code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import requests _snake_case : Optional[Any] = "YOUR API KEY" def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase = giphy_api_key ): __snake_case : Optional[int] = "+".join(query.split() ) __snake_case : List[Any] = F'https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}' __snake_case : Any = requests.get(__lowerCamelCase ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("\n".join(get_gifs("space ship")))
81
'''simple docstring''' def A (): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: _lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def A (): return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
5
0
"""simple docstring""" import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): lowerCamelCase = True from torch.cuda.amp import autocast lowerCamelCase = logging.getLogger(__name__) @dataclass class lowercase__ : '''simple docstring''' UpperCamelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) UpperCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to log verbose messages or not.'''} , ) UpperCamelCase = field( default=2.0 , metadata={'''help''': '''Maximum temperature for gumbel softmax.'''} ) UpperCamelCase = field( default=0.5 , metadata={'''help''': '''Minimum temperature for gumbel softmax.'''} ) UpperCamelCase = field( default=0.9_9_9_9_9_5 , metadata={'''help''': '''Decay of gumbel temperature during training.'''} ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) UpperCAmelCase_ = logging.WARNING if model_args.verbose_logging: UpperCAmelCase_ = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): UpperCAmelCase_ = logging.INFO logger.setLevel(lowerCAmelCase__ ) @dataclass class lowercase__ : '''simple docstring''' UpperCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) UpperCamelCase = field( default='''validation''' , metadata={ '''help''': ( '''The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) UpperCamelCase = field( default='''file''' , metadata={'''help''': '''Column in the dataset that contains speech file path. Defaults to \'file\''''} , ) UpperCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) UpperCamelCase = field( default=1 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=2_0.0 , metadata={'''help''': '''Filter audio files that are longer than `max_duration_in_seconds` seconds'''} ) @dataclass class lowercase__ : '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = "longest" UpperCamelCase = None UpperCamelCase = None def __call__( self : Optional[int] , _UpperCAmelCase : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase_ = self.feature_extractor.pad( _UpperCAmelCase , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) UpperCAmelCase_ = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) UpperCAmelCase_ = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula UpperCAmelCase_ = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) UpperCAmelCase_ = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to UpperCAmelCase_ = 1 UpperCAmelCase_ = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices UpperCAmelCase_ = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=_UpperCAmelCase , min_masks=2 , ) return batch class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , *_UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=1 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Optional[Any]=1.0 , **_UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = 0 UpperCAmelCase_ = max_gumbel_temp UpperCAmelCase_ = min_gumbel_temp UpperCAmelCase_ = gumbel_temp_decay def lowercase__ ( self : List[Any] , _UpperCAmelCase : nn.Module , _UpperCAmelCase : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: '''simple docstring''' model.train() UpperCAmelCase_ = self._prepare_inputs(_UpperCAmelCase ) if self.use_amp: with autocast(): UpperCAmelCase_ = self.compute_loss(_UpperCAmelCase , _UpperCAmelCase ) else: UpperCAmelCase_ = self.compute_loss(_UpperCAmelCase , _UpperCAmelCase ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": UpperCAmelCase_ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": UpperCAmelCase_ = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: UpperCAmelCase_ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_UpperCAmelCase ).backward() elif self.use_apex: with amp.scale_loss(_UpperCAmelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_UpperCAmelCase ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def a__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_args_into_dataclasses() configure_logger(lowerCAmelCase__ , lowerCAmelCase__ ) # Downloading and loading a dataset from the hub. UpperCAmelCase_ = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" UpperCAmelCase_ = DatasetDict() UpperCAmelCase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" , cache_dir=model_args.cache_dir , ) UpperCAmelCase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" UpperCAmelCase_ = DatasetDict() UpperCAmelCase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) UpperCAmelCase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}""" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=lowerCAmelCase__ ) def prepare_dataset(lowerCAmelCase__ ): # check that all files have the correct sampling rate UpperCAmelCase_ , UpperCAmelCase_ = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays UpperCAmelCase_ = datasets.map( lowerCAmelCase__ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long UpperCAmelCase_ = vectorized_datasets.filter( lambda lowerCAmelCase__ : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(lowerCAmelCase__ ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` UpperCAmelCase_ = vectorized_datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 UpperCAmelCase_ = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) UpperCAmelCase_ = WavaVecaForPreTraining(lowerCAmelCase__ ) UpperCAmelCase_ = DataCollatorForWavaVecaPretraining(model=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaPreTrainer( model=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=lowerCAmelCase__ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
82
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
5
0
"""simple docstring""" lowerCAmelCase__ = 0 # The first color of the flag. lowerCAmelCase__ = 1 # The second color of the flag. lowerCAmelCase__ = 2 # The third color of the flag. lowerCAmelCase__ = (red, white, blue) def snake_case_ ( A_ : list ): '''simple docstring''' if not sequence: return [] if len(A_ ) == 1: return list(A_ ) _lowerCamelCase : List[str] = 0 _lowerCamelCase : Tuple = len(A_ ) - 1 _lowerCamelCase : List[str] = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCamelCase , _lowerCamelCase : int = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCamelCase , _lowerCamelCase : Optional[int] = sequence[high], sequence[mid] high -= 1 else: _lowerCamelCase : List[Any] = F'''The elements inside the sequence must contains only {colors} values''' raise ValueError(A_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = input('''Enter numbers separated by commas:\n''').strip() lowerCAmelCase__ = [int(item.strip()) for item in user_input.split(''',''')] print(F"""{dutch_national_flag_sort(unsorted)}""")
83
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
5
0
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class A_ : '''simple docstring''' def __init__( self ): lowercase = '' lowercase = '' lowercase = [] lowercase = 0 lowercase = 256 lowercase = 0 lowercase = 0 lowercase = 0 lowercase = 0 def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = cva.imread(snake_case , 0 ) lowercase = copy.deepcopy(self.img ) lowercase , lowercase , lowercase = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) lowercase = np.sum(snake_case ) for i in range(len(snake_case ) ): lowercase = x[i] / self.k self.sk += prk lowercase = (self.L - 1) * self.sk if self.rem != 0: lowercase = int(last % last ) lowercase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case ) lowercase = int(np.ma.count(self.img ) / self.img[1].size ) lowercase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowercase = self.img[j][i] if num != self.last_list[num]: lowercase = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def SCREAMING_SNAKE_CASE__ ( self ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def SCREAMING_SNAKE_CASE__ ( self ): cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": UpperCAmelCase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') UpperCAmelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
84
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") _lowercase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) _lowercase = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) _lowercase = BeautifulSoup(res.text, """html.parser""") _lowercase = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
5
0
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu SCREAMING_SNAKE_CASE__ : Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: SCREAMING_SNAKE_CASE__ : Tuple = json.load(f) @require_torch class snake_case ( unittest.TestCase ): def __lowercase( self : List[str] , a_ : Any )-> str: """simple docstring""" return FSMTTokenizer.from_pretrained(a_ ) def __lowercase( self : int , a_ : Union[str, Any] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = FSMTForConditionalGeneration.from_pretrained(a_ ).to(a_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def __lowercase( self : int , a_ : Optional[int] , a_ : str )-> List[str]: """simple docstring""" # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality SCREAMING_SNAKE_CASE__ : Any = F'''facebook/wmt19-{pair}''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_tokenizer(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_model(a_ ) SCREAMING_SNAKE_CASE__ : int = bleu_data[pair]['src'] SCREAMING_SNAKE_CASE__ : Optional[int] = bleu_data[pair]['tgt'] SCREAMING_SNAKE_CASE__ : Any = tokenizer(a_ , return_tensors='pt' , truncation=a_ , padding='longest' ).to(a_ ) SCREAMING_SNAKE_CASE__ : int = model.generate( input_ids=batch.input_ids , num_beams=8 , ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.batch_decode( a_ , skip_special_tokens=a_ , clean_up_tokenization_spaces=a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = calculate_bleu(a_ , a_ ) print(a_ ) self.assertGreaterEqual(scores['bleu'] , a_ )
85
'''simple docstring''' import os from datetime import datetime as dt from github import Github _lowercase = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def A (): _lowerCAmelCase = Github(os.environ["""GITHUB_TOKEN"""] ) _lowerCAmelCase = g.get_repo("""huggingface/diffusers""" ) _lowerCAmelCase = repo.get_issues(state="""open""" ) for issue in open_issues: _lowerCAmelCase = sorted(issue.get_comments() , key=lambda __lowerCamelCase : i.created_at , reverse=__lowerCamelCase ) _lowerCAmelCase = comments[0] if len(__lowerCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
5
0
import glob import os import random from string import ascii_lowercase, digits import cva __a :Any = '' __a :int = '' __a :str = '' __a :Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def __snake_case ( ): """simple docstring""" A_ , A_ = get_dataset(__UpperCamelCase ,__UpperCamelCase ) print("Processing..." ) A_ , A_ , A_ = update_image_and_anno(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) for index, image in enumerate(__UpperCamelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' A_ = random_chars(32 ) A_ = paths[index].split(os.sep )[-1].rsplit("." ,1 )[0] A_ = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(f'''/{file_root}.jpg''' ,__UpperCamelCase ,[cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Success {index+1}/{len(__UpperCamelCase )} with {file_name}''' ) A_ = [] for anno in new_annos[index]: A_ = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(__UpperCamelCase ) with open(f'''/{file_root}.txt''' ,"w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" A_ = [] A_ = [] for label_file in glob.glob(os.path.join(__UpperCamelCase ,"*.txt" ) ): A_ = label_file.split(os.sep )[-1].rsplit("." ,1 )[0] with open(__UpperCamelCase ) as in_file: A_ = in_file.readlines() A_ = os.path.join(__UpperCamelCase ,f'''{label_name}.jpg''' ) A_ = [] for obj_list in obj_lists: A_ = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__UpperCamelCase ) labels.append(__UpperCamelCase ) return img_paths, labels def __snake_case ( __UpperCamelCase : list ,__UpperCamelCase : list ,__UpperCamelCase : int = 1 ): """simple docstring""" A_ = [] A_ = [] A_ = [] for idx in range(len(__UpperCamelCase ) ): A_ = [] A_ = img_list[idx] path_list.append(__UpperCamelCase ) A_ = anno_list[idx] A_ = cva.imread(__UpperCamelCase ) if flip_type == 1: A_ = cva.flip(__UpperCamelCase ,__UpperCamelCase ) for bbox in img_annos: A_ = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: A_ = cva.flip(__UpperCamelCase ,__UpperCamelCase ) for bbox in img_annos: A_ = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__UpperCamelCase ) new_imgs_list.append(__UpperCamelCase ) return new_imgs_list, new_annos_lists, path_list def __snake_case ( __UpperCamelCase : int = 32 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" A_ = ascii_lowercase + digits return "".join(random.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) if __name__ == "__main__": main() print('DONE ✅')
86
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
5
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _lowerCamelCase : Optional[int] = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") _lowerCamelCase : Any = subprocess.check_output(F'''git diff --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() _lowerCamelCase : Optional[int] = """|""".join(sys.argv[1:]) _lowerCamelCase : str = re.compile(rF'''^({joined_dirs}).*?\.py$''') _lowerCamelCase : List[str] = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
87
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
0
"""simple docstring""" from collections import Counter from timeit import timeit def _snake_case ( __snake_case : str = "" , ): """simple docstring""" return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def _snake_case ( __snake_case : str = "" ): """simple docstring""" if len(__snake_case ) == 0: return True _lowerCamelCase : Union[str, Any] = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string _lowerCamelCase : dict[str, int] = {} for character in lower_case_input_str: _lowerCamelCase : str = character_freq_dict.get(__snake_case , 0 ) + 1 _lowerCamelCase : Optional[int] = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _snake_case ( __snake_case : str = "" ): """simple docstring""" print("""\nFor string = """ , __snake_case , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(__snake_case ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(__snake_case ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": UpperCAmelCase = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) UpperCAmelCase = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'''{check_str} can {"" if status else "not "}be rearranged as a palindrome''')
88
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _lowercase = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_lowercase ): """simple docstring""" super().__init__(**_lowercase ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self , _lowercase , **_lowercase ): """simple docstring""" return super().__call__(_lowercase , **_lowercase ) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a sound of {}." ): """simple docstring""" if isinstance(_lowercase , _lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _lowerCAmelCase = requests.get(_lowercase ).content else: with open(_lowercase , """rb""" ) as f: _lowerCAmelCase = f.read() if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate ) if not isinstance(_lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) _lowerCAmelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) _lowerCAmelCase = [text_inputs] return inputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_inputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _lowercase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**_lowercase , **_lowercase ) _lowerCAmelCase = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_outputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_outputs["""logits"""][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=0 ) _lowerCAmelCase = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) _lowerCAmelCase = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] ) ] return result
5
0
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } SCREAMING_SNAKE_CASE : Optional[int] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Dict: for attribute in key.split('.' ): _lowercase : Optional[int] = getattr(lowerCamelCase_ , lowerCamelCase_ ) if weight_type is not None: _lowercase : Tuple = getattr(lowerCamelCase_ , lowerCamelCase_ ).shape else: _lowercase : int = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _lowercase : Union[str, Any] = value elif weight_type == "weight_g": _lowercase : str = value elif weight_type == "weight_v": _lowercase : Optional[int] = value elif weight_type == "bias": _lowercase : str = value else: _lowercase : Union[str, Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Any: _lowercase : str = [] _lowercase : List[Any] = fairseq_model.state_dict() _lowercase : Dict = hf_model.feature_extractor _lowercase : Tuple = hf_model.adapter for name, value in fairseq_dict.items(): _lowercase : List[Any] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) _lowercase : Optional[Any] = True elif any(x in name for x in ['adaptor', 'w2v_encoder.proj.', 'w2v_proj_ln.'] ): load_adapter(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _lowercase : Optional[int] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _lowercase : Tuple = True if "*" in mapped_key: _lowercase : Optional[Any] = name.split(lowerCamelCase_ )[0].split('.' )[-2] _lowercase : Dict = mapped_key.replace('*' , lowerCamelCase_ ) if "weight_g" in name: _lowercase : List[Any] = 'weight_g' elif "weight_v" in name: _lowercase : Tuple = 'weight_v' elif "bias" in name: _lowercase : Dict = 'bias' elif "weight" in name: _lowercase : Optional[Any] = 'weight' else: _lowercase : str = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) continue if not is_used: unused_weights.append(lowerCamelCase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: _lowercase : int = full_name.split('conv_layers.' )[-1] _lowercase : str = name.split('.' ) _lowercase : str = int(items[0] ) _lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _lowercase : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _lowercase : Optional[Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _lowercase : Union[str, Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _lowercase : Any = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCamelCase_ ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Dict: _lowercase : Optional[Any] = full_name.split('adaptor.' )[-1] _lowercase : List[str] = name.split('.' ) if items[1].isdigit(): _lowercase : Any = int(items[1] ) else: _lowercase : Optional[int] = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' _lowercase : Dict = value logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' _lowercase : List[Any] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' _lowercase : List[str] = value logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' _lowercase : Any = value logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' _lowercase : List[str] = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' _lowercase : str = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(lowerCamelCase_ ) def UpperCamelCase_( lowerCamelCase_ ) -> List[str]: _lowercase , _lowercase : List[str] = emb.weight.shape _lowercase : Tuple = nn.Linear(lowerCamelCase_ , lowerCamelCase_ , bias=lowerCamelCase_ ) _lowercase : List[Any] = emb.weight.data return lin_layer @torch.no_grad() def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> Union[str, Any]: _lowercase : Any = WavaVecaConfig.from_pretrained( lowerCamelCase_ , add_adapter=lowerCamelCase_ , adapter_stride=lowerCamelCase_ , adapter_kernel_size=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , output_hidden_size=lowerCamelCase_ , ) _lowercase : int = MBartConfig.from_pretrained(lowerCamelCase_ ) # load model _lowercase , _lowercase , _lowercase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ 'config_yaml': config_yaml_path, 'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path, 'load_pretrained_decoder_from': None, } , ) _lowercase : Dict = model[0].eval() # load feature extractor _lowercase : Tuple = WavaVecaFeatureExtractor.from_pretrained(lowerCamelCase_ , use_auth_token=lowerCamelCase_ ) # set weights for wav2vec2 encoder _lowercase : str = WavaVecaModel(lowerCamelCase_ ) recursively_load_weights_wavaveca(model.encoder , lowerCamelCase_ ) # load decoder weights _lowercase : List[str] = MBartForCausalLM(lowerCamelCase_ ) _lowercase , _lowercase : Optional[int] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowerCamelCase_ ) logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) _lowercase : Optional[Any] = SpeechEncoderDecoderModel(encoder=lowerCamelCase_ , decoder=lowerCamelCase_ ) _lowercase : int = False _lowercase : str = MBartaaTokenizer(lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) _lowercase : Tuple = hf_wavavec.config.to_dict() _lowercase : int = tokenizer.pad_token_id _lowercase : Optional[Any] = tokenizer.bos_token_id _lowercase : int = tokenizer.eos_token_id _lowercase : Tuple = 'mbart50' _lowercase : Tuple = 'wav2vec2' _lowercase : Dict = tokenizer.eos_token_id _lowercase : List[Any] = 25_0004 _lowercase : int = tokenizer.eos_token_id _lowercase : Any = SpeechEncoderDecoderConfig.from_dict(lowerCamelCase_ ) hf_wavavec.save_pretrained(lowerCamelCase_ ) feature_extractor.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250004, type=int, help="`decoder_start_token_id` of model config") SCREAMING_SNAKE_CASE : Dict = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
89
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = ['''input_values''', '''padding_mask'''] def __init__( self , _lowercase = 1 , _lowercase = 24_000 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , **_lowercase , ): """simple docstring""" super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) _lowerCAmelCase = chunk_length_s _lowerCAmelCase = overlap @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , _lowercase , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs _lowerCAmelCase = True _lowerCAmelCase = bool( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_lowercase , np.ndarray ): _lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _lowerCAmelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [np.asarray(_lowercase ).T] # verify inputs are valid for idx, example in enumerate(_lowercase ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) _lowerCAmelCase = None _lowerCAmelCase = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _lowerCAmelCase = min(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.floor(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _lowerCAmelCase = max(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.ceil(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length _lowerCAmelCase = """max_length""" else: _lowerCAmelCase = input_values # normal padding on batch if padded_inputs is None: _lowerCAmelCase = self.pad( _lowercase , max_length=_lowercase , truncation=_lowercase , padding=_lowercase , return_attention_mask=_lowercase , ) if padding: _lowerCAmelCase = padded_inputs.pop("""attention_mask""" ) _lowerCAmelCase = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: _lowerCAmelCase = example[..., None] input_values.append(example.T ) _lowerCAmelCase = input_values if return_tensors is not None: _lowerCAmelCase = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
5
0
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _snake_case ( A , A ) -> Union[str, Any]: assert isinstance(A , A ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def _snake_case ( A , A , A ) -> Any: lowerCAmelCase__ = tmp_path / '''cache''' lowerCAmelCase__ = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase__ = TextDatasetReader(A , cache_dir=A , keep_in_memory=A ).read() _check_text_dataset(A , A ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def _snake_case ( A , A , A ) -> int: lowerCAmelCase__ = tmp_path / '''cache''' lowerCAmelCase__ = {'''text''': '''string'''} lowerCAmelCase__ = features.copy() if features else default_expected_features lowerCAmelCase__ = ( Features({feature: Value(A ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase__ = TextDatasetReader(A , features=A , cache_dir=A ).read() _check_text_dataset(A , A ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def _snake_case ( A , A , A ) -> List[str]: lowerCAmelCase__ = tmp_path / '''cache''' lowerCAmelCase__ = {'''text''': '''string'''} lowerCAmelCase__ = TextDatasetReader(A , cache_dir=A , split=A ).read() _check_text_dataset(A , A ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def _snake_case ( A , A , A ) -> str: if issubclass(A , A ): lowerCAmelCase__ = text_path elif issubclass(A , A ): lowerCAmelCase__ = [text_path] lowerCAmelCase__ = tmp_path / '''cache''' lowerCAmelCase__ = {'''text''': '''string'''} lowerCAmelCase__ = TextDatasetReader(A , cache_dir=A ).read() _check_text_dataset(A , A ) def _snake_case ( A , A , A=("train",) ) -> Any: assert isinstance(A , A ) for split in splits: lowerCAmelCase__ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def _snake_case ( A , A , A ) -> Tuple: lowerCAmelCase__ = tmp_path / '''cache''' lowerCAmelCase__ = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase__ = TextDatasetReader({'''train''': text_path} , cache_dir=A , keep_in_memory=A ).read() _check_text_datasetdict(A , A ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def _snake_case ( A , A , A ) -> Union[str, Any]: lowerCAmelCase__ = tmp_path / '''cache''' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" lowerCAmelCase__ = {'''text''': '''string'''} lowerCAmelCase__ = features.copy() if features else default_expected_features lowerCAmelCase__ = ( Features({feature: Value(A ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase__ = TextDatasetReader({'''train''': text_path} , features=A , cache_dir=A ).read() _check_text_datasetdict(A , A ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def _snake_case ( A , A , A ) -> Any: if split: lowerCAmelCase__ = {split: text_path} else: lowerCAmelCase__ = '''train''' lowerCAmelCase__ = {'''train''': text_path, '''test''': text_path} lowerCAmelCase__ = tmp_path / '''cache''' lowerCAmelCase__ = {'''text''': '''string'''} lowerCAmelCase__ = TextDatasetReader(A , cache_dir=A ).read() _check_text_datasetdict(A , A , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
90
'''simple docstring''' _lowercase = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
5
0
"""simple docstring""" import os def _snake_case ( ): A = os.path.dirname(os.path.realpath(snake_case__ ) ) A = os.path.join(snake_case__ , 'triangle.txt' ) with open(snake_case__ ) as f: A = f.readlines() A = [] for line in triangle: A = [] for number in line.strip().split(' ' ): numbers_from_line.append(int(snake_case__ ) ) a.append(snake_case__ ) for i in range(1 , len(snake_case__ ) ): for j in range(len(a[i] ) ): A = a[i - 1][j] if j != len(a[i - 1] ) else 0 A = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(snake_case__ , snake_case__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
91
'''simple docstring''' import functools def A (__lowerCamelCase :list[int] , __lowerCamelCase :list[int] ): # Validation if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(__lowerCamelCase ) >= 366: raise ValueError("""All days elements should be less than 366""" ) _lowerCAmelCase = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase :int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
0
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") UpperCamelCase_ = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : lowerCamelCase_ = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCamelCase_ = field( default=lowercase__ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowerCamelCase_ = field( default=lowercase__ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) lowerCamelCase_ = field( default=lowercase__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCamelCase_ = field( default=lowercase__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowerCamelCase_ = field( default=lowercase__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) @dataclass class __SCREAMING_SNAKE_CASE : lowerCamelCase_ = field( default=lowercase__ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCamelCase_ = field( default=lowercase__ , metadata={'help': 'Evaluation language. Also train language if `train_language` is set to None.'} ) lowerCamelCase_ = field( default=lowercase__ , metadata={'help': 'Train language if it is different from the evaluation language.'} ) lowerCamelCase_ = field( default=lowercase__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCamelCase_ = field( default=lowercase__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCamelCase_ = field( default=lowercase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase_ = field( default=lowercase__ , metadata={'help': 'arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'} , ) lowerCamelCase_ = field( default=lowercase__ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) lowerCamelCase_ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCamelCase_ = field( default=lowercase__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCamelCase_ = field( default=lowercase__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def _lowerCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase : Union[str, Any] =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase , lowercase , lowercase : Dict =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''' , __magic_name__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase : Any =training_args.get_process_log_level() logger.setLevel(__magic_name__ ) datasets.utils.logging.set_verbosity(__magic_name__ ) transformers.utils.logging.set_verbosity(__magic_name__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase : int =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase : Union[str, Any] =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowercase : int =load_dataset( '''xnli''' , model_args.language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: lowercase : Optional[Any] =load_dataset( '''xnli''' , model_args.train_language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowercase : int =train_dataset.features['''label'''].names if training_args.do_eval: lowercase : Any =load_dataset( '''xnli''' , model_args.language , split='''validation''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowercase : Optional[int] =eval_dataset.features['''label'''].names if training_args.do_predict: lowercase : Tuple =load_dataset( '''xnli''' , model_args.language , split='''test''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowercase : Tuple =predict_dataset.features['''label'''].names # Labels lowercase : Tuple =len(__magic_name__ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase : Any =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__magic_name__ , idalabel={str(__magic_name__ ): label for i, label in enumerate(__magic_name__ )} , labelaid={label: i for i, label in enumerate(__magic_name__ )} , finetuning_task='''xnli''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase : List[Any] =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase : List[str] =AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__magic_name__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowercase : Tuple ='''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowercase : List[str] =False def preprocess_function(__magic_name__ : List[str] ): # Tokenize the texts return tokenizer( examples['''premise'''] , examples['''hypothesis'''] , padding=__magic_name__ , max_length=data_args.max_seq_length , truncation=__magic_name__ , ) if training_args.do_train: if data_args.max_train_samples is not None: lowercase : Optional[int] =min(len(__magic_name__ ) , data_args.max_train_samples ) lowercase : Optional[int] =train_dataset.select(range(__magic_name__ ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): lowercase : int =train_dataset.map( __magic_name__ , batched=__magic_name__ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on train dataset''' , ) # Log a few random samples from the training set: for index in random.sample(range(len(__magic_name__ ) ) , 3 ): logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowercase : Any =min(len(__magic_name__ ) , data_args.max_eval_samples ) lowercase : Optional[Any] =eval_dataset.select(range(__magic_name__ ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): lowercase : Any =eval_dataset.map( __magic_name__ , batched=__magic_name__ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on validation dataset''' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: lowercase : int =min(len(__magic_name__ ) , data_args.max_predict_samples ) lowercase : List[Any] =predict_dataset.select(range(__magic_name__ ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): lowercase : Optional[Any] =predict_dataset.map( __magic_name__ , batched=__magic_name__ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on prediction dataset''' , ) # Get the metric function lowercase : str =evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__magic_name__ : EvalPrediction ): lowercase : str =p.predictions[0] if isinstance(p.predictions , __magic_name__ ) else p.predictions lowercase : Optional[Any] =np.argmax(__magic_name__ , axis=1 ) return metric.compute(predictions=__magic_name__ , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowercase : str =default_data_collator elif training_args.fpaa: lowercase : str =DataCollatorWithPadding(__magic_name__ , pad_to_multiple_of=8 ) else: lowercase : Dict =None # Initialize our Trainer lowercase : Any =Trainer( model=__magic_name__ , args=__magic_name__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__magic_name__ , tokenizer=__magic_name__ , data_collator=__magic_name__ , ) # Training if training_args.do_train: lowercase : Union[str, Any] =None if training_args.resume_from_checkpoint is not None: lowercase : Optional[Any] =training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase : Optional[int] =last_checkpoint lowercase : Any =trainer.train(resume_from_checkpoint=__magic_name__ ) lowercase : Any =train_result.metrics lowercase : List[str] =( data_args.max_train_samples if data_args.max_train_samples is not None else len(__magic_name__ ) ) lowercase : Tuple =min(__magic_name__ , len(__magic_name__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , __magic_name__ ) trainer.save_metrics('''train''' , __magic_name__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase : List[Any] =trainer.evaluate(eval_dataset=__magic_name__ ) lowercase : Optional[int] =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__magic_name__ ) lowercase : List[str] =min(__magic_name__ , len(__magic_name__ ) ) trainer.log_metrics('''eval''' , __magic_name__ ) trainer.save_metrics('''eval''' , __magic_name__ ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) lowercase , lowercase , lowercase : List[Any] =trainer.predict(__magic_name__ , metric_key_prefix='''predict''' ) lowercase : List[Any] =( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__magic_name__ ) ) lowercase : Tuple =min(__magic_name__ , len(__magic_name__ ) ) trainer.log_metrics('''predict''' , __magic_name__ ) trainer.save_metrics('''predict''' , __magic_name__ ) lowercase : Union[str, Any] =np.argmax(__magic_name__ , axis=1 ) lowercase : int =os.path.join(training_args.output_dir , '''predictions.txt''' ) if trainer.is_world_process_zero(): with open(__magic_name__ , '''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(__magic_name__ ): lowercase : Optional[Any] =label_list[item] writer.write(f'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
92
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 384 if "tiny" in model_name: _lowerCAmelCase = [3, 3, 9, 3] _lowerCAmelCase = [96, 192, 384, 768] if "small" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [96, 192, 384, 768] if "base" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [128, 256, 512, 1024] _lowerCAmelCase = 512 if "large" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [192, 384, 768, 1536] _lowerCAmelCase = 768 if "xlarge" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [256, 512, 1024, 2048] _lowerCAmelCase = 1024 # set label information _lowerCAmelCase = 150 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """ade20k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = ConvNextConfig( depths=__lowerCamelCase , hidden_sizes=__lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) _lowerCAmelCase = UperNetConfig( backbone_config=__lowerCamelCase , auxiliary_in_channels=__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , ) return config def A (__lowerCamelCase :Optional[Any] ): _lowerCAmelCase = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict , __lowerCamelCase :Tuple ): _lowerCAmelCase = dct.pop(__lowerCamelCase ) _lowerCAmelCase = val def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ): _lowerCAmelCase = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } _lowerCAmelCase = model_name_to_url[model_name] _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""state_dict"""] _lowerCAmelCase = get_upernet_config(__lowerCamelCase ) _lowerCAmelCase = UperNetForSemanticSegmentation(__lowerCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase = state_dict.pop(__lowerCamelCase ) if "bn" in key: _lowerCAmelCase = key.replace("""bn""" , """batch_norm""" ) _lowerCAmelCase = val # rename keys _lowerCAmelCase = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # verify on image _lowerCAmelCase = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _lowerCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" ) _lowerCAmelCase = SegformerImageProcessor() _lowerCAmelCase = processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values with torch.no_grad(): _lowerCAmelCase = model(__lowerCamelCase ) if model_name == "upernet-convnext-tiny": _lowerCAmelCase = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _lowerCAmelCase = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _lowerCAmelCase = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _lowerCAmelCase = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _lowerCAmelCase = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
5
0
"""simple docstring""" import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Union[str, Any] = (EulerDiscreteScheduler,) __magic_name__ :Any = 10 def snake_case ( self , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Any = { 'num_train_timesteps': 1_1_0_0, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**__UpperCAmelCase ) return config def snake_case ( self ): '''simple docstring''' for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=__UpperCAmelCase , beta_end=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = self.scheduler_classes[0] lowerCAmelCase__ :int = self.get_scheduler_config() lowerCAmelCase__ :Optional[Any] = scheduler_class(**__UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ :str = torch.manual_seed(0 ) lowerCAmelCase__ :Tuple = self.dummy_model() lowerCAmelCase__ :Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ :List[Any] = sample.to(__UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ :Tuple = scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Dict = model(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Any = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) lowerCAmelCase__ :Any = output.prev_sample lowerCAmelCase__ :int = torch.sum(torch.abs(__UpperCAmelCase ) ) lowerCAmelCase__ :Union[str, Any] = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 10.08_07 ) < 1E-2 assert abs(result_mean.item() - 0.01_31 ) < 1E-3 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = self.scheduler_classes[0] lowerCAmelCase__ :Any = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase__ :int = scheduler_class(**__UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ :int = torch.manual_seed(0 ) lowerCAmelCase__ :int = self.dummy_model() lowerCAmelCase__ :Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ :Any = sample.to(__UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ :List[Any] = scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = model(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) lowerCAmelCase__ :Any = output.prev_sample lowerCAmelCase__ :Tuple = torch.sum(torch.abs(__UpperCAmelCase ) ) lowerCAmelCase__ :Tuple = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 0.00_02 ) < 1E-2 assert abs(result_mean.item() - 2.2676E-06 ) < 1E-3 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = self.scheduler_classes[0] lowerCAmelCase__ :Tuple = self.get_scheduler_config() lowerCAmelCase__ :Dict = scheduler_class(**__UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=__UpperCAmelCase ) lowerCAmelCase__ :int = torch.manual_seed(0 ) lowerCAmelCase__ :List[Any] = self.dummy_model() lowerCAmelCase__ :int = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCAmelCase__ :Dict = sample.to(__UpperCAmelCase ) for t in scheduler.timesteps: lowerCAmelCase__ :Optional[int] = scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = model(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) lowerCAmelCase__ :List[str] = output.prev_sample lowerCAmelCase__ :Optional[int] = torch.sum(torch.abs(__UpperCAmelCase ) ) lowerCAmelCase__ :List[Any] = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 10.08_07 ) < 1E-2 assert abs(result_mean.item() - 0.01_31 ) < 1E-3 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase__ :str = self.get_scheduler_config() lowerCAmelCase__ :Optional[Any] = scheduler_class(**__UpperCAmelCase , use_karras_sigmas=__UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = torch.manual_seed(0 ) lowerCAmelCase__ :str = self.dummy_model() lowerCAmelCase__ :List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCAmelCase__ :Tuple = sample.to(__UpperCAmelCase ) for t in scheduler.timesteps: lowerCAmelCase__ :Any = scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :int = model(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :int = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) lowerCAmelCase__ :Dict = output.prev_sample lowerCAmelCase__ :str = torch.sum(torch.abs(__UpperCAmelCase ) ) lowerCAmelCase__ :str = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 1_24.52_29_94_99_51_17_19 ) < 1E-2 assert abs(result_mean.item() - 0.1_62_13_93_26_33_39_99_63 ) < 1E-3
93
'''simple docstring''' from itertools import product def A (__lowerCamelCase :int , __lowerCamelCase :int ): _lowerCAmelCase = sides_number _lowerCAmelCase = max_face_number * dice_number _lowerCAmelCase = [0] * (max_total + 1) _lowerCAmelCase = 1 _lowerCAmelCase = range(__lowerCamelCase , max_face_number + 1 ) for dice_numbers in product(__lowerCamelCase , repeat=__lowerCamelCase ): _lowerCAmelCase = sum(__lowerCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def A (): _lowerCAmelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) _lowerCAmelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) _lowerCAmelCase = 0 _lowerCAmelCase = 9 _lowerCAmelCase = 4 * 9 _lowerCAmelCase = 6 for peter_total in range(__lowerCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _lowerCAmelCase = (4**9) * (6**6) _lowerCAmelCase = peter_wins_count / total_games_number _lowerCAmelCase = round(__lowerCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
