.info("""Let's go get some drinks.""" )
if __name__ == "__main__":
main()
| 50 |
'''simple docstring'''
from manim import *
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = Rectangle(height=0.5 , width=0.5 )
_lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_lowerCAmelCase = [mem.copy() for i in range(6 )]
_lowerCAmelCase = [mem.copy() for i in range(6 )]
_lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = Text("""CPU""" , font_size=24 )
_lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_lowercase )
_lowerCAmelCase = [mem.copy() for i in range(1 )]
_lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = Text("""GPU""" , font_size=24 )
_lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase )
gpu.align_to(_lowercase , _lowercase )
gpu.set_x(gpu.get_x() - 1 )
self.add(_lowercase )
_lowerCAmelCase = [mem.copy() for i in range(6 )]
_lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = Text("""Model""" , font_size=24 )
_lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase )
model.move_to([3, -1.0, 0] )
self.play(
Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , )
_lowerCAmelCase = MarkupText(
F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , )
_lowerCAmelCase = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_lowerCAmelCase = MarkupText(
F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
step_a.move_to([2, 2, 0] )
self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) )
self.add(_lowercase )
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
for i, rect in enumerate(_lowercase ):
_lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 )
cpu_target.move_to(_lowercase )
cpu_target.generate_target()
_lowerCAmelCase = 0.46 / 4
_lowerCAmelCase = 0.46 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase )
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 )
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 )
else:
cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 )
cpu_targs.append(_lowercase )
first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) )
second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) )
self.play(*_lowercase )
self.play(*_lowercase )
self.wait()
| 5 | 0 |
'''simple docstring'''
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def __snake_case ( SCREAMING_SNAKE_CASE_ : int ) -> int:
"""simple docstring"""
UpperCAmelCase = prime_factors(SCREAMING_SNAKE_CASE_ )
if is_square_free(SCREAMING_SNAKE_CASE_ ):
return -1 if len(SCREAMING_SNAKE_CASE_ ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 51 |
'''simple docstring'''
import builtins
import sys
from ...utils.imports import _is_package_available
from . import cursor, input
from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor
from .keymap import KEYMAP
_lowercase = False
try:
_lowercase = _is_package_available("""google.colab""")
except ModuleNotFoundError:
pass
@input.register
class UpperCAmelCase_ :
'''simple docstring'''
def __init__( self , _lowercase = None , _lowercase = [] ):
"""simple docstring"""
_lowerCAmelCase = 0
_lowerCAmelCase = choices
_lowerCAmelCase = prompt
if sys.platform == "win32":
_lowerCAmelCase = """*"""
else:
_lowerCAmelCase = """➔ """
def _lowercase ( self , _lowercase , _lowercase = "" ):
"""simple docstring"""
if sys.platform != "win32":
writeColor(self.choices[index] , 32 , _lowercase )
else:
forceWrite(self.choices[index] , _lowercase )
def _lowercase ( self , _lowercase ):
"""simple docstring"""
if index == self.position:
forceWrite(F' {self.arrow_char} ' )
self.write_choice(_lowercase )
else:
forceWrite(F' {self.choices[index]}' )
reset_cursor()
def _lowercase ( self , _lowercase , _lowercase = 1 ):
"""simple docstring"""
_lowerCAmelCase = self.position
if direction == Direction.DOWN:
if self.position + 1 >= len(self.choices ):
return
self.position += num_spaces
else:
if self.position - 1 < 0:
return
self.position -= num_spaces
clear_line()
self.print_choice(_lowercase )
move_cursor(_lowercase , direction.name )
self.print_choice(self.position )
@input.mark(KEYMAP["""up"""] )
def _lowercase ( self ):
"""simple docstring"""
self.move_direction(Direction.UP )
@input.mark(KEYMAP["""down"""] )
def _lowercase ( self ):
"""simple docstring"""
self.move_direction(Direction.DOWN )
@input.mark(KEYMAP["""newline"""] )
def _lowercase ( self ):
"""simple docstring"""
move_cursor(len(self.choices ) - self.position , """DOWN""" )
return self.position
@input.mark(KEYMAP["""interrupt"""] )
def _lowercase ( self ):
"""simple docstring"""
move_cursor(len(self.choices ) - self.position , """DOWN""" )
raise KeyboardInterrupt
@input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = int(chr(self.current_selection ) )
_lowerCAmelCase = index - self.position
if index == self.position:
return
if index < len(self.choices ):
if self.position > index:
self.move_direction(Direction.UP , -movement )
elif self.position < index:
self.move_direction(Direction.DOWN , _lowercase )
else:
return
else:
return
def _lowercase ( self , _lowercase = 0 ):
"""simple docstring"""
if self.prompt:
linebreak()
forceWrite(self.prompt , """\n""" )
if in_colab:
forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" )
else:
forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" )
_lowerCAmelCase = default_choice
for i in range(len(self.choices ) ):
self.print_choice(_lowercase )
forceWrite("""\n""" )
move_cursor(len(self.choices ) - self.position , """UP""" )
with cursor.hide():
while True:
if in_colab:
try:
_lowerCAmelCase = int(builtins.input() )
except ValueError:
_lowerCAmelCase = default_choice
else:
_lowerCAmelCase = self.handle_input()
if choice is not None:
reset_cursor()
for _ in range(len(self.choices ) + 1 ):
move_cursor(1 , """UP""" )
clear_line()
self.write_choice(_lowercase , """\n""" )
return choice
| 5 | 0 |
"""simple docstring"""
import numpy as np
from transformers import Pipeline
def __A ( a_ :int) -> str:
__a : Any = np.max(a_ , axis=-1 , keepdims=a_)
__a : Optional[int] = np.exp(outputs - maxes)
return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=a_)
class __lowercase ( _UpperCamelCase ):
'''simple docstring'''
def _lowerCamelCase ( self , **_UpperCAmelCase ):
__a : int = {}
if "second_text" in kwargs:
__a : Optional[Any] = kwargs['''second_text''']
return preprocess_kwargs, {}, {}
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None ):
return self.tokenizer(_UpperCAmelCase , text_pair=_UpperCAmelCase , return_tensors=self.framework )
def _lowerCamelCase ( self , _UpperCAmelCase ):
return self.model(**_UpperCAmelCase )
def _lowerCamelCase ( self , _UpperCAmelCase ):
__a : List[str] = model_outputs.logits[0].numpy()
__a : Dict = softmax(_UpperCAmelCase )
__a : str = np.argmax(_UpperCAmelCase )
__a : Optional[Any] = self.model.config.idalabel[best_class]
__a : Optional[Any] = probabilities[best_class].item()
__a : Dict = logits.tolist()
return {"label": label, "score": score, "logits": logits} | 52 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
_lowercase = logging.get_logger(__name__)
_lowercase = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""adapter_layer""": """encoder.layers.*.adapter_layer""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
"""pooling_layer.linear""": """projector""",
"""pooling_layer.projection""": """classifier""",
}
_lowercase = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""projector""",
"""classifier""",
]
def A (__lowerCamelCase :Optional[int] ):
_lowerCAmelCase = {}
with open(__lowerCamelCase , """r""" ) as file:
for line_number, line in enumerate(__lowerCamelCase ):
_lowerCAmelCase = line.strip()
if line:
_lowerCAmelCase = line.split()
_lowerCAmelCase = line_number
_lowerCAmelCase = words[0]
_lowerCAmelCase = value
return result
def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any] , __lowerCamelCase :List[str] ):
for attribute in key.split(""".""" ):
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__lowerCamelCase ):
_lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]]
_lowerCAmelCase = """param"""
if weight_type is not None and weight_type != "param":
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape
elif weight_type is not None and weight_type == "param":
_lowerCAmelCase = hf_pointer
for attribute in hf_param_name.split(""".""" ):
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = shape_pointer.shape
# let's reduce dimension
_lowerCAmelCase = value[0]
else:
_lowerCAmelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
_lowerCAmelCase = value
elif weight_type == "weight_g":
_lowerCAmelCase = value
elif weight_type == "weight_v":
_lowerCAmelCase = value
elif weight_type == "bias":
_lowerCAmelCase = value
elif weight_type == "param":
for attribute in hf_param_name.split(""".""" ):
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = value
else:
_lowerCAmelCase = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] , __lowerCamelCase :int ):
_lowerCAmelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__lowerCamelCase ):
_lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]]
_lowerCAmelCase = """param"""
if weight_type is not None and weight_type != "param":
_lowerCAmelCase = """.""".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
_lowerCAmelCase = """.""".join([key, hf_param_name] )
else:
_lowerCAmelCase = key
_lowerCAmelCase = value if """lm_head""" in full_key else value[0]
_lowercase = {
"""W_a""": """linear_1.weight""",
"""W_b""": """linear_2.weight""",
"""b_a""": """linear_1.bias""",
"""b_b""": """linear_2.bias""",
"""ln_W""": """norm.weight""",
"""ln_b""": """norm.bias""",
}
def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :List[str]=None , __lowerCamelCase :List[Any]=None ):
_lowerCAmelCase = False
for key, mapped_key in MAPPING.items():
_lowerCAmelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
_lowerCAmelCase = True
if "*" in mapped_key:
_lowerCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2]
_lowerCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase )
if "weight_g" in name:
_lowerCAmelCase = """weight_g"""
elif "weight_v" in name:
_lowerCAmelCase = """weight_v"""
elif "bias" in name:
_lowerCAmelCase = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
_lowerCAmelCase = """weight"""
else:
_lowerCAmelCase = None
if hf_dict is not None:
rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
else:
set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
return is_used
return is_used
def A (__lowerCamelCase :Any , __lowerCamelCase :Dict , __lowerCamelCase :Dict ):
_lowerCAmelCase = []
_lowerCAmelCase = fairseq_model.state_dict()
_lowerCAmelCase = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
_lowerCAmelCase = False
if "conv_layers" in name:
load_conv_layer(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , )
_lowerCAmelCase = True
else:
_lowerCAmelCase = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if not is_used:
unused_weights.append(__lowerCamelCase )
logger.warning(f'Unused weights: {unused_weights}' )
def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any , __lowerCamelCase :List[Any] , __lowerCamelCase :List[Any] ):
_lowerCAmelCase = full_name.split("""conv_layers.""" )[-1]
_lowerCAmelCase = name.split(""".""" )
_lowerCAmelCase = int(items[0] )
_lowerCAmelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
_lowerCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
_lowerCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
_lowerCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
_lowerCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(__lowerCamelCase )
@torch.no_grad()
def A (__lowerCamelCase :List[str] , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any]=None , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :str=True , __lowerCamelCase :str=False ):
if config_path is not None:
_lowerCAmelCase = WavaVecaConfig.from_pretrained(__lowerCamelCase )
else:
_lowerCAmelCase = WavaVecaConfig()
if is_seq_class:
_lowerCAmelCase = read_txt_into_dict(__lowerCamelCase )
_lowerCAmelCase = idalabel
_lowerCAmelCase = WavaVecaForSequenceClassification(__lowerCamelCase )
_lowerCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
feature_extractor.save_pretrained(__lowerCamelCase )
elif is_finetuned:
if dict_path:
_lowerCAmelCase = Dictionary.load(__lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_lowerCAmelCase = target_dict.pad_index
_lowerCAmelCase = target_dict.bos_index
_lowerCAmelCase = target_dict.eos_index
_lowerCAmelCase = len(target_dict.symbols )
_lowerCAmelCase = os.path.join(__lowerCamelCase , """vocab.json""" )
if not os.path.isdir(__lowerCamelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) )
return
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
_lowerCAmelCase = target_dict.indices
# fairseq has the <pad> and <s> switched
_lowerCAmelCase = 0
_lowerCAmelCase = 1
with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = WavaVecaCTCTokenizer(
__lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , )
_lowerCAmelCase = True if config.feat_extract_norm == """layer""" else False
_lowerCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
_lowerCAmelCase = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase )
processor.save_pretrained(__lowerCamelCase )
_lowerCAmelCase = WavaVecaForCTC(__lowerCamelCase )
else:
_lowerCAmelCase = WavaVecaForPreTraining(__lowerCamelCase )
if is_finetuned or is_seq_class:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
_lowerCAmelCase = argparse.Namespace(task="""audio_pretraining""" )
_lowerCAmelCase = fairseq.tasks.setup_task(__lowerCamelCase )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase )
_lowerCAmelCase = model[0].eval()
recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned )
hf_wavavec.save_pretrained(__lowerCamelCase )
if __name__ == "__main__":
_lowercase = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
parser.add_argument(
"""--is_seq_class""",
action="""store_true""",
help="""Whether the model to convert is a fine-tuned sequence classification model or not""",
)
_lowercase = parser.parse_args()
_lowercase = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 5 | 0 |
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
_snake_case : Dict = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n'
_snake_case : Tuple = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n'
_snake_case : List[str] = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _UpperCAmelCase ( datasets.Metric ):
"""simple docstring"""
def lowercase ( self : Optional[Any] ) -> Union[str, Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Value('string' , id='sequence' ),
} ) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[
'https://arxiv.org/abs/2102.01454',
'https://github.com/krishnap25/mauve',
] , )
def lowercase ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Any="auto" , lowerCAmelCase_ : List[Any]=-1 , lowerCAmelCase_ : int=0.9 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Union[str, Any]=5_0_0 , lowerCAmelCase_ : Union[str, Any]="gpt2-large" , lowerCAmelCase_ : Dict=-1 , lowerCAmelCase_ : str=1_0_2_4 , lowerCAmelCase_ : int=2_5 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : str=2_5 , ) -> Optional[Any]:
__lowerCAmelCase = compute_mauve(
p_text=lowerCAmelCase_ , q_text=lowerCAmelCase_ , p_features=lowerCAmelCase_ , q_features=lowerCAmelCase_ , p_tokens=lowerCAmelCase_ , q_tokens=lowerCAmelCase_ , num_buckets=lowerCAmelCase_ , pca_max_data=lowerCAmelCase_ , kmeans_explained_var=lowerCAmelCase_ , kmeans_num_redo=lowerCAmelCase_ , kmeans_max_iter=lowerCAmelCase_ , featurize_model_name=lowerCAmelCase_ , device_id=lowerCAmelCase_ , max_text_length=lowerCAmelCase_ , divergence_curve_discretization_size=lowerCAmelCase_ , mauve_scaling_factor=lowerCAmelCase_ , verbose=lowerCAmelCase_ , seed=lowerCAmelCase_ , )
return out
| 53 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase = logging.get_logger(__name__)
_lowercase = {
"""edbeeching/decision-transformer-gym-hopper-medium""": (
"""https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json"""
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : List[str] = '''decision_transformer'''
_lowercase : Optional[Any] = ['''past_key_values''']
_lowercase : str = {
'''max_position_embeddings''': '''n_positions''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self , _lowercase=17 , _lowercase=4 , _lowercase=128 , _lowercase=4_096 , _lowercase=True , _lowercase=1 , _lowercase=1_024 , _lowercase=3 , _lowercase=1 , _lowercase=None , _lowercase="relu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=False , _lowercase=False , **_lowercase , ):
"""simple docstring"""
_lowerCAmelCase = state_dim
_lowerCAmelCase = act_dim
_lowerCAmelCase = hidden_size
_lowerCAmelCase = max_ep_len
_lowerCAmelCase = action_tanh
_lowerCAmelCase = vocab_size
_lowerCAmelCase = n_positions
_lowerCAmelCase = n_layer
_lowerCAmelCase = n_head
_lowerCAmelCase = n_inner
_lowerCAmelCase = activation_function
_lowerCAmelCase = resid_pdrop
_lowerCAmelCase = embd_pdrop
_lowerCAmelCase = attn_pdrop
_lowerCAmelCase = layer_norm_epsilon
_lowerCAmelCase = initializer_range
_lowerCAmelCase = scale_attn_weights
_lowerCAmelCase = use_cache
_lowerCAmelCase = scale_attn_by_inverse_layer_idx
_lowerCAmelCase = reorder_and_upcast_attn
_lowerCAmelCase = bos_token_id
_lowerCAmelCase = eos_token_id
super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
| 5 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class A ( unittest.TestCase ):
def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowerCAmelCase__ ( self: Any ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =1
UpperCAmelCase_ =3
UpperCAmelCase_ =(32, 32)
UpperCAmelCase_ =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase )
return image
@property
def lowerCAmelCase__ ( self: List[str] ) -> Dict:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ =UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
return model
@property
def lowerCAmelCase__ ( self: Optional[int] ) -> int:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ =AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
return model
@property
def lowerCAmelCase__ ( self: List[str] ) -> List[str]:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ =RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , )
return RobertaSeriesModelWithTransformation(_lowerCAmelCase )
@property
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
def extract(*_lowerCAmelCase: List[Any] , **_lowerCAmelCase: int ):
class A :
def __init__( self: List[str] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =torch.ones([0] )
def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: str ) -> Any:
'''simple docstring'''
self.pixel_values.to(_lowerCAmelCase )
return self
return Out()
return extract
def lowerCAmelCase__ ( self: Dict ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ ="cpu" # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase_ =self.dummy_cond_unet
UpperCAmelCase_ =PNDMScheduler(skip_prk_steps=_lowerCAmelCase )
UpperCAmelCase_ =self.dummy_vae
UpperCAmelCase_ =self.dummy_text_encoder