5
0
'''simple docstring''' import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } SCREAMING_SNAKE_CASE = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } SCREAMING_SNAKE_CASE = { 'jukebox': 512, } class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_LYRIC_TOKENS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict=["v3", "v2", "v2"] , UpperCAmelCase : Optional[int]=512 , UpperCAmelCase : Tuple=5 , UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **UpperCAmelCase : Tuple , ) -> int: '''simple docstring''' lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token super().__init__( unk_token=UpperCAmelCase , n_genres=UpperCAmelCase , version=UpperCAmelCase , max_n_lyric_tokens=UpperCAmelCase , **UpperCAmelCase , ) lowercase : int =version lowercase : Optional[int] =max_n_lyric_tokens lowercase : Dict =n_genres with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : Union[str, Any] =json.load(UpperCAmelCase ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : List[str] =json.load(UpperCAmelCase ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : Union[str, Any] =json.load(UpperCAmelCase ) lowercase : Union[str, Any] =R'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: lowercase : Dict =oov.replace(R'''\-\'''' , R'''\-+\'''' ) lowercase : str =regex.compile(UpperCAmelCase ) lowercase : Optional[int] ={v: k for k, v in self.artists_encoder.items()} lowercase : Tuple ={v: k for k, v in self.genres_encoder.items()} lowercase : Tuple ={v: k for k, v in self.lyrics_encoder.items()} @property def A__ ( self : List[Any] ) -> str: '''simple docstring''' return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def A__ ( self : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' lowercase : Union[str, Any] =[self.artists_encoder.get(UpperCAmelCase , 0 ) for artist in list_artists] for genres in range(len(UpperCAmelCase ) ): lowercase : List[str] =[self.genres_encoder.get(UpperCAmelCase , 0 ) for genre in list_genres[genres]] lowercase : List[Any] =list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) lowercase : Any =[[self.lyrics_encoder.get(UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def A__ ( self : Dict , UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' return list(UpperCAmelCase ) def A__ ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , **UpperCAmelCase : Optional[int] ) -> List[str]: '''simple docstring''' lowercase , lowercase , lowercase : List[Any] =self.prepare_for_tokenization(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Optional[int] =self._tokenize(UpperCAmelCase ) return artist, genre, lyrics def A__ ( self : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: '''simple docstring''' for idx in range(len(self.version ) ): if self.version[idx] == "v3": lowercase : Optional[int] =artists[idx].lower() lowercase : List[Any] =[genres[idx].lower()] else: lowercase : Dict =self._normalize(artists[idx] ) + '''.v2''' lowercase : List[str] =[ self._normalize(UpperCAmelCase ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": lowercase : Optional[int] =regex.compile(R'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) lowercase : List[Any] ='''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' lowercase : Any ={vocab[index]: index + 1 for index in range(len(UpperCAmelCase ) )} lowercase : Tuple =0 lowercase : Dict =len(UpperCAmelCase ) + 1 lowercase : Any =self.vocab lowercase : List[str] ={v: k for k, v in self.vocab.items()} lowercase : List[str] ='''''' else: lowercase : Any =regex.compile(R'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) lowercase : Union[str, Any] =self._run_strip_accents(UpperCAmelCase ) lowercase : List[str] =lyrics.replace('''\\''' , '''\n''' ) lowercase : Any =self.out_of_vocab.sub('''''' , UpperCAmelCase ), [], [] return artists, genres, lyrics def A__ ( self : Optional[int] , UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' lowercase : Optional[int] =unicodedata.normalize('''NFD''' , UpperCAmelCase ) lowercase : Tuple =[] for char in text: lowercase : List[str] =unicodedata.category(UpperCAmelCase ) if cat == "Mn": continue output.append(UpperCAmelCase ) return "".join(UpperCAmelCase ) def A__ ( self : Optional[int] , UpperCAmelCase : str ) -> str: '''simple docstring''' lowercase : str =( [chr(UpperCAmelCase ) for i in range(ord('''a''' ) , ord('''z''' ) + 1 )] + [chr(UpperCAmelCase ) for i in range(ord('''A''' ) , ord('''Z''' ) + 1 )] + [chr(UpperCAmelCase ) for i in range(ord('''0''' ) , ord('''9''' ) + 1 )] + ['''.'''] ) lowercase : Dict =frozenset(UpperCAmelCase ) lowercase : Any =re.compile(R'''_+''' ) lowercase : Optional[Any] =''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) lowercase : Any =pattern.sub('''_''' , UpperCAmelCase ).strip('''_''' ) return text def A__ ( self : List[Any] , UpperCAmelCase : List[str] ) -> str: '''simple docstring''' return " ".join(UpperCAmelCase ) def A__ ( self : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : bool = False ) -> Dict: '''simple docstring''' if not isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Dict =TensorType(UpperCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf lowercase : Union[str, Any] =tf.constant lowercase : Tuple =tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch lowercase : str =torch.tensor lowercase : Union[str, Any] =torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 lowercase : List[Any] =jnp.array lowercase : Optional[Any] =_is_jax else: lowercase : str =np.asarray lowercase : Optional[Any] =_is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: lowercase : Tuple =[inputs] if not is_tensor(UpperCAmelCase ): lowercase : Optional[Any] =as_tensor(UpperCAmelCase ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any]="" , UpperCAmelCase : Any="pt" ) -> BatchEncoding: '''simple docstring''' lowercase : Tuple =[0, 0, 0] lowercase : Union[str, Any] =[artist] * len(self.version ) lowercase : List[str] =[genres] * len(self.version ) lowercase , lowercase , lowercase : Any =self.tokenize(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase , lowercase , lowercase : Union[str, Any] =self._convert_token_to_id(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Dict =[-INFINITY] * len(full_tokens[-1] ) lowercase : Optional[Any] =[ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=UpperCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def A__ ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Tuple =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=UpperCAmelCase ) ) lowercase : Optional[int] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=UpperCAmelCase ) ) lowercase : Any =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=UpperCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.artists_decoder.get(UpperCAmelCase ) lowercase : Union[str, Any] =[self.genres_decoder.get(UpperCAmelCase ) for genre in genres_index] lowercase : List[Any] =[self.lyrics_decoder.get(UpperCAmelCase ) for character in lyric_index] return artist, genres, lyrics
94
'''simple docstring''' from manim import * class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""CPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(1 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""GPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.align_to(_lowercase , _lowercase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""Model""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , ) _lowerCAmelCase = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) _lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) ) self.add(_lowercase ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for i, rect in enumerate(_lowercase ): _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 ) cpu_target.move_to(_lowercase ) cpu_target.generate_target() _lowerCAmelCase = 0.46 / 4 _lowerCAmelCase = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 ) cpu_targs.append(_lowercase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) ) second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) ) self.play(*_lowercase ) self.play(*_lowercase ) self.wait()
5
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCamelCase_ = {'''configuration_speech_encoder_decoder''': ['''SpeechEncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''SpeechEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''FlaxSpeechEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
95
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowercase = False try: _lowercase = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase = None , _lowercase = [] ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = choices _lowerCAmelCase = prompt if sys.platform == "win32": _lowerCAmelCase = """*""" else: _lowerCAmelCase = """➔ """ def _lowercase ( self , _lowercase , _lowercase = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , _lowercase ) else: forceWrite(self.choices[index] , _lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(_lowercase ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def _lowercase ( self , _lowercase , _lowercase = 1 ): """simple docstring""" _lowerCAmelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowercase ) move_cursor(_lowercase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = int(chr(self.current_selection ) ) _lowerCAmelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowercase ) else: return else: return def _lowercase ( self , _lowercase = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) _lowerCAmelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowercase ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase = int(builtins.input() ) except ValueError: _lowerCAmelCase = default_choice else: _lowerCAmelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(_lowercase , """\n""" ) return choice
5
0
"""simple docstring""" import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __lowerCamelCase = '.' if __name__ == "__main__": __lowerCamelCase = os.path.join(REPO_PATH, 'utils/documentation_tests.txt') __lowerCamelCase = [] __lowerCamelCase = [] with open(doctest_file_path) as fp: for line in fp: __lowerCamelCase = line.strip() __lowerCamelCase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __lowerCamelCase = '\n'.join(non_existent_paths) raise ValueError(f'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
96
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } _lowercase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def A (__lowerCamelCase :Optional[int] ): _lowerCAmelCase = {} with open(__lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(__lowerCamelCase ): _lowerCAmelCase = line.strip() if line: _lowerCAmelCase = line.split() _lowerCAmelCase = line_number _lowerCAmelCase = words[0] _lowerCAmelCase = value return result def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any] , __lowerCamelCase :List[str] ): for attribute in key.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": _lowerCAmelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = shape_pointer.shape # let's reduce dimension _lowerCAmelCase = value[0] else: _lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCAmelCase = value elif weight_type == "weight_g": _lowerCAmelCase = value elif weight_type == "weight_v": _lowerCAmelCase = value elif weight_type == "bias": _lowerCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = value else: _lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] , __lowerCamelCase :int ): _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _lowerCAmelCase = """.""".join([key, hf_param_name] ) else: _lowerCAmelCase = key _lowerCAmelCase = value if """lm_head""" in full_key else value[0] _lowercase = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :List[str]=None , __lowerCamelCase :List[Any]=None ): _lowerCAmelCase = False for key, mapped_key in MAPPING.items(): _lowerCAmelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCAmelCase = True if "*" in mapped_key: _lowerCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase = """weight_g""" elif "weight_v" in name: _lowerCAmelCase = """weight_v""" elif "bias" in name: _lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase = """weight""" else: _lowerCAmelCase = None if hf_dict is not None: rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return is_used return is_used def A (__lowerCamelCase :Any , __lowerCamelCase :Dict , __lowerCamelCase :Dict ): _lowerCAmelCase = [] _lowerCAmelCase = fairseq_model.state_dict() _lowerCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) _lowerCAmelCase = True else: _lowerCAmelCase = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any , __lowerCamelCase :List[Any] , __lowerCamelCase :List[Any] ): _lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase = name.split(""".""" ) _lowerCAmelCase = int(items[0] ) _lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def A (__lowerCamelCase :List[str] , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any]=None , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :str=True , __lowerCamelCase :str=False ): if config_path is not None: _lowerCAmelCase = WavaVecaConfig.from_pretrained(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaConfig() if is_seq_class: _lowerCAmelCase = read_txt_into_dict(__lowerCamelCase ) _lowerCAmelCase = idalabel _lowerCAmelCase = WavaVecaForSequenceClassification(__lowerCamelCase ) _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) feature_extractor.save_pretrained(__lowerCamelCase ) elif is_finetuned: if dict_path: _lowerCAmelCase = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCAmelCase = target_dict.pad_index _lowerCAmelCase = target_dict.bos_index _lowerCAmelCase = target_dict.eos_index _lowerCAmelCase = len(target_dict.symbols ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """vocab.json""" ) if not os.path.isdir(__lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCAmelCase = 0 _lowerCAmelCase = 1 with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , ) _lowerCAmelCase = True if config.feat_extract_norm == """layer""" else False _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) _lowerCAmelCase = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) _lowerCAmelCase = WavaVecaForCTC(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaForPreTraining(__lowerCamelCase ) if is_finetuned or is_seq_class: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _lowerCAmelCase = argparse.Namespace(task="""audio_pretraining""" ) _lowerCAmelCase = fairseq.tasks.setup_task(__lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase ) _lowerCAmelCase = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) _lowercase = parser.parse_args() _lowercase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
5
0
from abc import ABC, abstractmethod from typing import List, Optional class lowercase__( UpperCAmelCase ): """simple docstring""" def __init__( self : str ) -> Optional[Any]: # test for the above condition self.test() def _lowercase ( self : Tuple ) -> int: lowercase_ = 0 lowercase_ = False while not completed: if counter == 1: self.reset() lowercase_ = self.advance() if not self.does_advance(SCREAMING_SNAKE_CASE_ ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) lowercase_ , lowercase_ , lowercase_ = self.update(SCREAMING_SNAKE_CASE_ ) counter += 1 if counter > 1_0_0_0_0: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def _lowercase ( self : int ) -> str: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> Optional[int]: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : int ) -> List[Any]: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _lowercase ( self : Optional[Any] ) -> Dict: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _lowercase ( self : int ) -> Any: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : Optional[int]=False ) -> str: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase__( UpperCAmelCase ): """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE_ : List[int] ) -> Any: super(SCREAMING_SNAKE_CASE_ , self ).__init__() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or len(SCREAMING_SNAKE_CASE_ ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) lowercase_ = token_ids lowercase_ = len(self.token_ids ) lowercase_ = -1 # the index of the currently fulfilled step lowercase_ = False def _lowercase ( self : int ) -> List[Any]: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}''' ) lowercase_ = False lowercase_ = False lowercase_ = False if self.does_advance(SCREAMING_SNAKE_CASE_ ): self.fulfilled_idx += 1 lowercase_ = True if self.fulfilled_idx == (self.seqlen - 1): lowercase_ = True lowercase_ = completed else: # failed to make progress. lowercase_ = True self.reset() return stepped, completed, reset def _lowercase ( self : str ) -> Dict: lowercase_ = False lowercase_ = 0 def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: return self.seqlen - (self.fulfilled_idx + 1) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple=False ) -> Optional[Any]: lowercase_ = PhrasalConstraint(self.token_ids ) if stateful: lowercase_ = self.seqlen lowercase_ = self.fulfilled_idx lowercase_ = self.completed return new_constraint class lowercase__: """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE_ : List[List[int]] , SCREAMING_SNAKE_CASE_ : Optional[int]=True ) -> Dict: lowercase_ = max([len(SCREAMING_SNAKE_CASE_ ) for one in nested_token_ids] ) lowercase_ = {} for token_ids in nested_token_ids: lowercase_ = root for tidx, token_id in enumerate(SCREAMING_SNAKE_CASE_ ): if token_id not in level: lowercase_ = {} lowercase_ = level[token_id] if no_subsets and self.has_subsets(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' f''' {nested_token_ids}.''' ) lowercase_ = root def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Dict ) -> List[str]: lowercase_ = self.trie for current_token in current_seq: lowercase_ = start[current_token] lowercase_ = list(start.keys() ) return next_tokens def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : int ) -> str: lowercase_ = self.next_tokens(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 0 def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict: lowercase_ = list(root.values() ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return 1 else: return sum([self.count_leaves(SCREAMING_SNAKE_CASE_ ) for nn in next_nodes] ) def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str ) -> Tuple: lowercase_ = self.count_leaves(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) != leaf_count class lowercase__( UpperCAmelCase ): """simple docstring""" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : List[List[int]] ) -> List[str]: super(SCREAMING_SNAKE_CASE_ , self ).__init__() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or len(SCREAMING_SNAKE_CASE_ ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) lowercase_ = DisjunctiveTrie(SCREAMING_SNAKE_CASE_ ) lowercase_ = nested_token_ids lowercase_ = self.trie.max_height lowercase_ = [] lowercase_ = False def _lowercase ( self : Dict ) -> int: lowercase_ = self.trie.next_tokens(self.current_seq ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return None else: return token_list def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : int ) -> Dict: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}''' ) lowercase_ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ) -> str: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}''' ) lowercase_ = False lowercase_ = False lowercase_ = False if self.does_advance(SCREAMING_SNAKE_CASE_ ): self.current_seq.append(SCREAMING_SNAKE_CASE_ ) lowercase_ = True else: lowercase_ = True self.reset() lowercase_ = self.trie.reached_leaf(self.current_seq ) lowercase_ = completed return stepped, completed, reset def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: lowercase_ = False lowercase_ = [] def _lowercase ( self : Any ) -> int: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any]=False ) -> Dict: lowercase_ = DisjunctiveConstraint(self.token_ids ) if stateful: lowercase_ = self.seqlen lowercase_ = self.current_seq lowercase_ = self.completed return new_constraint class lowercase__: """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : List[Constraint] ) -> Tuple: lowercase_ = constraints # max # of steps required to fulfill a given constraint lowercase_ = max([c.seqlen for c in constraints] ) lowercase_ = len(SCREAMING_SNAKE_CASE_ ) lowercase_ = False self.init_state() def _lowercase ( self : str ) -> Tuple: lowercase_ = [] lowercase_ = None lowercase_ = [constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) for constraint in self.constraints] def _lowercase ( self : Optional[Any] ) -> Any: lowercase_ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def _lowercase ( self : int ) -> Tuple: lowercase_ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" lowercase_ = constraint.advance() if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): token_list.append(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): token_list.extend(SCREAMING_SNAKE_CASE_ ) else: lowercase_ = self.inprogress_constraint.advance() if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): token_list.append(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): token_list.extend(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return None else: return token_list def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] ) -> Optional[int]: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint lowercase_ , lowercase_ = self.add(SCREAMING_SNAKE_CASE_ ) # the entire list of constraints are fulfilled if self.completed: break def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : int ) -> Optional[int]: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) lowercase_ , lowercase_ = False, False if self.completed: lowercase_ = True lowercase_ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state lowercase_ , lowercase_ , lowercase_ = self.inprogress_constraint.update(SCREAMING_SNAKE_CASE_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) ) lowercase_ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) lowercase_ = None if len(self.pending_constraints ) == 0: # we're done! lowercase_ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(SCREAMING_SNAKE_CASE_ ): lowercase_ , lowercase_ , lowercase_ = pending_constraint.update(SCREAMING_SNAKE_CASE_ ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(SCREAMING_SNAKE_CASE_ ) lowercase_ = None if not complete and stepped: lowercase_ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". lowercase_ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. lowercase_ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : List[Any]=True ) -> str: lowercase_ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: lowercase_ = [ constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: lowercase_ = self.inprogress_constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) lowercase_ = [constraint.copy() for constraint in self.pending_constraints] return new_state
97
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = '''decision_transformer''' _lowercase : Optional[Any] = ['''past_key_values'''] _lowercase : str = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowercase=17 , _lowercase=4 , _lowercase=128 , _lowercase=4_096 , _lowercase=True , _lowercase=1 , _lowercase=1_024 , _lowercase=3 , _lowercase=1 , _lowercase=None , _lowercase="relu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=False , _lowercase=False , **_lowercase , ): """simple docstring""" _lowerCAmelCase = state_dim _lowerCAmelCase = act_dim _lowerCAmelCase = hidden_size _lowerCAmelCase = max_ep_len _lowerCAmelCase = action_tanh _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = scale_attn_by_inverse_layer_idx _lowerCAmelCase = reorder_and_upcast_attn _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
5
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Tuple = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Union[str, Any] = 'pegasus' _snake_case : str = ['past_key_values'] _snake_case : List[Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : List[str] , lowerCAmelCase__ : int=50265 , lowerCAmelCase__ : int=1024 , lowerCAmelCase__ : Optional[Any]=12 , lowerCAmelCase__ : Union[str, Any]=4096 , lowerCAmelCase__ : List[Any]=16 , lowerCAmelCase__ : Dict=12 , lowerCAmelCase__ : Optional[Any]=4096 , lowerCAmelCase__ : List[str]=16 , lowerCAmelCase__ : Dict=0.0 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Optional[Any]=1024 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.0 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : Optional[int]=0 , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : Any=0 , lowerCAmelCase__ : int=1 , lowerCAmelCase__ : Tuple=1 , **lowerCAmelCase__ : str , ) -> Tuple: '''simple docstring''' _UpperCamelCase = vocab_size _UpperCamelCase = max_position_embeddings _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = encoder_layers _UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , forced_eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) @property def snake_case__ ( self : Dict ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def snake_case__ ( self : str ) -> int: '''simple docstring''' return self.d_model
98
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) _lowercase = None _lowercase = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } _lowercase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def A (__lowerCamelCase :int , __lowerCamelCase :Optional[Any]=1 , __lowerCamelCase :List[Any]=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def A (__lowerCamelCase :Any ): with open(__lowerCamelCase , """r""" ) as f: return json.load(__lowerCamelCase ) def A (__lowerCamelCase :List[Any] , __lowerCamelCase :int ): with open(__lowerCamelCase , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple=True ): os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """tmp""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = read_json(os.path.join(__lowerCamelCase , """params.json""" ) ) _lowerCAmelCase = NUM_SHARDS[model_size] _lowerCAmelCase = params["""n_layers"""] _lowerCAmelCase = params["""n_heads"""] _lowerCAmelCase = n_heads // num_shards _lowerCAmelCase = params["""dim"""] _lowerCAmelCase = dim // n_heads _lowerCAmelCase = 10_000.0 _lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , __lowerCamelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase = params["""n_kv_heads"""] # for GQA / MQA _lowerCAmelCase = n_heads_per_shard // num_key_value_heads _lowerCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase = n_heads _lowerCAmelCase = n_heads_per_shard _lowerCAmelCase = dim # permute for sliced rotary def permute(__lowerCamelCase :Optional[int] , __lowerCamelCase :str=n_heads , __lowerCamelCase :str=dim , __lowerCamelCase :List[Any]=dim ): return w.view(__lowerCamelCase , dima // n_heads // 2 , 2 , __lowerCamelCase ).transpose(1 , 2 ).reshape(__lowerCamelCase , __lowerCamelCase ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase = torch.load(os.path.join(__lowerCamelCase , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded _lowerCAmelCase = [ torch.load(os.path.join(__lowerCamelCase , f'consolidated.{i:02d}.pth' ) , map_location="""cpu""" ) for i in range(__lowerCamelCase ) ] _lowerCAmelCase = 0 _lowerCAmelCase = {"""weight_map""": {}} for layer_i in range(__lowerCamelCase ): _lowerCAmelCase = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _lowerCAmelCase = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = inv_freq for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: _lowerCAmelCase = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(__lowerCamelCase )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__lowerCamelCase )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) # Write configs _lowerCAmelCase = {"""total_size""": param_count * 2} write_json(__lowerCamelCase , os.path.join(__lowerCamelCase , """pytorch_model.bin.index.json""" ) ) _lowerCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 _lowerCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256 _lowerCAmelCase = LlamaConfig( hidden_size=__lowerCamelCase , intermediate_size=compute_intermediate_size(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=__lowerCamelCase , ) config.save_pretrained(__lowerCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) _lowerCAmelCase = LlamaForCausalLM.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=__lowerCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(__lowerCamelCase , safe_serialization=__lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any] ): # Initialize the tokenizer based on the `spm` model _lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase = tokenizer_class(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) def A (): _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=__lowerCamelCase , help="""Whether or not to save using `safetensors`.""" ) _lowerCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , __lowerCamelCase ) if __name__ == "__main__": main()
5
0
from __future__ import annotations def a (lowerCAmelCase__ , lowerCAmelCase__ = None ): __a = word_bank or [] # create a table __a = len(lowerCAmelCase__ ) + 1 __a = [] for _ in range(lowerCAmelCase__ ): table.append([] ) # seed value __a = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase__ )] == word: __a = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase__ )]: combination.reverse() return table[len(lowerCAmelCase__ )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
99
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = (DDPMScheduler,) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_lowercase ) return config def _lowercase ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def _lowercase ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def _lowercase ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def _lowercase ( self ): """simple docstring""" self.check_over_configs(thresholding=_lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def _lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowercase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowercase ): if i == len(_lowercase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowercase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowercase , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowercase ) with self.assertRaises(_lowercase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowercase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_lowercase )
5
0
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = GPTaTokenizer lowerCamelCase__ : Any = GPTaTokenizerFast lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : int = {"""add_prefix_space""": True} lowerCamelCase__ : List[str] = False def lowercase_ ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE__ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] SCREAMING_SNAKE_CASE__ = dict(zip(A_ , range(len(A_ ) ) ) ) SCREAMING_SNAKE_CASE__ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] SCREAMING_SNAKE_CASE__ = {'''unk_token''': '''<unk>'''} SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A_ ) ) def lowercase_ ( self , **A_ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **A_ ) def lowercase_ ( self , **A_ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **A_ ) def lowercase_ ( self , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = '''lower newer''' return input_text, output_text def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(A_ , add_prefix_space=A_ ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE__ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ ) def lowercase_ ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer(add_prefix_space=A_ ) SCREAMING_SNAKE_CASE__ = '''lower newer''' # Testing tokenization SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(A_ , add_prefix_space=A_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) # Testing conversion to ids without special tokens SCREAMING_SNAKE_CASE__ = tokenizer.encode(A_ , add_special_tokens=A_ , add_prefix_space=A_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) # Testing conversion to ids with special tokens SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer(add_prefix_space=A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.encode(A_ , add_prefix_space=A_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) # Testing the unknown token SCREAMING_SNAKE_CASE__ = tokens + [rust_tokenizer.unk_token] SCREAMING_SNAKE_CASE__ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(A_ ) , A_ ) def lowercase_ ( self , *A_ , **A_ ): '''simple docstring''' pass def lowercase_ ( self , A_=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) # Simple input SCREAMING_SNAKE_CASE__ = '''This is a simple input''' SCREAMING_SNAKE_CASE__ = ['''This is a simple input 1''', '''This is a simple input 2'''] SCREAMING_SNAKE_CASE__ = ('''This is a simple input''', '''This is a pair''') SCREAMING_SNAKE_CASE__ = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(A_ , tokenizer_r.encode , A_ , max_length=A_ , padding='''max_length''' ) # Simple input self.assertRaises(A_ , tokenizer_r.encode_plus , A_ , max_length=A_ , padding='''max_length''' ) # Simple input self.assertRaises( A_ , tokenizer_r.batch_encode_plus , A_ , max_length=A_ , padding='''max_length''' , ) # Pair input self.assertRaises(A_ , tokenizer_r.encode , A_ , max_length=A_ , padding='''max_length''' ) # Pair input self.assertRaises(A_ , tokenizer_r.encode_plus , A_ , max_length=A_ , padding='''max_length''' ) # Pair input self.assertRaises( A_ , tokenizer_r.batch_encode_plus , A_ , max_length=A_ , padding='''max_length''' , ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' ) # Simple input SCREAMING_SNAKE_CASE__ = '''This is a simple input''' SCREAMING_SNAKE_CASE__ = ['''This is a simple input looooooooong''', '''This is a simple input'''] SCREAMING_SNAKE_CASE__ = ('''This is a simple input''', '''This is a pair''') SCREAMING_SNAKE_CASE__ = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] SCREAMING_SNAKE_CASE__ = tokenizer.pad_token_id SCREAMING_SNAKE_CASE__ = tokenizer(A_ , padding='''max_length''' , max_length=30 , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = tokenizer(A_ , padding=A_ , truncate=A_ , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = tokenizer(*A_ , padding='''max_length''' , max_length=60 , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = tokenizer(A_ , padding=A_ , truncate=A_ , return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''$$$''' SCREAMING_SNAKE_CASE__ = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=A_ , add_bos_token=A_ ) SCREAMING_SNAKE_CASE__ = '''This is a simple input''' SCREAMING_SNAKE_CASE__ = ['''This is a simple input 1''', '''This is a simple input 2'''] SCREAMING_SNAKE_CASE__ = tokenizer.bos_token_id SCREAMING_SNAKE_CASE__ = tokenizer(A_ ) SCREAMING_SNAKE_CASE__ = tokenizer(A_ ) self.assertEqual(out_s.input_ids[0] , A_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) SCREAMING_SNAKE_CASE__ = tokenizer.decode(out_s.input_ids ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , A_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def lowercase_ ( self ): '''simple docstring''' pass def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [self.get_tokenizer(do_lower_case=A_ , add_bos_token=A_ )] for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE__ = '''Encode this.''' SCREAMING_SNAKE_CASE__ = '''This one too please.''' SCREAMING_SNAKE_CASE__ = tokenizer.encode(A_ , add_special_tokens=A_ ) encoded_sequence += tokenizer.encode(A_ , add_special_tokens=A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.encode_plus( A_ , A_ , add_special_tokens=A_ , return_special_tokens_mask=A_ , ) SCREAMING_SNAKE_CASE__ = encoded_sequence_dict['''input_ids'''] SCREAMING_SNAKE_CASE__ = encoded_sequence_dict['''special_tokens_mask'''] self.assertEqual(len(A_ ) , len(A_ ) ) SCREAMING_SNAKE_CASE__ = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(A_ ) ] SCREAMING_SNAKE_CASE__ = [x for x in filtered_sequence if x is not None] self.assertEqual(A_ , A_ ) @require_tokenizers class __snake_case ( unittest.TestCase ): '''simple docstring''' def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=A_ ) SCREAMING_SNAKE_CASE__ = '''A photo of a cat''' SCREAMING_SNAKE_CASE__ = tokenizer.encode( A_ , ) self.assertEqual(A_ , [2, 2_50, 13_45, 9, 10, 47_58] ) tokenizer.save_pretrained('''test_opt''' ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''./test_opt''' ) SCREAMING_SNAKE_CASE__ = tokenizer.encode( A_ , ) self.assertEqual(A_ , [2, 2_50, 13_45, 9, 10, 47_58] ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , use_slow=A_ ) SCREAMING_SNAKE_CASE__ = '''A photo of a cat''' SCREAMING_SNAKE_CASE__ = tokenizer.encode( A_ , ) # Same as above self.assertEqual(A_ , [2, 2_50, 13_45, 9, 10, 47_58] ) @unittest.skip('''This test is failing because of a bug in the fast tokenizer''' ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=A_ ) SCREAMING_SNAKE_CASE__ = '''bos''' SCREAMING_SNAKE_CASE__ = tokenizer.get_vocab()['''bos'''] SCREAMING_SNAKE_CASE__ = '''A photo of a cat''' SCREAMING_SNAKE_CASE__ = tokenizer.encode( A_ , ) # We changed the bos token self.assertEqual(A_ , [3_19_57, 2_50, 13_45, 9, 10, 47_58] ) tokenizer.save_pretrained('''./tok''' ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''./tok''' ) self.assertTrue(tokenizer.is_fast ) SCREAMING_SNAKE_CASE__ = tokenizer.encode( A_ , ) self.assertEqual(A_ , [3_19_57, 2_50, 13_45, 9, 10, 47_58] )
100
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowercase = logging.get_logger(__name__) _lowercase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : '''simple docstring''' _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_SCREAMING_SNAKE_CASE )} ) _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) _lowercase : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase : int = field( default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) _lowercase : int = field( default=6_4 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) _lowercase : int = field( default=3_0 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) _lowercase : float = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) _lowercase : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''train''' _lowercase : Union[str, Any] = '''dev''' class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : SquadDataTrainingArguments _lowercase : List[SquadFeatures] _lowercase : Split _lowercase : bool def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = False , _lowercase = None , _lowercase = "pt" , ): """simple docstring""" _lowerCAmelCase = args _lowerCAmelCase = is_language_sensitive _lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowercase , _lowercase ): try: _lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _lowerCAmelCase = mode # Load data features from cache or dataset file _lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" _lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + """.lock""" with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: _lowerCAmelCase = time.time() _lowerCAmelCase = torch.load(_lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase = self.old_features["""features"""] _lowerCAmelCase = self.old_features.get("""dataset""" , _lowercase ) _lowerCAmelCase = self.old_features.get("""examples""" , _lowercase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: _lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: _lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) _lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , ) _lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.features[i] _lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) _lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
5
0
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __lowercase : """simple docstring""" _UpperCAmelCase = 42 _UpperCAmelCase = 42 class __lowercase : """simple docstring""" def __init__( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : list[list[Edge]] = [[] for _ in range(lowerCAmelCase__ )] SCREAMING_SNAKE_CASE_ : List[str] = size def __getitem__( self , lowerCAmelCase__ ): """simple docstring""" return iter(self._graph[vertex] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self._size def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(lowerCAmelCase__ , lowerCAmelCase__ ) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = deque([start_vertex] ) SCREAMING_SNAKE_CASE_ : list[int | None] = [None] * self.size SCREAMING_SNAKE_CASE_ : int = 0 while queue: SCREAMING_SNAKE_CASE_ : Tuple = queue.popleft() SCREAMING_SNAKE_CASE_ : Dict = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: SCREAMING_SNAKE_CASE_ : Dict = current_distance + edge.weight SCREAMING_SNAKE_CASE_ : List[Any] = distances[edge.destination_vertex] if ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and new_distance >= dest_vertex_distance ): continue SCREAMING_SNAKE_CASE_ : Optional[int] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
101
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''dpr''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase="absolute" , _lowercase = 0 , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = projection_dim _lowerCAmelCase = position_embedding_type
5
0
"""simple docstring""" def UpperCamelCase (SCREAMING_SNAKE_CASE = 10 , SCREAMING_SNAKE_CASE = 1000 , SCREAMING_SNAKE_CASE = True ): assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("""Invalid value for min_val or max_val (min_value < max_value)""" ) return min_val if option else max_val def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return int((number_a + number_a) / 2 ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("""argument value for lower and higher must be(lower > higher)""" ) if not lower < to_guess < higher: raise ValueError( """guess value must be within the range of lower and higher value""" ) def answer(SCREAMING_SNAKE_CASE ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("""started...""" ) UpperCamelCase : Union[str, Any] = lower UpperCamelCase : Any = higher UpperCamelCase : List[str] = [] while True: UpperCamelCase : Optional[int] = get_avg(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) last_numbers.append(SCREAMING_SNAKE_CASE ) if answer(SCREAMING_SNAKE_CASE ) == "low": UpperCamelCase : List[Any] = number elif answer(SCREAMING_SNAKE_CASE ) == "high": UpperCamelCase : Optional[Any] = number else: break print(f"""guess the number : {last_numbers[-1]}""" ) print(f"""details : {last_numbers!s}""" ) def UpperCamelCase (): UpperCamelCase : List[str] = int(input("""Enter lower value : """ ).strip() ) UpperCamelCase : Dict = int(input("""Enter high value : """ ).strip() ) UpperCamelCase : List[str] = int(input("""Enter value to guess : """ ).strip() ) guess_the_number(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
102
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _lowercase = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ _lowercase = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ _lowercase = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase ( self ): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase ( self , _lowercase , _lowercase , _lowercase=None , _lowercase="uniform_average" , _lowercase=True ): """simple docstring""" _lowerCAmelCase = mean_squared_error( _lowercase , _lowercase , sample_weight=_lowercase , multioutput=_lowercase , squared=_lowercase ) return {"mse": mse}
5
0
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets snake_case = '''\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' snake_case = '''\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. ''' snake_case = ''' Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: \'score\' (float): The chrF (chrF++) score, \'char_order\' (int): The character n-gram order, \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, \'beta\' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __UpperCAmelCase ( self : Dict ): """simple docstring""" if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''] , reference_urls=[ '''https://github.com/m-popovic/chrF''', ] , ) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : int = CHRF.CHAR_ORDER , __lowerCamelCase : int = CHRF.WORD_ORDER , __lowerCamelCase : int = CHRF.BETA , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , ): """simple docstring""" _snake_case = len(references[0] ) if any(len(__lowerCamelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _snake_case = [[refs[i] for refs in references] for i in range(__lowerCamelCase )] _snake_case = CHRF(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _snake_case = sb_chrf.corpus_score(__lowerCamelCase , __lowerCamelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
103
'''simple docstring''' def A (): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: _lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def A (): return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
5
0
"""simple docstring""" from __future__ import annotations from random import random from typing import Generic, TypeVar UpperCamelCase = TypeVar("""KT""") UpperCamelCase = TypeVar("""VT""") class UpperCamelCase__ ( Generic[KT, VT] ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ = "root" , SCREAMING_SNAKE_CASE__ = None ) -> List[str]: A__ = key A__ = value A__ = [] def __repr__( self ) -> str: return f"""Node({self.key}: {self.value})""" @property def snake_case__ ( self ) -> int: return len(self.forward ) class UpperCamelCase__ ( Generic[KT, VT] ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ = 0.5 , SCREAMING_SNAKE_CASE__ = 16 ) -> Any: A__ = Node[KT, VT]() A__ = 0 A__ = p A__ = max_level def __str__( self ) -> str: A__ = list(self ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return f"""SkipList(level={self.level})""" A__ = max((len(str(SCREAMING_SNAKE_CASE__ ) ) for item in items) , default=4 ) A__ = max(SCREAMING_SNAKE_CASE__ , 4 ) + 4 A__ = self.head A__ = [] A__ = node.forward.copy() lines.append(f"""[{node.key}]""".ljust(SCREAMING_SNAKE_CASE__ , "-" ) + "* " * len(SCREAMING_SNAKE_CASE__ ) ) lines.append(" " * label_size + "| " * len(SCREAMING_SNAKE_CASE__ ) ) while len(node.forward ) != 0: A__ = node.forward[0] lines.append( f"""[{node.key}]""".ljust(SCREAMING_SNAKE_CASE__ , "-" ) + " ".join(str(n.key ) if n.key == node.key else "|" for n in forwards ) ) lines.append(" " * label_size + "| " * len(SCREAMING_SNAKE_CASE__ ) ) A__ = node.forward lines.append("None".ljust(SCREAMING_SNAKE_CASE__ ) + "* " * len(SCREAMING_SNAKE_CASE__ ) ) return f"""SkipList(level={self.level})\n""" + "\n".join(SCREAMING_SNAKE_CASE__ ) def __iter__( self ) -> List[Any]: A__ = self.head while len(node.forward ) != 0: yield node.forward[0].key A__ = node.forward[0] def snake_case__ ( self ) -> int: A__ = 1 while random() < self.p and level < self.max_level: level += 1 return level def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: A__ = [] A__ = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: A__ = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(SCREAMING_SNAKE_CASE__ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: A__ , A__ = self._locate_node(SCREAMING_SNAKE_CASE__ ) if node is not None: for i, update_node in enumerate(SCREAMING_SNAKE_CASE__ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: A__ = node.forward[i] else: A__ = update_node.forward[:i] def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: A__ , A__ = self._locate_node(SCREAMING_SNAKE_CASE__ ) if node is not None: A__ = value else: A__ = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , SCREAMING_SNAKE_CASE__ ): update_vector.append(self.head ) A__ = level A__ = Node(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(SCREAMING_SNAKE_CASE__ ) else: A__ = new_node def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> VT | None: A__ , A__ = self._locate_node(SCREAMING_SNAKE_CASE__ ) if node is not None: return node.value return None def _lowerCamelCase ( ) -> Any: """simple docstring""" A__ = SkipList() skip_list.insert("Key1", 3 ) skip_list.insert("Key2", 12 ) skip_list.insert("Key3", 41 ) skip_list.insert("Key4", -19 ) A__ = skip_list.head A__ = {} while node.level != 0: A__ = node.forward[0] A__ = node.value assert len(UpperCAmelCase_ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def _lowerCamelCase ( ) -> str: """simple docstring""" A__ = SkipList() skip_list.insert("Key1", 10 ) skip_list.insert("Key1", 12 ) skip_list.insert("Key5", 7 ) skip_list.insert("Key7", 10 ) skip_list.insert("Key10", 5 ) skip_list.insert("Key7", 7 ) skip_list.insert("Key5", 5 ) skip_list.insert("Key10", 10 ) A__ = skip_list.head A__ = {} while node.level != 0: A__ = node.forward[0] A__ = node.value if len(UpperCAmelCase_ ) != 4: print() assert len(UpperCAmelCase_ ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def _lowerCamelCase ( ) -> Optional[int]: """simple docstring""" A__ = SkipList() assert skip_list.find("Some key" ) is None def _lowerCamelCase ( ) -> List[str]: """simple docstring""" A__ = SkipList() skip_list.insert("Key2", 20 ) assert skip_list.find("Key2" ) == 20 skip_list.insert("Some Key", 10 ) skip_list.insert("Key2", 8 ) skip_list.insert("V", 13 ) assert skip_list.find("Y" ) is None assert skip_list.find("Key2" ) == 8 assert skip_list.find("Some Key" ) == 10 assert skip_list.find("V" ) == 13 def _lowerCamelCase ( ) -> int: """simple docstring""" A__ = SkipList() skip_list.delete("Some key" ) assert len(skip_list.head.forward ) == 0 def _lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ = SkipList() skip_list.insert("Key1", 12 ) skip_list.insert("V", 13 ) skip_list.insert("X", 14 ) skip_list.insert("Key2", 15 ) skip_list.delete("V" ) skip_list.delete("Key2" ) assert skip_list.find("V" ) is None assert skip_list.find("Key2" ) is None def _lowerCamelCase ( ) -> Any: """simple docstring""" A__ = SkipList() skip_list.insert("Key1", 12 ) skip_list.insert("V", 13 ) skip_list.insert("X", 14 ) skip_list.insert("Key2", 15 ) skip_list.delete("V" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) == 14 assert skip_list.find("Key1" ) == 12 assert skip_list.find("Key2" ) == 15 skip_list.delete("X" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) == 12 assert skip_list.find("Key2" ) == 15 skip_list.delete("Key1" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) is None assert skip_list.find("Key2" ) == 15 skip_list.delete("Key2" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) is None assert skip_list.find("Key2" ) is None def _lowerCamelCase ( ) -> Optional[int]: """simple docstring""" A__ = SkipList() skip_list.insert("Key1", 12 ) skip_list.insert("V", 13 ) skip_list.insert("X", 142 ) skip_list.insert("Key2", 15 ) skip_list.delete("X" ) def traverse_keys(UpperCAmelCase_ : Any ): yield node.key for forward_node in node.forward: yield from traverse_keys(UpperCAmelCase_ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def _lowerCamelCase ( ) -> Optional[int]: """simple docstring""" def is_sorted(UpperCAmelCase_ : Dict ): return all(next_item >= item for item, next_item in zip(UpperCAmelCase_, lst[1:] ) ) A__ = SkipList() for i in range(10 ): skip_list.insert(UpperCAmelCase_, UpperCAmelCase_ ) assert is_sorted(list(UpperCAmelCase_ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(UpperCAmelCase_ ) ) skip_list.insert(-12, -12 ) skip_list.insert(77, 77 ) assert is_sorted(list(UpperCAmelCase_ ) ) def _lowerCamelCase ( ) -> Optional[int]: """simple docstring""" for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def _lowerCamelCase ( ) -> Tuple: """simple docstring""" A__ = SkipList() skip_list.insert(2, "2" ) skip_list.insert(4, "4" ) skip_list.insert(6, "4" ) skip_list.insert(4, "5" ) skip_list.insert(8, "4" ) skip_list.insert(9, "4" ) skip_list.delete(4 ) print(UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
104
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
5
0
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor UpperCamelCase__ : str = logging.get_logger(__name__) class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,*snake_case__ ,**snake_case__ ): warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' ,snake_case__ ,) super().__init__(*snake_case__ ,**snake_case__ )
105
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
5
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
106
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") _lowercase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) _lowercase = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) _lowercase = BeautifulSoup(res.text, """html.parser""") _lowercase = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
5
0
'''simple docstring''' class lowercase_ : """simple docstring""" def __init__( self : Tuple, UpperCamelCase__ : int ) -> None: _A = size _A = [0] * size _A = [0] * size @staticmethod def __UpperCAmelCase ( UpperCamelCase__ : int ) -> int: return index | (index + 1) @staticmethod def __UpperCAmelCase ( UpperCamelCase__ : int ) -> int: return (index & (index + 1)) - 1 def __UpperCAmelCase ( self : List[Any], UpperCamelCase__ : int, UpperCamelCase__ : int ) -> None: _A = value while index < self.size: _A = self.get_prev(UpperCamelCase__ ) + 1 if current_left_border == index: _A = value else: _A = max(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) _A = self.get_next(UpperCamelCase__ ) def __UpperCAmelCase ( self : Tuple, UpperCamelCase__ : int, UpperCamelCase__ : int ) -> int: right -= 1 # Because of right is exclusive _A = 0 while left <= right: _A = self.get_prev(UpperCamelCase__ ) if left <= current_left: _A = max(UpperCamelCase__, self.tree[right] ) _A = current_left else: _A = max(UpperCamelCase__, self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
107
'''simple docstring''' import os from datetime import datetime as dt from github import Github _lowercase = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def A (): _lowerCAmelCase = Github(os.environ["""GITHUB_TOKEN"""] ) _lowerCAmelCase = g.get_repo("""huggingface/diffusers""" ) _lowerCAmelCase = repo.get_issues(state="""open""" ) for issue in open_issues: _lowerCAmelCase = sorted(issue.get_comments() , key=lambda __lowerCamelCase : i.created_at , reverse=__lowerCamelCase ) _lowerCAmelCase = comments[0] if len(__lowerCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
5
0
__a: List[Any] = 8.3_1_4_4_6_2 # Unit - J mol-1 K-1 def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> float: if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> float: if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
108
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
5
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { "vinvino02/glpn-kitti": "https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json", # See all GLPN models at https://huggingface.co/models?filter=glpn } class __a ( _snake_case ): __UpperCamelCase : Tuple = 'glpn' def __init__( self : Dict ,lowerCamelCase : Tuple=3 ,lowerCamelCase : Optional[Any]=4 ,lowerCamelCase : Dict=[2, 2, 2, 2] ,lowerCamelCase : Union[str, Any]=[8, 4, 2, 1] ,lowerCamelCase : Any=[32, 64, 160, 256] ,lowerCamelCase : Tuple=[7, 3, 3, 3] ,lowerCamelCase : List[str]=[4, 2, 2, 2] ,lowerCamelCase : str=[1, 2, 5, 8] ,lowerCamelCase : Union[str, Any]=[4, 4, 4, 4] ,lowerCamelCase : Any="gelu" ,lowerCamelCase : int=0.0 ,lowerCamelCase : str=0.0 ,lowerCamelCase : Dict=0.02 ,lowerCamelCase : Dict=0.1 ,lowerCamelCase : Union[str, Any]=1E-6 ,lowerCamelCase : Dict=64 ,lowerCamelCase : Optional[int]=10 ,lowerCamelCase : int=-1 ,**lowerCamelCase : Optional[Any] ,): '''simple docstring''' super().__init__(**lowerCamelCase ) __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = num_encoder_blocks __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = sr_ratios __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = patch_sizes __SCREAMING_SNAKE_CASE = strides __SCREAMING_SNAKE_CASE = mlp_ratios __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = decoder_hidden_size __SCREAMING_SNAKE_CASE = max_depth __SCREAMING_SNAKE_CASE = head_in_index
109
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
0
"""simple docstring""" from __future__ import annotations import queue class a : def __init__( self , UpperCamelCase_ ): UpperCAmelCase__ : int = data UpperCAmelCase__ : Dict = None UpperCAmelCase__ : Optional[int] = None def lowerCamelCase ( ): print('\n********Press N to stop entering at any point of time********\n' ) UpperCAmelCase__ : int = input('Enter the value of the root node: ' ).strip().lower() UpperCAmelCase__ : queue.Queue = queue.Queue() UpperCAmelCase__ : Dict = TreeNode(int(_snake_case ) ) q.put(_snake_case ) while not q.empty(): UpperCAmelCase__ : Tuple = q.get() UpperCAmelCase__ : List[Any] = F'''Enter the left node of {node_found.data}: ''' UpperCAmelCase__ : Dict = input(_snake_case ).strip().lower() or 'n' if check == "n": return tree_node UpperCAmelCase__ : Optional[int] = TreeNode(int(_snake_case ) ) UpperCAmelCase__ : Tuple = left_node q.put(_snake_case ) UpperCAmelCase__ : int = F'''Enter the right node of {node_found.data}: ''' UpperCAmelCase__ : int = input(_snake_case ).strip().lower() or 'n' if check == "n": return tree_node UpperCAmelCase__ : int = TreeNode(int(_snake_case ) ) UpperCAmelCase__ : Any = right_node q.put(_snake_case ) raise def lowerCamelCase ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return print(node.data ,end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return in_order(node.left ) print(node.data ,end=',' ) in_order(node.right ) def lowerCamelCase ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data ,end=',' ) def lowerCamelCase ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return UpperCAmelCase__ : queue.Queue = queue.Queue() q.put(_snake_case ) while not q.empty(): UpperCAmelCase__ : int = q.get() print(node_dequeued.data ,end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return UpperCAmelCase__ : queue.Queue = queue.Queue() q.put(_snake_case ) while not q.empty(): UpperCAmelCase__ : Optional[Any] = [] while not q.empty(): UpperCAmelCase__ : Union[str, Any] = q.get() print(node_dequeued.data ,end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_snake_case ) def lowerCamelCase ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return UpperCAmelCase__ : list[TreeNode] = [] UpperCAmelCase__ : Optional[int] = node while n or stack: while n: # start from root node, find its left child print(n.data ,end=',' ) stack.append(_snake_case ) UpperCAmelCase__ : Optional[int] = n.left # end of while means current node doesn't have left child UpperCAmelCase__ : Union[str, Any] = stack.pop() # start to traverse its right child UpperCAmelCase__ : Dict = n.right def lowerCamelCase ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return UpperCAmelCase__ : list[TreeNode] = [] UpperCAmelCase__ : Optional[Any] = node while n or stack: while n: stack.append(_snake_case ) UpperCAmelCase__ : int = n.left UpperCAmelCase__ : Tuple = stack.pop() print(n.data ,end=',' ) UpperCAmelCase__ : Tuple = n.right def lowerCamelCase ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return UpperCAmelCase__ , UpperCAmelCase__ : str = [], [] UpperCAmelCase__ : Union[str, Any] = node stacka.append(_snake_case ) while stacka: # to find the reversed order of post order, store it in stack2 UpperCAmelCase__ : Tuple = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_snake_case ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data ,end=',' ) def lowerCamelCase ( _snake_case = "" ,_snake_case=50 ,_snake_case="*" ): if not s: return "\n" + width * char UpperCAmelCase__ , UpperCAmelCase__ : str = divmod(width - len(_snake_case ) - 2 ,2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) UpperCamelCase__ = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
110
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _lowercase = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_lowercase ): """simple docstring""" super().__init__(**_lowercase ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self , _lowercase , **_lowercase ): """simple docstring""" return super().__call__(_lowercase , **_lowercase ) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a sound of {}." ): """simple docstring""" if isinstance(_lowercase , _lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _lowerCAmelCase = requests.get(_lowercase ).content else: with open(_lowercase , """rb""" ) as f: _lowerCAmelCase = f.read() if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate ) if not isinstance(_lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) _lowerCAmelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) _lowerCAmelCase = [text_inputs] return inputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_inputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _lowercase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**_lowercase , **_lowercase ) _lowerCAmelCase = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_outputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_outputs["""logits"""][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=0 ) _lowerCAmelCase = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) _lowerCAmelCase = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] ) ] return result
5
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __lowerCamelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : Any = '''gpt_neo''' snake_case__ : Dict = ['''past_key_values'''] snake_case__ : str = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , a__=50257 , a__=2048 , a__=2048 , a__=24 , a__=[[["global", "local"], 12]] , a__=16 , a__=None , a__=256 , a__="gelu_new" , a__=0.0 , a__=0.0 , a__=0.0 , a__=0.1 , a__=1e-5 , a__=0.02 , a__=True , a__=50256 , a__=50256 , **a__ , ): __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings __SCREAMING_SNAKE_CASE : Dict = hidden_size __SCREAMING_SNAKE_CASE : Optional[Any] = num_layers __SCREAMING_SNAKE_CASE : str = num_heads __SCREAMING_SNAKE_CASE : int = intermediate_size __SCREAMING_SNAKE_CASE : List[str] = window_size __SCREAMING_SNAKE_CASE : Dict = activation_function __SCREAMING_SNAKE_CASE : str = resid_dropout __SCREAMING_SNAKE_CASE : Union[str, Any] = embed_dropout __SCREAMING_SNAKE_CASE : Union[str, Any] = attention_dropout __SCREAMING_SNAKE_CASE : Dict = classifier_dropout __SCREAMING_SNAKE_CASE : str = layer_norm_epsilon __SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range __SCREAMING_SNAKE_CASE : Any = use_cache __SCREAMING_SNAKE_CASE : Tuple = bos_token_id __SCREAMING_SNAKE_CASE : Any = eos_token_id __SCREAMING_SNAKE_CASE : List[str] = attention_types __SCREAMING_SNAKE_CASE : Any = self.expand_attention_types_params(_lowercase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f'but is `len(config.attention_layers) = {len(self.attention_layers )}`, ' f'`config.num_layers = {self.num_layers}`. ' "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) @staticmethod def a_ ( a__ ): __SCREAMING_SNAKE_CASE : Any = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __A ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" import torch __SCREAMING_SNAKE_CASE : Dict = input.size() __SCREAMING_SNAKE_CASE : Tuple = len(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = shape[dimension] __SCREAMING_SNAKE_CASE : Dict = torch.arange(0 , __lowerCamelCase , __lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = torch.div(sizedim - size , __lowerCamelCase , rounding_mode="floor" ) + 1 __SCREAMING_SNAKE_CASE : Optional[int] = torch.arange(__lowerCamelCase ) + low_indices[:min_length][:, None] __SCREAMING_SNAKE_CASE : Optional[Any] = [slice(__lowerCamelCase )] * rank __SCREAMING_SNAKE_CASE : str = indices __SCREAMING_SNAKE_CASE : Dict = input[s] __SCREAMING_SNAKE_CASE : Union[str, Any] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(__lowerCamelCase ) def __A ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" import torch __SCREAMING_SNAKE_CASE : List[Any] = torch.arange(1 , __lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = torch.remainder(__lowerCamelCase , __lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = remainders == 0 __SCREAMING_SNAKE_CASE : Tuple = candidates[divisor_indices] __SCREAMING_SNAKE_CASE : Optional[int] = torch.max(__lowerCamelCase ) return largest_divisor, torch.div(__lowerCamelCase , __lowerCamelCase , rounding_mode="floor" ) class __lowerCamelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def a_ ( self ): __SCREAMING_SNAKE_CASE : str = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(_lowercase , direction="inputs" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = {0: "batch", 1: "past_sequence + sequence"} else: __SCREAMING_SNAKE_CASE : Tuple = {0: "batch", 1: "sequence"} return common_inputs @property def a_ ( self ): return self._config.num_heads def a_ ( self , a__ , a__ = -1 , a__ = -1 , a__ = False , a__ = None , ): __SCREAMING_SNAKE_CASE : Union[str, Any] = super(_lowercase , self ).generate_dummy_inputs( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) # We need to order the input in the way they appears in the forward() __SCREAMING_SNAKE_CASE : List[Any] = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = common_inputs["input_ids"].shape # Not using the same length for past_key_values __SCREAMING_SNAKE_CASE : Optional[int] = seqlen + 2 __SCREAMING_SNAKE_CASE : Optional[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __SCREAMING_SNAKE_CASE : int = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(self.num_layers ) ] __SCREAMING_SNAKE_CASE : List[Any] = common_inputs["attention_mask"] if self.use_past: __SCREAMING_SNAKE_CASE : Any = ordered_inputs["attention_mask"].dtype __SCREAMING_SNAKE_CASE : Any = torch.cat( [ordered_inputs["attention_mask"], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) return ordered_inputs @property def a_ ( self ): return 13
211
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = ['''input_values''', '''padding_mask'''] def __init__( self , _lowercase = 1 , _lowercase = 24_000 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , **_lowercase , ): """simple docstring""" super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) _lowerCAmelCase = chunk_length_s _lowerCAmelCase = overlap @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , _lowercase , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs _lowerCAmelCase = True _lowerCAmelCase = bool( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_lowercase , np.ndarray ): _lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _lowerCAmelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [np.asarray(_lowercase ).T] # verify inputs are valid for idx, example in enumerate(_lowercase ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) _lowerCAmelCase = None _lowerCAmelCase = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _lowerCAmelCase = min(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.floor(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _lowerCAmelCase = max(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.ceil(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length _lowerCAmelCase = """max_length""" else: _lowerCAmelCase = input_values # normal padding on batch if padded_inputs is None: _lowerCAmelCase = self.pad( _lowercase , max_length=_lowercase , truncation=_lowercase , padding=_lowercase , return_attention_mask=_lowercase , ) if padding: _lowerCAmelCase = padded_inputs.pop("""attention_mask""" ) _lowerCAmelCase = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: _lowerCAmelCase = example[..., None] input_values.append(example.T ) _lowerCAmelCase = input_values if return_tensors is not None: _lowerCAmelCase = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
5
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case : def __init__( self : Tuple , A_ : Tuple , A_ : List[str]=1_3 , A_ : str=3_2 , A_ : str=3 , A_ : Union[str, Any]=4 , A_ : Tuple=[1_0, 2_0, 3_0, 4_0] , A_ : str=[2, 2, 3, 2] , A_ : Tuple=True , A_ : Dict=True , A_ : Any=3_7 , A_ : List[Any]="gelu" , A_ : List[str]=1_0 , A_ : Any=0.02 , A_ : Tuple=["stage2", "stage3", "stage4"] , A_ : Tuple=3 , A_ : int=None , ): lowerCAmelCase_ : List[str] = parent lowerCAmelCase_ : List[str] = batch_size lowerCAmelCase_ : List[str] = image_size lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : Union[str, Any] = num_stages lowerCAmelCase_ : str = hidden_sizes lowerCAmelCase_ : Optional[Any] = depths lowerCAmelCase_ : Dict = is_training lowerCAmelCase_ : str = use_labels lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : str = hidden_act lowerCAmelCase_ : str = type_sequence_label_size lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : Tuple = out_features lowerCAmelCase_ : int = num_labels lowerCAmelCase_ : Optional[int] = scope lowerCAmelCase_ : Union[str, Any] = num_stages def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCAmelCase_ : str = None if self.use_labels: lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCAmelCase_ : str = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : int): return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def UpperCAmelCase__ ( self : Any): return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowercase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowercase , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def UpperCAmelCase__ ( self : Optional[int] , A_ : Dict , A_ : Optional[int] , A_ : int): lowerCAmelCase_ : List[str] = UperNetForSemanticSegmentation(config=_lowercase) model.to(_lowercase) model.eval() lowerCAmelCase_ : Union[str, Any] = model(_lowercase) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) : Any = config_and_inputs lowerCAmelCase_ : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __snake_case ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,unittest.TestCase ): _a = (UperNetForSemanticSegmentation,) if is_torch_available() else () _a = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} _a = False _a = False _a = False _a = False _a = False _a = False def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : str = UperNetModelTester(self) lowerCAmelCase_ : List[Any] = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=3_7) def UpperCAmelCase__ ( self : Any): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self : Optional[int]): return def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[int] = model_class(_lowercase) lowerCAmelCase_ : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : List[str] = [*signature.parameters.keys()] lowerCAmelCase_ : Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowercase) def UpperCAmelCase__ ( self : Dict): lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowercase) @unittest.skip(reason='''UperNet does not use inputs_embeds''') def UpperCAmelCase__ ( self : Dict): pass @unittest.skip(reason='''UperNet does not support input and output embeddings''') def UpperCAmelCase__ ( self : Tuple): pass @unittest.skip(reason='''UperNet does not have a base model''') def UpperCAmelCase__ ( self : Tuple): pass @unittest.skip(reason='''UperNet does not have a base model''') def UpperCAmelCase__ ( self : int): pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''') def UpperCAmelCase__ ( self : int): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def UpperCAmelCase__ ( self : int): pass def UpperCAmelCase__ ( self : Tuple): def check_hidden_states_output(A_ : int , A_ : List[Any] , A_ : List[str]): lowerCAmelCase_ : Union[str, Any] = model_class(_lowercase) model.to(_lowercase) model.eval() with torch.no_grad(): lowerCAmelCase_ : Tuple = model(**self._prepare_for_class(_lowercase , _lowercase)) lowerCAmelCase_ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_lowercase) , expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[Any] = True check_hidden_states_output(_lowercase , _lowercase , _lowercase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ : List[str] = True check_hidden_states_output(_lowercase , _lowercase , _lowercase) def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : List[Any] = _config_zero_init(_lowercase) lowerCAmelCase_ : Optional[Any] = _config_zero_init(configs_no_init.backbone_config) for model_class in self.all_model_classes: lowerCAmelCase_ : List[str] = model_class(config=_lowercase) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''') def UpperCAmelCase__ ( self : Union[str, Any]): pass @slow def UpperCAmelCase__ ( self : Any): for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Any = UperNetForSemanticSegmentation.from_pretrained(_lowercase) self.assertIsNotNone(_lowercase) def UpperCamelCase( ): lowerCAmelCase_ : List[str] = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' ,repo_type='''dataset''' ,filename='''ADE_val_00000001.jpg''' ) lowerCAmelCase_ : Any = Image.open(__lowerCamelCase ).convert('''RGB''' ) return image @require_torch @require_vision @slow class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ : Optional[Any] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''') lowerCAmelCase_ : Optional[int] = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''').to(_lowercase) lowerCAmelCase_ : Optional[int] = prepare_img() lowerCAmelCase_ : int = processor(images=_lowercase , return_tensors='''pt''').to(_lowercase) with torch.no_grad(): lowerCAmelCase_ : Any = model(**_lowercase) lowerCAmelCase_ : Optional[Any] = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2)) self.assertEqual(outputs.logits.shape , _lowercase) lowerCAmelCase_ : Union[str, Any] = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]]).to(_lowercase) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowercase , atol=1e-4)) def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : Optional[Any] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''') lowerCAmelCase_ : List[str] = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''').to(_lowercase) lowerCAmelCase_ : Dict = prepare_img() lowerCAmelCase_ : Union[str, Any] = processor(images=_lowercase , return_tensors='''pt''').to(_lowercase) with torch.no_grad(): lowerCAmelCase_ : str = model(**_lowercase) lowerCAmelCase_ : Optional[Any] = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2)) self.assertEqual(outputs.logits.shape , _lowercase) lowerCAmelCase_ : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]]).to(_lowercase) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowercase , atol=1e-4))
171
'''simple docstring''' _lowercase = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
5
0
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for a, b in zip(_lowercase , _lowercase ): self.assertAlmostEqual(_lowercase , _lowercase , delta=_lowercase ) def snake_case__ ( self ) -> List[str]: A__ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_lowercase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def snake_case__ ( self ) -> str: A__ = None ops.enable_eager_execution_internal() A__ = tf.config.list_physical_devices("CPU" ) if len(_lowercase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) A__ = tf.config.list_logical_devices(device_type="CPU" ) A__ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): A__ = GradientAccumulator() A__ = tf.Variable([4.0, 3.0] ) A__ , A__ = create_optimizer(5e-5 , 10 , 5 ) A__ = tf.Variable([0.0, 0.0] , trainable=_lowercase ) def accumulate_on_replica(SCREAMING_SNAKE_CASE__ ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): with strategy.scope(): A__ = strategy.experimental_local_results(_lowercase ) local_variables[0].assign(_lowercase ) local_variables[1].assign(_lowercase ) strategy.run(_lowercase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_lowercase ) def _check_local_values(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A__ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _lowercase , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , _lowercase , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
104
'''simple docstring''' import functools def A (__lowerCamelCase :list[int] , __lowerCamelCase :list[int] ): # Validation if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(__lowerCamelCase ) >= 366: raise ValueError("""All days elements should be less than 366""" ) _lowerCAmelCase = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase :int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
0
from abc import ABC, abstractmethod from typing import List, Optional class _lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self : Tuple ) -> Union[str, Any]: """simple docstring""" self.test() def UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" A_ = 0 A_ = False while not completed: if counter == 1: self.reset() A_ = self.advance() if not self.does_advance(_lowercase ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) A_ ,A_ ,A_ = self.update(_lowercase ) counter += 1 if counter > 1_0_0_0_0: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase ( self : Optional[int] , lowerCamelCase__ : Any ) -> Optional[int]: """simple docstring""" raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase ( self : Optional[int] , lowerCamelCase__ : str ) -> Dict: """simple docstring""" raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase ( self : str ) -> Dict: """simple docstring""" raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase ( self : Optional[Any] , lowerCamelCase__ : Optional[Any]=False ) -> Any: """simple docstring""" raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class _lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self : Optional[Any] , lowerCamelCase__ : str ) -> List[Any]: """simple docstring""" super(_lowercase , self ).__init__() if not isinstance(_lowercase , _lowercase ) or len(_lowercase ) == 0: raise ValueError(F"`token_ids` has to be a non-empty list, but is {token_ids}." ) if any((not isinstance(_lowercase , _lowercase ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}." ) A_ = token_ids A_ = len(self.token_ids ) A_ = -1 # the index of the currently fulfilled step A_ = False def UpperCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def UpperCamelCase ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(_lowercase )}" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def UpperCamelCase ( self : Optional[int] , lowerCamelCase__ : str ) -> Dict: """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(_lowercase )}" ) A_ = False A_ = False A_ = False if self.does_advance(_lowercase ): self.fulfilled_idx += 1 A_ = True if self.fulfilled_idx == (self.seqlen - 1): A_ = True A_ = completed else: # failed to make progress. A_ = True self.reset() return stepped, completed, reset def UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" A_ = False A_ = 0 def UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def UpperCamelCase ( self : str , lowerCamelCase__ : List[str]=False ) -> Optional[Any]: """simple docstring""" A_ = PhrasalConstraint(self.token_ids ) if stateful: A_ = self.seqlen A_ = self.fulfilled_idx A_ = self.completed return new_constraint class _lowercase : def __init__( self : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any]=True ) -> List[str]: """simple docstring""" A_ = max([len(_lowercase ) for one in nested_token_ids] ) A_ = {} for token_ids in nested_token_ids: A_ = root for tidx, token_id in enumerate(_lowercase ): if token_id not in level: A_ = {} A_ = level[token_id] if no_subsets and self.has_subsets(_lowercase , _lowercase ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F" {nested_token_ids}." ) A_ = root def UpperCamelCase ( self : str , lowerCamelCase__ : List[Any] ) -> Any: """simple docstring""" A_ = self.trie for current_token in current_seq: A_ = start[current_token] A_ = list(start.keys() ) return next_tokens def UpperCamelCase ( self : int , lowerCamelCase__ : Union[str, Any] ) -> Any: """simple docstring""" A_ = self.next_tokens(_lowercase ) return len(_lowercase ) == 0 def UpperCamelCase ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) -> Optional[Any]: """simple docstring""" A_ = list(root.values() ) if len(_lowercase ) == 0: return 1 else: return sum([self.count_leaves(_lowercase ) for nn in next_nodes] ) def UpperCamelCase ( self : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[Any] ) -> Any: """simple docstring""" A_ = self.count_leaves(_lowercase ) return len(_lowercase ) != leaf_count class _lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self : Tuple , lowerCamelCase__ : List[Any] ) -> Any: """simple docstring""" super(_lowercase , self ).__init__() if not isinstance(_lowercase , _lowercase ) or len(_lowercase ) == 0: raise ValueError(F"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}." ) if any(not isinstance(_lowercase , _lowercase ) for token_ids in nested_token_ids ): raise ValueError(F"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}." ) if any( any((not isinstance(_lowercase , _lowercase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}." ) A_ = DisjunctiveTrie(_lowercase ) A_ = nested_token_ids A_ = self.trie.max_height A_ = [] A_ = False def UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" A_ = self.trie.next_tokens(self.current_seq ) if len(_lowercase ) == 0: return None else: return token_list def UpperCamelCase ( self : int , lowerCamelCase__ : str ) -> str: """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowercase )}" ) A_ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def UpperCamelCase ( self : List[str] , lowerCamelCase__ : Dict ) -> Any: """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowercase )}" ) A_ = False A_ = False A_ = False if self.does_advance(_lowercase ): self.current_seq.append(_lowercase ) A_ = True else: A_ = True self.reset() A_ = self.trie.reached_leaf(self.current_seq ) A_ = completed return stepped, completed, reset def UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" A_ = False A_ = [] def UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def UpperCamelCase ( self : List[str] , lowerCamelCase__ : List[str]=False ) -> Union[str, Any]: """simple docstring""" A_ = DisjunctiveConstraint(self.token_ids ) if stateful: A_ = self.seqlen A_ = self.current_seq A_ = self.completed return new_constraint class _lowercase : def __init__( self : Dict , lowerCamelCase__ : Optional[int] ) -> Any: """simple docstring""" A_ = constraints # max # of steps required to fulfill a given constraint A_ = max([c.seqlen for c in constraints] ) A_ = len(_lowercase ) A_ = False self.init_state() def UpperCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" A_ = [] A_ = None A_ = [constraint.copy(stateful=_lowercase ) for constraint in self.constraints] def UpperCamelCase ( self : Dict ) -> int: """simple docstring""" A_ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def UpperCamelCase ( self : Tuple ) -> Any: """simple docstring""" A_ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" A_ = constraint.advance() if isinstance(_lowercase , _lowercase ): token_list.append(_lowercase ) elif isinstance(_lowercase , _lowercase ): token_list.extend(_lowercase ) else: A_ = self.inprogress_constraint.advance() if isinstance(_lowercase , _lowercase ): token_list.append(_lowercase ) elif isinstance(_lowercase , _lowercase ): token_list.extend(_lowercase ) if len(_lowercase ) == 0: return None else: return token_list def UpperCamelCase ( self : Union[str, Any] , lowerCamelCase__ : str ) -> List[Any]: """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint A_ ,A_ = self.add(_lowercase ) # the entire list of constraints are fulfilled if self.completed: break def UpperCamelCase ( self : Optional[Any] , lowerCamelCase__ : str ) -> List[str]: """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise ValueError(F"`token_id` should be an `int`, but is `{token_id}`." ) A_ ,A_ = False, False if self.completed: A_ = True A_ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state A_ ,A_ ,A_ = self.inprogress_constraint.update(_lowercase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_lowercase ) ) A_ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) A_ = None if len(self.pending_constraints ) == 0: # we're done! A_ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_lowercase ): A_ ,A_ ,A_ = pending_constraint.update(_lowercase ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(_lowercase ) A_ = None if not complete and stepped: A_ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". A_ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. A_ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def UpperCamelCase ( self : int , lowerCamelCase__ : Optional[int]=True ) -> Optional[Any]: """simple docstring""" A_ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: A_ = [ constraint.copy(stateful=_lowercase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: A_ = self.inprogress_constraint.copy(stateful=_lowercase ) A_ = [constraint.copy() for constraint in self.pending_constraints] return new_state
203
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 384 if "tiny" in model_name: _lowerCAmelCase = [3, 3, 9, 3] _lowerCAmelCase = [96, 192, 384, 768] if "small" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [96, 192, 384, 768] if "base" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [128, 256, 512, 1024] _lowerCAmelCase = 512 if "large" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [192, 384, 768, 1536] _lowerCAmelCase = 768 if "xlarge" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [256, 512, 1024, 2048] _lowerCAmelCase = 1024 # set label information _lowerCAmelCase = 150 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """ade20k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = ConvNextConfig( depths=__lowerCamelCase , hidden_sizes=__lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) _lowerCAmelCase = UperNetConfig( backbone_config=__lowerCamelCase , auxiliary_in_channels=__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , ) return config def A (__lowerCamelCase :Optional[Any] ): _lowerCAmelCase = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict , __lowerCamelCase :Tuple ): _lowerCAmelCase = dct.pop(__lowerCamelCase ) _lowerCAmelCase = val def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ): _lowerCAmelCase = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } _lowerCAmelCase = model_name_to_url[model_name] _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""state_dict"""] _lowerCAmelCase = get_upernet_config(__lowerCamelCase ) _lowerCAmelCase = UperNetForSemanticSegmentation(__lowerCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase = state_dict.pop(__lowerCamelCase ) if "bn" in key: _lowerCAmelCase = key.replace("""bn""" , """batch_norm""" ) _lowerCAmelCase = val # rename keys _lowerCAmelCase = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # verify on image _lowerCAmelCase = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _lowerCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" ) _lowerCAmelCase = SegformerImageProcessor() _lowerCAmelCase = processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values with torch.no_grad(): _lowerCAmelCase = model(__lowerCamelCase ) if model_name == "upernet-convnext-tiny": _lowerCAmelCase = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _lowerCAmelCase = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _lowerCAmelCase = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _lowerCAmelCase = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _lowerCAmelCase = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
5