UpperCAmelCase_ =XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" )
UpperCAmelCase_ =77
UpperCAmelCase_ =self.dummy_image.to(_lowerCAmelCase )
UpperCAmelCase_ =init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
UpperCAmelCase_ =AltDiffusionImgaImgPipeline(
unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , )
UpperCAmelCase_ =VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase )
UpperCAmelCase_ =alt_pipe.to(_lowerCAmelCase )
alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
UpperCAmelCase_ ="A painting of a squirrel eating a burger"
UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(0 )
UpperCAmelCase_ =alt_pipe(
[prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=_lowerCAmelCase , )
UpperCAmelCase_ =output.images
UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(0 )
UpperCAmelCase_ =alt_pipe(
[prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0]
UpperCAmelCase_ =image[0, -3:, -3:, -1]
UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase_ =np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.dummy_cond_unet
UpperCAmelCase_ =PNDMScheduler(skip_prk_steps=_lowerCAmelCase )
UpperCAmelCase_ =self.dummy_vae
UpperCAmelCase_ =self.dummy_text_encoder
UpperCAmelCase_ =XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" )
UpperCAmelCase_ =77
UpperCAmelCase_ =self.dummy_image.to(_lowerCAmelCase )
# put models in fp16
UpperCAmelCase_ =unet.half()
UpperCAmelCase_ =vae.half()
UpperCAmelCase_ =bert.half()
# make sure here that pndm scheduler skips prk
UpperCAmelCase_ =AltDiffusionImgaImgPipeline(
unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , )
UpperCAmelCase_ =VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase )
UpperCAmelCase_ =alt_pipe.to(_lowerCAmelCase )
alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
UpperCAmelCase_ ="A painting of a squirrel eating a burger"
UpperCAmelCase_ =torch.manual_seed(0 )
UpperCAmelCase_ =alt_pipe(
[prompt] , generator=_lowerCAmelCase , num_inference_steps=2 , output_type="np" , image=_lowerCAmelCase , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def lowerCAmelCase__ ( self: List[str] ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ =load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
# resize to resolution that is divisible by 8 but not 16 or 32
UpperCAmelCase_ =init_image.resize((760, 504) )
UpperCAmelCase_ ="BAAI/AltDiffusion"
UpperCAmelCase_ =AltDiffusionImgaImgPipeline.from_pretrained(
_lowerCAmelCase , safety_checker=_lowerCAmelCase , )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
UpperCAmelCase_ ="A fantasy landscape, trending on artstation"
UpperCAmelCase_ =torch.manual_seed(0 )
UpperCAmelCase_ =pipe(
prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type="np" , )
UpperCAmelCase_ =output.images[0]
UpperCAmelCase_ =image[255:258, 383:386, -1]
assert image.shape == (504, 760, 3)
UpperCAmelCase_ =np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class A ( unittest.TestCase ):
def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self: Dict ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
UpperCAmelCase_ =init_image.resize((768, 512) )
UpperCAmelCase_ =load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" )
UpperCAmelCase_ ="BAAI/AltDiffusion"
UpperCAmelCase_ =AltDiffusionImgaImgPipeline.from_pretrained(
_lowerCAmelCase , safety_checker=_lowerCAmelCase , )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
UpperCAmelCase_ ="A fantasy landscape, trending on artstation"
UpperCAmelCase_ =torch.manual_seed(0 )
UpperCAmelCase_ =pipe(
prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type="np" , )
UpperCAmelCase_ =output.images[0]
assert image.shape == (512, 768, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1e-2
| 54 |
'''simple docstring'''
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"""The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"""
)
_lowercase = None
_lowercase = {
"""7B""": 11008,
"""13B""": 13824,
"""30B""": 17920,
"""65B""": 22016,
"""70B""": 28672,
}
_lowercase = {
"""7B""": 1,
"""7Bf""": 1,
"""13B""": 2,
"""13Bf""": 2,
"""30B""": 4,
"""65B""": 8,
"""70B""": 8,
"""70Bf""": 8,
}
def A (__lowerCamelCase :int , __lowerCamelCase :Optional[Any]=1 , __lowerCamelCase :List[Any]=256 ):
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of)
def A (__lowerCamelCase :Any ):
with open(__lowerCamelCase , """r""" ) as f:
return json.load(__lowerCamelCase )
def A (__lowerCamelCase :List[Any] , __lowerCamelCase :int ):
with open(__lowerCamelCase , """w""" ) as f:
json.dump(__lowerCamelCase , __lowerCamelCase )
def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple=True ):
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
_lowerCAmelCase = os.path.join(__lowerCamelCase , """tmp""" )
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
_lowerCAmelCase = read_json(os.path.join(__lowerCamelCase , """params.json""" ) )
_lowerCAmelCase = NUM_SHARDS[model_size]
_lowerCAmelCase = params["""n_layers"""]
_lowerCAmelCase = params["""n_heads"""]
_lowerCAmelCase = n_heads // num_shards
_lowerCAmelCase = params["""dim"""]
_lowerCAmelCase = dim // n_heads
_lowerCAmelCase = 10_000.0
_lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , __lowerCamelCase , 2 ).float() / dims_per_head))
if "n_kv_heads" in params:
_lowerCAmelCase = params["""n_kv_heads"""] # for GQA / MQA
_lowerCAmelCase = n_heads_per_shard // num_key_value_heads
_lowerCAmelCase = dim // num_key_value_heads
else: # compatibility with other checkpoints
_lowerCAmelCase = n_heads
_lowerCAmelCase = n_heads_per_shard
_lowerCAmelCase = dim
# permute for sliced rotary
def permute(__lowerCamelCase :Optional[int] , __lowerCamelCase :str=n_heads , __lowerCamelCase :str=dim , __lowerCamelCase :List[Any]=dim ):
return w.view(__lowerCamelCase , dima // n_heads // 2 , 2 , __lowerCamelCase ).transpose(1 , 2 ).reshape(__lowerCamelCase , __lowerCamelCase )
print(f'Fetching all parameters from the checkpoint at {input_base_path}.' )
# Load weights
if model_size == "7B":
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
_lowerCAmelCase = torch.load(os.path.join(__lowerCamelCase , """consolidated.00.pth""" ) , map_location="""cpu""" )
else:
# Sharded
_lowerCAmelCase = [
torch.load(os.path.join(__lowerCamelCase , f'consolidated.{i:02d}.pth' ) , map_location="""cpu""" )
for i in range(__lowerCamelCase )
]
_lowerCAmelCase = 0
_lowerCAmelCase = {"""weight_map""": {}}
for layer_i in range(__lowerCamelCase ):
_lowerCAmelCase = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin'
if model_size == "7B":
# Unsharded
_lowerCAmelCase = {
f'model.layers.{layer_i}.self_attn.q_proj.weight': permute(
loaded[f'layers.{layer_i}.attention.wq.weight'] ),
f'model.layers.{layer_i}.self_attn.k_proj.weight': permute(
loaded[f'layers.{layer_i}.attention.wk.weight'] ),
f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'],
f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'],
f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'],
f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'],
f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'],
f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'],
f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
_lowerCAmelCase = {
f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][
f'layers.{layer_i}.attention_norm.weight'
].clone(),
f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][
f'layers.{layer_i}.ffn_norm.weight'
].clone(),
}
_lowerCAmelCase = permute(
torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
for i in range(__lowerCamelCase )
] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) )
_lowerCAmelCase = permute(
torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wk.weight'].view(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
for i in range(__lowerCamelCase )
] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , )
_lowerCAmelCase = torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wv.weight'].view(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
for i in range(__lowerCamelCase )
] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = torch.cat(
[loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(__lowerCamelCase )] , dim=1 )
_lowerCAmelCase = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__lowerCamelCase )] , dim=0 )
_lowerCAmelCase = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__lowerCamelCase )] , dim=1 )
_lowerCAmelCase = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__lowerCamelCase )] , dim=0 )
_lowerCAmelCase = inv_freq
for k, v in state_dict.items():
_lowerCAmelCase = filename
param_count += v.numel()
torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) )
_lowerCAmelCase = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin'
if model_size == "7B":
# Unsharded
_lowerCAmelCase = {
"""model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""],
"""model.norm.weight""": loaded["""norm.weight"""],
"""lm_head.weight""": loaded["""output.weight"""],
}
else:
_lowerCAmelCase = {
"""model.norm.weight""": loaded[0]["""norm.weight"""],
"""model.embed_tokens.weight""": torch.cat(
[loaded[i]["""tok_embeddings.weight"""] for i in range(__lowerCamelCase )] , dim=1 ),
"""lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__lowerCamelCase )] , dim=0 ),
}
for k, v in state_dict.items():
_lowerCAmelCase = filename
param_count += v.numel()
torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) )
# Write configs
_lowerCAmelCase = {"""total_size""": param_count * 2}
write_json(__lowerCamelCase , os.path.join(__lowerCamelCase , """pytorch_model.bin.index.json""" ) )
_lowerCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1
_lowerCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256
_lowerCAmelCase = LlamaConfig(
hidden_size=__lowerCamelCase , intermediate_size=compute_intermediate_size(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=__lowerCamelCase , )
config.save_pretrained(__lowerCamelCase )
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print("""Loading the checkpoint in a Llama model.""" )
_lowerCAmelCase = LlamaForCausalLM.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=__lowerCamelCase )
# Avoid saving this as part of the config.
del model.config._name_or_path
print("""Saving in the Transformers format.""" )
model.save_pretrained(__lowerCamelCase , safe_serialization=__lowerCamelCase )
shutil.rmtree(__lowerCamelCase )
def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any] ):
# Initialize the tokenizer based on the `spm` model
_lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' )
_lowerCAmelCase = tokenizer_class(__lowerCamelCase )
tokenizer.save_pretrained(__lowerCamelCase )
def A ():
_lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument(
"""--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , )
parser.add_argument(
"""--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , )
parser.add_argument(
"""--output_dir""" , help="""Location to write HF model and tokenizer""" , )
parser.add_argument("""--safe_serialization""" , type=__lowerCamelCase , help="""Whether or not to save using `safetensors`.""" )
_lowerCAmelCase = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , )
_lowerCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" )
write_tokenizer(args.output_dir , __lowerCamelCase )
if __name__ == "__main__":
main()
| 5 | 0 |
import numpy as np
SCREAMING_SNAKE_CASE :Union[str, Any] = [
['a', 'b', 'c', 'd', 'e'],
['f', 'g', 'h', 'i', 'k'],
['l', 'm', 'n', 'o', 'p'],
['q', 'r', 's', 't', 'u'],
['v', 'w', 'x', 'y', 'z'],
]
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[Any] ):
__A = np.array(A )
def UpperCamelCase_ ( self : str ,A : str ):
__A , __A = np.where(letter == self.SQUARE )
__A = np.concatenate([indexa + 1, indexa + 1] )
return indexes
def UpperCamelCase_ ( self : Optional[Any] ,A : int ,A : int ):
__A = self.SQUARE[indexa - 1, indexa - 1]
return letter
def UpperCamelCase_ ( self : str ,A : str ):
__A = message.lower()
__A = message.replace(" " ,"" )
__A = message.replace("j" ,"i" )
__A = np.empty((2, len(A )) )
for letter_index in range(len(A ) ):
__A = self.letter_to_numbers(message[letter_index] )
__A = numbers[0]
__A = numbers[1]
__A = first_step.reshape(2 * len(A ) )
__A = ""
for numbers_index in range(len(A ) ):
__A = int(second_step[numbers_index * 2] )
__A = int(second_step[(numbers_index * 2) + 1] )
__A = self.numbers_to_letter(A ,A )
__A = encoded_message + letter
return encoded_message
def UpperCamelCase_ ( self : List[str] ,A : str ):
__A = message.lower()
message.replace(" " ,"" )
__A = np.empty(2 * len(A ) )
for letter_index in range(len(A ) ):
__A = self.letter_to_numbers(message[letter_index] )
__A = numbers[0]
__A = numbers[1]
__A = first_step.reshape((2, len(A )) )
__A = ""
for numbers_index in range(len(A ) ):
__A = int(second_step[0, numbers_index] )
__A = int(second_step[1, numbers_index] )
__A = self.numbers_to_letter(A ,A )
__A = decoded_message + letter
return decoded_message
| 55 |
'''simple docstring'''
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : Tuple = (DDPMScheduler,)
def _lowercase ( self , **_lowercase ):
"""simple docstring"""
_lowerCAmelCase = {
"""num_train_timesteps""": 1_000,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**_lowercase )
return config
def _lowercase ( self ):
"""simple docstring"""
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
self.check_over_configs(thresholding=_lowercase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , )
def _lowercase ( self ):
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for t in [0, 500, 999]:
self.check_over_forward(time_step=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = len(_lowercase )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
_lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(_lowercase ) ):
# 1. predict noise residual
_lowerCAmelCase = model(_lowercase , _lowercase )
# 2. predict previous mean of sample x_t-1
_lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
_lowerCAmelCase = pred_prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowercase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 258.9606 ) < 1e-2
assert abs(result_mean.item() - 0.3372 ) < 1e-3
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" )
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = len(_lowercase )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
_lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(_lowercase ) ):
# 1. predict noise residual
_lowerCAmelCase = model(_lowercase , _lowercase )
# 2. predict previous mean of sample x_t-1
_lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
_lowerCAmelCase = pred_prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowercase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 202.0296 ) < 1e-2
assert abs(result_mean.item() - 0.2631 ) < 1e-3
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=_lowercase )
_lowerCAmelCase = scheduler.timesteps
for i, timestep in enumerate(_lowercase ):
if i == len(_lowercase ) - 1:
_lowerCAmelCase = -1
else:
_lowerCAmelCase = timesteps[i + 1]
_lowerCAmelCase = scheduler.previous_timestep(_lowercase )
_lowerCAmelCase = prev_t.item()
self.assertEqual(_lowercase , _lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = [100, 87, 50, 51, 0]
with self.assertRaises(_lowercase , msg="""`custom_timesteps` must be in descending order.""" ):
scheduler.set_timesteps(timesteps=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = [100, 87, 50, 1, 0]
_lowerCAmelCase = len(_lowercase )
with self.assertRaises(_lowercase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ):
scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_lowercase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=_lowercase )
| 5 | 0 |
'''simple docstring'''
from __future__ import annotations
from PIL import Image
# Define glider example
_a : Union[str, Any] = [
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
]
# Define blinker example
_a : int = [[0, 1, 0], [0, 1, 0], [0, 1, 0]]
def _a (lowercase__ : list[list[int]] ) -> list[list[int]]:
"""simple docstring"""
__snake_case = []
for i in range(len(lowercase__ ) ):
__snake_case = []
for j in range(len(cells[i] ) ):
# Get the number of live neighbours
__snake_case = 0
if i > 0 and j > 0:
neighbour_count += cells[i - 1][j - 1]
if i > 0:
neighbour_count += cells[i - 1][j]
if i > 0 and j < len(cells[i] ) - 1:
neighbour_count += cells[i - 1][j + 1]
if j > 0:
neighbour_count += cells[i][j - 1]
if j < len(cells[i] ) - 1:
neighbour_count += cells[i][j + 1]
if i < len(lowercase__ ) - 1 and j > 0:
neighbour_count += cells[i + 1][j - 1]
if i < len(lowercase__ ) - 1:
neighbour_count += cells[i + 1][j]
if i < len(lowercase__ ) - 1 and j < len(cells[i] ) - 1:
neighbour_count += cells[i + 1][j + 1]
# Rules of the game of life (excerpt from Wikipedia):
# 1. Any live cell with two or three live neighbours survives.
# 2. Any dead cell with three live neighbours becomes a live cell.
# 3. All other live cells die in the next generation.
# Similarly, all other dead cells stay dead.
__snake_case = cells[i][j] == 1
if (
(alive and 2 <= neighbour_count <= 3)
or not alive
and neighbour_count == 3
):
next_generation_row.append(1 )
else:
next_generation_row.append(0 )
next_generation.append(lowercase__ )
return next_generation
def _a (lowercase__ : list[list[int]] , lowercase__ : int ) -> list[Image.Image]:
"""simple docstring"""
__snake_case = []
for _ in range(lowercase__ ):
# Create output image
__snake_case = Image.new('RGB' , (len(cells[0] ), len(lowercase__ )) )
__snake_case = img.load()
# Save cells to image
for x in range(len(lowercase__ ) ):
for y in range(len(cells[0] ) ):
__snake_case = 2_5_5 - cells[y][x] * 2_5_5
__snake_case = (colour, colour, colour)
# Save image
images.append(lowercase__ )
__snake_case = new_generation(lowercase__ )
return images
if __name__ == "__main__":
_a : Union[str, Any] = generate_images(GLIDER, 16)
images[0].save("out.gif", save_all=True, append_images=images[1:])
| 56 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
_lowercase = logging.get_logger(__name__)
_lowercase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
_lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class UpperCAmelCase_ :
'''simple docstring'''
_lowercase : str = field(
default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_SCREAMING_SNAKE_CASE )} )
_lowercase : str = field(
default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} )
_lowercase : int = field(
default=1_2_8 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
_lowercase : int = field(
default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , )
_lowercase : int = field(
default=6_4 , metadata={
'''help''': (
'''The maximum number of tokens for the question. Questions longer than this will '''
'''be truncated to this length.'''
)
} , )
_lowercase : int = field(
default=3_0 , metadata={
'''help''': (
'''The maximum length of an answer that can be generated. This is needed because the start '''
'''and end predictions are not conditioned on one another.'''