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 SCREAMING_SNAKE_CASE__ = get_tests_dir("fixtures") class _UpperCAmelCase ( unittest.TestCase ): def _snake_case ( self : Any): SCREAMING_SNAKE_CASE_ :Union[str, Any] = mock.Mock() SCREAMING_SNAKE_CASE_ :List[str] = 5_00 SCREAMING_SNAKE_CASE_ :Any = {} SCREAMING_SNAKE_CASE_ :Optional[Any] = HTTPError SCREAMING_SNAKE_CASE_ :List[Any] = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE_ :Optional[int] = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2") # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=_lowercase) as mock_head: SCREAMING_SNAKE_CASE_ :Optional[Any] = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2") # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self : Optional[int]): SCREAMING_SNAKE_CASE_ :List[str] = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json") @is_staging_test class _UpperCAmelCase ( unittest.TestCase ): @classmethod def _snake_case ( cls : str): SCREAMING_SNAKE_CASE_ :List[Any] = TOKEN HfFolder.save_token(_lowercase) @classmethod def _snake_case ( cls : Dict): try: delete_repo(token=cls._token , repo_id="test-feature-extractor") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor") except HTTPError: pass def _snake_case ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ :Any = WavaVecaFeatureExtractor.from_pretrained(_lowercase) feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ :int = WavaVecaFeatureExtractor.from_pretrained(F"{USER}/test-feature-extractor") for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowercase , getattr(_lowercase , _lowercase)) # Reset repo delete_repo(token=self._token , repo_id="test-feature-extractor") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowercase , repo_id="test-feature-extractor" , push_to_hub=_lowercase , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ :List[Any] = WavaVecaFeatureExtractor.from_pretrained(F"{USER}/test-feature-extractor") for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowercase , getattr(_lowercase , _lowercase)) def _snake_case ( self : int): SCREAMING_SNAKE_CASE_ :int = WavaVecaFeatureExtractor.from_pretrained(_lowercase) feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ :Optional[int] = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor") for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowercase , getattr(_lowercase , _lowercase)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowercase , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=_lowercase , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ :Tuple = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org") for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowercase , getattr(_lowercase , _lowercase)) def _snake_case ( self : Tuple): CustomFeatureExtractor.register_for_auto_class() SCREAMING_SNAKE_CASE_ :Optional[Any] = CustomFeatureExtractor.from_pretrained(_lowercase) feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = AutoFeatureExtractor.from_pretrained( F"{USER}/test-dynamic-feature-extractor" , trust_remote_code=_lowercase) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor")
631
'''simple docstring''' from itertools import product def A (__lowerCamelCase :int , __lowerCamelCase :int ): _lowerCAmelCase = sides_number _lowerCAmelCase = max_face_number * dice_number _lowerCAmelCase = [0] * (max_total + 1) _lowerCAmelCase = 1 _lowerCAmelCase = range(__lowerCamelCase , max_face_number + 1 ) for dice_numbers in product(__lowerCamelCase , repeat=__lowerCamelCase ): _lowerCAmelCase = sum(__lowerCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def A (): _lowerCAmelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) _lowerCAmelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) _lowerCAmelCase = 0 _lowerCAmelCase = 9 _lowerCAmelCase = 4 * 9 _lowerCAmelCase = 6 for peter_total in range(__lowerCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _lowerCAmelCase = (4**9) * (6**6) _lowerCAmelCase = peter_wins_count / total_games_number _lowerCAmelCase = round(__lowerCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
5
0
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( 'The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion' ) lowerCAmelCase__ : Dict =None lowerCAmelCase__ : Optional[int] ={ '7B': 1_10_08, '13B': 1_38_24, '30B': 1_79_20, '65B': 2_20_16, '70B': 2_86_72, } lowerCAmelCase__ : List[str] ={ '7B': 1, '7Bf': 1, '13B': 2, '13Bf': 2, '30B': 4, '65B': 8, '70B': 8, '70Bf': 8, } def a__ ( A__, A__=1, A__=2_5_6 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def a__ ( A__ ): with open(__lowerCamelCase, 'r' ) as f: return json.load(__lowerCamelCase ) def a__ ( A__, A__ ): with open(__lowerCamelCase, 'w' ) as f: json.dump(__lowerCamelCase, __lowerCamelCase ) def a__ ( A__, A__, A__, A__=True ): os.makedirs(__lowerCamelCase, exist_ok=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Dict = os.path.join(__lowerCamelCase, 'tmp' ) os.makedirs(__lowerCamelCase, exist_ok=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : str = read_json(os.path.join(__lowerCamelCase, 'params.json' ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = NUM_SHARDS[model_size] SCREAMING_SNAKE_CASE_ : int = params['n_layers'] SCREAMING_SNAKE_CASE_ : Dict = params['n_heads'] SCREAMING_SNAKE_CASE_ : Tuple = n_heads // num_shards SCREAMING_SNAKE_CASE_ : int = params['dim'] SCREAMING_SNAKE_CASE_ : Dict = dim // n_heads SCREAMING_SNAKE_CASE_ : List[Any] = 1_0_0_0_0.0 SCREAMING_SNAKE_CASE_ : List[Any] = 1.0 / (base ** (torch.arange(0, __lowerCamelCase, 2 ).float() / dims_per_head)) if "n_kv_heads" in params: SCREAMING_SNAKE_CASE_ : Optional[Any] = params['n_kv_heads'] # for GQA / MQA SCREAMING_SNAKE_CASE_ : List[str] = n_heads_per_shard // num_key_value_heads SCREAMING_SNAKE_CASE_ : Any = dim // num_key_value_heads else: # compatibility with other checkpoints SCREAMING_SNAKE_CASE_ : Dict = n_heads SCREAMING_SNAKE_CASE_ : List[Any] = n_heads_per_shard SCREAMING_SNAKE_CASE_ : Optional[Any] = dim # permute for sliced rotary def permute(A__, A__=n_heads, A__=dim, A__=dim ): return w.view(__lowerCamelCase, dima // n_heads // 2, 2, __lowerCamelCase ).transpose(1, 2 ).reshape(__lowerCamelCase, __lowerCamelCase ) print(F'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.load(os.path.join(__lowerCamelCase, 'consolidated.00.pth' ), map_location='cpu' ) else: # Sharded SCREAMING_SNAKE_CASE_ : List[str] = [ torch.load(os.path.join(__lowerCamelCase, F'''consolidated.{i:02d}.pth''' ), map_location='cpu' ) for i in range(__lowerCamelCase ) ] SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = {'weight_map': {}} for layer_i in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] = F'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded SCREAMING_SNAKE_CASE_ : Optional[Any] = { F'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[F'''layers.{layer_i}.attention.wq.weight'''] ), F'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[F'''layers.{layer_i}.attention.wk.weight'''] ), F'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[F'''layers.{layer_i}.attention.wv.weight'''], F'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[F'''layers.{layer_i}.attention.wo.weight'''], F'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w1.weight'''], F'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w2.weight'''], F'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w3.weight'''], F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[F'''layers.{layer_i}.attention_norm.weight'''], F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[F'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. SCREAMING_SNAKE_CASE_ : Tuple = { F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ F'''layers.{layer_i}.attention_norm.weight''' ].clone(), F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ F'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } SCREAMING_SNAKE_CASE_ : str = permute( torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wq.weight'''].view(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) for i in range(__lowerCamelCase ) ], dim=0, ).reshape(__lowerCamelCase, __lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = permute( torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wk.weight'''].view( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) for i in range(__lowerCamelCase ) ], dim=0, ).reshape(__lowerCamelCase, __lowerCamelCase ), __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wv.weight'''].view( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) for i in range(__lowerCamelCase ) ], dim=0, ).reshape(__lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Any = torch.cat( [loaded[i][F'''layers.{layer_i}.attention.wo.weight'''] for i in range(__lowerCamelCase )], dim=1 ) SCREAMING_SNAKE_CASE_ : Tuple = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(__lowerCamelCase )], dim=0 ) SCREAMING_SNAKE_CASE_ : str = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(__lowerCamelCase )], dim=1 ) SCREAMING_SNAKE_CASE_ : int = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(__lowerCamelCase )], dim=0 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = inv_freq for k, v in state_dict.items(): SCREAMING_SNAKE_CASE_ : Tuple = filename param_count += v.numel() torch.save(__lowerCamelCase, os.path.join(__lowerCamelCase, __lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ : List[str] = F'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded SCREAMING_SNAKE_CASE_ : Dict = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: SCREAMING_SNAKE_CASE_ : Any = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(__lowerCamelCase )], dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(__lowerCamelCase )], dim=0 ), } for k, v in state_dict.items(): SCREAMING_SNAKE_CASE_ : int = filename param_count += v.numel() torch.save(__lowerCamelCase, os.path.join(__lowerCamelCase, __lowerCamelCase ) ) # Write configs SCREAMING_SNAKE_CASE_ : List[str] = {'total_size': param_count * 2} write_json(__lowerCamelCase, os.path.join(__lowerCamelCase, 'pytorch_model.bin.index.json' ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 SCREAMING_SNAKE_CASE_ : int = params['multiple_of'] if 'multiple_of' in params else 2_5_6 SCREAMING_SNAKE_CASE_ : List[Any] = LlamaConfig( hidden_size=__lowerCamelCase, intermediate_size=compute_intermediate_size(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), num_attention_heads=params['n_heads'], num_hidden_layers=params['n_layers'], rms_norm_eps=params['norm_eps'], num_key_value_heads=__lowerCamelCase, ) config.save_pretrained(__lowerCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) SCREAMING_SNAKE_CASE_ : int = LlamaForCausalLM.from_pretrained(__lowerCamelCase, torch_dtype=torch.floataa, low_cpu_mem_usage=__lowerCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(__lowerCamelCase, safe_serialization=__lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) def a__ ( A__, A__ ): # Initialize the tokenizer based on the `spm` model SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_class(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) def a__ ( ): SCREAMING_SNAKE_CASE_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--input_dir', help='Location of LLaMA weights, which contains tokenizer.model and model folders', ) parser.add_argument( '--model_size', choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'], ) parser.add_argument( '--output_dir', help='Location to write HF model and tokenizer', ) parser.add_argument('--safe_serialization', type=__lowerCamelCase, help='Whether or not to save using `safetensors`.' ) SCREAMING_SNAKE_CASE_ : Any = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir, input_base_path=os.path.join(args.input_dir, args.model_size ), model_size=args.model_size, safe_serialization=args.safe_serialization, ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(args.input_dir, 'tokenizer.model' ) write_tokenizer(args.output_dir, __lowerCamelCase ) if __name__ == "__main__": main()
101
'''simple docstring''' from manim import * class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""CPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(1 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""GPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.align_to(_lowercase , _lowercase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""Model""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , ) _lowerCAmelCase = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) _lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) ) self.add(_lowercase ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for i, rect in enumerate(_lowercase ): _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 ) cpu_target.move_to(_lowercase ) cpu_target.generate_target() _lowerCAmelCase = 0.46 / 4 _lowerCAmelCase = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 ) cpu_targs.append(_lowercase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) ) second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) ) self.play(*_lowercase ) self.play(*_lowercase ) self.wait()
5
0
def __UpperCamelCase ( _lowerCAmelCase = 10 , _lowerCAmelCase = 22 ): """simple docstring""" UpperCAmelCase = range(1 , __lowerCamelCase ) UpperCAmelCase = range(1 , __lowerCamelCase ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f"{solution(10, 22) = }")
333
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowercase = False try: _lowercase = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase = None , _lowercase = [] ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = choices _lowerCAmelCase = prompt if sys.platform == "win32": _lowerCAmelCase = """*""" else: _lowerCAmelCase = """➔ """ def _lowercase ( self , _lowercase , _lowercase = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , _lowercase ) else: forceWrite(self.choices[index] , _lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(_lowercase ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def _lowercase ( self , _lowercase , _lowercase = 1 ): """simple docstring""" _lowerCAmelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowercase ) move_cursor(_lowercase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = int(chr(self.current_selection ) ) _lowerCAmelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowercase ) else: return else: return def _lowercase ( self , _lowercase = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) _lowerCAmelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowercase ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase = int(builtins.input() ) except ValueError: _lowerCAmelCase = default_choice else: _lowerCAmelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(_lowercase , """\n""" ) return choice
5
0
import math import unittest def A ( _lowerCamelCase ): '''simple docstring''' assert isinstance(__lowerCamelCase , __lowerCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' self.assertTrue(is_prime(2)) self.assertTrue(is_prime(3)) self.assertTrue(is_prime(5)) self.assertTrue(is_prime(7)) self.assertTrue(is_prime(11)) self.assertTrue(is_prime(13)) self.assertTrue(is_prime(17)) self.assertTrue(is_prime(19)) self.assertTrue(is_prime(23)) self.assertTrue(is_prime(29)) def snake_case__ ( self): '''simple docstring''' with self.assertRaises(_lowercase): is_prime(-19) self.assertFalse( is_prime(0), "Zero doesn't have any positive factors, primes must have exactly two.", ) self.assertFalse( is_prime(1), "One only has 1 positive factor, primes must have exactly two.", ) self.assertFalse(is_prime(2 * 2)) self.assertFalse(is_prime(2 * 3)) self.assertFalse(is_prime(3 * 3)) self.assertFalse(is_prime(3 * 5)) self.assertFalse(is_prime(3 * 5 * 7)) if __name__ == "__main__": unittest.main()
500
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } _lowercase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def A (__lowerCamelCase :Optional[int] ): _lowerCAmelCase = {} with open(__lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(__lowerCamelCase ): _lowerCAmelCase = line.strip() if line: _lowerCAmelCase = line.split() _lowerCAmelCase = line_number _lowerCAmelCase = words[0] _lowerCAmelCase = value return result def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any] , __lowerCamelCase :List[str] ): for attribute in key.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": _lowerCAmelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = shape_pointer.shape # let's reduce dimension _lowerCAmelCase = value[0] else: _lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCAmelCase = value elif weight_type == "weight_g": _lowerCAmelCase = value elif weight_type == "weight_v": _lowerCAmelCase = value elif weight_type == "bias": _lowerCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = value else: _lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] , __lowerCamelCase :int ): _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _lowerCAmelCase = """.""".join([key, hf_param_name] ) else: _lowerCAmelCase = key _lowerCAmelCase = value if """lm_head""" in full_key else value[0] _lowercase = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :List[str]=None , __lowerCamelCase :List[Any]=None ): _lowerCAmelCase = False for key, mapped_key in MAPPING.items(): _lowerCAmelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCAmelCase = True if "*" in mapped_key: _lowerCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase = """weight_g""" elif "weight_v" in name: _lowerCAmelCase = """weight_v""" elif "bias" in name: _lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase = """weight""" else: _lowerCAmelCase = None if hf_dict is not None: rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return is_used return is_used def A (__lowerCamelCase :Any , __lowerCamelCase :Dict , __lowerCamelCase :Dict ): _lowerCAmelCase = [] _lowerCAmelCase = fairseq_model.state_dict() _lowerCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) _lowerCAmelCase = True else: _lowerCAmelCase = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any , __lowerCamelCase :List[Any] , __lowerCamelCase :List[Any] ): _lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase = name.split(""".""" ) _lowerCAmelCase = int(items[0] ) _lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def A (__lowerCamelCase :List[str] , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any]=None , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :str=True , __lowerCamelCase :str=False ): if config_path is not None: _lowerCAmelCase = WavaVecaConfig.from_pretrained(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaConfig() if is_seq_class: _lowerCAmelCase = read_txt_into_dict(__lowerCamelCase ) _lowerCAmelCase = idalabel _lowerCAmelCase = WavaVecaForSequenceClassification(__lowerCamelCase ) _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) feature_extractor.save_pretrained(__lowerCamelCase ) elif is_finetuned: if dict_path: _lowerCAmelCase = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCAmelCase = target_dict.pad_index _lowerCAmelCase = target_dict.bos_index _lowerCAmelCase = target_dict.eos_index _lowerCAmelCase = len(target_dict.symbols ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """vocab.json""" ) if not os.path.isdir(__lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCAmelCase = 0 _lowerCAmelCase = 1 with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , ) _lowerCAmelCase = True if config.feat_extract_norm == """layer""" else False _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) _lowerCAmelCase = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) _lowerCAmelCase = WavaVecaForCTC(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaForPreTraining(__lowerCamelCase ) if is_finetuned or is_seq_class: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _lowerCAmelCase = argparse.Namespace(task="""audio_pretraining""" ) _lowerCAmelCase = fairseq.tasks.setup_task(__lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase ) _lowerCAmelCase = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) _lowercase = parser.parse_args() _lowercase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
5
0
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = BarthezTokenizer SCREAMING_SNAKE_CASE__ : Union[str, Any] = BarthezTokenizerFast SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ : Optional[int] = True def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" super().setUp() _snake_case : Tuple = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=_lowercase ) _snake_case : str = tokenizer def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case : List[str] = '<pad>' _snake_case : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(_lowercase ) , 101122 ) def __UpperCAmelCase ( self : List[str] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case : List[str] = [0, 57, 3018, 70307, 91, 2] _snake_case : str = self.tokenizer( _lowercase , max_length=len(_lowercase ) , padding=_lowercase , truncation=_lowercase , return_tensors='pt' ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _snake_case : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(_lowercase , _lowercase ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" if not self.test_rust_tokenizer: return _snake_case : Union[str, Any] = self.get_tokenizer() _snake_case : Optional[int] = self.get_rust_tokenizer() _snake_case : Union[str, Any] = 'I was born in 92000, and this is falsé.' _snake_case : Any = tokenizer.tokenize(_lowercase ) _snake_case : Dict = rust_tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) _snake_case : Optional[Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) _snake_case : Any = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) _snake_case : Tuple = self.get_rust_tokenizer() _snake_case : str = tokenizer.encode(_lowercase ) _snake_case : Union[str, Any] = rust_tokenizer.encode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) @slow def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case : Optional[int] = {'input_ids': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _snake_case : Optional[Any] = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=_lowercase , )
517
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = '''decision_transformer''' _lowercase : Optional[Any] = ['''past_key_values'''] _lowercase : str = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowercase=17 , _lowercase=4 , _lowercase=128 , _lowercase=4_096 , _lowercase=True , _lowercase=1 , _lowercase=1_024 , _lowercase=3 , _lowercase=1 , _lowercase=None , _lowercase="relu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=False , _lowercase=False , **_lowercase , ): """simple docstring""" _lowerCAmelCase = state_dim _lowerCAmelCase = act_dim _lowerCAmelCase = hidden_size _lowerCAmelCase = max_ep_len _lowerCAmelCase = action_tanh _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = scale_attn_by_inverse_layer_idx _lowerCAmelCase = reorder_and_upcast_attn _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
5
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _a (_SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: Dict = KandinskyVaaControlnetImgaImgPipeline UpperCAmelCase__: int = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] UpperCAmelCase__: Tuple = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] UpperCAmelCase__: Dict = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCAmelCase__: str = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 100 @property def __A ( self ): torch.manual_seed(0 ) A__ : Union[str, Any] = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } A__ : List[Any] = UNetaDConditionModel(**_lowercase ) return model @property def __A ( self ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __A ( self ): torch.manual_seed(0 ) A__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __A ( self ): A__ : int = self.dummy_unet A__ : Dict = self.dummy_movq A__ : List[str] = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.0_0_0_8_5, """beta_end""": 0.0_1_2, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } A__ : str = DDIMScheduler(**_lowercase ) A__ : int = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __A ( self , A__ , A__=0 ): A__ : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowercase ) ).to(_lowercase ) A__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowercase ) # create init_image A__ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase ) A__ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ : Optional[int] = Image.fromarray(np.uinta(_lowercase ) ).convert("""RGB""" ).resize((256, 256) ) # create hint A__ : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase ) if str(_lowercase ).startswith("""mps""" ): A__ : str = torch.manual_seed(_lowercase ) else: A__ : Dict = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) A__ : List[Any] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def __A ( self ): A__ : Tuple = """cpu""" A__ : int = self.get_dummy_components() A__ : Tuple = self.pipeline_class(**_lowercase ) A__ : str = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A__ : Tuple = pipe(**self.get_dummy_inputs(_lowercase ) ) A__ : Union[str, Any] = output.images A__ : List[Any] = pipe( **self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0] A__ : Optional[Any] = image[0, -3:, -3:, -1] A__ : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ : List[str] = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _a (unittest.TestCase ): '''simple docstring''' def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): A__ : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) A__ : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) A__ : Union[str, Any] = init_image.resize((512, 512) ) A__ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) A__ : Any = torch.from_numpy(np.array(_lowercase ) ).float() / 2_5_5.0 A__ : List[Any] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) A__ : List[Any] = """A robot, 4k photo""" A__ : Tuple = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_lowercase ) A__ : Optional[int] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) A__ : Dict = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) A__ : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) A__ , A__ : Tuple = pipe_prior( _lowercase , image=_lowercase , strength=0.8_5 , generator=_lowercase , negative_prompt="""""" , ).to_tuple() A__ : List[str] = pipeline( image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , hint=_lowercase , generator=_lowercase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="""np""" , ) A__ : List[Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
456
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) _lowercase = None _lowercase = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } _lowercase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def A (__lowerCamelCase :int , __lowerCamelCase :Optional[Any]=1 , __lowerCamelCase :List[Any]=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def A (__lowerCamelCase :Any ): with open(__lowerCamelCase , """r""" ) as f: return json.load(__lowerCamelCase ) def A (__lowerCamelCase :List[Any] , __lowerCamelCase :int ): with open(__lowerCamelCase , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple=True ): os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """tmp""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = read_json(os.path.join(__lowerCamelCase , """params.json""" ) ) _lowerCAmelCase = NUM_SHARDS[model_size] _lowerCAmelCase = params["""n_layers"""] _lowerCAmelCase = params["""n_heads"""] _lowerCAmelCase = n_heads // num_shards _lowerCAmelCase = params["""dim"""] _lowerCAmelCase = dim // n_heads _lowerCAmelCase = 10_000.0 _lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , __lowerCamelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase = params["""n_kv_heads"""] # for GQA / MQA _lowerCAmelCase = n_heads_per_shard // num_key_value_heads _lowerCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase = n_heads _lowerCAmelCase = n_heads_per_shard _lowerCAmelCase = dim # permute for sliced rotary def permute(__lowerCamelCase :Optional[int] , __lowerCamelCase :str=n_heads , __lowerCamelCase :str=dim , __lowerCamelCase :List[Any]=dim ): return w.view(__lowerCamelCase , dima // n_heads // 2 , 2 , __lowerCamelCase ).transpose(1 , 2 ).reshape(__lowerCamelCase , __lowerCamelCase ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase = torch.load(os.path.join(__lowerCamelCase , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded _lowerCAmelCase = [ torch.load(os.path.join(__lowerCamelCase , f'consolidated.{i:02d}.pth' ) , map_location="""cpu""" ) for i in range(__lowerCamelCase ) ] _lowerCAmelCase = 0 _lowerCAmelCase = {"""weight_map""": {}} for layer_i in range(__lowerCamelCase ): _lowerCAmelCase = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _lowerCAmelCase = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = inv_freq for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: _lowerCAmelCase = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(__lowerCamelCase )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__lowerCamelCase )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) # Write configs _lowerCAmelCase = {"""total_size""": param_count * 2} write_json(__lowerCamelCase , os.path.join(__lowerCamelCase , """pytorch_model.bin.index.json""" ) ) _lowerCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 _lowerCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256 _lowerCAmelCase = LlamaConfig( hidden_size=__lowerCamelCase , intermediate_size=compute_intermediate_size(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=__lowerCamelCase , ) config.save_pretrained(__lowerCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) _lowerCAmelCase = LlamaForCausalLM.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=__lowerCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(__lowerCamelCase , safe_serialization=__lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any] ): # Initialize the tokenizer based on the `spm` model _lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase = tokenizer_class(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) def A (): _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=__lowerCamelCase , help="""Whether or not to save using `safetensors`.""" ) _lowerCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , __lowerCamelCase ) if __name__ == "__main__": main()
5
0
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { "kakaobrain/align-base": "https://huggingface.co/kakaobrain/align-base/resolve/main/config.json", } class _snake_case ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase__ ='''align_text_model''' def __init__( self : List[Any] , snake_case : Optional[Any]=30_522 , snake_case : Any=768 , snake_case : Optional[int]=12 , snake_case : Dict=12 , snake_case : int=3_072 , snake_case : List[str]="gelu" , snake_case : Optional[Any]=0.1 , snake_case : Any=0.1 , snake_case : Optional[Any]=512 , snake_case : Tuple=2 , snake_case : List[str]=0.02 , snake_case : List[str]=1e-12 , snake_case : Any=0 , snake_case : List[Any]="absolute" , snake_case : Union[str, Any]=True , **snake_case : Optional[Any] , ): super().__init__(**_lowercase ) UpperCAmelCase_ :str = vocab_size UpperCAmelCase_ :Tuple = hidden_size UpperCAmelCase_ :Optional[Any] = num_hidden_layers UpperCAmelCase_ :str = num_attention_heads UpperCAmelCase_ :Dict = hidden_act UpperCAmelCase_ :List[str] = intermediate_size UpperCAmelCase_ :str = hidden_dropout_prob UpperCAmelCase_ :Any = attention_probs_dropout_prob UpperCAmelCase_ :Union[str, Any] = max_position_embeddings UpperCAmelCase_ :List[Any] = type_vocab_size UpperCAmelCase_ :List[str] = initializer_range UpperCAmelCase_ :Optional[int] = layer_norm_eps UpperCAmelCase_ :Dict = position_embedding_type UpperCAmelCase_ :Dict = use_cache UpperCAmelCase_ :Dict = pad_token_id @classmethod def snake_case_ ( cls : str , snake_case : List[str] , **snake_case : Any ): cls._set_token_in_kwargs(_lowercase ) UpperCAmelCase_ ,UpperCAmelCase_ :str = cls.get_config_dict(_lowercase , **_lowercase ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": UpperCAmelCase_ :Dict = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_lowercase , **_lowercase ) class _snake_case ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase__ ='''align_vision_model''' def __init__( self : Any , snake_case : Optional[int] = 3 , snake_case : Dict = 600 , snake_case : List[str] = 2.0 , snake_case : Dict = 3.1 , snake_case : Dict = 8 , snake_case : Dict = [3, 3, 5, 3, 5, 5, 3] , snake_case : Optional[Any] = [32, 16, 24, 40, 80, 112, 192] , snake_case : Tuple = [16, 24, 40, 80, 112, 192, 320] , snake_case : Union[str, Any] = [] , snake_case : Any = [1, 2, 2, 2, 1, 2, 1] , snake_case : Optional[int] = [1, 2, 2, 3, 3, 4, 1] , snake_case : Optional[int] = [1, 6, 6, 6, 6, 6, 6] , snake_case : Union[str, Any] = 0.25 , snake_case : str = "swish" , snake_case : List[Any] = 2_560 , snake_case : Union[str, Any] = "mean" , snake_case : Optional[int] = 0.02 , snake_case : str = 0.001 , snake_case : Optional[int] = 0.99 , snake_case : Optional[Any] = 0.2 , **snake_case : Dict , ): super().__init__(**_lowercase ) UpperCAmelCase_ :Optional[int] = num_channels UpperCAmelCase_ :Tuple = image_size UpperCAmelCase_ :List[Any] = width_coefficient UpperCAmelCase_ :int = depth_coefficient UpperCAmelCase_ :Optional[int] = depth_divisor UpperCAmelCase_ :Optional[Any] = kernel_sizes UpperCAmelCase_ :Optional[int] = in_channels UpperCAmelCase_ :Dict = out_channels UpperCAmelCase_ :Optional[Any] = depthwise_padding UpperCAmelCase_ :Optional[int] = strides UpperCAmelCase_ :Optional[Any] = num_block_repeats UpperCAmelCase_ :List[str] = expand_ratios UpperCAmelCase_ :List[str] = squeeze_expansion_ratio UpperCAmelCase_ :Optional[Any] = hidden_act UpperCAmelCase_ :str = hidden_dim UpperCAmelCase_ :Union[str, Any] = pooling_type UpperCAmelCase_ :List[Any] = initializer_range UpperCAmelCase_ :str = batch_norm_eps UpperCAmelCase_ :str = batch_norm_momentum UpperCAmelCase_ :Any = drop_connect_rate UpperCAmelCase_ :List[str] = sum(_lowercase ) * 4 @classmethod def snake_case_ ( cls : Optional[Any] , snake_case : str , **snake_case : Optional[int] ): cls._set_token_in_kwargs(_lowercase ) UpperCAmelCase_ ,UpperCAmelCase_ :Optional[Any] = cls.get_config_dict(_lowercase , **_lowercase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": UpperCAmelCase_ :Tuple = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_lowercase , **_lowercase ) class _snake_case ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase__ ='''align''' UpperCamelCase__ =True def __init__( self : List[Any] , snake_case : str=None , snake_case : Any=None , snake_case : Union[str, Any]=640 , snake_case : Any=1.0 , snake_case : List[str]=0.02 , **snake_case : Any , ): super().__init__(**_lowercase ) if text_config is None: UpperCAmelCase_ :List[str] = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: UpperCAmelCase_ :str = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) UpperCAmelCase_ :Optional[int] = AlignTextConfig(**_lowercase ) UpperCAmelCase_ :Optional[Any] = AlignVisionConfig(**_lowercase ) UpperCAmelCase_ :Tuple = projection_dim UpperCAmelCase_ :str = temperature_init_value UpperCAmelCase_ :List[str] = initializer_range @classmethod def snake_case_ ( cls : Dict , snake_case : Optional[Any] , snake_case : Dict , **snake_case : Union[str, Any] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_lowercase ) def snake_case_ ( self : List[Any] ): UpperCAmelCase_ :Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ :Optional[int] = self.text_config.to_dict() UpperCAmelCase_ :List[str] = self.vision_config.to_dict() UpperCAmelCase_ :Optional[int] = self.__class__.model_type return output
608
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = (DDPMScheduler,) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_lowercase ) return config def _lowercase ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def _lowercase ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def _lowercase ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def _lowercase ( self ): """simple docstring""" self.check_over_configs(thresholding=_lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def _lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowercase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowercase ): if i == len(_lowercase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowercase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowercase , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowercase ) with self.assertRaises(_lowercase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowercase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_lowercase )
5
0
'''simple docstring''' import os from pathlib import Path def __A ( ): """simple docstring""" from torch.utils.cpp_extension import load __SCREAMING_SNAKE_CASE : Dict = Path(__lowerCamelCase ).resolve().parent.parent.parent / "kernels" / "deformable_detr" __SCREAMING_SNAKE_CASE : Union[str, Any] = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , __lowerCamelCase , with_cuda=__lowerCamelCase , extra_include_paths=[str(__lowerCamelCase )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
211
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowercase = logging.get_logger(__name__) _lowercase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : '''simple docstring''' _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_SCREAMING_SNAKE_CASE )} ) _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) _lowercase : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase : int = field( default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) _lowercase : int = field( default=6_4 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) _lowercase : int = field( default=3_0 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) _lowercase : float = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) _lowercase : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''train''' _lowercase : Union[str, Any] = '''dev''' class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : SquadDataTrainingArguments _lowercase : List[SquadFeatures] _lowercase : Split _lowercase : bool def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = False , _lowercase = None , _lowercase = "pt" , ): """simple docstring""" _lowerCAmelCase = args _lowerCAmelCase = is_language_sensitive _lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowercase , _lowercase ): try: _lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _lowerCAmelCase = mode # Load data features from cache or dataset file _lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" _lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + """.lock""" with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: _lowerCAmelCase = time.time() _lowerCAmelCase = torch.load(_lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase = self.old_features["""features"""] _lowerCAmelCase = self.old_features.get("""dataset""" , _lowercase ) _lowerCAmelCase = self.old_features.get("""examples""" , _lowercase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: _lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: _lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) _lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , ) _lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.features[i] _lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) _lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
5
0
from maths.prime_check import is_prime def UpperCamelCase( __UpperCamelCase : int ): if not isinstance(__lowerCamelCase ,__lowerCamelCase ): lowerCAmelCase_ : Union[str, Any] = f"""Input value of [number={number}] must be an integer""" raise TypeError(__lowerCamelCase ) if is_prime(__lowerCamelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
171
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''dpr''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase="absolute" , _lowercase = 0 , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = projection_dim _lowerCAmelCase = position_embedding_type
5
0
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase_ : int = 3, UpperCAmelCase_ : int = 7, UpperCAmelCase_ : int = 1000000 ) -> Dict: """simple docstring""" A__ = 0 A__ = 1 for current_denominator in range(1, limit + 1 ): A__ = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: A__ = current_numerator A__ = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
104
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _lowercase = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ _lowercase = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ _lowercase = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase ( self ): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase ( self , _lowercase , _lowercase , _lowercase=None , _lowercase="uniform_average" , _lowercase=True ): """simple docstring""" _lowerCAmelCase = mean_squared_error( _lowercase , _lowercase , sample_weight=_lowercase , multioutput=_lowercase , squared=_lowercase ) return {"mse": mse}
5
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) __lowercase = { """configuration_speecht5""": [ """SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP""", """SpeechT5Config""", """SpeechT5HifiGanConfig""", ], """feature_extraction_speecht5""": ["""SpeechT5FeatureExtractor"""], """processing_speecht5""": ["""SpeechT5Processor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ["""SpeechT5Tokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """SpeechT5ForSpeechToText""", """SpeechT5ForSpeechToSpeech""", """SpeechT5ForTextToSpeech""", """SpeechT5Model""", """SpeechT5PreTrainedModel""", """SpeechT5HifiGan""", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
203
'''simple docstring''' def A (): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: _lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def A (): return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
5
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
631
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
5
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=9_9 , lowerCAmelCase__=1_6 , lowerCAmelCase__=3_6 , lowerCAmelCase__=6 , lowerCAmelCase__=6 , lowerCAmelCase__=6 , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = parent SCREAMING_SNAKE_CASE_ : Dict = batch_size SCREAMING_SNAKE_CASE_ : Optional[int] = seq_length SCREAMING_SNAKE_CASE_ : int = is_training SCREAMING_SNAKE_CASE_ : str = use_input_mask SCREAMING_SNAKE_CASE_ : List[str] = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[Any] = use_labels SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : List[str] = embedding_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_groups SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE_ : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : int = max_position_embeddings SCREAMING_SNAKE_CASE_ : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : int = type_sequence_label_size SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Dict = num_labels SCREAMING_SNAKE_CASE_ : List[str] = num_choices SCREAMING_SNAKE_CASE_ : List[str] = scope def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : Optional[int] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Any = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Tuple = None SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = AlbertModel(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase ) SCREAMING_SNAKE_CASE_ : List[str] = model(_lowercase , token_type_ids=_lowercase ) SCREAMING_SNAKE_CASE_ : Optional[int] = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = AlbertForPreTraining(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , sentence_order_label=_lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = AlbertForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = AlbertForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , start_positions=_lowercase , end_positions=_lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Dict = AlbertForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Any = AlbertForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.num_choices SCREAMING_SNAKE_CASE_ : Any = AlbertForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ : Tuple = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE_ : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowercase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) _UpperCAmelCase = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = True def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class in get_values(_lowercase ): SCREAMING_SNAKE_CASE_ : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowercase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) return inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = AlbertModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self , config_class=_lowercase , hidden_size=3_7 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowercase ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowercase ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ : List[Any] = type self.model_tester.create_and_check_model(*_lowercase ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Dict = AlbertModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = AlbertModel.from_pretrained('albert-base-v2' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[int] = model(_lowercase , attention_mask=_lowercase )[0] SCREAMING_SNAKE_CASE_ : Optional[int] = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , _lowercase ) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1E-4 ) )
101
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
5
0
from __future__ import annotations from math import gcd def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 3 , ): """simple docstring""" if num < 2: raise ValueError("The input value cannot be less than 2" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: return (pow(__lowerCamelCase , 2 ) + step) % modulus for _ in range(__lowerCamelCase ): # These track the position within the cycle detection logic. UpperCAmelCase = seed UpperCAmelCase = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. UpperCAmelCase = rand_fn(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) UpperCAmelCase = rand_fn(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) UpperCAmelCase = rand_fn(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. UpperCAmelCase = gcd(hare - tortoise , __lowerCamelCase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. UpperCAmelCase = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse __lowerCAmelCase =argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) __lowerCAmelCase =parser.parse_args() __lowerCAmelCase =pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f"{args.num} is probably prime") else: __lowerCAmelCase =args.num // divisor print(f"{args.num} = {divisor} * {quotient}")
333
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") _lowercase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) _lowercase = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) _lowercase = BeautifulSoup(res.text, """html.parser""") _lowercase = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
5
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE): lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = None class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): lowerCamelCase__ = 2 @register_to_config def __init__( self, __a = 0.02, __a = 100, __a = 1.007, __a = 80, __a = 0.05, __a = 50, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = sigma_max # setable values _lowerCAmelCase : List[str] = None _lowerCAmelCase : str = None _lowerCAmelCase : Tuple = None # sigma(t_i) def snake_case__ ( self, __a, __a = None): '''simple docstring''' return sample def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = num_inference_steps _lowerCAmelCase : int = np.arange(0, self.num_inference_steps)[::-1].copy() _lowerCAmelCase : Optional[Any] = torch.from_numpy(_lowercase).to(_lowercase) _lowerCAmelCase : List[Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] _lowerCAmelCase : List[str] = torch.tensor(_lowercase, dtype=torch.floataa, device=_lowercase) def snake_case__ ( self, __a, __a, __a = None): '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: _lowerCAmelCase : Union[str, Any] = min(self.config.s_churn / self.num_inference_steps, 2**0.5 - 1) else: _lowerCAmelCase : Tuple = 0 # sample eps ~ N(0, S_noise^2 * I) _lowerCAmelCase : str = self.config.s_noise * randn_tensor(sample.shape, generator=_lowercase).to(sample.device) _lowerCAmelCase : int = sigma + gamma * sigma _lowerCAmelCase : Optional[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def snake_case__ ( self, __a, __a, __a, __a, __a = True, ): '''simple docstring''' _lowerCAmelCase : Dict = sample_hat + sigma_hat * model_output _lowerCAmelCase : int = (sample_hat - pred_original_sample) / sigma_hat _lowerCAmelCase : str = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_lowercase, derivative=_lowercase, pred_original_sample=_lowercase) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a = True, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = sample_prev + sigma_prev * model_output _lowerCAmelCase : int = (sample_prev - pred_original_sample) / sigma_prev _lowerCAmelCase : Tuple = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_lowercase, derivative=_lowercase, pred_original_sample=_lowercase) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' raise NotImplementedError()
500
'''simple docstring''' import os from datetime import datetime as dt from github import Github _lowercase = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def A (): _lowerCAmelCase = Github(os.environ["""GITHUB_TOKEN"""] ) _lowerCAmelCase = g.get_repo("""huggingface/diffusers""" ) _lowerCAmelCase = repo.get_issues(state="""open""" ) for issue in open_issues: _lowerCAmelCase = sorted(issue.get_comments() , key=lambda __lowerCamelCase : i.created_at , reverse=__lowerCamelCase ) _lowerCAmelCase = comments[0] if len(__lowerCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
5
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case : Optional[Any] = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) _snake_case : List[Any] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" _snake_case : int = model(_lowercase )['last_hidden_state'] _snake_case : Optional[int] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice. _snake_case : str = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
517
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
5
0
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A_ : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class _a (_SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: List[str] = XLMProphetNetTokenizer UpperCAmelCase__: str = False UpperCAmelCase__: List[Any] = True def __A ( self ): super().setUp() # We have a SentencePiece fixture for testing A__ : Dict = XLMProphetNetTokenizer(_lowercase , keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self ): A__ : Optional[int] = """[PAD]""" A__ : List[str] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def __A ( self ): A__ : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """[PAD]""" ) self.assertEqual(vocab_keys[1] , """[CLS]""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(_lowercase ) , 1012 ) def __A ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def __A ( self ): A__ : Any = XLMProphetNetTokenizer(_lowercase , keep_accents=_lowercase ) A__ : Optional[int] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowercase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) A__ : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : List[str] = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) A__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """[UNK]""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """[UNK]""", """.""", ] , ) @cached_property def __A ( self ): return XLMProphetNetTokenizer.from_pretrained("""microsoft/xprophetnet-large-wiki100-cased""" ) @slow def __A ( self ): A__ : List[str] = """Hello World!""" A__ : Union[str, Any] = [3_5389, 6672, 49, 2] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase ) ) @slow def __A ( self ): A__ : Dict = {"""input_ids""": [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name="""microsoft/xprophetnet-large-wiki100-cased""" , revision="""1acad1643ddd54a44df6a1b797ada8373685d90e""" , )
456
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
0
"""simple docstring""" def a ( ): '''simple docstring''' for n in range(1, 1000000 ): yield n * (n + 1) // 2 def a ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ :Union[str, Any] = 1 UpperCAmelCase_ :Optional[Any] = 2 while i * i <= n: UpperCAmelCase_ :Tuple = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def a ( ): '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
608
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _lowercase = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_lowercase ): """simple docstring""" super().__init__(**_lowercase ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self , _lowercase , **_lowercase ): """simple docstring""" return super().__call__(_lowercase , **_lowercase ) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a sound of {}." ): """simple docstring""" if isinstance(_lowercase , _lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _lowerCAmelCase = requests.get(_lowercase ).content else: with open(_lowercase , """rb""" ) as f: _lowerCAmelCase = f.read() if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate ) if not isinstance(_lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) _lowerCAmelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) _lowerCAmelCase = [text_inputs] return inputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_inputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _lowercase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**_lowercase , **_lowercase ) _lowerCAmelCase = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_outputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_outputs["""logits"""][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=0 ) _lowerCAmelCase = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) _lowerCAmelCase = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] ) ] return result
5
0
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __A ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __A ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = ArgumentParser( "HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=__lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = parser.add_subparsers(help="datasets-cli command helpers" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__lowerCamelCase ) EnvironmentCommand.register_subcommand(__lowerCamelCase ) TestCommand.register_subcommand(__lowerCamelCase ) RunBeamCommand.register_subcommand(__lowerCamelCase ) DummyDataCommand.register_subcommand(__lowerCamelCase ) # Parse args __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = parser.parse_known_args() if not hasattr(__lowerCamelCase , "func" ): parser.print_help() exit(1 ) __SCREAMING_SNAKE_CASE : Any = parse_unknown_args(__lowerCamelCase ) # Run __SCREAMING_SNAKE_CASE : List[Any] = args.func(__lowerCamelCase , **__lowerCamelCase ) service.run() if __name__ == "__main__": main()
211
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = ['''input_values''', '''padding_mask'''] def __init__( self , _lowercase = 1 , _lowercase = 24_000 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , **_lowercase , ): """simple docstring""" super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) _lowerCAmelCase = chunk_length_s _lowerCAmelCase = overlap @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , _lowercase , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs _lowerCAmelCase = True _lowerCAmelCase = bool( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_lowercase , np.ndarray ): _lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _lowerCAmelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [np.asarray(_lowercase ).T] # verify inputs are valid for idx, example in enumerate(_lowercase ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) _lowerCAmelCase = None _lowerCAmelCase = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _lowerCAmelCase = min(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.floor(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _lowerCAmelCase = max(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.ceil(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length _lowerCAmelCase = """max_length""" else: _lowerCAmelCase = input_values # normal padding on batch if padded_inputs is None: _lowerCAmelCase = self.pad( _lowercase , max_length=_lowercase , truncation=_lowercase , padding=_lowercase , return_attention_mask=_lowercase , ) if padding: _lowerCAmelCase = padded_inputs.pop("""attention_mask""" ) _lowerCAmelCase = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: _lowerCAmelCase = example[..., None] input_values.append(example.T ) _lowerCAmelCase = input_values if return_tensors is not None: _lowerCAmelCase = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
5
0
A__ : List[Any] = ''' # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git ''' A__ : str = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] A__ : List[str] = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
171
'''simple docstring''' _lowercase = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
5
0
"""simple docstring""" from __future__ import annotations def _lowerCamelCase ( UpperCAmelCase_ : list[int] ) -> List[str]: """simple docstring""" return len(set(__lowerCamelCase ) ) == len(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
104
'''simple docstring''' import functools def A (__lowerCamelCase :list[int] , __lowerCamelCase :list[int] ): # Validation if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(__lowerCamelCase ) >= 366: raise ValueError("""All days elements should be less than 366""" ) _lowerCAmelCase = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase :int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
0
def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) A_ = str(bin(__lowerCamelCase ) )[2:] # remove the leading "0b" A_ = str(bin(__lowerCamelCase ) )[2:] # remove the leading "0b" A_ = max(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__lowerCamelCase ) , b_binary.zfill(__lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
203
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 384 if "tiny" in model_name: _lowerCAmelCase = [3, 3, 9, 3] _lowerCAmelCase = [96, 192, 384, 768] if "small" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [96, 192, 384, 768] if "base" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [128, 256, 512, 1024] _lowerCAmelCase = 512 if "large" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [192, 384, 768, 1536] _lowerCAmelCase = 768 if "xlarge" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [256, 512, 1024, 2048] _lowerCAmelCase = 1024 # set label information _lowerCAmelCase = 150 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """ade20k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = ConvNextConfig( depths=__lowerCamelCase , hidden_sizes=__lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) _lowerCAmelCase = UperNetConfig( backbone_config=__lowerCamelCase , auxiliary_in_channels=__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , ) return config def A (__lowerCamelCase :Optional[Any] ): _lowerCAmelCase = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict , __lowerCamelCase :Tuple ): _lowerCAmelCase = dct.pop(__lowerCamelCase ) _lowerCAmelCase = val def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ): _lowerCAmelCase = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } _lowerCAmelCase = model_name_to_url[model_name] _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""state_dict"""] _lowerCAmelCase = get_upernet_config(__lowerCamelCase ) _lowerCAmelCase = UperNetForSemanticSegmentation(__lowerCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase = state_dict.pop(__lowerCamelCase ) if "bn" in key: _lowerCAmelCase = key.replace("""bn""" , """batch_norm""" ) _lowerCAmelCase = val # rename keys _lowerCAmelCase = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # verify on image _lowerCAmelCase = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _lowerCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" ) _lowerCAmelCase = SegformerImageProcessor() _lowerCAmelCase = processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values with torch.no_grad(): _lowerCAmelCase = model(__lowerCamelCase ) if model_name == "upernet-convnext-tiny": _lowerCAmelCase = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _lowerCAmelCase = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _lowerCAmelCase = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _lowerCAmelCase = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _lowerCAmelCase = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
5
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
631
'''simple docstring''' from itertools import product def A (__lowerCamelCase :int , __lowerCamelCase :int ): _lowerCAmelCase = sides_number _lowerCAmelCase = max_face_number * dice_number _lowerCAmelCase = [0] * (max_total + 1) _lowerCAmelCase = 1 _lowerCAmelCase = range(__lowerCamelCase , max_face_number + 1 ) for dice_numbers in product(__lowerCamelCase , repeat=__lowerCamelCase ): _lowerCAmelCase = sum(__lowerCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def A (): _lowerCAmelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) _lowerCAmelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) _lowerCAmelCase = 0 _lowerCAmelCase = 9 _lowerCAmelCase = 4 * 9 _lowerCAmelCase = 6 for peter_total in range(__lowerCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _lowerCAmelCase = (4**9) * (6**6) _lowerCAmelCase = peter_wins_count / total_games_number _lowerCAmelCase = round(__lowerCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
5
0
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = 1 SCREAMING_SNAKE_CASE_ : str = 3 SCREAMING_SNAKE_CASE_ : Optional[int] = (3_2, 3_2) SCREAMING_SNAKE_CASE_ : str = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowercase ) return image @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) return model @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(_lowercase ) @property def UpperCamelCase__ ( self ): """simple docstring""" def extract(*lowerCAmelCase__ , **lowerCAmelCase__ ): class __lowercase : """simple docstring""" def __init__( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = torch.ones([0] ) def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" self.pixel_values.to(_lowercase ) return self return Out() return extract def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ : Tuple = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ : Dict = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.dummy_vae SCREAMING_SNAKE_CASE_ : Dict = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ : int = StableDiffusionPipeline( unet=_lowercase , scheduler=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , safety_checker=_lowercase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ : int = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE_ : Any = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ : int = torch.Generator(device=_lowercase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = sd_pipe([prompt] , generator=_lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) SCREAMING_SNAKE_CASE_ : Any = output.images SCREAMING_SNAKE_CASE_ : List[str] = torch.Generator(device=_lowercase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = sd_pipe( [prompt] , generator=_lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=_lowercase , )[0] SCREAMING_SNAKE_CASE_ : List[str] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) SCREAMING_SNAKE_CASE_ : Dict = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ : int = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ : Tuple = PNDMScheduler(skip_prk_steps=_lowercase ) SCREAMING_SNAKE_CASE_ : Tuple = self.dummy_vae SCREAMING_SNAKE_CASE_ : Dict = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ : Any = StableDiffusionPipeline( unet=_lowercase , scheduler=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , safety_checker=_lowercase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ : List[str] = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE_ : int = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ : Optional[int] = torch.Generator(device=_lowercase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = sd_pipe([prompt] , generator=_lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) SCREAMING_SNAKE_CASE_ : List[Any] = output.images SCREAMING_SNAKE_CASE_ : Optional[int] = torch.Generator(device=_lowercase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = sd_pipe( [prompt] , generator=_lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=_lowercase , )[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) SCREAMING_SNAKE_CASE_ : Dict = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(pipe.scheduler , _lowercase ) assert pipe.safety_checker is None SCREAMING_SNAKE_CASE_ : List[Any] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE_ : Tuple = StableDiffusionPipeline.from_pretrained(_lowercase ) # sanity check that the pipeline still works assert pipe.safety_checker is None SCREAMING_SNAKE_CASE_ : List[Any] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ : str = PNDMScheduler(skip_prk_steps=_lowercase ) SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_vae SCREAMING_SNAKE_CASE_ : Optional[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 SCREAMING_SNAKE_CASE_ : Optional[Any] = unet.half() SCREAMING_SNAKE_CASE_ : str = vae.half() SCREAMING_SNAKE_CASE_ : List[str] = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ : Optional[Any] = StableDiffusionPipeline( unet=_lowercase , scheduler=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , safety_checker=_lowercase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ : List[Any] = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE_ : int = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ : Any = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 6_4, 6_4, 3) @nightly @require_torch_gpu class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=_lowercase ) SCREAMING_SNAKE_CASE_ : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) SCREAMING_SNAKE_CASE_ : Optional[Any] = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE_ : Optional[int] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) SCREAMING_SNAKE_CASE_ : str = 4_0_0_3_6_6_0_3_4_6 SCREAMING_SNAKE_CASE_ : str = 7 # without safety guidance (sld_guidance_scale = 0) SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(_lowercase ) SCREAMING_SNAKE_CASE_ : int = sd_pipe( [prompt] , generator=_lowercase , guidance_scale=_lowercase , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE_ : Dict = output.images SCREAMING_SNAKE_CASE_ : Union[str, Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : int = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) SCREAMING_SNAKE_CASE_ : List[str] = torch.manual_seed(_lowercase ) SCREAMING_SNAKE_CASE_ : List[str] = sd_pipe( [prompt] , generator=_lowercase , guidance_scale=_lowercase , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE_ : Dict = output.images SCREAMING_SNAKE_CASE_ : Optional[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=_lowercase ) SCREAMING_SNAKE_CASE_ : int = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) SCREAMING_SNAKE_CASE_ : int = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE_ : Dict = 'padme amidala taking a bath artwork, safe for work, no nudity' SCREAMING_SNAKE_CASE_ : Tuple = 2_7_3_4_9_7_1_7_5_5 SCREAMING_SNAKE_CASE_ : int = 7 SCREAMING_SNAKE_CASE_ : List[str] = torch.manual_seed(_lowercase ) SCREAMING_SNAKE_CASE_ : List[str] = sd_pipe( [prompt] , generator=_lowercase , guidance_scale=_lowercase , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE_ : str = output.images SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : Optional[int] = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 SCREAMING_SNAKE_CASE_ : Tuple = torch.manual_seed(_lowercase ) SCREAMING_SNAKE_CASE_ : Tuple = sd_pipe( [prompt] , generator=_lowercase , guidance_scale=_lowercase , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images SCREAMING_SNAKE_CASE_ : List[str] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : Optional[int] = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 1_0_4_4_3_5_5_2_3_4 SCREAMING_SNAKE_CASE_ : List[str] = 1_2 SCREAMING_SNAKE_CASE_ : Dict = torch.manual_seed(_lowercase ) SCREAMING_SNAKE_CASE_ : Any = sd_pipe( [prompt] , generator=_lowercase , guidance_scale=_lowercase , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = output.images SCREAMING_SNAKE_CASE_ : Tuple = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 SCREAMING_SNAKE_CASE_ : str = torch.manual_seed(_lowercase ) SCREAMING_SNAKE_CASE_ : List[Any] = sd_pipe( [prompt] , generator=_lowercase , guidance_scale=_lowercase , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE_ : Any = output.images SCREAMING_SNAKE_CASE_ : List[str] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
101
'''simple docstring''' from manim import * class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""CPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(1 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""GPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.align_to(_lowercase , _lowercase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""Model""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , ) _lowerCAmelCase = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) _lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) ) self.add(_lowercase ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for i, rect in enumerate(_lowercase ): _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 ) cpu_target.move_to(_lowercase ) cpu_target.generate_target() _lowerCAmelCase = 0.46 / 4 _lowerCAmelCase = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 ) cpu_targs.append(_lowercase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) ) second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) ) self.play(*_lowercase ) self.play(*_lowercase ) self.wait()
5
0
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ="The Nymphenburg Palace is a beautiful palace in Munich!" def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = { "attention_cell": "multi_head", "num_layers": 4, "units": 10_24, "hidden_size": 7_68, "max_length": 5_12, "num_heads": 8, "scaled": True, "dropout": 0.1, "use_residual": True, "embed_size": 10_24, "embed_dropout": 0.1, "word_embed": None, "layer_norm_eps": 1E-5, "token_type_vocab_size": 2, } UpperCAmelCase = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py UpperCAmelCase = BERTEncoder( attention_cell=predefined_args["attention_cell"] , num_layers=predefined_args["num_layers"] , units=predefined_args["units"] , hidden_size=predefined_args["hidden_size"] , max_length=predefined_args["max_length"] , num_heads=predefined_args["num_heads"] , scaled=predefined_args["scaled"] , dropout=predefined_args["dropout"] , output_attention=__lowerCamelCase , output_all_encodings=__lowerCamelCase , use_residual=predefined_args["use_residual"] , activation=predefined_args.get("activation" , "gelu" ) , layer_norm_eps=predefined_args.get("layer_norm_eps" , __lowerCamelCase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later UpperCAmelCase = "openwebtext_ccnews_stories_books_cased" # Specify download folder to Gluonnlp's vocab UpperCAmelCase = os.path.join(get_home_dir() , "models" ) UpperCAmelCase = _load_vocab(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , cls=__lowerCamelCase ) UpperCAmelCase = nlp.model.BERTModel( __lowerCamelCase , len(__lowerCamelCase ) , units=predefined_args["units"] , embed_size=predefined_args["embed_size"] , embed_dropout=predefined_args["embed_dropout"] , word_embed=predefined_args["word_embed"] , use_pooler=__lowerCamelCase , use_token_type_embed=__lowerCamelCase , token_type_vocab_size=predefined_args["token_type_vocab_size"] , use_classifier=__lowerCamelCase , use_decoder=__lowerCamelCase , ) original_bort.load_parameters(__lowerCamelCase , cast_dtype=__lowerCamelCase , ignore_extra=__lowerCamelCase ) UpperCAmelCase = original_bort._collect_params_with_prefix() # Build our config 🤗 UpperCAmelCase = { "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": predefined_args["dropout"], "hidden_act": "gelu", "hidden_dropout_prob": predefined_args["dropout"], "hidden_size": predefined_args["embed_size"], "initializer_range": 0.02, "intermediate_size": predefined_args["hidden_size"], "layer_norm_eps": predefined_args["layer_norm_eps"], "max_position_embeddings": predefined_args["max_length"], "model_type": "bort", "num_attention_heads": predefined_args["num_heads"], "num_hidden_layers": predefined_args["num_layers"], "pad_token_id": 1, # 2 = BERT, 1 = RoBERTa "type_vocab_size": 1, # 2 = BERT, 1 = RoBERTa "vocab_size": len(__lowerCamelCase ), } UpperCAmelCase = BertConfig.from_dict(__lowerCamelCase ) UpperCAmelCase = BertForMaskedLM(__lowerCamelCase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(_lowerCAmelCase ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase = hf_param.shape UpperCAmelCase = to_torch(params[gluon_param] ) UpperCAmelCase = gluon_param.shape assert ( shape_hf == shape_gluon ), F'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param UpperCAmelCase = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , "word_embed.0.weight" ) UpperCAmelCase = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , "encoder.position_weight" ) UpperCAmelCase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , "encoder.layer_norm.beta" ) UpperCAmelCase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , "encoder.layer_norm.gamma" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) UpperCAmelCase = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): UpperCAmelCase = hf_bort_model.bert.encoder.layer[i] # self attention UpperCAmelCase = layer.attention.self UpperCAmelCase = check_and_map_params( self_attn.key.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) UpperCAmelCase = check_and_map_params( self_attn.key.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) UpperCAmelCase = check_and_map_params( self_attn.query.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) UpperCAmelCase = check_and_map_params( self_attn.query.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) UpperCAmelCase = check_and_map_params( self_attn.value.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) UpperCAmelCase = check_and_map_params( self_attn.value.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output UpperCAmelCase = layer.attention.output UpperCAmelCase = check_and_map_params( self_output.dense.bias , F'''encoder.transformer_cells.{i}.proj.bias''' ) UpperCAmelCase = check_and_map_params( self_output.dense.weight , F'''encoder.transformer_cells.{i}.proj.weight''' ) UpperCAmelCase = check_and_map_params( self_output.LayerNorm.bias , F'''encoder.transformer_cells.{i}.layer_norm.beta''' ) UpperCAmelCase = check_and_map_params( self_output.LayerNorm.weight , F'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate UpperCAmelCase = layer.intermediate UpperCAmelCase = check_and_map_params( intermediate.dense.bias , F'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) UpperCAmelCase = check_and_map_params( intermediate.dense.weight , F'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output UpperCAmelCase = layer.output UpperCAmelCase = check_and_map_params( bert_output.dense.bias , F'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) UpperCAmelCase = check_and_map_params( bert_output.dense.weight , F'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) UpperCAmelCase = check_and_map_params( bert_output.LayerNorm.bias , F'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) UpperCAmelCase = check_and_map_params( bert_output.LayerNorm.weight , F'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models UpperCAmelCase = RobertaTokenizer.from_pretrained("roberta-base" ) UpperCAmelCase = tokenizer.encode_plus(__lowerCamelCase )["input_ids"] # Get gluon output UpperCAmelCase = mx.nd.array([input_ids] ) UpperCAmelCase = original_bort(inputs=__lowerCamelCase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(__lowerCamelCase ) UpperCAmelCase = BertModel.from_pretrained(__lowerCamelCase ) hf_bort_model.eval() UpperCAmelCase = tokenizer.encode_plus(__lowerCamelCase , return_tensors="pt" ) UpperCAmelCase = hf_bort_model(**__lowerCamelCase )[0] UpperCAmelCase = output_gluon[0].asnumpy() UpperCAmelCase = output_hf[0].detach().numpy() UpperCAmelCase = np.max(np.abs(hf_layer - gluon_layer ) ).item() UpperCAmelCase = np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) if success: print("✔️ Both model do output the same tensors" ) else: print("❌ Both model do **NOT** output the same tensors" ) print("Absolute difference is:" , __lowerCamelCase ) if __name__ == "__main__": __lowerCAmelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase =parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
333
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowercase = False try: _lowercase = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase = None , _lowercase = [] ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = choices _lowerCAmelCase = prompt if sys.platform == "win32": _lowerCAmelCase = """*""" else: _lowerCAmelCase = """➔ """ def _lowercase ( self , _lowercase , _lowercase = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , _lowercase ) else: forceWrite(self.choices[index] , _lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(_lowercase ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def _lowercase ( self , _lowercase , _lowercase = 1 ): """simple docstring""" _lowerCAmelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowercase ) move_cursor(_lowercase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = int(chr(self.current_selection ) ) _lowerCAmelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowercase ) else: return else: return def _lowercase ( self , _lowercase = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) _lowerCAmelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowercase ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase = int(builtins.input() ) except ValueError: _lowerCAmelCase = default_choice else: _lowerCAmelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(_lowercase , """\n""" ) return choice
5
0
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = ["model.decoder.embed_positions.weights"] def A ( _lowerCamelCase ): '''simple docstring''' if "emb" in name: _lowerCAmelCase : Optional[int] = name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: _lowerCAmelCase : Optional[int] = name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: _lowerCAmelCase : Tuple = name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: _lowerCAmelCase : Any = name.replace("linear1" , "fc1" ) if "linear2" in name: _lowerCAmelCase : int = name.replace("linear2" , "fc2" ) if "norm1" in name: _lowerCAmelCase : List[str] = name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: _lowerCAmelCase : int = name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: _lowerCAmelCase : str = name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: _lowerCAmelCase : str = name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: _lowerCAmelCase : int = name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: _lowerCAmelCase : str = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = list(state_dict.keys() ) _lowerCAmelCase : str = {} for key in keys: _lowerCAmelCase : Tuple = state_dict.pop(__lowerCamelCase ) _lowerCAmelCase : int = rename_keys(__lowerCamelCase ) if "in_proj_weight" in key: # split fused qkv proj _lowerCAmelCase : List[str] = val[:hidden_size, :] _lowerCAmelCase : Union[str, Any] = val[hidden_size : 2 * hidden_size, :] _lowerCAmelCase : List[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _lowerCAmelCase : Optional[int] = val else: _lowerCAmelCase : Union[str, Any] = val return state_dict, enc_dec_proj_state_dict def A ( _lowerCamelCase ): '''simple docstring''' if checkpoint == "small": # default config values _lowerCAmelCase : Tuple = 1_024 _lowerCAmelCase : int = 24 _lowerCAmelCase : int = 16 elif checkpoint == "medium": _lowerCAmelCase : int = 1_536 _lowerCAmelCase : Any = 48 _lowerCAmelCase : List[Any] = 24 elif checkpoint == "large": _lowerCAmelCase : List[Any] = 2_048 _lowerCAmelCase : List[Any] = 48 _lowerCAmelCase : List[str] = 32 else: raise ValueError(F"Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}." ) _lowerCAmelCase : Optional[int] = MusicgenDecoderConfig( hidden_size=__lowerCamelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=__lowerCamelCase , num_attention_heads=__lowerCamelCase , ) return config @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="cpu" ): '''simple docstring''' _lowerCAmelCase : List[Any] = MusicGen.get_pretrained(__lowerCamelCase , device=__lowerCamelCase ) _lowerCAmelCase : Optional[int] = decoder_config_from_checkpoint(__lowerCamelCase ) _lowerCAmelCase : Optional[int] = fairseq_model.lm.state_dict() _lowerCAmelCase , _lowerCAmelCase : Dict = rename_state_dict( __lowerCamelCase , hidden_size=decoder_config.hidden_size ) _lowerCAmelCase : Optional[int] = TaEncoderModel.from_pretrained("t5-base" ) _lowerCAmelCase : List[str] = EncodecModel.from_pretrained("facebook/encodec_32khz" ) _lowerCAmelCase : str = MusicgenForCausalLM(__lowerCamelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _lowerCAmelCase , _lowerCAmelCase : Optional[int] = decoder.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: raise ValueError(F"Missing key(s) in state_dict: {missing_keys}" ) if len(__lowerCamelCase ) > 0: raise ValueError(F"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model _lowerCAmelCase : Optional[Any] = MusicgenForConditionalGeneration(text_encoder=__lowerCamelCase , audio_encoder=__lowerCamelCase , decoder=__lowerCamelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__lowerCamelCase ) # check we can do a forward pass _lowerCAmelCase : List[Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) _lowerCAmelCase : Tuple = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): _lowerCAmelCase : str = model(input_ids=__lowerCamelCase , decoder_input_ids=__lowerCamelCase ).logits if logits.shape != (8, 1, 2_048): raise ValueError("Incorrect shape for logits" ) # now construct the processor _lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("t5-base" ) _lowerCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) _lowerCAmelCase : Optional[int] = MusicgenProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) # set the appropriate bos/pad token ids _lowerCAmelCase : Union[str, Any] = 2_048 _lowerCAmelCase : int = 2_048 # set other default generation config params _lowerCAmelCase : Union[str, Any] = int(30 * audio_encoder.config.frame_rate ) _lowerCAmelCase : List[Any] = True _lowerCAmelCase : str = 3.0 if pytorch_dump_folder is not None: Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) logger.info(F"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if repo_id: logger.info(F"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(__lowerCamelCase ) processor.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) _snake_case = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
500
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } _lowercase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def A (__lowerCamelCase :Optional[int] ): _lowerCAmelCase = {} with open(__lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(__lowerCamelCase ): _lowerCAmelCase = line.strip() if line: _lowerCAmelCase = line.split() _lowerCAmelCase = line_number _lowerCAmelCase = words[0] _lowerCAmelCase = value return result def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any] , __lowerCamelCase :List[str] ): for attribute in key.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": _lowerCAmelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = shape_pointer.shape # let's reduce dimension _lowerCAmelCase = value[0] else: _lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCAmelCase = value elif weight_type == "weight_g": _lowerCAmelCase = value elif weight_type == "weight_v": _lowerCAmelCase = value elif weight_type == "bias": _lowerCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = value else: _lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] , __lowerCamelCase :int ): _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _lowerCAmelCase = """.""".join([key, hf_param_name] ) else: _lowerCAmelCase = key _lowerCAmelCase = value if """lm_head""" in full_key else value[0] _lowercase = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :List[str]=None , __lowerCamelCase :List[Any]=None ): _lowerCAmelCase = False for key, mapped_key in MAPPING.items(): _lowerCAmelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCAmelCase = True if "*" in mapped_key: _lowerCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase = """weight_g""" elif "weight_v" in name: _lowerCAmelCase = """weight_v""" elif "bias" in name: _lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase = """weight""" else: _lowerCAmelCase = None if hf_dict is not None: rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return is_used return is_used def A (__lowerCamelCase :Any , __lowerCamelCase :Dict , __lowerCamelCase :Dict ): _lowerCAmelCase = [] _lowerCAmelCase = fairseq_model.state_dict() _lowerCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) _lowerCAmelCase = True else: _lowerCAmelCase = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any , __lowerCamelCase :List[Any] , __lowerCamelCase :List[Any] ): _lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase = name.split(""".""" ) _lowerCAmelCase = int(items[0] ) _lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def A (__lowerCamelCase :List[str] , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any]=None , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :str=True , __lowerCamelCase :str=False ): if config_path is not None: _lowerCAmelCase = WavaVecaConfig.from_pretrained(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaConfig() if is_seq_class: _lowerCAmelCase = read_txt_into_dict(__lowerCamelCase ) _lowerCAmelCase = idalabel _lowerCAmelCase = WavaVecaForSequenceClassification(__lowerCamelCase ) _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) feature_extractor.save_pretrained(__lowerCamelCase ) elif is_finetuned: if dict_path: _lowerCAmelCase = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCAmelCase = target_dict.pad_index _lowerCAmelCase = target_dict.bos_index _lowerCAmelCase = target_dict.eos_index _lowerCAmelCase = len(target_dict.symbols ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """vocab.json""" ) if not os.path.isdir(__lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCAmelCase = 0 _lowerCAmelCase = 1 with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , ) _lowerCAmelCase = True if config.feat_extract_norm == """layer""" else False _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) _lowerCAmelCase = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) _lowerCAmelCase = WavaVecaForCTC(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaForPreTraining(__lowerCamelCase ) if is_finetuned or is_seq_class: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _lowerCAmelCase = argparse.Namespace(task="""audio_pretraining""" ) _lowerCAmelCase = fairseq.tasks.setup_task(__lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase ) _lowerCAmelCase = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) _lowercase = parser.parse_args() _lowercase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