)
} , )
_lowercase : bool = field(
default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
_lowercase : bool = field(
default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} )
_lowercase : float = field(
default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
_lowercase : int = field(
default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
_lowercase : int = field(
default=0 , metadata={
'''help''': (
'''language id of input for language-specific xlm models (see'''
''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'''
)
} , )
_lowercase : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} )
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : str = '''train'''
_lowercase : Union[str, Any] = '''dev'''
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : SquadDataTrainingArguments
_lowercase : List[SquadFeatures]
_lowercase : Split
_lowercase : bool
def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = False , _lowercase = None , _lowercase = "pt" , ):
"""simple docstring"""
_lowerCAmelCase = args
_lowerCAmelCase = is_language_sensitive
_lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(_lowercase , _lowercase ):
try:
_lowerCAmelCase = Split[mode]
except KeyError:
raise KeyError("""mode is not a valid split name""" )
_lowerCAmelCase = mode
# Load data features from cache or dataset file
_lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1"""
_lowerCAmelCase = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
_lowerCAmelCase = cached_features_file + """.lock"""
with FileLock(_lowercase ):
if os.path.exists(_lowercase ) and not args.overwrite_cache:
_lowerCAmelCase = time.time()
_lowerCAmelCase = torch.load(_lowercase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
_lowerCAmelCase = self.old_features["""features"""]
_lowerCAmelCase = self.old_features.get("""dataset""" , _lowercase )
_lowerCAmelCase = self.old_features.get("""examples""" , _lowercase )
logger.info(
F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'
""" future run""" )
else:
if mode == Split.dev:
_lowerCAmelCase = self.processor.get_dev_examples(args.data_dir )
else:
_lowerCAmelCase = self.processor.get_train_examples(args.data_dir )
_lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features(
examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , )
_lowerCAmelCase = time.time()
torch.save(
{"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowercase , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' )
def __len__( self ):
"""simple docstring"""
return len(self.features )
def __getitem__( self , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = self.features[i]
_lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float )
_lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float )
_lowerCAmelCase = {
"""input_ids""": input_ids,
"""attention_mask""": attention_mask,
"""token_type_ids""": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"""is_impossible""": is_impossible} )
if self.is_language_sensitive:
inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
_lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} )
return inputs
| 5 | 0 |
import importlib
import inspect
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
A_ : Dict = 'src/transformers'
# This is to make sure the transformers module imported is the one in the repo.
A_ : str = importlib.util.spec_from_file_location(
'transformers',
os.path.join(PATH_TO_TRANSFORMERS, '__init__.py'),
submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
A_ : Tuple = spec.loader.load_module()
A_ : str = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
A_ : Any = re.compile('\[(.+?)\]\((https://huggingface\.co/.+?)\)')
A_ : Optional[int] = {
'CLIPConfigMixin',
'DecisionTransformerConfigMixin',
'EncoderDecoderConfigMixin',
'RagConfigMixin',
'SpeechEncoderDecoderConfigMixin',
'VisionEncoderDecoderConfigMixin',
'VisionTextDualEncoderConfigMixin',
}
def snake_case () -> Optional[Any]:
UpperCamelCase_: str = []
for config_class in list(CONFIG_MAPPING.values() ):
UpperCamelCase_: int = False
# source code of `config_class`
UpperCamelCase_: int = inspect.getsource(UpperCAmelCase__ )
UpperCamelCase_: List[Any] = _re_checkpoint.findall(UpperCAmelCase__ )
for checkpoint in checkpoints:
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
UpperCamelCase_ ,UpperCamelCase_: int = checkpoint
# verify the checkpoint name corresponds to the checkpoint link
UpperCamelCase_: List[str] = F'''https://huggingface.co/{ckpt_name}'''
if ckpt_link == ckpt_link_from_name:
UpperCamelCase_: Optional[Any] = True
break
UpperCamelCase_: Tuple = config_class.__name__
if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(UpperCAmelCase__ )
if len(UpperCAmelCase__ ) > 0:
UpperCamelCase_: List[Any] = '\n'.join(sorted(UpperCAmelCase__ ) )
raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints() | 57 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase = logging.get_logger(__name__)
_lowercase = {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json"""
),
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json"""
),
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json"""
),
}
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : str = '''dpr'''
def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase="absolute" , _lowercase = 0 , **_lowercase , ):
"""simple docstring"""
super().__init__(pad_token_id=_lowercase , **_lowercase )
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = hidden_act
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = type_vocab_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = projection_dim
_lowerCAmelCase = position_embedding_type
| 5 | 0 |
"""simple docstring"""
__lowerCAmelCase : Optional[Any] = [
'''DownloadConfig''',
'''DownloadManager''',
'''DownloadMode''',
'''StreamingDownloadManager''',
]
from .download_config import DownloadConfig
from .download_manager import DownloadManager, DownloadMode
from .streaming_download_manager import StreamingDownloadManager
| 58 |
'''simple docstring'''
from sklearn.metrics import mean_squared_error
import datasets
_lowercase = """\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
"""
_lowercase = """\
Mean Squared Error(MSE) is the average of the square of difference between the predicted
and actual values.
"""
_lowercase = """
Args:
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
sample_weight: array-like of shape (n_samples,), default=None
Sample weights.
multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
\"raw_values\" : Returns a full set of errors in case of multioutput input.
\"uniform_average\" : Errors of all outputs are averaged with uniform weight.
squared : bool, default=True
If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.
Returns:
mse : mean squared error.
Examples:
>>> mse_metric = datasets.load_metric(\"mse\")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.375}
>>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
>>> print(rmse_result)
{'mse': 0.6123724356957945}
If you're using multi-dimensional lists, then set the config as follows :
>>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
>>> references = [[0, 2], [-1, 2], [8, -5]]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.7083333333333334}
>>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mse': array([0.41666667, 1. ])}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def _lowercase ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"""
] , )
def _lowercase ( self ):
"""simple docstring"""
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("""float""" ) ),
"references": datasets.Sequence(datasets.Value("""float""" ) ),
}
else:
return {
"predictions": datasets.Value("""float""" ),
"references": datasets.Value("""float""" ),
}
def _lowercase ( self , _lowercase , _lowercase , _lowercase=None , _lowercase="uniform_average" , _lowercase=True ):
"""simple docstring"""
_lowerCAmelCase = mean_squared_error(
_lowercase , _lowercase , sample_weight=_lowercase , multioutput=_lowercase , squared=_lowercase )
return {"mse": mse}
| 5 | 0 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"Salesforce/blip-vqa-base": "https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json",
"Salesforce/blip-vqa-capfit-large": (
"https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json"
),
"Salesforce/blip-image-captioning-base": (
"https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json"
),
"Salesforce/blip-image-captioning-large": (
"https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json"
),
"Salesforce/blip-itm-base-coco": "https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json",
"Salesforce/blip-itm-large-coco": "https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json",
"Salesforce/blip-itm-base-flikr": "https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json",
"Salesforce/blip-itm-large-flikr": (
"https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json"
),
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "blip_text_model"
def __init__(self : List[str] , UpperCAmelCase_ : Any=30_524 , UpperCAmelCase_ : Any=768 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : List[Any]=3_072 , UpperCAmelCase_ : Dict=768 , UpperCAmelCase_ : Optional[int]=12 , UpperCAmelCase_ : Any=8 , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Tuple=1E-1_2 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Dict=30_522 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : List[Any]=102 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Any=True , **UpperCAmelCase_ : Optional[int] , ) ->Optional[int]:
'''simple docstring'''
super().__init__(
pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , sep_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , )
lowerCamelCase__: Union[str, Any] =vocab_size
lowerCamelCase__: List[str] =hidden_size
lowerCamelCase__: int =encoder_hidden_size
lowerCamelCase__: List[Any] =intermediate_size
lowerCamelCase__: List[str] =projection_dim
lowerCamelCase__: str =hidden_dropout_prob
lowerCamelCase__: int =num_hidden_layers
lowerCamelCase__: Union[str, Any] =num_attention_heads
lowerCamelCase__: List[str] =max_position_embeddings
lowerCamelCase__: Any =layer_norm_eps
lowerCamelCase__: Any =hidden_act
lowerCamelCase__: Tuple =initializer_range
lowerCamelCase__: Dict =attention_probs_dropout_prob
lowerCamelCase__: Dict =is_decoder
lowerCamelCase__: Dict =use_cache
@classmethod
def SCREAMING_SNAKE_CASE_ (cls : Any , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : Any) ->"PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCAmelCase_)
lowerCamelCase__ , lowerCamelCase__: str =cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_)
# get the text config dict if we are loading from BlipConfig
if config_dict.get("model_type") == "blip":
lowerCamelCase__: List[str] =config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""")
return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_)
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "blip_vision_model"
def __init__(self : List[str] , UpperCAmelCase_ : Tuple=768 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : Optional[int]=12 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : Union[str, Any]=384 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : str=1E-5 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : str=1E-1_0 , **UpperCAmelCase_ : Union[str, Any] , ) ->Any:
'''simple docstring'''
super().__init__(**UpperCAmelCase_)
lowerCamelCase__: List[Any] =hidden_size
lowerCamelCase__: List[str] =intermediate_size
lowerCamelCase__: Dict =projection_dim
lowerCamelCase__: Any =num_hidden_layers
lowerCamelCase__: Tuple =num_attention_heads
lowerCamelCase__: Optional[int] =patch_size
lowerCamelCase__: Optional[int] =image_size
lowerCamelCase__: Any =initializer_range
lowerCamelCase__: str =attention_dropout
lowerCamelCase__: str =layer_norm_eps
lowerCamelCase__: Dict =hidden_act
@classmethod
def SCREAMING_SNAKE_CASE_ (cls : Tuple , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : List[Any]) ->"PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCAmelCase_)
lowerCamelCase__ , lowerCamelCase__: Dict =cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_)
# get the vision config dict if we are loading from BlipConfig
if config_dict.get("model_type") == "blip":
lowerCamelCase__: Optional[int] =config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""")
return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_)
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "blip"
lowercase_ = True
def __init__(self : Any , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : str=2.6592 , UpperCAmelCase_ : List[Any]=256 , **UpperCAmelCase_ : Tuple , ) ->int:
'''simple docstring'''
super().__init__(**UpperCAmelCase_)
if text_config is None:
lowerCamelCase__: Optional[int] ={}
logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values.")
if vision_config is None:
lowerCamelCase__: Optional[int] ={}
logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.")
lowerCamelCase__: List[str] =BlipTextConfig(**UpperCAmelCase_)
lowerCamelCase__: Optional[int] =BlipVisionConfig(**UpperCAmelCase_)
lowerCamelCase__: List[str] =self.vision_config.hidden_size
lowerCamelCase__: Optional[Any] =projection_dim
lowerCamelCase__: List[str] =logit_scale_init_value
lowerCamelCase__: str =1.0
lowerCamelCase__: Tuple =0.02
lowerCamelCase__: int =image_text_hidden_size
@classmethod
def SCREAMING_SNAKE_CASE_ (cls : Any , UpperCAmelCase_ : BlipTextConfig , UpperCAmelCase_ : BlipVisionConfig , **UpperCAmelCase_ : str) ->Any:
'''simple docstring'''
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Dict) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: str =copy.deepcopy(self.__dict__)
lowerCamelCase__: Dict =self.text_config.to_dict()
lowerCamelCase__: List[str] =self.vision_config.to_dict()
lowerCamelCase__: int =self.__class__.model_type
return output
| 59 |
'''simple docstring'''
def A ():
for n in range(1 , 1000000 ):
yield n * (n + 1) // 2
def A (__lowerCamelCase :List[Any] ):
_lowerCAmelCase = 1
_lowerCAmelCase = 2
while i * i <= n:
_lowerCAmelCase = 0
while n % i == 0:
n //= i
multiplicity += 1
divisors_count *= multiplicity + 1
i += 1
if n > 1:
divisors_count *= 2
return divisors_count
def A ():
return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 )
if __name__ == "__main__":
print(solution())
| 5 | 0 |
def lowerCamelCase_ ( _UpperCamelCase = 1_000_000 ) -> int:
"""simple docstring"""
snake_case_ : Dict = 1
snake_case_ : Dict = 1
snake_case_ : List[str] = {1: 1}
for inputa in range(2 , _UpperCamelCase ):
snake_case_ : Dict = 0
snake_case_ : List[Any] = inputa
while True:
if number in counters:
counter += counters[number]
break
if number % 2 == 0:
number //= 2
counter += 1
else:
snake_case_ : Dict = (3 * number) + 1
counter += 1
if inputa not in counters:
snake_case_ : Tuple = counter
if counter > pre_counter:
snake_case_ : int = inputa
snake_case_ : Dict = counter
return largest_number
if __name__ == "__main__":
print(solution(int(input().strip())))
| 60 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_donut import DonutImageProcessor
_lowercase = logging.get_logger(__name__)
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , *_lowercase , **_lowercase ):
"""simple docstring"""
warnings.warn(
"""The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use DonutImageProcessor instead.""" , _lowercase , )
super().__init__(*_lowercase , **_lowercase )
| 5 | 0 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
def _A ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any]=False ):
"""simple docstring"""
lowerCAmelCase__ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') )
# projection layer + position embeddings
rename_keys.extend(
[
("cls_token", "vit.embeddings.cls_token"),
("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowerCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def _A ( lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str=False ):
"""simple docstring"""
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase__ = ""
else:
lowerCAmelCase__ = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase__ = state_dict.pop(F'blocks.{i}.attn.qkv.weight' )
lowerCAmelCase__ = state_dict.pop(F'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase__ = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase__ = in_proj_bias[: config.hidden_size]
lowerCAmelCase__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase__ = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase__ = in_proj_bias[-config.hidden_size :]
def _A ( lowerCAmelCase_ : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ )
def _A ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ):
"""simple docstring"""
lowerCAmelCase__ = dct.pop(lowerCAmelCase_ )
lowerCAmelCase__ = val
def _A ( ):
"""simple docstring"""
lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCAmelCase__ = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw )
return im
@torch.no_grad()
def _A ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Any=True ):
"""simple docstring"""
lowerCAmelCase__ = ViTConfig()
# patch_size
if model_name[-1] == "8":
lowerCAmelCase__ = 8
# set labels if required
if not base_model:
lowerCAmelCase__ = 1000
lowerCAmelCase__ = "huggingface/label-files"
lowerCAmelCase__ = "imagenet-1k-id2label.json"
lowerCAmelCase__ = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="dataset" ) , "r" ) )
lowerCAmelCase__ = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()}
lowerCAmelCase__ = idalabel
lowerCAmelCase__ = {v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
lowerCAmelCase__ = 384
lowerCAmelCase__ = 1536
lowerCAmelCase__ = 12
lowerCAmelCase__ = 6
# load original model from torch hub
lowerCAmelCase__ = torch.hub.load("facebookresearch/dino:main" , lowerCAmelCase_ )
original_model.eval()
# load state_dict of original model, remove and rename some keys
lowerCAmelCase__ = original_model.state_dict()
if base_model:
remove_classification_head_(lowerCAmelCase_ )
lowerCAmelCase__ = create_rename_keys(lowerCAmelCase_ , base_model=lowerCAmelCase_ )
for src, dest in rename_keys:
rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
# load HuggingFace model
if base_model:
lowerCAmelCase__ = ViTModel(lowerCAmelCase_ , add_pooling_layer=lowerCAmelCase_ ).eval()
else:
lowerCAmelCase__ = ViTForImageClassification(lowerCAmelCase_ ).eval()
model.load_state_dict(lowerCAmelCase_ )
# Check outputs on an image, prepared by ViTImageProcessor
lowerCAmelCase__ = ViTImageProcessor()
lowerCAmelCase__ = image_processor(images=prepare_img() , return_tensors="pt" )
lowerCAmelCase__ = encoding["pixel_values"]
lowerCAmelCase__ = model(lowerCAmelCase_ )
if base_model:
lowerCAmelCase__ = original_model(lowerCAmelCase_ )
assert torch.allclose(lowerCAmelCase_ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 )
else:
lowerCAmelCase__ = original_model(lowerCAmelCase_ )
assert logits.shape == outputs.logits.shape
assert torch.allclose(lowerCAmelCase_ , outputs.logits , atol=1E-3 )
Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ )
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowerCAmelCase_ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowerCAmelCase_ )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='dino_vitb16',
type=str,
help='Name of the model trained with DINO you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--base_model',
action='store_true',
help='Whether to only convert the base model (no projection head weights).',
)
parser.set_defaults(base_model=True)
UpperCamelCase = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 61 |
'''simple docstring'''
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 5 | 0 |
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import SchedulerMixin, SchedulerOutput
class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase ):
'''simple docstring'''
UpperCamelCase_ : str = 1
@register_to_config
def __init__( self : int , UpperCAmelCase_ : int = 1000 , UpperCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None ):
# set `betas`, `alphas`, `timesteps`
self.set_timesteps(UpperCAmelCase_ )
# standard deviation of the initial noise distribution
SCREAMING_SNAKE_CASE : Tuple = 1.0
# For now we only support F-PNDM, i.e. the runge-kutta method
# For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
# mainly at formula (9), (12), (13) and the Algorithm 2.
SCREAMING_SNAKE_CASE : List[Any] = 4
# running values
SCREAMING_SNAKE_CASE : Optional[Any] = []
def _A ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, torch.device] = None ):
SCREAMING_SNAKE_CASE : Optional[int] = num_inference_steps
SCREAMING_SNAKE_CASE : Dict = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1]
SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([steps, torch.tensor([0.0] )] )
if self.config.trained_betas is not None:
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(self.config.trained_betas , dtype=torch.floataa )
else:
SCREAMING_SNAKE_CASE : List[Any] = torch.sin(steps * math.pi / 2 ) ** 2
SCREAMING_SNAKE_CASE : List[Any] = (1.0 - self.betas**2) ** 0.5
SCREAMING_SNAKE_CASE : str = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1]
SCREAMING_SNAKE_CASE : Union[str, Any] = timesteps.to(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE : Any = []
def _A ( self : List[str] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : int , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : bool = True , ):
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" )
SCREAMING_SNAKE_CASE : List[str] = (self.timesteps == timestep).nonzero().item()
SCREAMING_SNAKE_CASE : str = timestep_index + 1
SCREAMING_SNAKE_CASE : Union[str, Any] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index]
self.ets.append(UpperCAmelCase_ )
if len(self.ets ) == 1:
SCREAMING_SNAKE_CASE : List[str] = self.ets[-1]
elif len(self.ets ) == 2:
SCREAMING_SNAKE_CASE : List[Any] = (3 * self.ets[-1] - self.ets[-2]) / 2
elif len(self.ets ) == 3:
SCREAMING_SNAKE_CASE : Union[str, Any] = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
else:
SCREAMING_SNAKE_CASE : List[str] = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
SCREAMING_SNAKE_CASE : Dict = self._get_prev_sample(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=UpperCAmelCase_ )
def _A ( self : str , UpperCAmelCase_ : torch.FloatTensor , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any] ):
return sample
def _A ( self : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int ):
SCREAMING_SNAKE_CASE : Tuple = self.alphas[timestep_index]
SCREAMING_SNAKE_CASE : str = self.betas[timestep_index]
SCREAMING_SNAKE_CASE : List[str] = self.alphas[prev_timestep_index]
SCREAMING_SNAKE_CASE : Union[str, Any] = self.betas[prev_timestep_index]
SCREAMING_SNAKE_CASE : Union[str, Any] = (sample - sigma * ets) / max(UpperCAmelCase_ , 1E-8 )
SCREAMING_SNAKE_CASE : Dict = next_alpha * pred + ets * next_sigma
return prev_sample
def __len__( self : List[Any] ):
return self.config.num_train_timesteps
| 62 |
'''simple docstring'''
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print("""Googling.....""")
_lowercase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:])
_lowercase = requests.get(url, headers={"""UserAgent""": UserAgent().random})
# res.raise_for_status()
with open("""project1a.html""", """wb""") as out_file: # only for knowing the class
for data in res.iter_content(10000):
out_file.write(data)
_lowercase = BeautifulSoup(res.text, """html.parser""")
_lowercase = list(soup.select(""".eZt8xd"""))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get("""href"""))
else:
webbrowser.open(F"""https://google.com{link.get('href')}""")
| 5 | 0 |
def lowerCamelCase__ ( __lowerCamelCase : int ):
if num <= 0:
raise ValueError("""Input must be a positive integer""" )
__UpperCAmelCase : int = [True] * (num + 1)
__UpperCAmelCase : Tuple = 2
while p * p <= num:
if primes[p]:
for i in range(p * p , num + 1 , __lowerCamelCase ):
__UpperCAmelCase : str = False
p += 1
return [prime for prime in range(2 , num + 1 ) if primes[prime]]
if __name__ == "__main__":
import doctest
doctest.testmod()
a : Any = int(input("Enter a positive integer: ").strip())
print(prime_sieve_eratosthenes(user_num))
| 63 |
'''simple docstring'''
import os
from datetime import datetime as dt
from github import Github
_lowercase = [
"""good first issue""",
"""good second issue""",
"""good difficult issue""",
"""enhancement""",
"""new pipeline/model""",
"""new scheduler""",
"""wip""",
]
def A ():
_lowerCAmelCase = Github(os.environ["""GITHUB_TOKEN"""] )
_lowerCAmelCase = g.get_repo("""huggingface/diffusers""" )
_lowerCAmelCase = repo.get_issues(state="""open""" )
for issue in open_issues:
_lowerCAmelCase = sorted(issue.get_comments() , key=lambda __lowerCamelCase : i.created_at , reverse=__lowerCamelCase )
_lowerCAmelCase = comments[0] if len(__lowerCamelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state="""closed""" )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state="""open""" )
issue.remove_from_labels("""stale""" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
issue.add_to_labels("""stale""" )
if __name__ == "__main__":
main()
| 5 | 0 |
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def A__ ( ):
SCREAMING_SNAKE_CASE__: Tuple= HfArgumentParser(snake_case_ )
SCREAMING_SNAKE_CASE__: Optional[Any]= parser.parse_args_into_dataclasses()[0]
SCREAMING_SNAKE_CASE__: Optional[int]= TensorFlowBenchmark(args=snake_case_ )
try:
SCREAMING_SNAKE_CASE__: Union[str, Any]= parser.parse_args_into_dataclasses()[0]
except ValueError as e:
SCREAMING_SNAKE_CASE__: Dict= '''Arg --no_{0} is no longer used, please use --no-{0} instead.'''
SCREAMING_SNAKE_CASE__: Optional[int]= ''' '''.join(str(snake_case_ ).split(''' ''' )[:-1] )
SCREAMING_SNAKE_CASE__: Union[str, Any]= ''''''
SCREAMING_SNAKE_CASE__: Tuple= eval(str(snake_case_ ).split(''' ''' )[-1] )
SCREAMING_SNAKE_CASE__: Tuple= []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(snake_case_ )
if len(snake_case_ ) > 0:
SCREAMING_SNAKE_CASE__: Union[str, Any]= full_error_msg + begin_error_msg + str(snake_case_ )
raise ValueError(snake_case_ )
benchmark.run()
if __name__ == "__main__":
main()
| 64 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
ImageTextPipelineOutput,
UniDiffuserPipeline,
)
else:
from .modeling_text_decoder import UniDiffuserTextDecoder
from .modeling_uvit import UniDiffuserModel, UTransformeraDModel
from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
| 5 | 0 |
"""simple docstring"""
import argparse
from collections import defaultdict
import yaml
__UpperCAmelCase = 'docs/source/en/_toctree.yml'
def lowerCAmelCase ( __UpperCamelCase ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = defaultdict(__UpperCamelCase )
UpperCAmelCase__ : Any = []
UpperCAmelCase__ : Tuple = []
for doc in doc_list:
if "local" in doc:
counts[doc["local"]] += 1
if doc["title"].lower() == "overview":
overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} )
else:
new_doc_list.append(__UpperCamelCase )
UpperCAmelCase__ : Optional[int] = new_doc_list
UpperCAmelCase__ : Tuple = [key for key, value in counts.items() if value > 1]
UpperCAmelCase__ : str = []
for duplicate_key in duplicates:
UpperCAmelCase__ : Tuple = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} )
if len(__UpperCamelCase ) > 1:
raise ValueError(
F"{duplicate_key} is present several times in the documentation table of content at "
"""`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """
"""others.""" )
# Only add this once
new_doc.append({"""local""": duplicate_key, """title""": titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] )
UpperCAmelCase__ : List[str] = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : s["title"].lower() )
# "overview" gets special treatment and is always first
if len(__UpperCamelCase ) > 1:
raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" )
overview_doc.extend(__UpperCamelCase )
# Sort
return overview_doc
def lowerCAmelCase ( __UpperCamelCase=False ):
'''simple docstring'''
with open(__UpperCamelCase , encoding="""utf-8""" ) as f:
UpperCAmelCase__ : Tuple = yaml.safe_load(f.read() )
# Get to the API doc
UpperCAmelCase__ : Tuple = 0
while content[api_idx]["title"] != "API":
api_idx += 1
UpperCAmelCase__ : Dict = content[api_idx]["""sections"""]
# Then to the model doc
UpperCAmelCase__ : Any = 0
while api_doc[scheduler_idx]["title"] != "Schedulers":
scheduler_idx += 1
UpperCAmelCase__ : Union[str, Any] = api_doc[scheduler_idx]["""sections"""]
UpperCAmelCase__ : Dict = clean_doc_toc(__UpperCamelCase )
UpperCAmelCase__ : Dict = False
if new_scheduler_doc != scheduler_doc:
UpperCAmelCase__ : Optional[Any] = True
if overwrite:
UpperCAmelCase__ : int = new_scheduler_doc
if diff:
if overwrite:
UpperCAmelCase__ : Any = api_doc
with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(yaml.dump(__UpperCamelCase , allow_unicode=__UpperCamelCase ) )
else:
raise ValueError(
"""The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" )
def lowerCAmelCase ( __UpperCamelCase=False ):
'''simple docstring'''
with open(__UpperCamelCase , encoding="""utf-8""" ) as f:
UpperCAmelCase__ : List[str] = yaml.safe_load(f.read() )
# Get to the API doc
UpperCAmelCase__ : Optional[Any] = 0
while content[api_idx]["title"] != "API":
api_idx += 1
UpperCAmelCase__ : Tuple = content[api_idx]["""sections"""]
# Then to the model doc
UpperCAmelCase__ : List[str] = 0
while api_doc[pipeline_idx]["title"] != "Pipelines":
pipeline_idx += 1
UpperCAmelCase__ : str = False
UpperCAmelCase__ : List[Any] = api_doc[pipeline_idx]["""sections"""]
UpperCAmelCase__ : str = []
# sort sub pipeline docs
for pipeline_doc in pipeline_docs:
if "section" in pipeline_doc:
UpperCAmelCase__ : Optional[Any] = pipeline_doc["""section"""]
UpperCAmelCase__ : Union[str, Any] = clean_doc_toc(__UpperCamelCase )
if overwrite:
UpperCAmelCase__ : str = new_sub_pipeline_doc
new_pipeline_docs.append(__UpperCamelCase )
# sort overall pipeline doc
UpperCAmelCase__ : List[str] = clean_doc_toc(__UpperCamelCase )
if new_pipeline_docs != pipeline_docs:
UpperCAmelCase__ : Any = True
if overwrite:
UpperCAmelCase__ : List[str] = new_pipeline_docs
if diff:
if overwrite:
UpperCAmelCase__ : Optional[int] = api_doc
with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(yaml.dump(__UpperCamelCase , allow_unicode=__UpperCamelCase ) )
else:
raise ValueError(
"""The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
__UpperCAmelCase = parser.parse_args()
check_scheduler_doc(args.fix_and_overwrite)
check_pipeline_doc(args.fix_and_overwrite)
| 65 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_lowercase = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = [
"""VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ViTMAEForPreTraining""",
"""ViTMAELayer""",
"""ViTMAEModel""",
"""ViTMAEPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = [
"""TFViTMAEForPreTraining""",
"""TFViTMAEModel""",
"""TFViTMAEPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_mae import (
VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMAEForPreTraining,
ViTMAELayer,
ViTMAEModel,
ViTMAEPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel
else:
import sys
_lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 5 | 0 |
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
UpperCamelCase = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["GPTNeoXTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTNeoXForCausalLM",
"GPTNeoXForQuestionAnswering",
"GPTNeoXForSequenceClassification",
"GPTNeoXForTokenClassification",
"GPTNeoXLayer",
"GPTNeoXModel",
"GPTNeoXPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neox import (
GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXLayer,
GPTNeoXModel,
GPTNeoXPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 66 |
'''simple docstring'''
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
_lowercase = logging.get_logger(__name__)
@add_end_docstrings(_SCREAMING_SNAKE_CASE )
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , **_lowercase ):
"""simple docstring"""
super().__init__(**_lowercase )
if self.framework != "pt":
raise ValueError(F'The {self.__class__} is only available in PyTorch.' )
# No specific FOR_XXX available yet
def __call__( self , _lowercase , **_lowercase ):
"""simple docstring"""
return super().__call__(_lowercase , **_lowercase )
def _lowercase ( self , **_lowercase ):
"""simple docstring"""
_lowerCAmelCase = {}
if "candidate_labels" in kwargs:
_lowerCAmelCase = kwargs["""candidate_labels"""]
if "hypothesis_template" in kwargs:
_lowerCAmelCase = kwargs["""hypothesis_template"""]
return preprocess_params, {}, {}
def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a sound of {}." ):
"""simple docstring"""
if isinstance(_lowercase , _lowercase ):
if audio.startswith("""http://""" ) or audio.startswith("""https://""" ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
_lowerCAmelCase = requests.get(_lowercase ).content
else:
with open(_lowercase , """rb""" ) as f:
_lowerCAmelCase = f.read()
if isinstance(_lowercase , _lowercase ):
_lowerCAmelCase = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate )
if not isinstance(_lowercase , np.ndarray ):
raise ValueError("""We expect a numpy ndarray as input""" )
if len(audio.shape ) != 1:
raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" )
_lowerCAmelCase = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" )
_lowerCAmelCase = candidate_labels
_lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels]
_lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase )
_lowerCAmelCase = [text_inputs]
return inputs
def _lowercase ( self , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = model_inputs.pop("""candidate_labels""" )
_lowerCAmelCase = model_inputs.pop("""text_inputs""" )
if isinstance(text_inputs[0] , _lowercase ):
_lowerCAmelCase = text_inputs[0]
else:
# Batching case.
_lowerCAmelCase = text_inputs[0][0]
_lowerCAmelCase = self.model(**_lowercase , **_lowercase )
_lowerCAmelCase = {
"""candidate_labels""": candidate_labels,
"""logits""": outputs.logits_per_audio,
}
return model_outputs
def _lowercase ( self , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = model_outputs.pop("""candidate_labels""" )
_lowerCAmelCase = model_outputs["""logits"""][0]
if self.framework == "pt":
_lowerCAmelCase = logits.softmax(dim=0 )
_lowerCAmelCase = probs.tolist()
else:
raise ValueError("""`tf` framework not supported.""" )
_lowerCAmelCase = [
{"""score""": score, """label""": candidate_label}
for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] )
]
return result
| 5 | 0 |
# Usage:
# ./gen-card-allenai-wmt16.py
import os
from pathlib import Path
def SCREAMING_SNAKE_CASE__ ( snake_case__ :Dict , snake_case__ :Union[str, Any] , snake_case__ :Union[str, Any] , snake_case__ :int ) -> Optional[int]:
_lowercase = {
'en': 'Machine learning is great, isn\'t it?',
'ru': 'Машинное обучение - это здорово, не так ли?',
'de': 'Maschinelles Lernen ist großartig, nicht wahr?',
}
# BLUE scores as follows:
# "pair": [fairseq, transformers]
_lowercase = {
'wmt16-en-de-dist-12-1': [28.3, 27.52],
'wmt16-en-de-dist-6-1': [27.4, 27.11],
'wmt16-en-de-12-1': [26.9, 25.75],
}
_lowercase = F"""{src_lang}-{tgt_lang}"""
_lowercase = F"""
---
language:
- {src_lang}
- {tgt_lang}
thumbnail:
tags:
- translation
- wmt16
- allenai
license: apache-2.0
datasets:
- wmt16
metrics:
- bleu
---
# FSMT
## Model description
This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.
For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).
All 3 models are available:
* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)
* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)
* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)
## Intended uses & limitations
#### How to use
```python
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
mname = \"allenai/{model_name}\"
tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)
input = \"{texts[src_lang]}\"
input_ids = tokenizer.encode(input, return_tensors=\"pt\")
outputs = model.generate(input_ids)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(decoded) # {texts[tgt_lang]}
```
#### Limitations and bias
## Training data
Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).
## Eval results
Here are the BLEU scores:
model | fairseq | transformers
-------|---------|----------
{model_name} | {scores[model_name][0]} | {scores[model_name][1]}
The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.