5
0
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowerCamelCase__ ( a__ , a__ , a__ , a__ , a__ = None , a__ = None , a__ = None , ) -> Tuple: """simple docstring""" if config_name_or_path is None: _snake_case : List[Any] = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: _snake_case : Union[str, Any] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: _snake_case : Tuple = question_encoder_name_or_path _snake_case : List[Any] = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. _snake_case : Tuple = RagConfig.from_pretrained(__lowerCamelCase) _snake_case : int = AutoConfig.from_pretrained(__lowerCamelCase) _snake_case : List[str] = AutoConfig.from_pretrained(__lowerCamelCase) _snake_case : Union[str, Any] = gen_config _snake_case : Optional[Any] = question_encoder_config _snake_case : int = model_class.from_pretrained_question_encoder_generator( __lowerCamelCase , __lowerCamelCase , config=__lowerCamelCase) rag_model.save_pretrained(__lowerCamelCase) # Sanity check. model_class.from_pretrained(__lowerCamelCase) # Save tokenizers. _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(__lowerCamelCase) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/') _snake_case : str = AutoTokenizer.from_pretrained(__lowerCamelCase) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/') if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
517
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = '''decision_transformer''' _lowercase : Optional[Any] = ['''past_key_values'''] _lowercase : str = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowercase=17 , _lowercase=4 , _lowercase=128 , _lowercase=4_096 , _lowercase=True , _lowercase=1 , _lowercase=1_024 , _lowercase=3 , _lowercase=1 , _lowercase=None , _lowercase="relu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=False , _lowercase=False , **_lowercase , ): """simple docstring""" _lowerCAmelCase = state_dim _lowerCAmelCase = act_dim _lowerCAmelCase = hidden_size _lowerCAmelCase = max_ep_len _lowerCAmelCase = action_tanh _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = scale_attn_by_inverse_layer_idx _lowerCAmelCase = reorder_and_upcast_attn _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
5
0
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features A_ : Union[str, Any] = logging.get_logger(__name__) A_ : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) A_ : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _a : '''simple docstring''' UpperCAmelCase__: str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_SCREAMING_SNAKE_CASE )} ) UpperCAmelCase__: str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) UpperCAmelCase__: int = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCAmelCase__: int = field( default=1_28 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) UpperCAmelCase__: int = field( default=64 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) UpperCAmelCase__: int = field( default=30 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) UpperCAmelCase__: bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCAmelCase__: bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) UpperCAmelCase__: float = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) UpperCAmelCase__: int = field( default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) UpperCAmelCase__: int = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) UpperCAmelCase__: int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class _a (_SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__: str = '''train''' UpperCAmelCase__: Union[str, Any] = '''dev''' class _a (_SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__: SquadDataTrainingArguments UpperCAmelCase__: List[SquadFeatures] UpperCAmelCase__: Split UpperCAmelCase__: bool def __init__( self , A__ , A__ , A__ = None , A__ = Split.train , A__ = False , A__ = None , A__ = "pt" , ): A__ : List[Any] = args A__ : List[str] = is_language_sensitive A__ : Optional[int] = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowercase , _lowercase ): try: A__ : List[str] = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) A__ : Tuple = mode # Load data features from cache or dataset file A__ : Union[str, Any] = """v2""" if args.version_2_with_negative else """v1""" A__ : List[str] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A__ : Any = cached_features_file + """.lock""" with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: A__ : Union[str, Any] = time.time() A__ : int = torch.load(_lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. A__ : Optional[int] = self.old_features["""features"""] A__ : Optional[Any] = self.old_features.get("""dataset""" , _lowercase ) A__ : List[Any] = self.old_features.get("""examples""" , _lowercase ) logger.info( F"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" """ future run""" ) else: if mode == Split.dev: A__ : Optional[Any] = self.processor.get_dev_examples(args.data_dir ) else: A__ : int = self.processor.get_train_examples(args.data_dir ) A__ , A__ : int = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , ) A__ : Union[str, Any] = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self ): return len(self.features ) def __getitem__( self , A__ ): A__ : List[Any] = self.features[i] A__ : str = torch.tensor(feature.input_ids , dtype=torch.long ) A__ : Optional[int] = torch.tensor(feature.attention_mask , dtype=torch.long ) A__ : Optional[Any] = torch.tensor(feature.token_type_ids , dtype=torch.long ) A__ : Any = torch.tensor(feature.cls_index , dtype=torch.long ) A__ : str = torch.tensor(feature.p_mask , dtype=torch.float ) A__ : Optional[int] = torch.tensor(feature.is_impossible , dtype=torch.float ) A__ : Tuple = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: A__ : int = torch.tensor(feature.start_position , dtype=torch.long ) A__ : Union[str, Any] = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
456
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) _lowercase = None _lowercase = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } _lowercase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def A (__lowerCamelCase :int , __lowerCamelCase :Optional[Any]=1 , __lowerCamelCase :List[Any]=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def A (__lowerCamelCase :Any ): with open(__lowerCamelCase , """r""" ) as f: return json.load(__lowerCamelCase ) def A (__lowerCamelCase :List[Any] , __lowerCamelCase :int ): with open(__lowerCamelCase , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple=True ): os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """tmp""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = read_json(os.path.join(__lowerCamelCase , """params.json""" ) ) _lowerCAmelCase = NUM_SHARDS[model_size] _lowerCAmelCase = params["""n_layers"""] _lowerCAmelCase = params["""n_heads"""] _lowerCAmelCase = n_heads // num_shards _lowerCAmelCase = params["""dim"""] _lowerCAmelCase = dim // n_heads _lowerCAmelCase = 10_000.0 _lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , __lowerCamelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase = params["""n_kv_heads"""] # for GQA / MQA _lowerCAmelCase = n_heads_per_shard // num_key_value_heads _lowerCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase = n_heads _lowerCAmelCase = n_heads_per_shard _lowerCAmelCase = dim # permute for sliced rotary def permute(__lowerCamelCase :Optional[int] , __lowerCamelCase :str=n_heads , __lowerCamelCase :str=dim , __lowerCamelCase :List[Any]=dim ): return w.view(__lowerCamelCase , dima // n_heads // 2 , 2 , __lowerCamelCase ).transpose(1 , 2 ).reshape(__lowerCamelCase , __lowerCamelCase ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase = torch.load(os.path.join(__lowerCamelCase , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded _lowerCAmelCase = [ torch.load(os.path.join(__lowerCamelCase , f'consolidated.{i:02d}.pth' ) , map_location="""cpu""" ) for i in range(__lowerCamelCase ) ] _lowerCAmelCase = 0 _lowerCAmelCase = {"""weight_map""": {}} for layer_i in range(__lowerCamelCase ): _lowerCAmelCase = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _lowerCAmelCase = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = inv_freq for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: _lowerCAmelCase = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(__lowerCamelCase )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__lowerCamelCase )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) # Write configs _lowerCAmelCase = {"""total_size""": param_count * 2} write_json(__lowerCamelCase , os.path.join(__lowerCamelCase , """pytorch_model.bin.index.json""" ) ) _lowerCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 _lowerCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256 _lowerCAmelCase = LlamaConfig( hidden_size=__lowerCamelCase , intermediate_size=compute_intermediate_size(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=__lowerCamelCase , ) config.save_pretrained(__lowerCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) _lowerCAmelCase = LlamaForCausalLM.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=__lowerCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(__lowerCamelCase , safe_serialization=__lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any] ): # Initialize the tokenizer based on the `spm` model _lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase = tokenizer_class(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) def A (): _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=__lowerCamelCase , help="""Whether or not to save using `safetensors`.""" ) _lowerCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , __lowerCamelCase ) if __name__ == "__main__": main()
5
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCamelCase = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
608
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = (DDPMScheduler,) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_lowercase ) return config def _lowercase ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def _lowercase ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def _lowercase ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def _lowercase ( self ): """simple docstring""" self.check_over_configs(thresholding=_lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def _lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowercase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowercase ): if i == len(_lowercase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowercase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowercase , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowercase ) with self.assertRaises(_lowercase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowercase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_lowercase )
5
0
'''simple docstring''' from collections.abc import Callable def __A ( _SCREAMING_SNAKE_CASE : Callable[[float], float] , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = a __SCREAMING_SNAKE_CASE : str = b if function(__lowerCamelCase ) == 0: # one of the a or b is a root for the function return a elif function(__lowerCamelCase ) == 0: return b elif ( function(__lowerCamelCase ) * function(__lowerCamelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("could not find root in given interval." ) else: __SCREAMING_SNAKE_CASE : Any = start + (end - start) / 2.0 while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7 if function(__lowerCamelCase ) == 0: return mid elif function(__lowerCamelCase ) * function(__lowerCamelCase ) < 0: __SCREAMING_SNAKE_CASE : List[Any] = mid else: __SCREAMING_SNAKE_CASE : Optional[Any] = mid __SCREAMING_SNAKE_CASE : Union[str, Any] = start + (end - start) / 2.0 return mid def __A ( _SCREAMING_SNAKE_CASE : float ): """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
211
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowercase = logging.get_logger(__name__) _lowercase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : '''simple docstring''' _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_SCREAMING_SNAKE_CASE )} ) _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) _lowercase : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase : int = field( default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) _lowercase : int = field( default=6_4 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) _lowercase : int = field( default=3_0 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) _lowercase : float = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) _lowercase : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''train''' _lowercase : Union[str, Any] = '''dev''' class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : SquadDataTrainingArguments _lowercase : List[SquadFeatures] _lowercase : Split _lowercase : bool def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = False , _lowercase = None , _lowercase = "pt" , ): """simple docstring""" _lowerCAmelCase = args _lowerCAmelCase = is_language_sensitive _lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowercase , _lowercase ): try: _lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _lowerCAmelCase = mode # Load data features from cache or dataset file _lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" _lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + """.lock""" with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: _lowerCAmelCase = time.time() _lowerCAmelCase = torch.load(_lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase = self.old_features["""features"""] _lowerCAmelCase = self.old_features.get("""dataset""" , _lowercase ) _lowerCAmelCase = self.old_features.get("""examples""" , _lowercase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: _lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: _lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) _lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , ) _lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.features[i] _lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) _lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
5
0
from datetime import datetime import requests def UpperCamelCase( __UpperCamelCase : str ): lowerCAmelCase_ : str = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' lowerCAmelCase_ : Union[str, Any] = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(__lowerCamelCase ).content if __name__ == "__main__": A__ : Dict = input('''Enter Video/IGTV url: ''').strip() A__ : List[str] = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(F'''Done. Video saved to disk as {file_name}.''')
171
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''dpr''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase="absolute" , _lowercase = 0 , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = projection_dim _lowerCAmelCase = position_embedding_type
5
0
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase__ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" A__ : Optional[int] = '''ssube/stable-diffusion-x4-upscaler-onnx''' def snake_case__ ( self , SCREAMING_SNAKE_CASE__=0 ) -> Union[str, Any]: A__ = floats_tensor((1, 3, 128, 128) , rng=random.Random(_lowercase ) ) A__ = torch.manual_seed(_lowercase ) A__ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def snake_case__ ( self ) -> Union[str, Any]: A__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=_lowercase ) A__ = self.get_dummy_inputs() A__ = pipe(**_lowercase ).images A__ = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) A__ = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def snake_case__ ( self ) -> Dict: A__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A__ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A__ = self.get_dummy_inputs() A__ = pipe(**_lowercase ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array( [0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case__ ( self ) -> List[Any]: A__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowercase ) A__ = self.get_dummy_inputs() A__ = pipe(**_lowercase ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array( [0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case__ ( self ) -> Union[str, Any]: A__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A__ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowercase ) A__ = self.get_dummy_inputs() A__ = pipe(**_lowercase ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case__ ( self ) -> Optional[Any]: A__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A__ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowercase ) A__ = self.get_dummy_inputs() A__ = pipe(**_lowercase ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array( [0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @property def snake_case__ ( self ) -> Optional[int]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self ) -> str: A__ = ort.SessionOptions() A__ = False return options def snake_case__ ( self ) -> str: A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) A__ = init_image.resize((128, 128) ) # using the PNDM scheduler by default A__ = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) A__ = "A fantasy landscape, trending on artstation" A__ = torch.manual_seed(0 ) A__ = pipe( prompt=_lowercase , image=_lowercase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowercase , output_type="np" , ) A__ = output.images A__ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) A__ = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def snake_case__ ( self ) -> Optional[int]: A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) A__ = init_image.resize((128, 128) ) A__ = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , subfolder="scheduler" ) A__ = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , scheduler=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) A__ = "A fantasy landscape, trending on artstation" A__ = torch.manual_seed(0 ) A__ = pipe( prompt=_lowercase , image=_lowercase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowercase , output_type="np" , ) A__ = output.images A__ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) A__ = np.array( [0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
104
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _lowercase = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ _lowercase = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ _lowercase = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase ( self ): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase ( self , _lowercase , _lowercase , _lowercase=None , _lowercase="uniform_average" , _lowercase=True ): """simple docstring""" _lowerCAmelCase = mean_squared_error( _lowercase , _lowercase , sample_weight=_lowercase , multioutput=_lowercase , squared=_lowercase ) return {"mse": mse}
5
0
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") __lowercase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) __lowercase = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) __lowercase = BeautifulSoup(res.text, """html.parser""") __lowercase = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(f'https://google.com{link.get("href")}')
203
'''simple docstring''' def A (): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: _lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def A (): return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
5
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class _UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): lowerCamelCase_ : List[str] = '''mvp''' lowerCamelCase_ : Any = ['''past_key_values'''] lowerCamelCase_ : Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : List[Any] , UpperCAmelCase : Optional[int]=5_02_67 , UpperCAmelCase : Optional[int]=10_24 , UpperCAmelCase : str=12 , UpperCAmelCase : List[str]=40_96 , UpperCAmelCase : int=16 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=40_96 , UpperCAmelCase : List[str]=16 , UpperCAmelCase : Optional[int]=0.0 , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Tuple="gelu" , UpperCAmelCase : Union[str, Any]=10_24 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[str]=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : List[str]=False , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=1 , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Any=2 , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Union[str, Any]=1_00 , UpperCAmelCase : int=8_00 , **UpperCAmelCase : Union[str, Any] , ): SCREAMING_SNAKE_CASE_ :List[str] = vocab_size SCREAMING_SNAKE_CASE_ :List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE_ :Any = d_model SCREAMING_SNAKE_CASE_ :Union[str, Any] = encoder_ffn_dim SCREAMING_SNAKE_CASE_ :str = encoder_layers SCREAMING_SNAKE_CASE_ :Tuple = encoder_attention_heads SCREAMING_SNAKE_CASE_ :Optional[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE_ :Union[str, Any] = decoder_layers SCREAMING_SNAKE_CASE_ :Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE_ :int = dropout SCREAMING_SNAKE_CASE_ :Any = attention_dropout SCREAMING_SNAKE_CASE_ :List[str] = activation_dropout SCREAMING_SNAKE_CASE_ :Any = activation_function SCREAMING_SNAKE_CASE_ :Union[str, Any] = init_std SCREAMING_SNAKE_CASE_ :Union[str, Any] = encoder_layerdrop SCREAMING_SNAKE_CASE_ :Dict = decoder_layerdrop SCREAMING_SNAKE_CASE_ :Optional[int] = classifier_dropout SCREAMING_SNAKE_CASE_ :Any = use_cache SCREAMING_SNAKE_CASE_ :Tuple = encoder_layers SCREAMING_SNAKE_CASE_ :List[str] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE_ :Dict = use_prompt SCREAMING_SNAKE_CASE_ :List[str] = prompt_length SCREAMING_SNAKE_CASE_ :List[str] = prompt_mid_dim super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , **_lowercase , ) if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , _lowercase): SCREAMING_SNAKE_CASE_ :Union[str, Any] = self.bos_token_id warnings.warn( F"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " "The config can simply be saved and uploaded again to be fixed.")
631
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
5
0
def a__ ( A__ ): return sum(i for i in range(1, number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowerCAmelCase__ : Dict =int(input('Enter number: ').strip()) print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
101
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
5
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __magic_name__ ( _SCREAMING_SNAKE_CASE): _UpperCAmelCase : int = '''ibert''' def __init__( self : Dict ,__SCREAMING_SNAKE_CASE : List[str]=3_0_5_2_2 ,__SCREAMING_SNAKE_CASE : Optional[Any]=7_6_8 ,__SCREAMING_SNAKE_CASE : List[str]=1_2 ,__SCREAMING_SNAKE_CASE : Tuple=1_2 ,__SCREAMING_SNAKE_CASE : int=3_0_7_2 ,__SCREAMING_SNAKE_CASE : List[str]="gelu" ,__SCREAMING_SNAKE_CASE : str=0.1 ,__SCREAMING_SNAKE_CASE : str=0.1 ,__SCREAMING_SNAKE_CASE : str=5_1_2 ,__SCREAMING_SNAKE_CASE : Optional[Any]=2 ,__SCREAMING_SNAKE_CASE : int=0.02 ,__SCREAMING_SNAKE_CASE : Any=1e-12 ,__SCREAMING_SNAKE_CASE : Optional[int]=1 ,__SCREAMING_SNAKE_CASE : List[str]=0 ,__SCREAMING_SNAKE_CASE : int=2 ,__SCREAMING_SNAKE_CASE : Optional[int]="absolute" ,__SCREAMING_SNAKE_CASE : Optional[int]=False ,__SCREAMING_SNAKE_CASE : Union[str, Any]="none" ,**__SCREAMING_SNAKE_CASE : Dict ,): super().__init__(pad_token_id=_lowercase ,bos_token_id=_lowercase ,eos_token_id=_lowercase ,**_lowercase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = quant_mode UpperCAmelCase = force_dequant class __magic_name__ ( _SCREAMING_SNAKE_CASE): @property def _UpperCAmelCase ( self : Optional[int] ): if self.task == "multiple-choice": UpperCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
333
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") _lowercase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) _lowercase = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) _lowercase = BeautifulSoup(res.text, """html.parser""") _lowercase = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
5
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
500
'''simple docstring''' import os from datetime import datetime as dt from github import Github _lowercase = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def A (): _lowerCAmelCase = Github(os.environ["""GITHUB_TOKEN"""] ) _lowerCAmelCase = g.get_repo("""huggingface/diffusers""" ) _lowerCAmelCase = repo.get_issues(state="""open""" ) for issue in open_issues: _lowerCAmelCase = sorted(issue.get_comments() , key=lambda __lowerCamelCase : i.created_at , reverse=__lowerCamelCase ) _lowerCAmelCase = comments[0] if len(__lowerCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
5
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowerCamelCase__ ( a__) -> List[Any]: """simple docstring""" _snake_case : List[Any] = DPTConfig(embedding_type='hybrid') if "large" in checkpoint_url: _snake_case : Dict = 1_0_2_4 _snake_case : Tuple = 4_0_9_6 _snake_case : Optional[int] = 2_4 _snake_case : List[str] = 1_6 _snake_case : Optional[Any] = [5, 1_1, 1_7, 2_3] _snake_case : Tuple = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] _snake_case : Tuple = (1, 3_8_4, 3_8_4) if "nyu" or "midas" in checkpoint_url: _snake_case : str = 7_6_8 _snake_case : str = [1, 1, 1, 0.5] _snake_case : List[str] = [2_5_6, 5_1_2, 7_6_8, 7_6_8] _snake_case : str = 1_5_0 _snake_case : Any = 1_6 _snake_case : Dict = (1, 3_8_4, 3_8_4) _snake_case : Union[str, Any] = False _snake_case : List[str] = 'project' if "ade" in checkpoint_url: _snake_case : Optional[Any] = True _snake_case : List[Any] = 7_6_8 _snake_case : str = [1, 1, 1, 0.5] _snake_case : Tuple = 1_5_0 _snake_case : Tuple = 1_6 _snake_case : List[Any] = 'huggingface/label-files' _snake_case : List[str] = 'ade20k-id2label.json' _snake_case : Optional[Any] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type='dataset')) , 'r')) _snake_case : Union[str, Any] = {int(__lowerCamelCase): v for k, v in idalabel.items()} _snake_case : List[Any] = idalabel _snake_case : List[str] = {v: k for k, v in idalabel.items()} _snake_case : int = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def lowerCamelCase__ ( a__) -> int: """simple docstring""" _snake_case : Optional[Any] = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase) def lowerCamelCase__ ( a__) -> Optional[Any]: """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _snake_case : List[str] = name.replace('pretrained.model' , 'dpt.encoder') if "pretrained.model" in name: _snake_case : Dict = name.replace('pretrained.model' , 'dpt.embeddings') if "patch_embed" in name: _snake_case : int = name.replace('patch_embed' , '') if "pos_embed" in name: _snake_case : Union[str, Any] = name.replace('pos_embed' , 'position_embeddings') if "attn.proj" in name: _snake_case : List[Any] = name.replace('attn.proj' , 'attention.output.dense') if "proj" in name and "project" not in name: _snake_case : Optional[Any] = name.replace('proj' , 'projection') if "blocks" in name: _snake_case : str = name.replace('blocks' , 'layer') if "mlp.fc1" in name: _snake_case : List[Any] = name.replace('mlp.fc1' , 'intermediate.dense') if "mlp.fc2" in name: _snake_case : Union[str, Any] = name.replace('mlp.fc2' , 'output.dense') if "norm1" in name and "backbone" not in name: _snake_case : int = name.replace('norm1' , 'layernorm_before') if "norm2" in name and "backbone" not in name: _snake_case : List[Any] = name.replace('norm2' , 'layernorm_after') if "scratch.output_conv" in name: _snake_case : List[str] = name.replace('scratch.output_conv' , 'head') if "scratch" in name: _snake_case : Union[str, Any] = name.replace('scratch' , 'neck') if "layer1_rn" in name: _snake_case : Optional[Any] = name.replace('layer1_rn' , 'convs.0') if "layer2_rn" in name: _snake_case : Union[str, Any] = name.replace('layer2_rn' , 'convs.1') if "layer3_rn" in name: _snake_case : Any = name.replace('layer3_rn' , 'convs.2') if "layer4_rn" in name: _snake_case : Union[str, Any] = name.replace('layer4_rn' , 'convs.3') if "refinenet" in name: _snake_case : Tuple = int(name[len('neck.refinenet') : len('neck.refinenet') + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _snake_case : Tuple = name.replace(F"""refinenet{layer_idx}""" , F"""fusion_stage.layers.{abs(layer_idx-4)}""") if "out_conv" in name: _snake_case : int = name.replace('out_conv' , 'projection') if "resConfUnit1" in name: _snake_case : Any = name.replace('resConfUnit1' , 'residual_layer1') if "resConfUnit2" in name: _snake_case : Optional[int] = name.replace('resConfUnit2' , 'residual_layer2') if "conv1" in name: _snake_case : List[Any] = name.replace('conv1' , 'convolution1') if "conv2" in name: _snake_case : Union[str, Any] = name.replace('conv2' , 'convolution2') # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _snake_case : Optional[int] = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0') if "pretrained.act_postprocess2.0.project.0" in name: _snake_case : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0') if "pretrained.act_postprocess3.0.project.0" in name: _snake_case : Tuple = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0') if "pretrained.act_postprocess4.0.project.0" in name: _snake_case : Any = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0') # resize blocks if "pretrained.act_postprocess1.3" in name: _snake_case : int = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection') if "pretrained.act_postprocess1.4" in name: _snake_case : Optional[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize') if "pretrained.act_postprocess2.3" in name: _snake_case : int = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection') if "pretrained.act_postprocess2.4" in name: _snake_case : List[str] = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize') if "pretrained.act_postprocess3.3" in name: _snake_case : Optional[int] = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection') if "pretrained.act_postprocess4.3" in name: _snake_case : List[str] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection') if "pretrained.act_postprocess4.4" in name: _snake_case : Any = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize') if "pretrained" in name: _snake_case : Optional[int] = name.replace('pretrained' , 'dpt') if "bn" in name: _snake_case : Optional[Any] = name.replace('bn' , 'batch_norm') if "head" in name: _snake_case : str = name.replace('head' , 'head.head') if "encoder.norm" in name: _snake_case : Optional[Any] = name.replace('encoder.norm' , 'layernorm') if "auxlayer" in name: _snake_case : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head') if "backbone" in name: _snake_case : Any = name.replace('backbone' , 'backbone.bit.encoder') if ".." in name: _snake_case : Tuple = name.replace('..' , '.') if "stem.conv" in name: _snake_case : Optional[int] = name.replace('stem.conv' , 'bit.embedder.convolution') if "blocks" in name: _snake_case : Any = name.replace('blocks' , 'layers') if "convolution" in name and "backbone" in name: _snake_case : Dict = name.replace('convolution' , 'conv') if "layer" in name and "backbone" in name: _snake_case : List[Any] = name.replace('layer' , 'layers') if "backbone.bit.encoder.bit" in name: _snake_case : int = name.replace('backbone.bit.encoder.bit' , 'backbone.bit') if "embedder.conv" in name: _snake_case : Optional[int] = name.replace('embedder.conv' , 'embedder.convolution') if "backbone.bit.encoder.stem.norm" in name: _snake_case : int = name.replace('backbone.bit.encoder.stem.norm' , 'backbone.bit.embedder.norm') return name def lowerCamelCase__ ( a__ , a__) -> str: """simple docstring""" for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _snake_case : Optional[Any] = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.weight""") _snake_case : int = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.bias""") # next, add query, keys and values (in that order) to the state dict _snake_case : Dict = in_proj_weight[: config.hidden_size, :] _snake_case : Tuple = in_proj_bias[: config.hidden_size] _snake_case : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _snake_case : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _snake_case : str = in_proj_weight[ -config.hidden_size :, : ] _snake_case : Any = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( ) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case : Union[str, Any] = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase).raw) return im @torch.no_grad() def lowerCamelCase__ ( a__ , a__ , a__ , a__ , a__) -> Any: """simple docstring""" _snake_case , _snake_case : Tuple = get_dpt_config(__lowerCamelCase) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") _snake_case : List[str] = torch.load(__lowerCamelCase , map_location='cpu') # remove certain keys remove_ignore_keys_(__lowerCamelCase) # rename keys for key in state_dict.copy().keys(): _snake_case : List[Any] = state_dict.pop(__lowerCamelCase) _snake_case : Optional[int] = val # read in qkv matrices read_in_q_k_v(__lowerCamelCase , __lowerCamelCase) # load HuggingFace model _snake_case : str = DPTForSemanticSegmentation(__lowerCamelCase) if 'ade' in checkpoint_url else DPTForDepthEstimation(__lowerCamelCase) model.load_state_dict(__lowerCamelCase) model.eval() # Check outputs on an image _snake_case : Optional[int] = 4_8_0 if 'ade' in checkpoint_url else 3_8_4 _snake_case : Dict = DPTImageProcessor(size=__lowerCamelCase) _snake_case : List[str] = prepare_img() _snake_case : Tuple = image_processor(__lowerCamelCase , return_tensors='pt') # forward pass _snake_case : str = model(**__lowerCamelCase).logits if 'ade' in checkpoint_url else model(**__lowerCamelCase).predicted_depth if show_prediction: _snake_case : Any = ( torch.nn.functional.interpolate( outputs.unsqueeze(1) , size=(image.size[1], image.size[0]) , mode='bicubic' , align_corners=__lowerCamelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_5_5).show() if pytorch_dump_folder_path is not None: Path(__lowerCamelCase).mkdir(exist_ok=__lowerCamelCase) print(F"""Saving model to {pytorch_dump_folder_path}""") model.save_pretrained(__lowerCamelCase) print(F"""Saving image processor to {pytorch_dump_folder_path}""") image_processor.save_pretrained(__lowerCamelCase) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas') image_processor.push_to_hub('ybelkada/dpt-hybrid-midas') if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
517
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
5
0
from __future__ import annotations from collections.abc import Callable A_ : Optional[Any] = list[list[float | int]] def UpperCamelCase (lowercase_: Matrix , lowercase_: Matrix ) -> int: A__ : str = len(__lowerCamelCase ) A__ : Optional[int] = [[0 for _ in range(size + 1 )] for _ in range(__lowerCamelCase )] A__ : Any = 42 A__ : Tuple = 42 A__ : List[Any] = 42 A__ : Dict = 42 A__ : Tuple = 42 A__ : Dict = 42 for row in range(__lowerCamelCase ): for col in range(__lowerCamelCase ): A__ : int = matrix[row][col] A__ : int = vector[row][0] A__ : int = 0 A__ : Dict = 0 while row < size and col < size: # pivoting A__ : Any = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCamelCase , __lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: A__ , A__ : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCamelCase ): A__ : Tuple = augmented[rowa][col] / augmented[row][col] A__ : Tuple = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCamelCase ): for row in range(__lowerCamelCase ): A__ : List[str] = augmented[row][col] / augmented[col][col] for cola in range(__lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCamelCase ) ] def UpperCamelCase (lowercase_: list[int] ) -> Optional[Any]: A__ : Optional[Any] = len(__lowerCamelCase ) A__ : Tuple = [[0 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] A__ : Optional[int] = [[0] for _ in range(__lowerCamelCase )] A__ : List[str] = 42 A__ : Any = 42 A__ : Optional[int] = 42 A__ : Tuple = 42 for x_val, y_val in enumerate(__lowerCamelCase ): for col in range(__lowerCamelCase ): A__ : Dict = (x_val + 1) ** (size - col - 1) A__ : int = y_val A__ : Any = solve(__lowerCamelCase , __lowerCamelCase ) def interpolated_func(lowercase_: int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCamelCase ) ) return interpolated_func def UpperCamelCase (lowercase_: int ) -> Optional[Any]: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCamelCase (lowercase_: Callable[[int], int] = question_function , lowercase_: int = 10 ) -> str: A__ : Tuple = [func(__lowerCamelCase ) for x_val in range(1 , order + 1 )] A__ : Optional[Any] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] A__ : List[Any] = 0 A__ : Tuple = 42 A__ : Dict = 42 for poly in polynomials: A__ : List[Any] = 1 while func(__lowerCamelCase ) == poly(__lowerCamelCase ): x_val += 1 ret += poly(__lowerCamelCase ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
456
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
0
"""simple docstring""" import os def a ( ): '''simple docstring''' with open(os.path.dirname(__lowerCamelCase ) + '''/p022_names.txt''' ) as file: UpperCAmelCase_ :Tuple = str(file.readlines()[0] ) UpperCAmelCase_ :Any = names.replace('''\"''', '''''' ).split(''',''' ) names.sort() UpperCAmelCase_ :Optional[int] = 0 UpperCAmelCase_ :int = 0 for i, name in enumerate(__lowerCamelCase ): for letter in name: name_score += ord(__lowerCamelCase ) - 64 total_score += (i + 1) * name_score UpperCAmelCase_ :Optional[int] = 0 return total_score if __name__ == "__main__": print(solution())
608
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _lowercase = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_lowercase ): """simple docstring""" super().__init__(**_lowercase ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self , _lowercase , **_lowercase ): """simple docstring""" return super().__call__(_lowercase , **_lowercase ) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a sound of {}." ): """simple docstring""" if isinstance(_lowercase , _lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _lowerCAmelCase = requests.get(_lowercase ).content else: with open(_lowercase , """rb""" ) as f: _lowerCAmelCase = f.read() if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate ) if not isinstance(_lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) _lowerCAmelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) _lowerCAmelCase = [text_inputs] return inputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_inputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _lowercase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**_lowercase , **_lowercase ) _lowerCAmelCase = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_outputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_outputs["""logits"""][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=0 ) _lowerCAmelCase = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) _lowerCAmelCase = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] ) ] return result
5
0
'''simple docstring''' import os from datetime import datetime as dt from github import Github lowercase = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def __A ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = Github(os.environ["GITHUB_TOKEN"] ) __SCREAMING_SNAKE_CASE : Any = g.get_repo("huggingface/diffusers" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = repo.get_issues(state="open" ) for issue in open_issues: __SCREAMING_SNAKE_CASE : Tuple = sorted(issue.get_comments() , key=lambda _SCREAMING_SNAKE_CASE : i.created_at , reverse=__lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = comments[0] if len(__lowerCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
211
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = ['''input_values''', '''padding_mask'''] def __init__( self , _lowercase = 1 , _lowercase = 24_000 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , **_lowercase , ): """simple docstring""" super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) _lowerCAmelCase = chunk_length_s _lowerCAmelCase = overlap @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , _lowercase , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs _lowerCAmelCase = True _lowerCAmelCase = bool( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_lowercase , np.ndarray ): _lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _lowerCAmelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [np.asarray(_lowercase ).T] # verify inputs are valid for idx, example in enumerate(_lowercase ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) _lowerCAmelCase = None _lowerCAmelCase = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _lowerCAmelCase = min(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.floor(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _lowerCAmelCase = max(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.ceil(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length _lowerCAmelCase = """max_length""" else: _lowerCAmelCase = input_values # normal padding on batch if padded_inputs is None: _lowerCAmelCase = self.pad( _lowercase , max_length=_lowercase , truncation=_lowercase , padding=_lowercase , return_attention_mask=_lowercase , ) if padding: _lowerCAmelCase = padded_inputs.pop("""attention_mask""" ) _lowerCAmelCase = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: _lowerCAmelCase = example[..., None] input_values.append(example.T ) _lowerCAmelCase = input_values if return_tensors is not None: _lowerCAmelCase = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
5
0
import pytest A__ : List[str] = '''__dummy_dataset1__''' A__ : List[str] = ''' import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def UpperCamelCase( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase( __UpperCamelCase : Dict ,__UpperCamelCase : List[Any] ,__UpperCamelCase : Union[str, Any] ): lowerCAmelCase_ : Optional[Any] = dataset_loading_script_name lowerCAmelCase_ : str = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=__lowerCamelCase ) lowerCAmelCase_ : List[Any] = script_dir / f"""{script_name}.py""" with open(__lowerCamelCase ,'''w''' ) as f: f.write(__lowerCamelCase ) return str(__lowerCamelCase )
171
'''simple docstring''' _lowercase = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
5
0
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=_SCREAMING_SNAKE_CASE ) class UpperCamelCase__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" A__ : str = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) A__ : ClassVar[Features] = Features({"question": Value("string" ), "context": Value("string" )} ) A__ : ClassVar[Features] = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) A__ : str = "question" A__ : str = "context" A__ : str = "answers" @property def snake_case__ ( self ) -> Optional[Any]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
104
'''simple docstring''' import functools def A (__lowerCamelCase :list[int] , __lowerCamelCase :list[int] ): # Validation if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(__lowerCamelCase ) >= 366: raise ValueError("""All days elements should be less than 366""" ) _lowerCAmelCase = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase :int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
0
from collections import defaultdict def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = first_str.lower().strip() A_ = second_str.lower().strip() # Remove whitespace A_ = first_str.replace(''' ''' , '''''' ) A_ = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(__lowerCamelCase ) != len(__lowerCamelCase ): return False # Default values for count should be 0 A_ = defaultdict(__lowerCamelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(__lowerCamelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __lowercase = input("""Enter the first string """).strip() __lowercase = input("""Enter the second string """).strip() __lowercase = check_anagrams(input_a, input_b) print(f'{input_a} and {input_b} are {"" if status else "not "}anagrams.')