The score was calculated using this code:
```bash
git clone https://github.com/huggingface/transformers
cd transformers
export PAIR={pair}
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=5
mkdir -p $DATA_DIR
sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
```
## Data Sources
- [training, etc.](http://www.statmt.org/wmt16/)
- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)
### BibTeX entry and citation info
```
@misc{{kasai2020deep,
title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},
author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},
year={{2020}},
eprint={{2006.10369}},
archivePrefix={{arXiv}},
primaryClass={{cs.CL}}
}}
```
"""
model_card_dir.mkdir(parents=snake_case__ , exist_ok=snake_case__ )
_lowercase = os.path.join(snake_case__ , 'README.md' )
print(F"""Generating {path}""" )
with open(snake_case__ , 'w' , encoding='utf-8' ) as f:
f.write(snake_case__ )
# make sure we are under the root of the project
snake_case = Path(__file__).resolve().parent.parent.parent
snake_case = repo_dir / """model_cards"""
for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]:
snake_case = model_cards_dir / """allenai""" / model_name
write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name) | 67 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
_lowercase = logging.get_logger(__name__)
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : List[str] = ['''input_values''', '''padding_mask''']
def __init__( self , _lowercase = 1 , _lowercase = 24_000 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , **_lowercase , ):
"""simple docstring"""
super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase )
_lowerCAmelCase = chunk_length_s
_lowerCAmelCase = overlap
@property
def _lowercase ( self ):
"""simple docstring"""
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def _lowercase ( self ):
"""simple docstring"""
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self , _lowercase , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ):
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of'
F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'
F' {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
if padding and truncation:
raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" )
elif padding is None:
# by default let's pad the inputs
_lowerCAmelCase = True
_lowerCAmelCase = bool(
isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) )
if is_batched:
_lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(_lowercase , np.ndarray ):
_lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa )
elif isinstance(_lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
_lowerCAmelCase = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
_lowerCAmelCase = [np.asarray(_lowercase ).T]
# verify inputs are valid
for idx, example in enumerate(_lowercase ):
if example.ndim > 2:
raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' )
_lowerCAmelCase = None
_lowerCAmelCase = BatchFeature({"""input_values""": raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
_lowerCAmelCase = min(array.shape[0] for array in raw_audio )
_lowerCAmelCase = int(np.floor(max_length / self.chunk_stride ) )
_lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
_lowerCAmelCase = max(array.shape[0] for array in raw_audio )
_lowerCAmelCase = int(np.ceil(max_length / self.chunk_stride ) )
_lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length
_lowerCAmelCase = """max_length"""
else:
_lowerCAmelCase = input_values
# normal padding on batch
if padded_inputs is None:
_lowerCAmelCase = self.pad(
_lowercase , max_length=_lowercase , truncation=_lowercase , padding=_lowercase , return_attention_mask=_lowercase , )
if padding:
_lowerCAmelCase = padded_inputs.pop("""attention_mask""" )
_lowerCAmelCase = []
for example in padded_inputs.pop("""input_values""" ):
if self.feature_size == 1:
_lowerCAmelCase = example[..., None]
input_values.append(example.T )
_lowerCAmelCase = input_values
if return_tensors is not None:
_lowerCAmelCase = padded_inputs.convert_to_tensors(_lowercase )
return padded_inputs
| 5 | 0 |
import numpy as np
class _A :
"""simple docstring"""
def __init__( self : Any ) -> Tuple:
__UpperCAmelCase =(0, 0)
__UpperCAmelCase =None
__UpperCAmelCase =0
__UpperCAmelCase =0
__UpperCAmelCase =0
def __eq__( self : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> List[Any]:
return self.position == cell.position
def _a ( self : str ) -> Any:
print(self.position )
class _A :
"""simple docstring"""
def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple=(5, 5) ) -> int:
__UpperCAmelCase =np.zeros(__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =world_size[0]
__UpperCAmelCase =world_size[1]
def _a ( self : Optional[Any] ) -> Tuple:
print(self.w )
def _a ( self : int , __SCREAMING_SNAKE_CASE : Tuple ) -> int:
__UpperCAmelCase =[
(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),
]
__UpperCAmelCase =cell.position[0]
__UpperCAmelCase =cell.position[1]
__UpperCAmelCase =[]
for n in neughbour_cord:
__UpperCAmelCase =current_x + n[0]
__UpperCAmelCase =current_y + n[1]
if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit:
__UpperCAmelCase =Cell()
__UpperCAmelCase =(x, y)
__UpperCAmelCase =cell
neighbours.append(__SCREAMING_SNAKE_CASE )
return neighbours
def lowercase__ ( A_: Dict , A_: Tuple , A_: Tuple ) -> str:
"""simple docstring"""
__UpperCAmelCase =[]
__UpperCAmelCase =[]
_open.append(A_ )
while _open:
__UpperCAmelCase =np.argmin([n.f for n in _open] )
__UpperCAmelCase =_open[min_f]
_closed.append(_open.pop(A_ ) )
if current == goal:
break
for n in world.get_neigbours(A_ ):
for c in _closed:
if c == n:
continue
__UpperCAmelCase =current.g + 1
__UpperCAmelCase , __UpperCAmelCase =n.position
__UpperCAmelCase , __UpperCAmelCase =goal.position
__UpperCAmelCase =(ya - ya) ** 2 + (xa - xa) ** 2
__UpperCAmelCase =n.h + n.g
for c in _open:
if c == n and c.f < n.f:
continue
_open.append(A_ )
__UpperCAmelCase =[]
while current.parent is not None:
path.append(current.position )
__UpperCAmelCase =current.parent
path.append(current.position )
return path[::-1]
if __name__ == "__main__":
__A = Gridworld()
# Start position and goal
__A = Cell()
__A = (0, 0)
__A = Cell()
__A = (4, 4)
print(F"""path from {start.position} to {goal.position}""")
__A = astar(world, start, goal)
# Just for visual reasons.
for i in s:
__A = 1
print(world.w)
| 68 |
'''simple docstring'''
_lowercase = """
# Transformers 설치 방법
! pip install transformers datasets
# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
_lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
_lowercase = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 5 | 0 |
'''simple docstring'''
# Imports
import numpy as np
class SCREAMING_SNAKE_CASE__ :
def __init__( self : List[str] , a_ : str=None , a_ : Tuple=None , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : List[Any]=None ):
"""simple docstring"""
self.set_matricies(red=a_ , green=a_ , blue=a_ , red_edge=a_ , nir=a_ )
def A ( self : List[Any] , a_ : List[str]=None , a_ : Optional[Any]=None , a_ : Tuple=None , a_ : Any=None , a_ : List[Any]=None ):
"""simple docstring"""
if red is not None:
__snake_case = red
if green is not None:
__snake_case = green
if blue is not None:
__snake_case = blue
if red_edge is not None:
__snake_case = red_edge
if nir is not None:
__snake_case = nir
return True
def A ( self : int , a_ : List[str]="" , a_ : List[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : int=None , a_ : int=None ):
"""simple docstring"""
self.set_matricies(red=a_ , green=a_ , blue=a_ , red_edge=a_ , nir=a_ )
__snake_case = {
"ARVI2": self.arvaa,
"CCCI": self.ccci,
"CVI": self.cvi,
"GLI": self.gli,
"NDVI": self.ndvi,
"BNDVI": self.bndvi,
"redEdgeNDVI": self.red_edge_ndvi,
"GNDVI": self.gndvi,
"GBNDVI": self.gbndvi,
"GRNDVI": self.grndvi,
"RBNDVI": self.rbndvi,
"PNDVI": self.pndvi,
"ATSAVI": self.atsavi,
"BWDRVI": self.bwdrvi,
"CIgreen": self.ci_green,
"CIrededge": self.ci_rededge,
"CI": self.ci,
"CTVI": self.ctvi,
"GDVI": self.gdvi,
"EVI": self.evi,
"GEMI": self.gemi,
"GOSAVI": self.gosavi,
"GSAVI": self.gsavi,
"Hue": self.hue,
"IVI": self.ivi,
"IPVI": self.ipvi,
"I": self.i,
"RVI": self.rvi,
"MRVI": self.mrvi,
"MSAVI": self.m_savi,
"NormG": self.norm_g,
"NormNIR": self.norm_nir,
"NormR": self.norm_r,
"NGRDI": self.ngrdi,
"RI": self.ri,
"S": self.s,
"IF": self._if,
"DVI": self.dvi,
"TVI": self.tvi,
"NDRE": self.ndre,
}
try:
return funcs[index]()
except KeyError:
print("Index not in the list!" )
return False
def A ( self : List[Any] ):
"""simple docstring"""
return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red)))
def A ( self : List[Any] ):
"""simple docstring"""
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def A ( self : Union[str, Any] ):
"""simple docstring"""
return self.nir * (self.red / (self.green**2))
def A ( self : Tuple ):
"""simple docstring"""
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def A ( self : List[str] ):
"""simple docstring"""
return (self.nir - self.red) / (self.nir + self.red)
def A ( self : str ):
"""simple docstring"""
return (self.nir - self.blue) / (self.nir + self.blue)
def A ( self : Tuple ):
"""simple docstring"""
return (self.redEdge - self.red) / (self.redEdge + self.red)
def A ( self : int ):
"""simple docstring"""
return (self.nir - self.green) / (self.nir + self.green)
def A ( self : List[Any] ):
"""simple docstring"""
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def A ( self : List[Any] ):
"""simple docstring"""
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def A ( self : Any ):
"""simple docstring"""
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def A ( self : Any ):
"""simple docstring"""
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def A ( self : Any , a_ : Tuple=0.08 , a_ : Tuple=1.22 , a_ : Any=0.03 ):
"""simple docstring"""
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def A ( self : Dict ):
"""simple docstring"""
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def A ( self : Optional[Any] ):
"""simple docstring"""
return (self.nir / self.green) - 1
def A ( self : Tuple ):
"""simple docstring"""
return (self.nir / self.redEdge) - 1
def A ( self : List[str] ):
"""simple docstring"""
return (self.red - self.blue) / self.red
def A ( self : Tuple ):
"""simple docstring"""
__snake_case = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2))
def A ( self : List[Any] ):
"""simple docstring"""
return self.nir - self.green
def A ( self : Tuple ):
"""simple docstring"""
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def A ( self : Union[str, Any] ):
"""simple docstring"""
__snake_case = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red)
def A ( self : Tuple , a_ : Optional[int]=0.16 ):
"""simple docstring"""
return (self.nir - self.green) / (self.nir + self.green + y)
def A ( self : int , a_ : List[Any]=0.5 ):
"""simple docstring"""
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def A ( self : Tuple ):
"""simple docstring"""
return np.arctan(
((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) )
def A ( self : Union[str, Any] , a_ : Optional[int]=None , a_ : List[Any]=None ):
"""simple docstring"""
return (self.nir - b) / (a * self.red)
def A ( self : Tuple ):
"""simple docstring"""
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def A ( self : Dict ):
"""simple docstring"""
return (self.red + self.green + self.blue) / 30.5
def A ( self : List[Any] ):
"""simple docstring"""
return self.nir / self.red
def A ( self : Union[str, Any] ):
"""simple docstring"""
return (self.rvi() - 1) / (self.rvi() + 1)
def A ( self : Dict ):
"""simple docstring"""
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def A ( self : Tuple ):
"""simple docstring"""
return self.green / (self.nir + self.red + self.green)
def A ( self : List[Any] ):
"""simple docstring"""
return self.nir / (self.nir + self.red + self.green)
def A ( self : Optional[int] ):
"""simple docstring"""
return self.red / (self.nir + self.red + self.green)
def A ( self : List[Any] ):
"""simple docstring"""
return (self.green - self.red) / (self.green + self.red)
def A ( self : str ):
"""simple docstring"""
return (self.red - self.green) / (self.red + self.green)
def A ( self : Optional[Any] ):
"""simple docstring"""
__snake_case = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] )
__snake_case = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] )
return (max_value - min_value) / max_value
def A ( self : Optional[int] ):
"""simple docstring"""
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def A ( self : Any ):
"""simple docstring"""
return self.nir / self.red
def A ( self : Any ):
"""simple docstring"""
return (self.ndvi() + 0.5) ** (1 / 2)
def A ( self : Optional[int] ):
"""simple docstring"""
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 69 |
'''simple docstring'''
import functools
def A (__lowerCamelCase :list[int] , __lowerCamelCase :list[int] ):
# Validation
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for day in days ):
raise ValueError("""The parameter days should be a list of integers""" )
if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for cost in costs ):
raise ValueError("""The parameter costs should be a list of three integers""" )
if len(__lowerCamelCase ) == 0:
return 0
if min(__lowerCamelCase ) <= 0:
raise ValueError("""All days elements should be greater than 0""" )
if max(__lowerCamelCase ) >= 366:
raise ValueError("""All days elements should be less than 366""" )
_lowerCAmelCase = set(__lowerCamelCase )
@functools.cache
def dynamic_programming(__lowerCamelCase :int ) -> int:
if index > 365:
return 0
if index not in days_set:
return dynamic_programming(index + 1 )
return min(
costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , )
return dynamic_programming(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 0 |
import requests
lowerCamelCase : Union[str, Any] = "" # <-- Put your OpenWeatherMap appid here!
lowerCamelCase : Any = "https://api.openweathermap.org/data/2.5/"
def _SCREAMING_SNAKE_CASE ( lowercase : str = "Chicago" , lowercase : str = APPID ):
'''simple docstring'''
return requests.get(URL_BASE + 'weather' , params=locals() ).json()
def _SCREAMING_SNAKE_CASE ( lowercase : str = "Kolkata, India" , lowercase : str = APPID ):
'''simple docstring'''
return requests.get(URL_BASE + 'forecast' , params=locals() ).json()
def _SCREAMING_SNAKE_CASE ( lowercase : float = 55.68 , lowercase : float = 12.57 , lowercase : str = APPID ):
'''simple docstring'''
return requests.get(URL_BASE + 'onecall' , params=locals() ).json()
if __name__ == "__main__":
from pprint import pprint
while True:
lowerCamelCase : Any = input("Enter a location:").strip()
if location:
pprint(current_weather(location))
else:
break
| 70 |
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def A (__lowerCamelCase :List[Any] ):
_lowerCAmelCase = 384
if "tiny" in model_name:
_lowerCAmelCase = [3, 3, 9, 3]
_lowerCAmelCase = [96, 192, 384, 768]
if "small" in model_name:
_lowerCAmelCase = [3, 3, 27, 3]
_lowerCAmelCase = [96, 192, 384, 768]
if "base" in model_name:
_lowerCAmelCase = [3, 3, 27, 3]
_lowerCAmelCase = [128, 256, 512, 1024]
_lowerCAmelCase = 512
if "large" in model_name:
_lowerCAmelCase = [3, 3, 27, 3]
_lowerCAmelCase = [192, 384, 768, 1536]
_lowerCAmelCase = 768
if "xlarge" in model_name:
_lowerCAmelCase = [3, 3, 27, 3]
_lowerCAmelCase = [256, 512, 1024, 2048]
_lowerCAmelCase = 1024
# set label information
_lowerCAmelCase = 150
_lowerCAmelCase = """huggingface/label-files"""
_lowerCAmelCase = """ade20k-id2label.json"""
_lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) )
_lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
_lowerCAmelCase = {v: k for k, v in idalabel.items()}
_lowerCAmelCase = ConvNextConfig(
depths=__lowerCamelCase , hidden_sizes=__lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] )
_lowerCAmelCase = UperNetConfig(
backbone_config=__lowerCamelCase , auxiliary_in_channels=__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , )
return config
def A (__lowerCamelCase :Optional[Any] ):
_lowerCAmelCase = []
# fmt: off
# stem
rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") )
rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") )
rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") )
rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') )
rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') )
if i > 0:
rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') )
rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') )
rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') )
rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') )
rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') )
rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') )
# decode head
rename_keys.extend(
[
("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""),
("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""),
("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""),
("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""),
] )
# fmt: on
return rename_keys
def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict , __lowerCamelCase :Tuple ):
_lowerCAmelCase = dct.pop(__lowerCamelCase )
_lowerCAmelCase = val
def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ):
_lowerCAmelCase = {
"""upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""",
"""upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""",
"""upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""",
"""upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""",
"""upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""",
}
_lowerCAmelCase = model_name_to_url[model_name]
_lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""state_dict"""]
_lowerCAmelCase = get_upernet_config(__lowerCamelCase )
_lowerCAmelCase = UperNetForSemanticSegmentation(__lowerCamelCase )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
_lowerCAmelCase = state_dict.pop(__lowerCamelCase )
if "bn" in key:
_lowerCAmelCase = key.replace("""bn""" , """batch_norm""" )
_lowerCAmelCase = val
# rename keys
_lowerCAmelCase = create_rename_keys(__lowerCamelCase )
for src, dest in rename_keys:
rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
model.load_state_dict(__lowerCamelCase )
# verify on image
_lowerCAmelCase = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"""
_lowerCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" )
_lowerCAmelCase = SegformerImageProcessor()
_lowerCAmelCase = processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values
with torch.no_grad():
_lowerCAmelCase = model(__lowerCamelCase )
if model_name == "upernet-convnext-tiny":
_lowerCAmelCase = torch.tensor(
[[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] )
elif model_name == "upernet-convnext-small":
_lowerCAmelCase = torch.tensor(
[[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] )
elif model_name == "upernet-convnext-base":
_lowerCAmelCase = torch.tensor(
[[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] )
elif model_name == "upernet-convnext-large":
_lowerCAmelCase = torch.tensor(
[[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] )
elif model_name == "upernet-convnext-xlarge":
_lowerCAmelCase = torch.tensor(
[[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] )
print("""Logits:""" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(__lowerCamelCase )
print(f'Saving processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(__lowerCamelCase )
if push_to_hub:
print(f'Pushing model and processor for {model_name} to hub' )
model.push_to_hub(f'openmmlab/{model_name}' )
processor.push_to_hub(f'openmmlab/{model_name}' )
if __name__ == "__main__":
_lowercase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""upernet-convnext-tiny""",
type=str,
choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]],
help="""Name of the ConvNext UperNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
_lowercase = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 5 | 0 |
'''simple docstring'''
def a__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int ) -> bool:
"""simple docstring"""
return not any(
neighbour == 1 and colored_vertices[i] == color
for i, neighbour in enumerate(_SCREAMING_SNAKE_CASE ) )
def a__ ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int ) -> bool:
"""simple docstring"""
if index == len(_SCREAMING_SNAKE_CASE ):
return True
# Recursive Step
for i in range(_SCREAMING_SNAKE_CASE ):
if valid_coloring(graph[index] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
# Color current vertex
UpperCAmelCase_ : Optional[Any] = i
# Validate coloring
if util_color(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 ):
return True
# Backtrack
UpperCAmelCase_ : Tuple = -1
return False
def a__ ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : int ) -> list[int]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = [-1] * len(_SCREAMING_SNAKE_CASE )
if util_color(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0 ):
return colored_vertices
return []
| 71 |
'''simple docstring'''
from itertools import product
def A (__lowerCamelCase :int , __lowerCamelCase :int ):
_lowerCAmelCase = sides_number
_lowerCAmelCase = max_face_number * dice_number
_lowerCAmelCase = [0] * (max_total + 1)
_lowerCAmelCase = 1
_lowerCAmelCase = range(__lowerCamelCase , max_face_number + 1 )
for dice_numbers in product(__lowerCamelCase , repeat=__lowerCamelCase ):
_lowerCAmelCase = sum(__lowerCamelCase )
totals_frequencies[total] += 1
return totals_frequencies
def A ():
_lowerCAmelCase = total_frequency_distribution(
sides_number=4 , dice_number=9 )
_lowerCAmelCase = total_frequency_distribution(
sides_number=6 , dice_number=6 )
_lowerCAmelCase = 0
_lowerCAmelCase = 9
_lowerCAmelCase = 4 * 9
_lowerCAmelCase = 6
for peter_total in range(__lowerCamelCase , max_peter_total + 1 ):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total] )
_lowerCAmelCase = (4**9) * (6**6)
_lowerCAmelCase = peter_wins_count / total_games_number
_lowerCAmelCase = round(__lowerCamelCase , ndigits=7 )
return rounded_peter_win_probability
if __name__ == "__main__":
print(F"""{solution() = }""")
| 5 | 0 |
'''simple docstring'''
import argparse
import glob
import importlib.util
import os
import re
import black
from doc_builder.style_doc import style_docstrings_in_code
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
_UpperCAmelCase : Any = '''src/diffusers'''
_UpperCAmelCase : str = '''.'''