203
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 384 if "tiny" in model_name: _lowerCAmelCase = [3, 3, 9, 3] _lowerCAmelCase = [96, 192, 384, 768] if "small" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [96, 192, 384, 768] if "base" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [128, 256, 512, 1024] _lowerCAmelCase = 512 if "large" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [192, 384, 768, 1536] _lowerCAmelCase = 768 if "xlarge" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [256, 512, 1024, 2048] _lowerCAmelCase = 1024 # set label information _lowerCAmelCase = 150 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """ade20k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = ConvNextConfig( depths=__lowerCamelCase , hidden_sizes=__lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) _lowerCAmelCase = UperNetConfig( backbone_config=__lowerCamelCase , auxiliary_in_channels=__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , ) return config def A (__lowerCamelCase :Optional[Any] ): _lowerCAmelCase = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict , __lowerCamelCase :Tuple ): _lowerCAmelCase = dct.pop(__lowerCamelCase ) _lowerCAmelCase = val def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ): _lowerCAmelCase = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } _lowerCAmelCase = model_name_to_url[model_name] _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""state_dict"""] _lowerCAmelCase = get_upernet_config(__lowerCamelCase ) _lowerCAmelCase = UperNetForSemanticSegmentation(__lowerCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase = state_dict.pop(__lowerCamelCase ) if "bn" in key: _lowerCAmelCase = key.replace("""bn""" , """batch_norm""" ) _lowerCAmelCase = val # rename keys _lowerCAmelCase = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # verify on image _lowerCAmelCase = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _lowerCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" ) _lowerCAmelCase = SegformerImageProcessor() _lowerCAmelCase = processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values with torch.no_grad(): _lowerCAmelCase = model(__lowerCamelCase ) if model_name == "upernet-convnext-tiny": _lowerCAmelCase = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _lowerCAmelCase = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _lowerCAmelCase = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _lowerCAmelCase = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _lowerCAmelCase = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
5
0
import os def lowercase ( a = "input.txt" ): '''simple docstring''' with open(os.path.join(os.path.dirname(__lowerCamelCase ) , __lowerCamelCase ) ) as input_file: SCREAMING_SNAKE_CASE_ :int = [ [int(__lowerCamelCase ) for element in line.split("," )] for line in input_file.readlines() ] SCREAMING_SNAKE_CASE_ :str = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ :Dict = len(matrix[0] ) SCREAMING_SNAKE_CASE_ :str = [[-1 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ :List[Any] = matrix[i][0] for j in range(1 , __lowerCamelCase ): for i in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ :Dict = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __lowerCamelCase ): SCREAMING_SNAKE_CASE_ :List[Any] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): SCREAMING_SNAKE_CASE_ :List[Any] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'''{solution() = }''')
631
'''simple docstring''' from itertools import product def A (__lowerCamelCase :int , __lowerCamelCase :int ): _lowerCAmelCase = sides_number _lowerCAmelCase = max_face_number * dice_number _lowerCAmelCase = [0] * (max_total + 1) _lowerCAmelCase = 1 _lowerCAmelCase = range(__lowerCamelCase , max_face_number + 1 ) for dice_numbers in product(__lowerCamelCase , repeat=__lowerCamelCase ): _lowerCAmelCase = sum(__lowerCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def A (): _lowerCAmelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) _lowerCAmelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) _lowerCAmelCase = 0 _lowerCAmelCase = 9 _lowerCAmelCase = 4 * 9 _lowerCAmelCase = 6 for peter_total in range(__lowerCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _lowerCAmelCase = (4**9) * (6**6) _lowerCAmelCase = peter_wins_count / total_games_number _lowerCAmelCase = round(__lowerCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
5
0
import math import random def a__ ( A__, A__ = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowerCAmelCase__ : List[str] =0.0_2 def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : Any = float(2 * (random.randint(1, 1_0_0 )) - 1 ) for _ in range(__lowerCamelCase ): # Forward propagation SCREAMING_SNAKE_CASE_ : List[Any] = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? SCREAMING_SNAKE_CASE_ : List[str] = (expected / 1_0_0) - layer_a # Error delta SCREAMING_SNAKE_CASE_ : List[Any] = layer_1_error * sigmoid_function(__lowerCamelCase, __lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_0_0 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ : Any =int(input('Expected value: ')) lowerCAmelCase__ : int =int(input('Number of propagations: ')) print(forward_propagation(expected, number_propagations))
101
'''simple docstring''' from manim import * class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""CPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(1 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""GPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.align_to(_lowercase , _lowercase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""Model""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , ) _lowerCAmelCase = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) _lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) ) self.add(_lowercase ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for i, rect in enumerate(_lowercase ): _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 ) cpu_target.move_to(_lowercase ) cpu_target.generate_target() _lowerCAmelCase = 0.46 / 4 _lowerCAmelCase = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 ) cpu_targs.append(_lowercase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) ) second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) ) self.play(*_lowercase ) self.play(*_lowercase ) self.wait()
5
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __magic_name__ ( _SCREAMING_SNAKE_CASE): _UpperCAmelCase : List[Any] = '''sew-d''' def __init__( self : List[str] ,__SCREAMING_SNAKE_CASE : Tuple=3_2 ,__SCREAMING_SNAKE_CASE : List[Any]=7_6_8 ,__SCREAMING_SNAKE_CASE : Tuple=1_2 ,__SCREAMING_SNAKE_CASE : Optional[Any]=1_2 ,__SCREAMING_SNAKE_CASE : int=3_0_7_2 ,__SCREAMING_SNAKE_CASE : List[str]=2 ,__SCREAMING_SNAKE_CASE : Optional[Any]=5_1_2 ,__SCREAMING_SNAKE_CASE : List[str]=2_5_6 ,__SCREAMING_SNAKE_CASE : Dict=True ,__SCREAMING_SNAKE_CASE : Tuple=True ,__SCREAMING_SNAKE_CASE : str=("p2c", "c2p") ,__SCREAMING_SNAKE_CASE : Optional[Any]="layer_norm" ,__SCREAMING_SNAKE_CASE : Dict="gelu_python" ,__SCREAMING_SNAKE_CASE : Dict=0.1 ,__SCREAMING_SNAKE_CASE : Optional[Any]=0.1 ,__SCREAMING_SNAKE_CASE : Optional[Any]=0.1 ,__SCREAMING_SNAKE_CASE : Any=0.0 ,__SCREAMING_SNAKE_CASE : Optional[int]=0.1 ,__SCREAMING_SNAKE_CASE : Optional[int]=0.02 ,__SCREAMING_SNAKE_CASE : Any=1e-7 ,__SCREAMING_SNAKE_CASE : Optional[Any]=1e-5 ,__SCREAMING_SNAKE_CASE : List[Any]="group" ,__SCREAMING_SNAKE_CASE : List[Any]="gelu" ,__SCREAMING_SNAKE_CASE : Optional[Any]=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) ,__SCREAMING_SNAKE_CASE : Union[str, Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) ,__SCREAMING_SNAKE_CASE : Any=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) ,__SCREAMING_SNAKE_CASE : List[Any]=False ,__SCREAMING_SNAKE_CASE : int=1_2_8 ,__SCREAMING_SNAKE_CASE : List[Any]=1_6 ,__SCREAMING_SNAKE_CASE : Optional[Any]=True ,__SCREAMING_SNAKE_CASE : List[str]=0.05 ,__SCREAMING_SNAKE_CASE : List[str]=1_0 ,__SCREAMING_SNAKE_CASE : Optional[Any]=2 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 ,__SCREAMING_SNAKE_CASE : str=1_0 ,__SCREAMING_SNAKE_CASE : Tuple=0 ,__SCREAMING_SNAKE_CASE : str="mean" ,__SCREAMING_SNAKE_CASE : List[Any]=False ,__SCREAMING_SNAKE_CASE : Dict=False ,__SCREAMING_SNAKE_CASE : Dict=2_5_6 ,__SCREAMING_SNAKE_CASE : Optional[Any]=0 ,__SCREAMING_SNAKE_CASE : int=1 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=2 ,**__SCREAMING_SNAKE_CASE : List[Any] ,): super().__init__(**_lowercase ,pad_token_id=_lowercase ,bos_token_id=_lowercase ,eos_token_id=_lowercase ) UpperCAmelCase = hidden_size UpperCAmelCase = feat_extract_norm UpperCAmelCase = feat_extract_activation UpperCAmelCase = list(_lowercase ) UpperCAmelCase = list(_lowercase ) UpperCAmelCase = list(_lowercase ) UpperCAmelCase = conv_bias UpperCAmelCase = num_conv_pos_embeddings UpperCAmelCase = num_conv_pos_embedding_groups UpperCAmelCase = len(self.conv_dim ) UpperCAmelCase = num_hidden_layers UpperCAmelCase = intermediate_size UpperCAmelCase = squeeze_factor UpperCAmelCase = max_position_embeddings UpperCAmelCase = position_buckets UpperCAmelCase = share_att_key UpperCAmelCase = relative_attention UpperCAmelCase = norm_rel_ebd UpperCAmelCase = list(_lowercase ) UpperCAmelCase = hidden_act UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = feat_proj_dropout UpperCAmelCase = final_dropout UpperCAmelCase = layer_norm_eps UpperCAmelCase = feature_layer_norm_eps UpperCAmelCase = initializer_range UpperCAmelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = apply_spec_augment UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks # ctc loss UpperCAmelCase = ctc_loss_reduction UpperCAmelCase = ctc_zero_infinity # sequence classification UpperCAmelCase = use_weighted_layer_sum UpperCAmelCase = classifier_proj_size @property def _UpperCAmelCase ( self : Optional[Any] ): return functools.reduce(operator.mul ,self.conv_stride ,1 )
333
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowercase = False try: _lowercase = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase = None , _lowercase = [] ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = choices _lowerCAmelCase = prompt if sys.platform == "win32": _lowerCAmelCase = """*""" else: _lowerCAmelCase = """➔ """ def _lowercase ( self , _lowercase , _lowercase = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , _lowercase ) else: forceWrite(self.choices[index] , _lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(_lowercase ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def _lowercase ( self , _lowercase , _lowercase = 1 ): """simple docstring""" _lowerCAmelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowercase ) move_cursor(_lowercase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = int(chr(self.current_selection ) ) _lowerCAmelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowercase ) else: return else: return def _lowercase ( self , _lowercase = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) _lowerCAmelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowercase ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase = int(builtins.input() ) except ValueError: _lowerCAmelCase = default_choice else: _lowerCAmelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(_lowercase , """\n""" ) return choice
5
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE): lowerCamelCase__ = '''Wav2Vec2FeatureExtractor''' lowerCamelCase__ = '''AutoTokenizer''' def __init__( self, __a, __a): '''simple docstring''' super().__init__(_lowercase, _lowercase) _lowerCAmelCase : List[str] = self.feature_extractor _lowerCAmelCase : Union[str, Any] = False @classmethod def snake_case__ ( cls, __a, **__a): '''simple docstring''' try: return super().from_pretrained(_lowercase, **_lowercase) except OSError: warnings.warn( f"Loading a tokenizer inside {cls.__name__} from a config that does not" " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: ", _lowercase, ) _lowerCAmelCase : Tuple = WavaVecaFeatureExtractor.from_pretrained(_lowercase, **_lowercase) _lowerCAmelCase : List[Any] = WavaVecaCTCTokenizer.from_pretrained(_lowercase, **_lowercase) return cls(feature_extractor=_lowercase, tokenizer=_lowercase) def __call__( self, *__a, **__a): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_lowercase, **_lowercase) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.") _lowerCAmelCase : List[str] = kwargs.pop("raw_speech") else: _lowerCAmelCase : Optional[Any] = kwargs.pop("audio", _lowercase) _lowerCAmelCase : Any = kwargs.pop("sampling_rate", _lowercase) _lowerCAmelCase : Dict = kwargs.pop("text", _lowercase) if len(_lowercase) > 0: _lowerCAmelCase : Dict = args[0] _lowerCAmelCase : List[str] = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: _lowerCAmelCase : Tuple = self.feature_extractor(_lowercase, *_lowercase, sampling_rate=_lowercase, **_lowercase) if text is not None: _lowerCAmelCase : Optional[int] = self.tokenizer(_lowercase, **_lowercase) if text is None: return inputs elif audio is None: return encodings else: _lowerCAmelCase : Tuple = encodings["input_ids"] return inputs def snake_case__ ( self, *__a, **__a): '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*_lowercase, **_lowercase) _lowerCAmelCase : Any = kwargs.pop("input_features", _lowercase) _lowerCAmelCase : List[Any] = kwargs.pop("labels", _lowercase) if len(_lowercase) > 0: _lowerCAmelCase : Union[str, Any] = args[0] _lowerCAmelCase : Optional[int] = args[1:] if input_features is not None: _lowerCAmelCase : Any = self.feature_extractor.pad(_lowercase, *_lowercase, **_lowercase) if labels is not None: _lowerCAmelCase : Optional[Any] = self.tokenizer.pad(_lowercase, **_lowercase) if labels is None: return input_features elif input_features is None: return labels else: _lowerCAmelCase : List[str] = labels["input_ids"] return input_features def snake_case__ ( self, *__a, **__a): '''simple docstring''' return self.tokenizer.batch_decode(*_lowercase, **_lowercase) def snake_case__ ( self, *__a, **__a): '''simple docstring''' return self.tokenizer.decode(*_lowercase, **_lowercase) @contextmanager def snake_case__ ( self): '''simple docstring''' warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call.") _lowerCAmelCase : str = True _lowerCAmelCase : List[str] = self.tokenizer yield _lowerCAmelCase : Tuple = self.feature_extractor _lowerCAmelCase : Optional[Any] = False
500
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } _lowercase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def A (__lowerCamelCase :Optional[int] ): _lowerCAmelCase = {} with open(__lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(__lowerCamelCase ): _lowerCAmelCase = line.strip() if line: _lowerCAmelCase = line.split() _lowerCAmelCase = line_number _lowerCAmelCase = words[0] _lowerCAmelCase = value return result def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any] , __lowerCamelCase :List[str] ): for attribute in key.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": _lowerCAmelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = shape_pointer.shape # let's reduce dimension _lowerCAmelCase = value[0] else: _lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCAmelCase = value elif weight_type == "weight_g": _lowerCAmelCase = value elif weight_type == "weight_v": _lowerCAmelCase = value elif weight_type == "bias": _lowerCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = value else: _lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] , __lowerCamelCase :int ): _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _lowerCAmelCase = """.""".join([key, hf_param_name] ) else: _lowerCAmelCase = key _lowerCAmelCase = value if """lm_head""" in full_key else value[0] _lowercase = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :List[str]=None , __lowerCamelCase :List[Any]=None ): _lowerCAmelCase = False for key, mapped_key in MAPPING.items(): _lowerCAmelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCAmelCase = True if "*" in mapped_key: _lowerCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase = """weight_g""" elif "weight_v" in name: _lowerCAmelCase = """weight_v""" elif "bias" in name: _lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase = """weight""" else: _lowerCAmelCase = None if hf_dict is not None: rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return is_used return is_used def A (__lowerCamelCase :Any , __lowerCamelCase :Dict , __lowerCamelCase :Dict ): _lowerCAmelCase = [] _lowerCAmelCase = fairseq_model.state_dict() _lowerCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) _lowerCAmelCase = True else: _lowerCAmelCase = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any , __lowerCamelCase :List[Any] , __lowerCamelCase :List[Any] ): _lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase = name.split(""".""" ) _lowerCAmelCase = int(items[0] ) _lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def A (__lowerCamelCase :List[str] , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any]=None , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :str=True , __lowerCamelCase :str=False ): if config_path is not None: _lowerCAmelCase = WavaVecaConfig.from_pretrained(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaConfig() if is_seq_class: _lowerCAmelCase = read_txt_into_dict(__lowerCamelCase ) _lowerCAmelCase = idalabel _lowerCAmelCase = WavaVecaForSequenceClassification(__lowerCamelCase ) _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) feature_extractor.save_pretrained(__lowerCamelCase ) elif is_finetuned: if dict_path: _lowerCAmelCase = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCAmelCase = target_dict.pad_index _lowerCAmelCase = target_dict.bos_index _lowerCAmelCase = target_dict.eos_index _lowerCAmelCase = len(target_dict.symbols ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """vocab.json""" ) if not os.path.isdir(__lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCAmelCase = 0 _lowerCAmelCase = 1 with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , ) _lowerCAmelCase = True if config.feat_extract_norm == """layer""" else False _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) _lowerCAmelCase = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) _lowerCAmelCase = WavaVecaForCTC(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaForPreTraining(__lowerCamelCase ) if is_finetuned or is_seq_class: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _lowerCAmelCase = argparse.Namespace(task="""audio_pretraining""" ) _lowerCAmelCase = fairseq.tasks.setup_task(__lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase ) _lowerCAmelCase = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) _lowercase = parser.parse_args() _lowercase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
5
0
'''simple docstring''' SCREAMING_SNAKE_CASE_ = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" SCREAMING_SNAKE_CASE_ = [{"type": "code", "content": INSTALL_CONTENT}] SCREAMING_SNAKE_CASE_ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
517
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = '''decision_transformer''' _lowercase : Optional[Any] = ['''past_key_values'''] _lowercase : str = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowercase=17 , _lowercase=4 , _lowercase=128 , _lowercase=4_096 , _lowercase=True , _lowercase=1 , _lowercase=1_024 , _lowercase=3 , _lowercase=1 , _lowercase=None , _lowercase="relu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=False , _lowercase=False , **_lowercase , ): """simple docstring""" _lowerCAmelCase = state_dim _lowerCAmelCase = act_dim _lowerCAmelCase = hidden_size _lowerCAmelCase = max_ep_len _lowerCAmelCase = action_tanh _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = scale_attn_by_inverse_layer_idx _lowerCAmelCase = reorder_and_upcast_attn _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
5
0
from math import pi, sqrt, tan def UpperCamelCase (lowercase_: float ) -> List[str]: if side_length < 0: raise ValueError("""surface_area_cube() only accepts non-negative values""" ) return 6 * side_length**2 def UpperCamelCase (lowercase_: float , lowercase_: float , lowercase_: float ) -> Any: if length < 0 or breadth < 0 or height < 0: raise ValueError("""surface_area_cuboid() only accepts non-negative values""" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCamelCase (lowercase_: float ) -> List[str]: if radius < 0: raise ValueError("""surface_area_sphere() only accepts non-negative values""" ) return 4 * pi * radius**2 def UpperCamelCase (lowercase_: float ) -> Optional[int]: if radius < 0: raise ValueError("""surface_area_hemisphere() only accepts non-negative values""" ) return 3 * pi * radius**2 def UpperCamelCase (lowercase_: float , lowercase_: float ) -> int: if radius < 0 or height < 0: raise ValueError("""surface_area_cone() only accepts non-negative values""" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCamelCase (lowercase_: float , lowercase_: float , lowercase_: float ) -> Any: if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( """surface_area_conical_frustum() only accepts non-negative values""" ) A__ : Dict = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCamelCase (lowercase_: float , lowercase_: float ) -> Any: if radius < 0 or height < 0: raise ValueError("""surface_area_cylinder() only accepts non-negative values""" ) return 2 * pi * radius * (height + radius) def UpperCamelCase (lowercase_: float , lowercase_: float ) -> List[str]: if torus_radius < 0 or tube_radius < 0: raise ValueError("""surface_area_torus() only accepts non-negative values""" ) if torus_radius < tube_radius: raise ValueError( """surface_area_torus() does not support spindle or self intersecting tori""" ) return 4 * pow(__lowerCamelCase , 2 ) * torus_radius * tube_radius def UpperCamelCase (lowercase_: float , lowercase_: float ) -> Union[str, Any]: if length < 0 or width < 0: raise ValueError("""area_rectangle() only accepts non-negative values""" ) return length * width def UpperCamelCase (lowercase_: float ) -> Union[str, Any]: if side_length < 0: raise ValueError("""area_square() only accepts non-negative values""" ) return side_length**2 def UpperCamelCase (lowercase_: float , lowercase_: float ) -> Optional[int]: if base < 0 or height < 0: raise ValueError("""area_triangle() only accepts non-negative values""" ) return (base * height) / 2 def UpperCamelCase (lowercase_: float , lowercase_: float , lowercase_: float ) -> int: if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("""area_triangle_three_sides() only accepts non-negative values""" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("""Given three sides do not form a triangle""" ) A__ : str = (sidea + sidea + sidea) / 2 A__ : Dict = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCamelCase (lowercase_: float , lowercase_: float ) -> int: if base < 0 or height < 0: raise ValueError("""area_parallelogram() only accepts non-negative values""" ) return base * height def UpperCamelCase (lowercase_: float , lowercase_: float , lowercase_: float ) -> Optional[Any]: if basea < 0 or basea < 0 or height < 0: raise ValueError("""area_trapezium() only accepts non-negative values""" ) return 1 / 2 * (basea + basea) * height def UpperCamelCase (lowercase_: float ) -> List[Any]: if radius < 0: raise ValueError("""area_circle() only accepts non-negative values""" ) return pi * radius**2 def UpperCamelCase (lowercase_: float , lowercase_: float ) -> List[Any]: if radius_x < 0 or radius_y < 0: raise ValueError("""area_ellipse() only accepts non-negative values""" ) return pi * radius_x * radius_y def UpperCamelCase (lowercase_: float , lowercase_: float ) -> Union[str, Any]: if diagonal_a < 0 or diagonal_a < 0: raise ValueError("""area_rhombus() only accepts non-negative values""" ) return 1 / 2 * diagonal_a * diagonal_a def UpperCamelCase (lowercase_: int , lowercase_: float ) -> Union[str, Any]: if not isinstance(__lowerCamelCase , __lowerCamelCase ) or sides < 3: raise ValueError( """area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides""" ) elif length < 0: raise ValueError( """area_reg_polygon() only accepts non-negative values as \ length of a side""" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(f'''Rectangle: {area_rectangle(10, 20) = }''') print(f'''Square: {area_square(10) = }''') print(f'''Triangle: {area_triangle(10, 10) = }''') print(f'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(f'''Parallelogram: {area_parallelogram(10, 20) = }''') print(f'''Rhombus: {area_rhombus(10, 20) = }''') print(f'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(f'''Circle: {area_circle(20) = }''') print(f'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(f'''Cube: {surface_area_cube(20) = }''') print(f'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(f'''Sphere: {surface_area_sphere(20) = }''') print(f'''Hemisphere: {surface_area_hemisphere(20) = }''') print(f'''Cone: {surface_area_cone(10, 20) = }''') print(f'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(f'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(f'''Torus: {surface_area_torus(20, 10) = }''') print(f'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(f'''Square: {area_reg_polygon(4, 10) = }''') print(f'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
456
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) _lowercase = None _lowercase = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } _lowercase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def A (__lowerCamelCase :int , __lowerCamelCase :Optional[Any]=1 , __lowerCamelCase :List[Any]=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def A (__lowerCamelCase :Any ): with open(__lowerCamelCase , """r""" ) as f: return json.load(__lowerCamelCase ) def A (__lowerCamelCase :List[Any] , __lowerCamelCase :int ): with open(__lowerCamelCase , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple=True ): os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """tmp""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = read_json(os.path.join(__lowerCamelCase , """params.json""" ) ) _lowerCAmelCase = NUM_SHARDS[model_size] _lowerCAmelCase = params["""n_layers"""] _lowerCAmelCase = params["""n_heads"""] _lowerCAmelCase = n_heads // num_shards _lowerCAmelCase = params["""dim"""] _lowerCAmelCase = dim // n_heads _lowerCAmelCase = 10_000.0 _lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , __lowerCamelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase = params["""n_kv_heads"""] # for GQA / MQA _lowerCAmelCase = n_heads_per_shard // num_key_value_heads _lowerCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase = n_heads _lowerCAmelCase = n_heads_per_shard _lowerCAmelCase = dim # permute for sliced rotary def permute(__lowerCamelCase :Optional[int] , __lowerCamelCase :str=n_heads , __lowerCamelCase :str=dim , __lowerCamelCase :List[Any]=dim ): return w.view(__lowerCamelCase , dima // n_heads // 2 , 2 , __lowerCamelCase ).transpose(1 , 2 ).reshape(__lowerCamelCase , __lowerCamelCase ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase = torch.load(os.path.join(__lowerCamelCase , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded _lowerCAmelCase = [ torch.load(os.path.join(__lowerCamelCase , f'consolidated.{i:02d}.pth' ) , map_location="""cpu""" ) for i in range(__lowerCamelCase ) ] _lowerCAmelCase = 0 _lowerCAmelCase = {"""weight_map""": {}} for layer_i in range(__lowerCamelCase ): _lowerCAmelCase = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _lowerCAmelCase = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = inv_freq for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: _lowerCAmelCase = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(__lowerCamelCase )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__lowerCamelCase )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) # Write configs _lowerCAmelCase = {"""total_size""": param_count * 2} write_json(__lowerCamelCase , os.path.join(__lowerCamelCase , """pytorch_model.bin.index.json""" ) ) _lowerCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 _lowerCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256 _lowerCAmelCase = LlamaConfig( hidden_size=__lowerCamelCase , intermediate_size=compute_intermediate_size(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=__lowerCamelCase , ) config.save_pretrained(__lowerCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) _lowerCAmelCase = LlamaForCausalLM.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=__lowerCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(__lowerCamelCase , safe_serialization=__lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any] ): # Initialize the tokenizer based on the `spm` model _lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase = tokenizer_class(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) def A (): _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=__lowerCamelCase , help="""Whether or not to save using `safetensors`.""" ) _lowerCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , __lowerCamelCase ) if __name__ == "__main__": main()
5
0
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class _snake_case ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase__ ='''efficientformer''' def __init__( self : str , snake_case : int = [3, 2, 6, 4] , snake_case : Dict = [48, 96, 224, 448] , snake_case : Union[str, Any] = [True, True, True, True] , snake_case : Union[str, Any] = 448 , snake_case : str = 32 , snake_case : Dict = 4 , snake_case : List[Any] = 7 , snake_case : Dict = 5 , snake_case : List[Any] = 8 , snake_case : str = 4 , snake_case : Optional[Any] = 0.0 , snake_case : List[str] = 16 , snake_case : Dict = 3 , snake_case : str = 3 , snake_case : List[Any] = 3 , snake_case : Any = 2 , snake_case : int = 1 , snake_case : Optional[Any] = 0.0 , snake_case : List[str] = 1 , snake_case : int = True , snake_case : Dict = True , snake_case : Tuple = 1e-5 , snake_case : Union[str, Any] = "gelu" , snake_case : Optional[int] = 0.02 , snake_case : Optional[Any] = 1e-12 , snake_case : Dict = 224 , snake_case : Dict = 1e-05 , **snake_case : str , ): super().__init__(**_lowercase ) UpperCAmelCase_ :Union[str, Any] = hidden_act UpperCAmelCase_ :List[str] = hidden_dropout_prob UpperCAmelCase_ :List[Any] = hidden_sizes UpperCAmelCase_ :int = num_hidden_layers UpperCAmelCase_ :int = num_attention_heads UpperCAmelCase_ :Union[str, Any] = initializer_range UpperCAmelCase_ :List[Any] = layer_norm_eps UpperCAmelCase_ :List[Any] = patch_size UpperCAmelCase_ :Union[str, Any] = num_channels UpperCAmelCase_ :Optional[int] = depths UpperCAmelCase_ :Union[str, Any] = mlp_expansion_ratio UpperCAmelCase_ :Any = downsamples UpperCAmelCase_ :Union[str, Any] = dim UpperCAmelCase_ :Any = key_dim UpperCAmelCase_ :List[Any] = attention_ratio UpperCAmelCase_ :List[str] = resolution UpperCAmelCase_ :int = pool_size UpperCAmelCase_ :Optional[Any] = downsample_patch_size UpperCAmelCase_ :List[Any] = downsample_stride UpperCAmelCase_ :Optional[int] = downsample_pad UpperCAmelCase_ :Dict = drop_path_rate UpperCAmelCase_ :Any = num_metaad_blocks UpperCAmelCase_ :List[Any] = distillation UpperCAmelCase_ :Optional[Any] = use_layer_scale UpperCAmelCase_ :List[Any] = layer_scale_init_value UpperCAmelCase_ :List[str] = image_size UpperCAmelCase_ :Dict = batch_norm_eps
608
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = (DDPMScheduler,) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_lowercase ) return config def _lowercase ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def _lowercase ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def _lowercase ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def _lowercase ( self ): """simple docstring""" self.check_over_configs(thresholding=_lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def _lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowercase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowercase ): if i == len(_lowercase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowercase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowercase , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowercase ) with self.assertRaises(_lowercase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowercase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_lowercase )
5
0
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging lowercase = logging.get_logger(__name__) lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED lowercase = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } lowercase = { '''allenai/led-base-16384''': 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def __A ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __SCREAMING_SNAKE_CASE : int = bs[:] __SCREAMING_SNAKE_CASE : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowerCamelCase ) cs.append(2**8 + n ) n += 1 __SCREAMING_SNAKE_CASE : Tuple = [chr(__lowerCamelCase ) for n in cs] return dict(zip(__lowerCamelCase , __lowerCamelCase ) ) def __A ( _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = set() __SCREAMING_SNAKE_CASE : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __SCREAMING_SNAKE_CASE : List[Any] = char return pairs class __lowerCamelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : Optional[int] = VOCAB_FILES_NAMES snake_case__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP snake_case__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self , a__ , a__ , a__="replace" , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , a__=False , **a__ , ): __SCREAMING_SNAKE_CASE : Any = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else bos_token __SCREAMING_SNAKE_CASE : int = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else eos_token __SCREAMING_SNAKE_CASE : Dict = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else sep_token __SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else cls_token __SCREAMING_SNAKE_CASE : int = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else unk_token __SCREAMING_SNAKE_CASE : str = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE : int = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( errors=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , add_prefix_space=_lowercase , **_lowercase , ) with open(_lowercase , encoding="utf-8" ) as vocab_handle: __SCREAMING_SNAKE_CASE : Dict = json.load(_lowercase ) __SCREAMING_SNAKE_CASE : Dict = {v: k for k, v in self.encoder.items()} __SCREAMING_SNAKE_CASE : Dict = errors # how to handle errors in decoding __SCREAMING_SNAKE_CASE : Optional[int] = bytes_to_unicode() __SCREAMING_SNAKE_CASE : Any = {v: k for k, v in self.byte_encoder.items()} with open(_lowercase , encoding="utf-8" ) as merges_handle: __SCREAMING_SNAKE_CASE : str = merges_handle.read().split("\n" )[1:-1] __SCREAMING_SNAKE_CASE : Dict = [tuple(merge.split() ) for merge in bpe_merges] __SCREAMING_SNAKE_CASE : Union[str, Any] = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) __SCREAMING_SNAKE_CASE : List[Any] = {} __SCREAMING_SNAKE_CASE : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __SCREAMING_SNAKE_CASE : str = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def a_ ( self ): return len(self.encoder ) def a_ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def a_ ( self , a__ ): if token in self.cache: return self.cache[token] __SCREAMING_SNAKE_CASE : List[str] = tuple(_lowercase ) __SCREAMING_SNAKE_CASE : Any = get_pairs(_lowercase ) if not pairs: return token while True: __SCREAMING_SNAKE_CASE : Union[str, Any] = min(_lowercase , key=lambda a__ : self.bpe_ranks.get(_lowercase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = bigram __SCREAMING_SNAKE_CASE : Optional[Any] = [] __SCREAMING_SNAKE_CASE : int = 0 while i < len(_lowercase ): try: __SCREAMING_SNAKE_CASE : int = word.index(_lowercase , _lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = j if word[i] == first and i < len(_lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __SCREAMING_SNAKE_CASE : Union[str, Any] = tuple(_lowercase ) __SCREAMING_SNAKE_CASE : Optional[int] = new_word if len(_lowercase ) == 1: break else: __SCREAMING_SNAKE_CASE : List[str] = get_pairs(_lowercase ) __SCREAMING_SNAKE_CASE : List[Any] = " ".join(_lowercase ) __SCREAMING_SNAKE_CASE : List[str] = word return word def a_ ( self , a__ ): __SCREAMING_SNAKE_CASE : Tuple = [] for token in re.findall(self.pat , _lowercase ): __SCREAMING_SNAKE_CASE : Optional[int] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowercase ).split(" " ) ) return bpe_tokens def a_ ( self , a__ ): return self.encoder.get(_lowercase , self.encoder.get(self.unk_token ) ) def a_ ( self , a__ ): return self.decoder.get(_lowercase ) def a_ ( self , a__ ): __SCREAMING_SNAKE_CASE : Tuple = "".join(_lowercase ) __SCREAMING_SNAKE_CASE : Any = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def a_ ( self , a__ , a__ = None ): if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join( _lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __SCREAMING_SNAKE_CASE : Tuple = os.path.join( _lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_lowercase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowercase , ensure_ascii=_lowercase ) + "\n" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 with open(_lowercase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a__ : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) __SCREAMING_SNAKE_CASE : Dict = token_index writer.write(" ".join(_lowercase ) + "\n" ) index += 1 return vocab_file, merge_file def a_ ( self , a__ , a__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] __SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a_ ( self , a__ , a__ = None , a__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1, 1] + ([0] * len(_lowercase )) + [1] def a_ ( self , a__ , a__ = None ): __SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] __SCREAMING_SNAKE_CASE : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a_ ( self , a__ , a__=False , **a__ ): __SCREAMING_SNAKE_CASE : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowercase ) > 0 and not text[0].isspace()): __SCREAMING_SNAKE_CASE : int = " " + text return (text, kwargs) def a_ ( self , a__ , a__ = None , a__ = PaddingStrategy.DO_NOT_PAD , a__ = None , a__ = None , ): __SCREAMING_SNAKE_CASE : Union[str, Any] = super()._pad( encoded_inputs=_lowercase , max_length=_lowercase , padding_strategy=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , ) # Load from model defaults if return_attention_mask is None: __SCREAMING_SNAKE_CASE : Optional[Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __SCREAMING_SNAKE_CASE : Tuple = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __SCREAMING_SNAKE_CASE : str = len(encoded_inputs["global_attention_mask"] ) != len(_lowercase ) if needs_to_be_padded: __SCREAMING_SNAKE_CASE : Any = len(_lowercase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __SCREAMING_SNAKE_CASE : str = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": __SCREAMING_SNAKE_CASE : Dict = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