# This is to make sure the diffusers module imported is the one in the repo.
_UpperCAmelCase : List[str] = importlib.util.spec_from_file_location(
'''diffusers''',
os.path.join(DIFFUSERS_PATH, '''__init__.py'''),
submodule_search_locations=[DIFFUSERS_PATH],
)
_UpperCAmelCase : Optional[Any] = spec.loader.load_module()
def UpperCamelCase ( lowercase_ : List[Any] , lowercase_ : int ) -> List[Any]:
'''simple docstring'''
return line.startswith(lowercase_ ) or len(lowercase_ ) <= 1 or re.search(R'''^\s*\)(\s*->.*:|:)\s*$''' , lowercase_ ) is not None
def UpperCamelCase ( lowercase_ : List[Any] ) -> Any:
'''simple docstring'''
lowercase =object_name.split('''.''' )
lowercase =0
# First let's find the module where our object lives.
lowercase =parts[i]
while i < len(lowercase_ ) and not os.path.isfile(os.path.join(lowercase_ , f'{module}.py' ) ):
i += 1
if i < len(lowercase_ ):
lowercase =os.path.join(lowercase_ , parts[i] )
if i >= len(lowercase_ ):
raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' )
with open(os.path.join(lowercase_ , f'{module}.py' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
lowercase =f.readlines()
# Now let's find the class / func in the code!
lowercase =''''''
lowercase =0
for name in parts[i + 1 :]:
while (
line_index < len(lowercase_ ) and re.search(Rf'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None
):
line_index += 1
indent += " "
line_index += 1
if line_index >= len(lowercase_ ):
raise ValueError(f' {object_name} does not match any function or class in {module}.' )
# We found the beginning of the class / func, now let's find the end (when the indent diminishes).
lowercase =line_index
while line_index < len(lowercase_ ) and _should_continue(lines[line_index] , lowercase_ ):
line_index += 1
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
lowercase =lines[start_index:line_index]
return "".join(lowercase_ )
_UpperCAmelCase : Any = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''')
_UpperCAmelCase : Optional[int] = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''')
_UpperCAmelCase : Optional[int] = re.compile(r'''<FILL\s+[^>]*>''')
def UpperCamelCase ( lowercase_ : List[str] ) -> Optional[int]:
'''simple docstring'''
lowercase =code.split('''\n''' )
lowercase =0
while idx < len(lowercase_ ) and len(lines[idx] ) == 0:
idx += 1
if idx < len(lowercase_ ):
return re.search(R'''^(\s*)\S''' , lines[idx] ).groups()[0]
return ""
def UpperCamelCase ( lowercase_ : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
lowercase =len(get_indent(lowercase_ ) ) > 0
if has_indent:
lowercase =f'class Bla:\n{code}'
lowercase =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=lowercase_ )
lowercase =black.format_str(lowercase_ , mode=lowercase_ )
lowercase , lowercase =style_docstrings_in_code(lowercase_ )
return result[len('''class Bla:\n''' ) :] if has_indent else result
def UpperCamelCase ( lowercase_ : Union[str, Any] , lowercase_ : int=False ) -> int:
'''simple docstring'''
with open(lowercase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
lowercase =f.readlines()
lowercase =[]
lowercase =0
# Not a for loop cause `lines` is going to change (if `overwrite=True`).
while line_index < len(lowercase_ ):
lowercase =_re_copy_warning.search(lines[line_index] )
if search is None:
line_index += 1
continue
# There is some copied code here, let's retrieve the original.
lowercase , lowercase , lowercase =search.groups()
lowercase =find_code_in_diffusers(lowercase_ )
lowercase =get_indent(lowercase_ )
lowercase =line_index + 1 if indent == theoretical_indent else line_index + 2
lowercase =theoretical_indent
lowercase =start_index
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
lowercase =True
while line_index < len(lowercase_ ) and should_continue:
line_index += 1
if line_index >= len(lowercase_ ):
break
lowercase =lines[line_index]
lowercase =_should_continue(lowercase_ , lowercase_ ) and re.search(f'^{indent}# End copy' , lowercase_ ) is None
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
lowercase =lines[start_index:line_index]
lowercase =''''''.join(lowercase_ )
# Remove any nested `Copied from` comments to avoid circular copies
lowercase =[line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(lowercase_ ) is None]
lowercase ='''\n'''.join(lowercase_ )
# Before comparing, use the `replace_pattern` on the original code.
if len(lowercase_ ) > 0:
lowercase =replace_pattern.replace('''with''' , '''''' ).split(''',''' )
lowercase =[_re_replace_pattern.search(lowercase_ ) for p in patterns]
for pattern in patterns:
if pattern is None:
continue
lowercase , lowercase , lowercase =pattern.groups()
lowercase =re.sub(lowercase_ , lowercase_ , lowercase_ )
if option.strip() == "all-casing":
lowercase =re.sub(obja.lower() , obja.lower() , lowercase_ )
lowercase =re.sub(obja.upper() , obja.upper() , lowercase_ )
# Blackify after replacement. To be able to do that, we need the header (class or function definition)
# from the previous line
lowercase =blackify(lines[start_index - 1] + theoretical_code )
lowercase =theoretical_code[len(lines[start_index - 1] ) :]
# Test for a diff and act accordingly.
if observed_code != theoretical_code:
diffs.append([object_name, start_index] )
if overwrite:
lowercase =lines[:start_index] + [theoretical_code] + lines[line_index:]
lowercase =start_index + 1
if overwrite and len(lowercase_ ) > 0:
# Warn the user a file has been modified.
print(f'Detected changes, rewriting {filename}.' )
with open(lowercase_ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(lowercase_ )
return diffs
def UpperCamelCase ( lowercase_ : bool = False ) -> Dict:
'''simple docstring'''
lowercase =glob.glob(os.path.join(lowercase_ , '''**/*.py''' ) , recursive=lowercase_ )
lowercase =[]
for filename in all_files:
lowercase =is_copy_consistent(lowercase_ , lowercase_ )
diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs]
if not overwrite and len(lowercase_ ) > 0:
lowercase ='''\n'''.join(lowercase_ )
raise Exception(
'''Found the following copy inconsistencies:\n'''
+ diff
+ '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' )
if __name__ == "__main__":
_UpperCAmelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
_UpperCAmelCase : Dict = parser.parse_args()
check_copies(args.fix_and_overwrite)
| 72 |
'''simple docstring'''
from manim import *
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = Rectangle(height=0.5 , width=0.5 )
_lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_lowerCAmelCase = [mem.copy() for i in range(6 )]
_lowerCAmelCase = [mem.copy() for i in range(6 )]
_lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = Text("""CPU""" , font_size=24 )
_lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_lowercase )
_lowerCAmelCase = [mem.copy() for i in range(1 )]
_lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = Text("""GPU""" , font_size=24 )
_lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase )
gpu.align_to(_lowercase , _lowercase )
gpu.set_x(gpu.get_x() - 1 )
self.add(_lowercase )
_lowerCAmelCase = [mem.copy() for i in range(6 )]
_lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
_lowerCAmelCase = Text("""Model""" , font_size=24 )
_lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase )
model.move_to([3, -1.0, 0] )
self.play(
Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , )
_lowerCAmelCase = MarkupText(
F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , )
_lowerCAmelCase = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_lowerCAmelCase = MarkupText(
F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
step_a.move_to([2, 2, 0] )
self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) )
self.add(_lowercase )
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
for i, rect in enumerate(_lowercase ):
_lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 )
cpu_target.move_to(_lowercase )
cpu_target.generate_target()
_lowerCAmelCase = 0.46 / 4
_lowerCAmelCase = 0.46 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase )
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 )
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 )
else:
cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 )
cpu_targs.append(_lowercase )
first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) )
second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) )
self.play(*_lowercase )
self.play(*_lowercase )
self.wait()
| 5 | 0 |
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
a_ : Optional[Any] = 10
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
for i in range(_UpperCAmelCase , _UpperCAmelCase):
if array[i] == target:
return i
return -1
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = len(_UpperCAmelCase)
while left <= right:
if right - left < precision:
return lin_search(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = (left + right) // 3 + 1
SCREAMING_SNAKE_CASE = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
SCREAMING_SNAKE_CASE = one_third - 1
elif array[two_third] < target:
SCREAMING_SNAKE_CASE = two_third + 1
else:
SCREAMING_SNAKE_CASE = one_third + 1
SCREAMING_SNAKE_CASE = two_third - 1
else:
return -1
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
if left < right:
if right - left < precision:
return lin_search(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = (left + right) // 3 + 1
SCREAMING_SNAKE_CASE = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(_UpperCAmelCase , one_third - 1 , _UpperCAmelCase , _UpperCAmelCase)
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , _UpperCAmelCase , _UpperCAmelCase)
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ : int = input('Enter numbers separated by comma:\n').strip()
a_ : Tuple = [int(item.strip()) for item in user_input.split(',')]
assert collection == sorted(collection), f"List must be ordered.\n{collection}."
a_ : Dict = int(input('Enter the number to be found in the list:\n').strip())
a_ : int = ite_ternary_search(collection, target)
a_ : str = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(f"""Iterative search: {target} found at positions: {resulta}""")
print(f"""Recursive search: {target} found at positions: {resulta}""")
else:
print('Not found')
| 73 |
'''simple docstring'''
import builtins
import sys
from ...utils.imports import _is_package_available
from . import cursor, input
from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor
from .keymap import KEYMAP
_lowercase = False
try:
_lowercase = _is_package_available("""google.colab""")
except ModuleNotFoundError:
pass
@input.register
class UpperCAmelCase_ :
'''simple docstring'''
def __init__( self , _lowercase = None , _lowercase = [] ):
"""simple docstring"""
_lowerCAmelCase = 0
_lowerCAmelCase = choices
_lowerCAmelCase = prompt
if sys.platform == "win32":
_lowerCAmelCase = """*"""
else:
_lowerCAmelCase = """➔ """
def _lowercase ( self , _lowercase , _lowercase = "" ):
"""simple docstring"""
if sys.platform != "win32":
writeColor(self.choices[index] , 32 , _lowercase )
else:
forceWrite(self.choices[index] , _lowercase )
def _lowercase ( self , _lowercase ):
"""simple docstring"""
if index == self.position:
forceWrite(F' {self.arrow_char} ' )
self.write_choice(_lowercase )
else:
forceWrite(F' {self.choices[index]}' )
reset_cursor()
def _lowercase ( self , _lowercase , _lowercase = 1 ):
"""simple docstring"""
_lowerCAmelCase = self.position
if direction == Direction.DOWN:
if self.position + 1 >= len(self.choices ):
return
self.position += num_spaces
else:
if self.position - 1 < 0:
return
self.position -= num_spaces
clear_line()
self.print_choice(_lowercase )
move_cursor(_lowercase , direction.name )
self.print_choice(self.position )
@input.mark(KEYMAP["""up"""] )
def _lowercase ( self ):
"""simple docstring"""
self.move_direction(Direction.UP )
@input.mark(KEYMAP["""down"""] )
def _lowercase ( self ):
"""simple docstring"""
self.move_direction(Direction.DOWN )
@input.mark(KEYMAP["""newline"""] )
def _lowercase ( self ):
"""simple docstring"""
move_cursor(len(self.choices ) - self.position , """DOWN""" )
return self.position
@input.mark(KEYMAP["""interrupt"""] )
def _lowercase ( self ):
"""simple docstring"""
move_cursor(len(self.choices ) - self.position , """DOWN""" )
raise KeyboardInterrupt
@input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = int(chr(self.current_selection ) )
_lowerCAmelCase = index - self.position
if index == self.position:
return
if index < len(self.choices ):
if self.position > index:
self.move_direction(Direction.UP , -movement )
elif self.position < index:
self.move_direction(Direction.DOWN , _lowercase )
else:
return
else:
return
def _lowercase ( self , _lowercase = 0 ):
"""simple docstring"""
if self.prompt:
linebreak()
forceWrite(self.prompt , """\n""" )
if in_colab:
forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" )
else:
forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" )
_lowerCAmelCase = default_choice
for i in range(len(self.choices ) ):
self.print_choice(_lowercase )
forceWrite("""\n""" )
move_cursor(len(self.choices ) - self.position , """UP""" )
with cursor.hide():
while True:
if in_colab:
try:
_lowerCAmelCase = int(builtins.input() )
except ValueError:
_lowerCAmelCase = default_choice
else:
_lowerCAmelCase = self.handle_input()
if choice is not None:
reset_cursor()
for _ in range(len(self.choices ) + 1 ):
move_cursor(1 , """UP""" )
clear_line()
self.write_choice(_lowercase , """\n""" )
return choice
| 5 | 0 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class __UpperCamelCase ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase__ ( self : Dict ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Dict = '''ylacombe/bark-small'''
__SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE : Union[str, Any] = '''en_speaker_1'''
__SCREAMING_SNAKE_CASE : Optional[int] = '''This is a test string'''
__SCREAMING_SNAKE_CASE : Tuple = '''speaker_embeddings_path.json'''
__SCREAMING_SNAKE_CASE : str = '''speaker_embeddings'''
def UpperCAmelCase__ ( self : Optional[Any] , **_A : int ):
"""simple docstring"""
return AutoTokenizer.from_pretrained(self.checkpoint , **_A )
def UpperCAmelCase__ ( self : Any ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ ( self : Optional[Any] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = self.get_tokenizer()
__SCREAMING_SNAKE_CASE : int = BarkProcessor(tokenizer=_A )
processor.save_pretrained(self.tmpdirname )
__SCREAMING_SNAKE_CASE : Dict = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def UpperCAmelCase__ ( self : int ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Dict = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
__SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__SCREAMING_SNAKE_CASE : Optional[Any] = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def UpperCAmelCase__ ( self : Tuple ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
__SCREAMING_SNAKE_CASE : Optional[int] = 35
__SCREAMING_SNAKE_CASE : Optional[Any] = 2
__SCREAMING_SNAKE_CASE : Optional[Any] = 8
__SCREAMING_SNAKE_CASE : Tuple = {
'''semantic_prompt''': np.ones(_A ),
'''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ),
'''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
__SCREAMING_SNAKE_CASE : Any = processor(text=self.input_string , voice_preset=_A )
__SCREAMING_SNAKE_CASE : str = inputs['''history_prompt''']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_A , np.array([] ) ).tolist() )
# test loading voice preset from npz file
__SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname , '''file.npz''' )
np.savez(_A , **_A )
__SCREAMING_SNAKE_CASE : str = processor(text=self.input_string , voice_preset=_A )
__SCREAMING_SNAKE_CASE : Union[str, Any] = inputs['''history_prompt''']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_A , np.array([] ) ).tolist() )
# test loading voice preset from the hub
__SCREAMING_SNAKE_CASE : int = processor(text=self.input_string , voice_preset=self.voice_preset )
def UpperCAmelCase__ ( self : Any ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer()
__SCREAMING_SNAKE_CASE : Optional[int] = BarkProcessor(tokenizer=_A )
__SCREAMING_SNAKE_CASE : Dict = processor(text=self.input_string )
__SCREAMING_SNAKE_CASE : str = tokenizer(
self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=_A , return_attention_mask=_A , return_token_type_ids=_A , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 74 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
_lowercase = logging.get_logger(__name__)
_lowercase = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""adapter_layer""": """encoder.layers.*.adapter_layer""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
"""pooling_layer.linear""": """projector""",
"""pooling_layer.projection""": """classifier""",
}
_lowercase = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""projector""",
"""classifier""",
]
def A (__lowerCamelCase :Optional[int] ):
_lowerCAmelCase = {}
with open(__lowerCamelCase , """r""" ) as file:
for line_number, line in enumerate(__lowerCamelCase ):
_lowerCAmelCase = line.strip()
if line:
_lowerCAmelCase = line.split()
_lowerCAmelCase = line_number
_lowerCAmelCase = words[0]
_lowerCAmelCase = value
return result
def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any] , __lowerCamelCase :List[str] ):
for attribute in key.split(""".""" ):
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__lowerCamelCase ):
_lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]]
_lowerCAmelCase = """param"""
if weight_type is not None and weight_type != "param":
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape
elif weight_type is not None and weight_type == "param":
_lowerCAmelCase = hf_pointer
for attribute in hf_param_name.split(""".""" ):
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = shape_pointer.shape
# let's reduce dimension
_lowerCAmelCase = value[0]
else:
_lowerCAmelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
_lowerCAmelCase = value
elif weight_type == "weight_g":
_lowerCAmelCase = value
elif weight_type == "weight_v":
_lowerCAmelCase = value
elif weight_type == "bias":
_lowerCAmelCase = value
elif weight_type == "param":
for attribute in hf_param_name.split(""".""" ):
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = value
else:
_lowerCAmelCase = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] , __lowerCamelCase :int ):
_lowerCAmelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__lowerCamelCase ):
_lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]]
_lowerCAmelCase = """param"""
if weight_type is not None and weight_type != "param":
_lowerCAmelCase = """.""".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
_lowerCAmelCase = """.""".join([key, hf_param_name] )
else:
_lowerCAmelCase = key
_lowerCAmelCase = value if """lm_head""" in full_key else value[0]
_lowercase = {
"""W_a""": """linear_1.weight""",
"""W_b""": """linear_2.weight""",
"""b_a""": """linear_1.bias""",
"""b_b""": """linear_2.bias""",
"""ln_W""": """norm.weight""",
"""ln_b""": """norm.bias""",
}
def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :List[str]=None , __lowerCamelCase :List[Any]=None ):
_lowerCAmelCase = False
for key, mapped_key in MAPPING.items():
_lowerCAmelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
_lowerCAmelCase = True
if "*" in mapped_key:
_lowerCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2]
_lowerCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase )
if "weight_g" in name:
_lowerCAmelCase = """weight_g"""
elif "weight_v" in name:
_lowerCAmelCase = """weight_v"""
elif "bias" in name:
_lowerCAmelCase = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
_lowerCAmelCase = """weight"""
else:
_lowerCAmelCase = None
if hf_dict is not None:
rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
else:
set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
return is_used
return is_used
def A (__lowerCamelCase :Any , __lowerCamelCase :Dict , __lowerCamelCase :Dict ):
_lowerCAmelCase = []
_lowerCAmelCase = fairseq_model.state_dict()
_lowerCAmelCase = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
_lowerCAmelCase = False
if "conv_layers" in name:
load_conv_layer(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , )
_lowerCAmelCase = True
else:
_lowerCAmelCase = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if not is_used:
unused_weights.append(__lowerCamelCase )
logger.warning(f'Unused weights: {unused_weights}' )
def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any , __lowerCamelCase :List[Any] , __lowerCamelCase :List[Any] ):
_lowerCAmelCase = full_name.split("""conv_layers.""" )[-1]
_lowerCAmelCase = name.split(""".""" )
_lowerCAmelCase = int(items[0] )
_lowerCAmelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
_lowerCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
_lowerCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
_lowerCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
_lowerCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(__lowerCamelCase )
@torch.no_grad()
def A (__lowerCamelCase :List[str] , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any]=None , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :str=True , __lowerCamelCase :str=False ):
if config_path is not None:
_lowerCAmelCase = WavaVecaConfig.from_pretrained(__lowerCamelCase )
else:
_lowerCAmelCase = WavaVecaConfig()
if is_seq_class:
_lowerCAmelCase = read_txt_into_dict(__lowerCamelCase )
_lowerCAmelCase = idalabel
_lowerCAmelCase = WavaVecaForSequenceClassification(__lowerCamelCase )
_lowerCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
feature_extractor.save_pretrained(__lowerCamelCase )
elif is_finetuned:
if dict_path:
_lowerCAmelCase = Dictionary.load(__lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_lowerCAmelCase = target_dict.pad_index
_lowerCAmelCase = target_dict.bos_index
_lowerCAmelCase = target_dict.eos_index
_lowerCAmelCase = len(target_dict.symbols )
_lowerCAmelCase = os.path.join(__lowerCamelCase , """vocab.json""" )
if not os.path.isdir(__lowerCamelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) )
return
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
_lowerCAmelCase = target_dict.indices
# fairseq has the <pad> and <s> switched
_lowerCAmelCase = 0
_lowerCAmelCase = 1
with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = WavaVecaCTCTokenizer(
__lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , )
_lowerCAmelCase = True if config.feat_extract_norm == """layer""" else False
_lowerCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
_lowerCAmelCase = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase )
processor.save_pretrained(__lowerCamelCase )
_lowerCAmelCase = WavaVecaForCTC(__lowerCamelCase )
else:
_lowerCAmelCase = WavaVecaForPreTraining(__lowerCamelCase )
if is_finetuned or is_seq_class:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
_lowerCAmelCase = argparse.Namespace(task="""audio_pretraining""" )
_lowerCAmelCase = fairseq.tasks.setup_task(__lowerCamelCase )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase )
_lowerCAmelCase = model[0].eval()
recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned )
hf_wavavec.save_pretrained(__lowerCamelCase )
if __name__ == "__main__":
_lowercase = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
parser.add_argument(
"""--is_seq_class""",
action="""store_true""",
help="""Whether the model to convert is a fine-tuned sequence classification model or not""",
)
_lowercase = parser.parse_args()
_lowercase = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 5 | 0 |
'''simple docstring'''
import operator as op
UpperCamelCase__ = '''scaler.pt'''
UpperCamelCase__ = '''pytorch_model'''
UpperCamelCase__ = '''random_states'''
UpperCamelCase__ = '''optimizer'''
UpperCamelCase__ = '''scheduler'''
UpperCamelCase__ = '''pytorch_model.bin'''
UpperCamelCase__ = '''pytorch_model.bin.index.json'''
UpperCamelCase__ = '''model.safetensors'''
UpperCamelCase__ = '''model.safetensors.index.json'''
UpperCamelCase__ = '''1.10.2'''
UpperCamelCase__ = '''py38'''
UpperCamelCase__ = '''4.17.0'''
UpperCamelCase__ = ['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge''']
UpperCamelCase__ = ['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2''']
UpperCamelCase__ = ['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP''']
UpperCamelCase__ = ['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH''']
UpperCamelCase__ = ['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT''']
UpperCamelCase__ = '''2.0.1'''
UpperCamelCase__ = ['''pdsh''', '''standard''', '''openmpi''', '''mvapich''']
UpperCamelCase__ = ['''default''', '''reduce-overhead''', '''max-autotune''']
UpperCamelCase__ = {'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt}
# These are the args for `torch.distributed.launch` for pytorch < 1.9
UpperCamelCase__ = [
'''nnodes''',
'''nproc_per_node''',
'''rdzv_backend''',
'''rdzv_endpoint''',
'''rdzv_id''',
'''rdzv_conf''',
'''standalone''',
'''max_restarts''',
'''monitor_interval''',
'''start_method''',
'''role''',
'''module''',
'''m''',
'''no_python''',
'''run_path''',
'''log_dir''',
'''r''',
'''redirects''',
'''t''',
'''tee''',
'''node_rank''',
'''master_addr''',
'''master_port''',
]
UpperCamelCase__ = ['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM''']
UpperCamelCase__ = ['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
| 75 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase = logging.get_logger(__name__)
_lowercase = {
"""edbeeching/decision-transformer-gym-hopper-medium""": (
"""https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json"""
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : List[str] = '''decision_transformer'''
_lowercase : Optional[Any] = ['''past_key_values''']
_lowercase : str = {
'''max_position_embeddings''': '''n_positions''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self , _lowercase=17 , _lowercase=4 , _lowercase=128 , _lowercase=4_096 , _lowercase=True , _lowercase=1 , _lowercase=1_024 , _lowercase=3 , _lowercase=1 , _lowercase=None , _lowercase="relu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=False , _lowercase=False , **_lowercase , ):
"""simple docstring"""
_lowerCAmelCase = state_dim
_lowerCAmelCase = act_dim
_lowerCAmelCase = hidden_size
_lowerCAmelCase = max_ep_len
_lowerCAmelCase = action_tanh
_lowerCAmelCase = vocab_size
_lowerCAmelCase = n_positions
_lowerCAmelCase = n_layer
_lowerCAmelCase = n_head
_lowerCAmelCase = n_inner
_lowerCAmelCase = activation_function
_lowerCAmelCase = resid_pdrop
_lowerCAmelCase = embd_pdrop
_lowerCAmelCase = attn_pdrop
_lowerCAmelCase = layer_norm_epsilon
_lowerCAmelCase = initializer_range
_lowerCAmelCase = scale_attn_weights
_lowerCAmelCase = use_cache
_lowerCAmelCase = scale_attn_by_inverse_layer_idx
_lowerCAmelCase = reorder_and_upcast_attn
_lowerCAmelCase = bos_token_id
_lowerCAmelCase = eos_token_id
super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
| 5 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a_ = {
'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Swinv2ForImageClassification',
'Swinv2ForMaskedImageModeling',
'Swinv2Model',
'Swinv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 76 |
'''simple docstring'''
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"""The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"""
)
_lowercase = None
_lowercase = {
"""7B""": 11008,
"""13B""": 13824,
"""30B""": 17920,
"""65B""": 22016,
"""70B""": 28672,
}
_lowercase = {
"""7B""": 1,
"""7Bf""": 1,
"""13B""": 2,
"""13Bf""": 2,
"""30B""": 4,
"""65B""": 8,
"""70B""": 8,
"""70Bf""": 8,
}
def A (__lowerCamelCase :int , __lowerCamelCase :Optional[Any]=1 , __lowerCamelCase :List[Any]=256 ):
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of)
def A (__lowerCamelCase :Any ):
with open(__lowerCamelCase , """r""" ) as f:
return json.load(__lowerCamelCase )
def A (__lowerCamelCase :List[Any] , __lowerCamelCase :int ):
with open(__lowerCamelCase , """w""" ) as f:
json.dump(__lowerCamelCase , __lowerCamelCase )
def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple=True ):
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
_lowerCAmelCase = os.path.join(__lowerCamelCase , """tmp""" )
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
_lowerCAmelCase = read_json(os.path.join(__lowerCamelCase , """params.json""" ) )
_lowerCAmelCase = NUM_SHARDS[model_size]
_lowerCAmelCase = params["""n_layers"""]
_lowerCAmelCase = params["""n_heads"""]
_lowerCAmelCase = n_heads // num_shards
_lowerCAmelCase = params["""dim"""]
_lowerCAmelCase = dim // n_heads
_lowerCAmelCase = 10_000.0
_lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , __lowerCamelCase , 2 ).float() / dims_per_head))
if "n_kv_heads" in params:
_lowerCAmelCase = params["""n_kv_heads"""] # for GQA / MQA
_lowerCAmelCase = n_heads_per_shard // num_key_value_heads
_lowerCAmelCase = dim // num_key_value_heads
else: # compatibility with other checkpoints
_lowerCAmelCase = n_heads
_lowerCAmelCase = n_heads_per_shard
_lowerCAmelCase = dim
# permute for sliced rotary
def permute(__lowerCamelCase :Optional[int] , __lowerCamelCase :str=n_heads , __lowerCamelCase :str=dim , __lowerCamelCase :List[Any]=dim ):
return w.view(__lowerCamelCase , dima // n_heads // 2 , 2 , __lowerCamelCase ).transpose(1 , 2 ).reshape(__lowerCamelCase , __lowerCamelCase )
print(f'Fetching all parameters from the checkpoint at {input_base_path}.' )
# Load weights
if model_size == "7B":
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
_lowerCAmelCase = torch.load(os.path.join(__lowerCamelCase , """consolidated.00.pth""" ) , map_location="""cpu""" )
else:
# Sharded
_lowerCAmelCase = [
torch.load(os.path.join(__lowerCamelCase , f'consolidated.{i:02d}.pth' ) , map_location="""cpu""" )
for i in range(__lowerCamelCase )
]
_lowerCAmelCase = 0
_lowerCAmelCase = {"""weight_map""": {}}
for layer_i in range(__lowerCamelCase ):
_lowerCAmelCase = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin'
if model_size == "7B":
# Unsharded
_lowerCAmelCase = {
f'model.layers.{layer_i}.self_attn.q_proj.weight': permute(
loaded[f'layers.{layer_i}.attention.wq.weight'] ),
f'model.layers.{layer_i}.self_attn.k_proj.weight': permute(
loaded[f'layers.{layer_i}.attention.wk.weight'] ),
f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'],
f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'],
f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'],
f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'],
f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'],
f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'],
f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
_lowerCAmelCase = {
f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][
f'layers.{layer_i}.attention_norm.weight'
].clone(),
f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][
f'layers.{layer_i}.ffn_norm.weight'
].clone(),
}
_lowerCAmelCase = permute(
torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
for i in range(__lowerCamelCase )
] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) )
_lowerCAmelCase = permute(
torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wk.weight'].view(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
for i in range(__lowerCamelCase )
] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , )
_lowerCAmelCase = torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wv.weight'].view(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
for i in range(__lowerCamelCase )
] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase )
_lowerCAmelCase = torch.cat(
[loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(__lowerCamelCase )] , dim=1 )
_lowerCAmelCase = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__lowerCamelCase )] , dim=0 )
_lowerCAmelCase = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__lowerCamelCase )] , dim=1 )
_lowerCAmelCase = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__lowerCamelCase )] , dim=0 )
_lowerCAmelCase = inv_freq
for k, v in state_dict.items():
_lowerCAmelCase = filename
param_count += v.numel()
torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) )
_lowerCAmelCase = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin'
if model_size == "7B":
# Unsharded
_lowerCAmelCase = {
"""model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""],
"""model.norm.weight""": loaded["""norm.weight"""],
"""lm_head.weight""": loaded["""output.weight"""],
}
else:
_lowerCAmelCase = {
"""model.norm.weight""": loaded[0]["""norm.weight"""],
"""model.embed_tokens.weight""": torch.cat(
[loaded[i]["""tok_embeddings.weight"""] for i in range(__lowerCamelCase )] , dim=1 ),
"""lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__lowerCamelCase )] , dim=0 ),
}
for k, v in state_dict.items():
_lowerCAmelCase = filename
param_count += v.numel()
torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) )
# Write configs
_lowerCAmelCase = {"""total_size""": param_count * 2}
write_json(__lowerCamelCase , os.path.join(__lowerCamelCase , """pytorch_model.bin.index.json""" ) )
_lowerCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1
_lowerCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256
_lowerCAmelCase = LlamaConfig(
hidden_size=__lowerCamelCase , intermediate_size=compute_intermediate_size(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=__lowerCamelCase , )
config.save_pretrained(__lowerCamelCase )
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print("""Loading the checkpoint in a Llama model.""" )
_lowerCAmelCase = LlamaForCausalLM.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=__lowerCamelCase )
# Avoid saving this as part of the config.
del model.config._name_or_path
print("""Saving in the Transformers format.""" )
model.save_pretrained(__lowerCamelCase , safe_serialization=__lowerCamelCase )
shutil.rmtree(__lowerCamelCase )
def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any] ):
# Initialize the tokenizer based on the `spm` model
_lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' )
_lowerCAmelCase = tokenizer_class(__lowerCamelCase )
tokenizer.save_pretrained(__lowerCamelCase )
def A ():
_lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument(
"""--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , )
parser.add_argument(
"""--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , )
parser.add_argument(
"""--output_dir""" , help="""Location to write HF model and tokenizer""" , )
parser.add_argument("""--safe_serialization""" , type=__lowerCamelCase , help="""Whether or not to save using `safetensors`.""" )
_lowerCAmelCase = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , )
_lowerCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" )
write_tokenizer(args.output_dir , __lowerCamelCase )
if __name__ == "__main__":
main()
| 5 | 0 |
"""simple docstring"""
import torch
from diffusers import DiffusionPipeline
class a__ ( __magic_name__ ):
def __init__( self : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any):
"""simple docstring"""
super().__init__()
self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_)
def __call__( self : Optional[int]):
"""simple docstring"""
__UpperCAmelCase : List[str] = torch.randn(
(1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , )
__UpperCAmelCase : int = 1
__UpperCAmelCase : str = self.unet(UpperCamelCase_ , UpperCamelCase_).sample
__UpperCAmelCase : List[Any] = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_).prev_sample
__UpperCAmelCase : str = scheduler_output - scheduler_output + torch.ones_like(UpperCamelCase_)
return result
| 77 |
'''simple docstring'''
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : Tuple = (DDPMScheduler,)
def _lowercase ( self , **_lowercase ):
"""simple docstring"""
_lowerCAmelCase = {
"""num_train_timesteps""": 1_000,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**_lowercase )
return config
def _lowercase ( self ):
"""simple docstring"""
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
self.check_over_configs(thresholding=_lowercase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , )
def _lowercase ( self ):
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
for t in [0, 500, 999]:
self.check_over_forward(time_step=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = len(_lowercase )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
_lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(_lowercase ) ):
# 1. predict noise residual
_lowerCAmelCase = model(_lowercase , _lowercase )
# 2. predict previous mean of sample x_t-1
_lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
_lowerCAmelCase = pred_prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowercase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 258.9606 ) < 1e-2
assert abs(result_mean.item() - 0.3372 ) < 1e-3
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" )
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = len(_lowercase )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
_lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(_lowercase ) ):
# 1. predict noise residual
_lowerCAmelCase = model(_lowercase , _lowercase )
# 2. predict previous mean of sample x_t-1
_lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
_lowerCAmelCase = pred_prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowercase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 202.0296 ) < 1e-2
assert abs(result_mean.item() - 0.2631 ) < 1e-3
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=_lowercase )
_lowerCAmelCase = scheduler.timesteps
for i, timestep in enumerate(_lowercase ):
if i == len(_lowercase ) - 1:
_lowerCAmelCase = -1
else:
_lowerCAmelCase = timesteps[i + 1]
_lowerCAmelCase = scheduler.previous_timestep(_lowercase )
_lowerCAmelCase = prev_t.item()
self.assertEqual(_lowercase , _lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = [100, 87, 50, 51, 0]
with self.assertRaises(_lowercase , msg="""`custom_timesteps` must be in descending order.""" ):
scheduler.set_timesteps(timesteps=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = [100, 87, 50, 1, 0]
_lowerCAmelCase = len(_lowercase )
with self.assertRaises(_lowercase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ):
scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowercase )
_lowerCAmelCase = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_lowercase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=_lowercase )
| 5 | 0 |
'''simple docstring'''
from typing import Any
def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : list , snake_case_ : dict , snake_case_ : dict , snake_case_ : dict , ) -> list:
'''simple docstring'''
_validation(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , )
# Creates data structures and fill initial step
UpperCAmelCase_ = {}
UpperCAmelCase_ = {}
for state in states_space:
UpperCAmelCase_ = observations_space[0]
UpperCAmelCase_ = (
initial_probabilities[state] * emission_probabilities[state][observation]
)
UpperCAmelCase_ = None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1 , len(snake_case_ ) ):
UpperCAmelCase_ = observations_space[o]
UpperCAmelCase_ = observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
UpperCAmelCase_ = ""
UpperCAmelCase_ = -1
for k_state in states_space:
UpperCAmelCase_ = (
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
UpperCAmelCase_ = probability
UpperCAmelCase_ = k_state
# Update probabilities and pointers dicts
UpperCAmelCase_ = (
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
UpperCAmelCase_ = arg_max
# The final observation
UpperCAmelCase_ = observations_space[len(snake_case_ ) - 1]
# argmax for given final observation
UpperCAmelCase_ = ""
UpperCAmelCase_ = -1
for k_state in states_space:
UpperCAmelCase_ = probabilities[(k_state, final_observation)]
if probability > max_probability:
UpperCAmelCase_ = probability
UpperCAmelCase_ = k_state
UpperCAmelCase_ = arg_max
# Process pointers backwards
UpperCAmelCase_ = last_state
UpperCAmelCase_ = []
for o in range(len(snake_case_ ) - 1 , -1 , -1 ):
result.append(snake_case_ )
UpperCAmelCase_ = pointers[previous, observations_space[o]]
result.reverse()
return result
def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Any , snake_case_ : Any , snake_case_ : Any , snake_case_ : Any , ) -> None:
'''simple docstring'''
_validate_not_empty(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , )
_validate_lists(snake_case_ , snake_case_ )
_validate_dicts(
snake_case_ , snake_case_ , snake_case_ )
def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Any , snake_case_ : Any , snake_case_ : Any , snake_case_ : Any , ) -> None:
'''simple docstring'''
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError("There's an empty parameter" )
def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Any ) -> None:
'''simple docstring'''
_validate_list(snake_case_ , "observations_space" )
_validate_list(snake_case_ , "states_space" )
def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : str ) -> None:
'''simple docstring'''
if not isinstance(_object , snake_case_ ):
UpperCAmelCase_ = f"""{var_name} must be a list"""
raise ValueError(snake_case_ )
else:
for x in _object:
if not isinstance(snake_case_ , snake_case_ ):
UpperCAmelCase_ = f"""{var_name} must be a list of strings"""
raise ValueError(snake_case_ )
def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Any , snake_case_ : Any , ) -> None:
'''simple docstring'''
_validate_dict(snake_case_ , "initial_probabilities" , snake_case_ )
_validate_nested_dict(snake_case_ , "transition_probabilities" )
_validate_nested_dict(snake_case_ , "emission_probabilities" )
def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : str ) -> None:
'''simple docstring'''
_validate_dict(_object , snake_case_ , snake_case_ )
for x in _object.values():
_validate_dict(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : str , snake_case_ : type , snake_case_ : bool = False ) -> None:
'''simple docstring'''
if not isinstance(_object , snake_case_ ):
UpperCAmelCase_ = f"""{var_name} must be a dict"""
raise ValueError(snake_case_ )
if not all(isinstance(snake_case_ , snake_case_ ) for x in _object ):
UpperCAmelCase_ = f"""{var_name} all keys must be strings"""
raise ValueError(snake_case_ )
if not all(isinstance(snake_case_ , snake_case_ ) for x in _object.values() ):
UpperCAmelCase_ = "nested dictionary " if nested else ""
UpperCAmelCase_ = f"""{var_name} {nested_text}all values must be {value_type.__name__}"""
raise ValueError(snake_case_ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 78 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
_lowercase = logging.get_logger(__name__)
_lowercase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
_lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class UpperCAmelCase_ :
'''simple docstring'''
_lowercase : str = field(
default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_SCREAMING_SNAKE_CASE )} )
_lowercase : str = field(
default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} )
_lowercase : int = field(
default=1_2_8 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
_lowercase : int = field(
default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , )
_lowercase : int = field(
default=6_4 , metadata={
'''help''': (
'''The maximum number of tokens for the question. Questions longer than this will '''
'''be truncated to this length.'''
)
} , )
_lowercase : int = field(
default=3_0 , metadata={
'''help''': (
'''The maximum length of an answer that can be generated. This is needed because the start '''
'''and end predictions are not conditioned on one another.'''
)
} , )
_lowercase : bool = field(
default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
_lowercase : bool = field(
default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} )
_lowercase : float = field(
default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
_lowercase : int = field(
default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
_lowercase : int = field(
default=0 , metadata={
'''help''': (
'''language id of input for language-specific xlm models (see'''
''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'''
)
} , )
_lowercase : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} )
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : str = '''train'''
_lowercase : Union[str, Any] = '''dev'''
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : SquadDataTrainingArguments
_lowercase : List[SquadFeatures]
_lowercase : Split
_lowercase : bool
def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = False , _lowercase = None , _lowercase = "pt" , ):
"""simple docstring"""
_lowerCAmelCase = args
_lowerCAmelCase = is_language_sensitive
_lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(_lowercase , _lowercase ):
try:
_lowerCAmelCase = Split[mode]
except KeyError:
raise KeyError("""mode is not a valid split name""" )
_lowerCAmelCase = mode
# Load data features from cache or dataset file
_lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1"""
_lowerCAmelCase = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
_lowerCAmelCase = cached_features_file + """.lock"""
with FileLock(_lowercase ):
if os.path.exists(_lowercase ) and not args.overwrite_cache:
_lowerCAmelCase = time.time()
_lowerCAmelCase = torch.load(_lowercase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
_lowerCAmelCase = self.old_features["""features"""]
_lowerCAmelCase = self.old_features.get("""dataset""" , _lowercase )
_lowerCAmelCase = self.old_features.get("""examples""" , _lowercase )
logger.info(
F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'
""" future run""" )
else:
if mode == Split.dev:
_lowerCAmelCase = self.processor.get_dev_examples(args.data_dir )
else:
_lowerCAmelCase = self.processor.get_train_examples(args.data_dir )
_lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features(
examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , )
_lowerCAmelCase = time.time()
torch.save(
{"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowercase , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' )
def __len__( self ):
"""simple docstring"""
return len(self.features )
def __getitem__( self , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = self.features[i]
_lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float )
_lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float )
_lowerCAmelCase = {
"""input_ids""": input_ids,
"""attention_mask""": attention_mask,
"""token_type_ids""": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"""is_impossible""": is_impossible} )
if self.is_language_sensitive:
inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
_lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long )
_lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} )
return inputs
| 5 | 0 |
from __future__ import annotations
def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> None:
'''simple docstring'''
UpperCAmelCase__ : Any = len(__lowerCamelCase )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(__lowerCamelCase ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __lowerCamelCase , __lowerCamelCase , )
def _lowerCamelCase ( __lowerCamelCase ) -> None:
'''simple docstring'''
UpperCAmelCase__ : list[list[str]] = []
depth_first_search([] , [] , [] , __lowerCamelCase , __lowerCamelCase )
# Print all the boards
for board in boards:
for column in board:
print(__lowerCamelCase )
print("""""" )
print(len(__lowerCamelCase ) , """solutions were found.""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 79 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase = logging.get_logger(__name__)
_lowercase = {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json"""
),
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json"""
),
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json"""
),
}
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : str = '''dpr'''
def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase="absolute" , _lowercase = 0 , **_lowercase , ):
"""simple docstring"""
super().__init__(pad_token_id=_lowercase , **_lowercase )
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = hidden_act
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = type_vocab_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = projection_dim
_lowerCAmelCase = position_embedding_type
| 5 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionInstructPixaPixPipeline,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils import floats_tensor, load_image, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
__snake_case :Optional[int] = StableDiffusionInstructPixaPixPipeline
__snake_case :List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'}
__snake_case :Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
__snake_case :int = IMAGE_TO_IMAGE_IMAGE_PARAMS
__snake_case :int = IMAGE_TO_IMAGE_IMAGE_PARAMS
def _a ( self : List[Any] ) -> Tuple:
"""simple docstring"""
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
__lowercase = PNDMScheduler(skip_prk_steps=_lowerCAmelCase )
torch.manual_seed(0 )
__lowercase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
__lowercase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
__lowercase = CLIPTextModel(_lowerCAmelCase )
__lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__lowercase = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def _a ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=0 ) -> Any:
"""simple docstring"""
__lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase )
__lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__lowercase = Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("""RGB""" )
if str(_lowerCAmelCase ).startswith("""mps""" ):
__lowercase = torch.manual_seed(_lowerCAmelCase )
else:
__lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase )
__lowercase = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""image_guidance_scale""": 1,
"""output_type""": """numpy""",
}
return inputs
def _a ( self : str ) -> Tuple:
"""simple docstring"""
__lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components()
__lowercase = StableDiffusionInstructPixaPixPipeline(**_lowerCAmelCase )
__lowercase = sd_pipe.to(_lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
__lowercase = self.get_dummy_inputs(_lowerCAmelCase )
__lowercase = sd_pipe(**_lowerCAmelCase ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowercase = np.array([0.7_526, 0.3_750, 0.4_547, 0.6_117, 0.5_866, 0.5_016, 0.4_327, 0.5_642, 0.4_815] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _a ( self : Any ) -> Any:
"""simple docstring"""
__lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components()
__lowercase = StableDiffusionInstructPixaPixPipeline(**_lowerCAmelCase )
__lowercase = sd_pipe.to(_lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
__lowercase = self.get_dummy_inputs(_lowerCAmelCase )
__lowercase = """french fries"""
__lowercase = sd_pipe(**_lowerCAmelCase , negative_prompt=_lowerCAmelCase )
__lowercase = output.images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowercase = np.array([0.7_511, 0.3_642, 0.4_553, 0.6_236, 0.5_797, 0.5_013, 0.4_343, 0.5_611, 0.4_831] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _a ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components()
__lowercase = StableDiffusionInstructPixaPixPipeline(**_lowerCAmelCase )
__lowercase = sd_pipe.to(_lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
__lowercase = self.get_dummy_inputs(_lowerCAmelCase )
__lowercase = [inputs["""prompt"""]] * 2
__lowercase = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0
__lowercase = torch.from_numpy(_lowerCAmelCase ).unsqueeze(0 ).to(_lowerCAmelCase )
__lowercase = image / 2 + 0.5
__lowercase = image.permute(0 , 3 , 1 , 2 )
__lowercase = image.repeat(2 , 1 , 1 , 1 )
__lowercase = sd_pipe(**_lowerCAmelCase ).images
__lowercase = image[-1, -3:, -3:, -1]
assert image.shape == (2, 32, 32, 3)
__lowercase = np.array([0.5_812, 0.5_748, 0.5_222, 0.5_908, 0.5_695, 0.7_174, 0.6_804, 0.5_523, 0.5_579] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _a ( self : int ) -> List[str]:
"""simple docstring"""
__lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components()
__lowercase = EulerAncestralDiscreteScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" )
__lowercase = StableDiffusionInstructPixaPixPipeline(**_lowerCAmelCase )
__lowercase = sd_pipe.to(_lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
__lowercase = self.get_dummy_inputs(_lowerCAmelCase )
__lowercase = sd_pipe(**_lowerCAmelCase ).images
__lowercase = image[0, -3:, -3:, -1]
__lowercase = [round(_lowerCAmelCase , 4 ) for x in image_slice.flatten().tolist()]
print(""",""".join([str(_lowerCAmelCase ) for x in slice] ) )
assert image.shape == (1, 32, 32, 3)
__lowercase = np.array([0.7_417, 0.3_842, 0.4_732, 0.5_776, 0.5_891, 0.5_139, 0.4_052, 0.5_673, 0.4_986] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _a ( self : List[str] ) -> Dict:
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def _a ( self : Union[str, Any] ) -> int:
"""simple docstring"""
__lowercase = self.get_dummy_components()
__lowercase = StableDiffusionInstructPixaPixPipeline(**_lowerCAmelCase )
__lowercase = VaeImageProcessor(do_resize=_lowerCAmelCase , do_normalize=_lowerCAmelCase )
__lowercase = pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
__lowercase = pipe(**self.get_dummy_inputs_by_type(_lowerCAmelCase , input_image_type="""pt""" ) )[0]
__lowercase = components["""vae"""]
__lowercase = self.get_dummy_inputs_by_type(_lowerCAmelCase , input_image_type="""pt""" )
for image_param in self.image_latents_params:
if image_param in inputs.keys():
__lowercase = vae.encode(inputs[image_param] ).latent_dist.mode()
__lowercase = pipe(**_lowerCAmelCase )[0]
__lowercase = np.abs(out - out_latents_inputs ).max()
self.assertLess(_lowerCAmelCase , 1e-4 , """passing latents as image input generate different result from passing image""" )
@slow
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
def _a ( self : Dict ) -> Optional[int]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _a ( self : Dict , _lowerCAmelCase : str=0 ) -> Optional[int]:
"""simple docstring"""
__lowercase = torch.manual_seed(_lowerCAmelCase )
__lowercase = load_image(
"""https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" )
__lowercase = {
"""prompt""": """turn him into a cyborg""",
"""image""": image,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 7.5,
"""image_guidance_scale""": 1.0,
"""output_type""": """numpy""",
}
return inputs
def _a ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
__lowercase = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=_lowerCAmelCase )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
__lowercase = self.get_inputs()
__lowercase = pipe(**_lowerCAmelCase ).images
__lowercase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
__lowercase = np.array([0.5_902, 0.6_015, 0.6_027, 0.5_983, 0.6_092, 0.6_061, 0.5_765, 0.5_785, 0.5_555] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def _a ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=_lowerCAmelCase )
__lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
__lowercase = self.get_inputs()
__lowercase = pipe(**_lowerCAmelCase ).images
__lowercase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
__lowercase = np.array([0.6_578, 0.6_817, 0.6_972, 0.6_761, 0.6_856, 0.6_916, 0.6_428, 0.6_516, 0.6_301] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def _a ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=_lowerCAmelCase )
__lowercase = DDIMScheduler.from_config(pipe.scheduler.config )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
__lowercase = self.get_inputs()
__lowercase = pipe(**_lowerCAmelCase ).images
__lowercase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
__lowercase = np.array([0.3_828, 0.3_834, 0.3_818, 0.3_792, 0.3_865, 0.3_752, 0.3_792, 0.3_847, 0.3_753] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def _a ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
__lowercase = 0
def callback_fn(_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : torch.FloatTensor ) -> None:
__lowercase = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
__lowercase = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
__lowercase = latents[0, -3:, -3:, -1]
__lowercase = np.array([-0.2_463, -0.4_644, -0.9_756, 1.5_176, 1.4_414, 0.7_866, 0.9_897, 0.8_521, 0.7_983] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
elif step == 2:
__lowercase = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
__lowercase = latents[0, -3:, -3:, -1]
__lowercase = np.array([-0.2_644, -0.4_626, -0.9_653, 1.5_176, 1.4_551, 0.7_686, 0.9_805, 0.8_452, 0.8_115] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
__lowercase = False
__lowercase = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=_lowerCAmelCase , torch_dtype=torch.floataa )
__lowercase = pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
__lowercase = self.get_inputs()
pipe(**_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def _a ( self : Optional[int] ) -> str:
"""simple docstring"""
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__lowercase = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=_lowerCAmelCase , torch_dtype=torch.floataa )
__lowercase = pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
__lowercase = self.get_inputs()
__lowercase = pipe(**_lowerCAmelCase )
__lowercase = torch.cuda.max_memory_allocated()
# make sure that less than 2.2 GB is allocated
assert mem_bytes < 2.2 * 10**9
def _a ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.get_inputs()
# resize to resolution that is divisible by 8 but not 16 or 32
__lowercase = inputs["""image"""].resize((504, 504) )
__lowercase = """timbrooks/instruct-pix2pix"""
__lowercase = StableDiffusionInstructPixaPixPipeline.from_pretrained(
_lowerCAmelCase , safety_checker=_lowerCAmelCase , )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
__lowercase = pipe(**_lowerCAmelCase )
__lowercase = output.images[0]
__lowercase = image[255:258, 383:386, -1]
assert image.shape == (504, 504, 3)
__lowercase = np.array([0.2_726, 0.2_529, 0.2_664, 0.2_655, 0.2_641, 0.2_642, 0.2_591, 0.2_649, 0.2_590] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
| 80 |
'''simple docstring'''
from sklearn.metrics import mean_squared_error
import datasets
_lowercase = """\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
"""
_lowercase = """\
Mean Squared Error(MSE) is the average of the square of difference between the predicted
and actual values.
"""
_lowercase = """
Args:
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
sample_weight: array-like of shape (n_samples,), default=None
Sample weights.
multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
\"raw_values\" : Returns a full set of errors in case of multioutput input.
\"uniform_average\" : Errors of all outputs are averaged with uniform weight.
squared : bool, default=True
If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.
Returns:
mse : mean squared error.
Examples:
>>> mse_metric = datasets.load_metric(\"mse\")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.375}
>>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
>>> print(rmse_result)
{'mse': 0.6123724356957945}
If you're using multi-dimensional lists, then set the config as follows :
>>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
>>> references = [[0, 2], [-1, 2], [8, -5]]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.7083333333333334}
>>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mse': array([0.41666667, 1. ])}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def _lowercase ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"""
] , )
def _lowercase ( self ):
"""simple docstring"""
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("""float""" ) ),
"references": datasets.Sequence(datasets.Value("""float""" ) ),
}
else:
return {
"predictions": datasets.Value("""float""" ),
"references": datasets.Value("""float""" ),
}
def _lowercase ( self , _lowercase , _lowercase , _lowercase=None , _lowercase="uniform_average" , _lowercase=True ):
"""simple docstring"""
_lowerCAmelCase = mean_squared_error(
_lowercase , _lowercase , sample_weight=_lowercase , multioutput=_lowercase , squared=_lowercase )
return {"mse": mse}
| 5 | 0 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.