211
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowercase = logging.get_logger(__name__) _lowercase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : '''simple docstring''' _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_SCREAMING_SNAKE_CASE )} ) _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) _lowercase : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase : int = field( default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) _lowercase : int = field( default=6_4 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) _lowercase : int = field( default=3_0 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) _lowercase : float = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) _lowercase : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''train''' _lowercase : Union[str, Any] = '''dev''' class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : SquadDataTrainingArguments _lowercase : List[SquadFeatures] _lowercase : Split _lowercase : bool def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = False , _lowercase = None , _lowercase = "pt" , ): """simple docstring""" _lowerCAmelCase = args _lowerCAmelCase = is_language_sensitive _lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowercase , _lowercase ): try: _lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _lowerCAmelCase = mode # Load data features from cache or dataset file _lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" _lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + """.lock""" with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: _lowerCAmelCase = time.time() _lowerCAmelCase = torch.load(_lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase = self.old_features["""features"""] _lowerCAmelCase = self.old_features.get("""dataset""" , _lowercase ) _lowerCAmelCase = self.old_features.get("""examples""" , _lowercase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: _lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: _lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) _lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , ) _lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.features[i] _lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) _lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
5
0
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCamelCase( __UpperCamelCase : Optional[int] ): return EnvironmentCommand() def UpperCamelCase( __UpperCamelCase : Dict ): return EnvironmentCommand(args.accelerate_config_file ) class __snake_case ( _SCREAMING_SNAKE_CASE ): @staticmethod def UpperCAmelCase__ ( A_ : Any): lowerCAmelCase_ : List[Any] = parser.add_parser('''env''') download_parser.set_defaults(func=_lowercase) download_parser.add_argument( '''--accelerate-config_file''' , default=_lowercase , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=_lowercase) def __init__( self : Dict , A_ : Optional[int] , *A_ : str): lowerCAmelCase_ : Optional[int] = accelerate_config_file def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ : Any = '''not installed''' if is_safetensors_available(): import safetensors lowerCAmelCase_ : Optional[Any] = safetensors.__version__ elif importlib.util.find_spec('''safetensors''') is not None: import safetensors lowerCAmelCase_ : Optional[Any] = F"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" lowerCAmelCase_ : Optional[Any] = '''not installed''' lowerCAmelCase_ : Tuple = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file lowerCAmelCase_ : Optional[int] = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_lowercase): lowerCAmelCase_ : int = load_config_from_file(self._accelerate_config_file).to_dict() lowerCAmelCase_ : Dict = ( '''\n'''.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()]) if isinstance(_lowercase , _lowercase) else F"""\t{accelerate_config}""" ) lowerCAmelCase_ : Tuple = '''not installed''' lowerCAmelCase_ : str = '''NA''' if is_torch_available(): import torch lowerCAmelCase_ : int = torch.__version__ lowerCAmelCase_ : Optional[Any] = torch.cuda.is_available() lowerCAmelCase_ : Any = '''not installed''' lowerCAmelCase_ : Union[str, Any] = '''NA''' if is_tf_available(): import tensorflow as tf lowerCAmelCase_ : Optional[Any] = tf.__version__ try: # deprecated in v2.1 lowerCAmelCase_ : Any = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool lowerCAmelCase_ : List[str] = bool(tf.config.list_physical_devices('''GPU''')) lowerCAmelCase_ : str = '''not installed''' lowerCAmelCase_ : int = '''not installed''' lowerCAmelCase_ : Any = '''not installed''' lowerCAmelCase_ : Any = '''NA''' if is_flax_available(): import flax import jax import jaxlib lowerCAmelCase_ : Dict = flax.__version__ lowerCAmelCase_ : Tuple = jax.__version__ lowerCAmelCase_ : List[Any] = jaxlib.__version__ lowerCAmelCase_ : str = jax.lib.xla_bridge.get_backend().platform lowerCAmelCase_ : Optional[Any] = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F"""{safetensors_version}""", '''Accelerate version''': F"""{accelerate_version}""", '''Accelerate config''': F"""{accelerate_config_str}""", '''PyTorch version (GPU?)''': F"""{pt_version} ({pt_cuda_available})""", '''Tensorflow version (GPU?)''': F"""{tf_version} ({tf_cuda_available})""", '''Flax version (CPU?/GPU?/TPU?)''': F"""{flax_version} ({jax_backend})""", '''Jax version''': F"""{jax_version}""", '''JaxLib version''': F"""{jaxlib_version}""", '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''') print(self.format_dict(_lowercase)) return info @staticmethod def UpperCAmelCase__ ( A_ : Dict): return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()]) + "\n"
171
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''dpr''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase="absolute" , _lowercase = 0 , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = projection_dim _lowerCAmelCase = position_embedding_type
5
0
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCamelCase = """pt""" elif is_tf_available(): UpperCamelCase = """tf""" else: UpperCamelCase = """jax""" class UpperCamelCase__ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" A__ : str = PerceiverTokenizer A__ : Optional[Any] = False def snake_case__ ( self ) -> int: super().setUp() A__ = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self ) -> Any: return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" ) def snake_case__ ( self , **SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=20 , SCREAMING_SNAKE_CASE__=5 ) -> Dict: A__ = [] for i in range(len(_lowercase ) ): try: A__ = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) A__ = list(filter(lambda SCREAMING_SNAKE_CASE__ : re.match(R"^[ a-zA-Z]+$" , t[1] ) , _lowercase ) ) A__ = list(filter(lambda SCREAMING_SNAKE_CASE__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowercase ) , _lowercase ) ) if max_length is not None and len(_lowercase ) > max_length: A__ = toks[:max_length] if min_length is not None and len(_lowercase ) < min_length and len(_lowercase ) > 0: while len(_lowercase ) < min_length: A__ = toks + toks # toks_str = [t[1] for t in toks] A__ = [t[0] for t in toks] # Ensure consistency A__ = tokenizer.decode(_lowercase , clean_up_tokenization_spaces=_lowercase ) if " " not in output_txt and len(_lowercase ) > 1: A__ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowercase ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowercase ) ) if with_prefix_space: A__ = " " + output_txt A__ = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) return output_txt, output_ids def snake_case__ ( self ) -> Tuple: A__ = self.perceiver_tokenizer A__ = "Unicode €." A__ = tokenizer(_lowercase ) A__ = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["input_ids"] , _lowercase ) # decoding A__ = tokenizer.decode(_lowercase ) self.assertEqual(_lowercase , "[CLS]Unicode €.[SEP]" ) A__ = tokenizer("e è é ê ë" ) A__ = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["input_ids"] , _lowercase ) # decoding A__ = tokenizer.decode(_lowercase ) self.assertEqual(_lowercase , "[CLS]e è é ê ë[SEP]" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "[CLS]e è é ê ë[SEP]" ) def snake_case__ ( self ) -> List[str]: A__ = self.perceiver_tokenizer A__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off A__ = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on A__ = tokenizer(_lowercase , padding=_lowercase , return_tensors=_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) if FRAMEWORK != "jax": A__ = list(batch.input_ids.numpy()[0] ) else: A__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_lowercase , _lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def snake_case__ ( self ) -> Tuple: A__ = self.perceiver_tokenizer A__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] A__ = tokenizer(_lowercase , padding=_lowercase , return_tensors=_lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , _lowercase ) self.assertIn("attention_mask" , _lowercase ) self.assertNotIn("decoder_input_ids" , _lowercase ) self.assertNotIn("decoder_attention_mask" , _lowercase ) def snake_case__ ( self ) -> List[str]: A__ = self.perceiver_tokenizer A__ = [ "Summary of the text.", "Another summary.", ] A__ = tokenizer( text_target=_lowercase , max_length=32 , padding="max_length" , truncation=_lowercase , return_tensors=_lowercase ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def snake_case__ ( self ) -> Optional[int]: A__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test A__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc A__ = tempfile.mkdtemp() A__ = " He is very happy, UNwant\u00E9d,running" A__ = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) tokenizer.save_pretrained(_lowercase ) A__ = tokenizer.__class__.from_pretrained(_lowercase ) A__ = after_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) shutil.rmtree(_lowercase ) A__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc A__ = tempfile.mkdtemp() A__ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) A__ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) A__ = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) tokenizer.save_pretrained(_lowercase ) A__ = tokenizer.__class__.from_pretrained(_lowercase ) A__ = after_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) A__ = tokenizer.__class__.from_pretrained(_lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowercase ) def snake_case__ ( self ) -> str: A__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowercase ) with open(os.path.join(_lowercase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: A__ = json.load(_lowercase ) with open(os.path.join(_lowercase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: A__ = json.load(_lowercase ) A__ = [f"""<extra_id_{i}>""" for i in range(125 )] A__ = added_tokens_extra_ids + [ "an_additional_special_token" ] A__ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(_lowercase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowercase , _lowercase ) with open(os.path.join(_lowercase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowercase , _lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files A__ = tokenizer_class.from_pretrained( _lowercase , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained A__ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=_lowercase )] A__ = tokenizer_class.from_pretrained( _lowercase , additional_special_tokens=_lowercase , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def snake_case__ ( self ) -> int: A__ = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , "�" ) def snake_case__ ( self ) -> List[str]: pass def snake_case__ ( self ) -> List[Any]: pass def snake_case__ ( self ) -> Optional[int]: pass def snake_case__ ( self ) -> List[str]: pass def snake_case__ ( self ) -> Tuple: A__ = self.get_tokenizers(fast=_lowercase , do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): A__ = ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"] A__ = tokenizer.convert_tokens_to_string(_lowercase ) self.assertIsInstance(_lowercase , _lowercase )
104
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _lowercase = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ _lowercase = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ _lowercase = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase ( self ): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase ( self , _lowercase , _lowercase , _lowercase=None , _lowercase="uniform_average" , _lowercase=True ): """simple docstring""" _lowerCAmelCase = mean_squared_error( _lowercase , _lowercase , sample_weight=_lowercase , multioutput=_lowercase , squared=_lowercase ) return {"mse": mse}
5
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class _lowercase ( _SCREAMING_SNAKE_CASE ): @staticmethod @abstractmethod def UpperCamelCase ( lowerCamelCase__ : List[Any] ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError() @abstractmethod def UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" raise NotImplementedError()
203
'''simple docstring''' def A (): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: _lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def A (): return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
5
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=_SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): lowerCamelCase_ : str = field(default="""text-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) lowerCamelCase_ : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) lowerCamelCase_ : ClassVar[Features] = Features({"""labels""": ClassLabel} ) lowerCamelCase_ : str = "text" lowerCamelCase_ : str = "labels" def _snake_case ( self : Optional[int] , UpperCAmelCase : List[Any]): if self.label_column not in features: raise ValueError(F"Column {self.label_column} is not present in features.") if not isinstance(features[self.label_column] , _lowercase): raise ValueError(F"Column {self.label_column} is not a ClassLabel.") SCREAMING_SNAKE_CASE_ :Union[str, Any] = copy.deepcopy(self) SCREAMING_SNAKE_CASE_ :List[str] = self.label_schema.copy() SCREAMING_SNAKE_CASE_ :List[str] = features[self.label_column] SCREAMING_SNAKE_CASE_ :str = label_schema return task_template @property def _snake_case ( self : Union[str, Any]): return { self.text_column: "text", self.label_column: "labels", }
631
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
5
0
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ : List[Any] =logging.get_logger(__name__) def a__ ( A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : Tuple = UniSpeechSatForSequenceClassification.from_pretrained(__lowerCamelCase, config=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = downstream_dict['projector.weight'] SCREAMING_SNAKE_CASE_ : List[Any] = downstream_dict['projector.bias'] SCREAMING_SNAKE_CASE_ : int = downstream_dict['model.post_net.linear.weight'] SCREAMING_SNAKE_CASE_ : List[Any] = downstream_dict['model.post_net.linear.bias'] return model def a__ ( A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : Any = UniSpeechSatForAudioFrameClassification.from_pretrained(__lowerCamelCase, config=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = downstream_dict['model.linear.weight'] SCREAMING_SNAKE_CASE_ : List[str] = downstream_dict['model.linear.bias'] return model def a__ ( A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : List[str] = UniSpeechSatForXVector.from_pretrained(__lowerCamelCase, config=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Any = downstream_dict['connector.weight'] SCREAMING_SNAKE_CASE_ : Any = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): SCREAMING_SNAKE_CASE_ : Any = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] SCREAMING_SNAKE_CASE_ : List[Any] = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] SCREAMING_SNAKE_CASE_ : Tuple = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] SCREAMING_SNAKE_CASE_ : str = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] SCREAMING_SNAKE_CASE_ : List[str] = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] SCREAMING_SNAKE_CASE_ : List[Any] = downstream_dict['objective.W'] return model @torch.no_grad() def a__ ( A__, A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.load(__lowerCamelCase, map_location='cpu' ) SCREAMING_SNAKE_CASE_ : List[Any] = checkpoint['Downstream'] SCREAMING_SNAKE_CASE_ : List[str] = UniSpeechSatConfig.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Any = WavaVecaFeatureExtractor.from_pretrained( __lowerCamelCase, return_attention_mask=__lowerCamelCase, do_normalize=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): SCREAMING_SNAKE_CASE_ : Dict = convert_classification(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) elif arch.endswith('ForAudioFrameClassification' ): SCREAMING_SNAKE_CASE_ : List[str] = convert_diarization(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) elif arch.endswith('ForXVector' ): SCREAMING_SNAKE_CASE_ : List[str] = convert_xvector(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: SCREAMING_SNAKE_CASE_ : Any = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(__lowerCamelCase ) hf_model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase__ : Tuple =argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') lowerCAmelCase__ : Any =parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
101
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
5
0
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __magic_name__ : def __init__( self : Tuple ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : List[Any]=1_3 ,__SCREAMING_SNAKE_CASE : List[Any]=7 ,__SCREAMING_SNAKE_CASE : int=True ,__SCREAMING_SNAKE_CASE : Dict=True ,__SCREAMING_SNAKE_CASE : List[str]=True ,__SCREAMING_SNAKE_CASE : List[Any]=True ,__SCREAMING_SNAKE_CASE : int=9_9 ,__SCREAMING_SNAKE_CASE : int=3_2 ,__SCREAMING_SNAKE_CASE : str=2 ,__SCREAMING_SNAKE_CASE : Tuple=4 ,__SCREAMING_SNAKE_CASE : Tuple=3_7 ,__SCREAMING_SNAKE_CASE : Tuple="gelu" ,__SCREAMING_SNAKE_CASE : int=0.1 ,__SCREAMING_SNAKE_CASE : Optional[int]=0.1 ,__SCREAMING_SNAKE_CASE : Any=5_1_2 ,__SCREAMING_SNAKE_CASE : Optional[int]=1_6 ,__SCREAMING_SNAKE_CASE : List[str]=2 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=0.02 ,__SCREAMING_SNAKE_CASE : List[str]=3 ,__SCREAMING_SNAKE_CASE : Optional[Any]=4 ,__SCREAMING_SNAKE_CASE : Dict=None ,): UpperCAmelCase = parent UpperCAmelCase = 1_3 UpperCAmelCase = 7 UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = 9_9 UpperCAmelCase = 3_8_4 UpperCAmelCase = 2 UpperCAmelCase = 4 UpperCAmelCase = 3_7 UpperCAmelCase = "gelu" UpperCAmelCase = 0.1 UpperCAmelCase = 0.1 UpperCAmelCase = 5_1_2 UpperCAmelCase = 1_6 UpperCAmelCase = 2 UpperCAmelCase = 0.02 UpperCAmelCase = 3 UpperCAmelCase = 4 UpperCAmelCase = 1_2_8 UpperCAmelCase = 2 UpperCAmelCase = 9 UpperCAmelCase = 1 UpperCAmelCase = None def _UpperCAmelCase ( self : Tuple ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase = ConvBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,return_dict=_lowercase ,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self : Any ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : str ): UpperCAmelCase = TFConvBertModel(config=_lowercase ) UpperCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCAmelCase = [input_ids, input_mask] UpperCAmelCase = model(_lowercase ) UpperCAmelCase = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self : Any ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : Any ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : Dict ): UpperCAmelCase = TFConvBertForMaskedLM(config=_lowercase ) UpperCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self : List[str] ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : Any ,__SCREAMING_SNAKE_CASE : str ): UpperCAmelCase = self.num_labels UpperCAmelCase = TFConvBertForSequenceClassification(config=_lowercase ) UpperCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self : Optional[int] ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : Dict ): UpperCAmelCase = self.num_choices UpperCAmelCase = TFConvBertForMultipleChoice(config=_lowercase ) UpperCAmelCase = tf.tile(tf.expand_dims(_lowercase ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(_lowercase ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(_lowercase ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } UpperCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self : List[Any] ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Any ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : List[str] ): UpperCAmelCase = self.num_labels UpperCAmelCase = TFConvBertForTokenClassification(config=_lowercase ) UpperCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self : Optional[int] ,__SCREAMING_SNAKE_CASE : Optional[int] ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : Any ): UpperCAmelCase = TFConvBertForQuestionAnswering(config=_lowercase ) UpperCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase = model(_lowercase ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self : Optional[Any] ): UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __magic_name__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase): _UpperCAmelCase : Tuple = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _UpperCAmelCase : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : str = False _UpperCAmelCase : Any = False def _UpperCAmelCase ( self : Any ): UpperCAmelCase = TFConvBertModelTester(self ) UpperCAmelCase = ConfigTester(self ,config_class=_lowercase ,hidden_size=3_7 ) def _UpperCAmelCase ( self : Optional[int] ): self.config_tester.run_common_tests() def _UpperCAmelCase ( self : List[Any] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def _UpperCAmelCase ( self : Optional[Any] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def _UpperCAmelCase ( self : Optional[Any] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowercase ) def _UpperCAmelCase ( self : Optional[int] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase ) def _UpperCAmelCase ( self : Dict ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase ) def _UpperCAmelCase ( self : List[str] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowercase ) @slow def _UpperCAmelCase ( self : List[str] ): UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = True UpperCAmelCase = True if hasattr(_lowercase ,"use_cache" ): UpperCAmelCase = True UpperCAmelCase = getattr(self.model_tester ,"encoder_seq_length" ,self.model_tester.seq_length ) UpperCAmelCase = getattr(self.model_tester ,"key_length" ,_lowercase ) for model_class in self.all_model_classes: UpperCAmelCase = self._prepare_for_class(_lowercase ,_lowercase ) UpperCAmelCase = model_class(_lowercase ) UpperCAmelCase = len(model(_lowercase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowercase ,saved_model=_lowercase ) UpperCAmelCase = os.path.join(_lowercase ,"saved_model" ,"1" ) UpperCAmelCase = tf.keras.models.load_model(_lowercase ) UpperCAmelCase = model(_lowercase ) if self.is_encoder_decoder: UpperCAmelCase = outputs["encoder_hidden_states"] UpperCAmelCase = outputs["encoder_attentions"] else: UpperCAmelCase = outputs["hidden_states"] UpperCAmelCase = outputs["attentions"] self.assertEqual(len(_lowercase ) ,_lowercase ) UpperCAmelCase = getattr( self.model_tester ,"expected_num_hidden_layers" ,self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowercase ) ,_lowercase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) ,[self.model_tester.seq_length, self.model_tester.hidden_size] ,) self.assertEqual(len(_lowercase ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] ,) @slow def _UpperCAmelCase ( self : str ): UpperCAmelCase = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(_lowercase ) def _UpperCAmelCase ( self : Tuple ): UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = True UpperCAmelCase = getattr(self.model_tester ,"decoder_seq_length" ,self.model_tester.seq_length ) UpperCAmelCase = getattr(self.model_tester ,"encoder_seq_length" ,self.model_tester.seq_length ) UpperCAmelCase = getattr(self.model_tester ,"key_length" ,_lowercase ) UpperCAmelCase = getattr(self.model_tester ,"key_length" ,_lowercase ) def check_decoder_attentions_output(__SCREAMING_SNAKE_CASE : Any ): UpperCAmelCase = len(_lowercase ) self.assertEqual(out_len % 2 ,0 ) UpperCAmelCase = outputs.decoder_attentions self.assertEqual(len(_lowercase ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] ,) def check_encoder_attentions_output(__SCREAMING_SNAKE_CASE : int ): UpperCAmelCase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_lowercase ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] ,) for model_class in self.all_model_classes: UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = model_class(_lowercase ) UpperCAmelCase = model(self._prepare_for_class(_lowercase ,_lowercase ) ) UpperCAmelCase = len(_lowercase ) self.assertEqual(config.output_hidden_states ,_lowercase ) check_encoder_attentions_output(_lowercase ) if self.is_encoder_decoder: UpperCAmelCase = model_class(_lowercase ) UpperCAmelCase = model(self._prepare_for_class(_lowercase ,_lowercase ) ) self.assertEqual(config.output_hidden_states ,_lowercase ) check_decoder_attentions_output(_lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase = True UpperCAmelCase = model_class(_lowercase ) UpperCAmelCase = model(self._prepare_for_class(_lowercase ,_lowercase ) ) self.assertEqual(config.output_hidden_states ,_lowercase ) check_encoder_attentions_output(_lowercase ) # Check attention is always last and order is fine UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = model_class(_lowercase ) UpperCAmelCase = model(self._prepare_for_class(_lowercase ,_lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) ,len(_lowercase ) ) self.assertEqual(model.config.output_hidden_states ,_lowercase ) check_encoder_attentions_output(_lowercase ) @require_tf class __magic_name__ ( unittest.TestCase): @slow def _UpperCAmelCase ( self : Tuple ): UpperCAmelCase = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase = model(_lowercase )[0] UpperCAmelCase = [1, 6, 7_6_8] self.assertEqual(output.shape ,_lowercase ) UpperCAmelCase = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] ,_lowercase ,atol=1e-4 )
333
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") _lowercase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) _lowercase = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) _lowercase = BeautifulSoup(res.text, """html.parser""") _lowercase = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
5
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _snake_case = {"configuration_vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMAEForPreTraining", "ViTMAELayer", "ViTMAEModel", "ViTMAEPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFViTMAEForPreTraining", "TFViTMAEModel", "TFViTMAEPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
500
'''simple docstring''' import os from datetime import datetime as dt from github import Github _lowercase = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def A (): _lowerCAmelCase = Github(os.environ["""GITHUB_TOKEN"""] ) _lowerCAmelCase = g.get_repo("""huggingface/diffusers""" ) _lowerCAmelCase = repo.get_issues(state="""open""" ) for issue in open_issues: _lowerCAmelCase = sorted(issue.get_comments() , key=lambda __lowerCamelCase : i.created_at , reverse=__lowerCamelCase ) _lowerCAmelCase = comments[0] if len(__lowerCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
5
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = '''roberta''' def __init__( self : Dict , snake_case : List[Any]=50265 , snake_case : int=768 , snake_case : List[Any]=12 , snake_case : str=12 , snake_case : List[Any]=3072 , snake_case : Optional[int]="gelu" , snake_case : Union[str, Any]=0.1 , snake_case : int=0.1 , snake_case : Dict=512 , snake_case : Dict=2 , snake_case : Any=0.02 , snake_case : Dict=1e-12 , snake_case : List[str]=1 , snake_case : str=0 , snake_case : Union[str, Any]=2 , snake_case : Dict="absolute" , snake_case : Union[str, Any]=True , snake_case : str=None , **snake_case : int , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) _snake_case : Dict = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : int = num_hidden_layers _snake_case : Any = num_attention_heads _snake_case : Any = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : Dict = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Union[str, Any] = max_position_embeddings _snake_case : Dict = type_vocab_size _snake_case : Union[str, Any] = initializer_range _snake_case : List[Any] = layer_norm_eps _snake_case : List[str] = position_embedding_type _snake_case : str = use_cache _snake_case : Dict = classifier_dropout class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self : Any ): """simple docstring""" if self.task == "multiple-choice": _snake_case : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
517
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
5
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Optional[int] = logging.get_logger(__name__) A_ : Tuple = { 'facebook/data2vec-vision-base-ft': ( 'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json' ), } class _a (_SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__: List[str] = '''data2vec-vision''' def __init__( self , A__=768 , A__=12 , A__=12 , A__=3072 , A__="gelu" , A__=0.0 , A__=0.0 , A__=0.0_2 , A__=1e-12 , A__=224 , A__=16 , A__=3 , A__=False , A__=False , A__=False , A__=False , A__=0.1 , A__=0.1 , A__=True , A__=[3, 5, 7, 11] , A__=[1, 2, 3, 6] , A__=True , A__=0.4 , A__=256 , A__=1 , A__=False , A__=255 , **A__ , ): super().__init__(**_lowercase ) A__ : List[Any] = hidden_size A__ : str = num_hidden_layers A__ : List[Any] = num_attention_heads A__ : str = intermediate_size A__ : int = hidden_act A__ : str = hidden_dropout_prob A__ : Any = attention_probs_dropout_prob A__ : int = initializer_range A__ : List[Any] = layer_norm_eps A__ : List[str] = image_size A__ : Optional[Any] = patch_size A__ : str = num_channels A__ : Tuple = use_mask_token A__ : List[Any] = use_absolute_position_embeddings A__ : Optional[Any] = use_relative_position_bias A__ : int = use_shared_relative_position_bias A__ : Any = layer_scale_init_value A__ : List[Any] = drop_path_rate A__ : Any = use_mean_pooling # decode head attributes (semantic segmentation) A__ : str = out_indices A__ : Dict = pool_scales # auxiliary head attributes (semantic segmentation) A__ : int = use_auxiliary_head A__ : int = auxiliary_loss_weight A__ : int = auxiliary_channels A__ : Dict = auxiliary_num_convs A__ : int = auxiliary_concat_input A__ : Tuple = semantic_loss_ignore_index class _a (_SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__: Union[str, Any] = version.parse('''1.11''' ) @property def __A ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __A ( self ): return 1e-4
456
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
0
"""simple docstring""" import functools def a ( __snake_case : list[int], __snake_case : list[int] ): '''simple docstring''' if not isinstance(__lowerCamelCase, __lowerCamelCase ) or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(__lowerCamelCase ) >= 366: raise ValueError('''All days elements should be less than 366''' ) UpperCAmelCase_ :List[str] = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__snake_case : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ), costs[1] + dynamic_programming(index + 7 ), costs[2] + dynamic_programming(index + 30 ), ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
608
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _lowercase = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_lowercase ): """simple docstring""" super().__init__(**_lowercase ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self , _lowercase , **_lowercase ): """simple docstring""" return super().__call__(_lowercase , **_lowercase ) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a sound of {}." ): """simple docstring""" if isinstance(_lowercase , _lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _lowerCAmelCase = requests.get(_lowercase ).content else: with open(_lowercase , """rb""" ) as f: _lowerCAmelCase = f.read() if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate ) if not isinstance(_lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) _lowerCAmelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) _lowerCAmelCase = [text_inputs] return inputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_inputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _lowercase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**_lowercase , **_lowercase ) _lowerCAmelCase = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_outputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_outputs["""logits"""][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=0 ) _lowerCAmelCase = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) _lowerCAmelCase = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] ) ] return result
5
0
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowercase = logging.get_logger(__name__) def __A ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : Union[int, Iterable[int]] , _SCREAMING_SNAKE_CASE : bool , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" def constraint_to_multiple_of(_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int]=0 , _SCREAMING_SNAKE_CASE : Any=None ): __SCREAMING_SNAKE_CASE : Dict = round(val / multiple ) * multiple if max_val is not None and x > max_val: __SCREAMING_SNAKE_CASE : Optional[int] = math.floor(val / multiple ) * multiple if x < min_val: __SCREAMING_SNAKE_CASE : Tuple = math.ceil(val / multiple ) * multiple return x __SCREAMING_SNAKE_CASE : Tuple = (output_size, output_size) if isinstance(__lowerCamelCase , __lowerCamelCase ) else output_size __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = get_image_size(__lowerCamelCase ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = output_size # determine new height and width __SCREAMING_SNAKE_CASE : Union[str, Any] = output_height / input_height __SCREAMING_SNAKE_CASE : List[str] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width __SCREAMING_SNAKE_CASE : Union[str, Any] = scale_width else: # fit height __SCREAMING_SNAKE_CASE : Tuple = scale_height __SCREAMING_SNAKE_CASE : Dict = constraint_to_multiple_of(scale_height * input_height , multiple=__lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = constraint_to_multiple_of(scale_width * input_width , multiple=__lowerCamelCase ) return (new_height, new_width) class __lowerCamelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : List[str] = ['''pixel_values'''] def __init__( self , a__ = True , a__ = None , a__ = PILImageResampling.BILINEAR , a__ = False , a__ = 1 , a__ = True , a__ = 1 / 255 , a__ = True , a__ = None , a__ = None , **a__ , ): super().__init__(**_lowercase ) __SCREAMING_SNAKE_CASE : Tuple = size if size is not None else {"height": 384, "width": 384} __SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(_lowercase ) __SCREAMING_SNAKE_CASE : Any = do_resize __SCREAMING_SNAKE_CASE : Any = size __SCREAMING_SNAKE_CASE : List[str] = keep_aspect_ratio __SCREAMING_SNAKE_CASE : int = ensure_multiple_of __SCREAMING_SNAKE_CASE : List[str] = resample __SCREAMING_SNAKE_CASE : Tuple = do_rescale __SCREAMING_SNAKE_CASE : List[Any] = rescale_factor __SCREAMING_SNAKE_CASE : Optional[int] = do_normalize __SCREAMING_SNAKE_CASE : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __SCREAMING_SNAKE_CASE : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def a_ ( self , a__ , a__ , a__ = False , a__ = 1 , a__ = PILImageResampling.BICUBIC , a__ = None , **a__ , ): __SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) __SCREAMING_SNAKE_CASE : Any = get_resize_output_image_size( _lowercase , output_size=(size["height"], size["width"]) , keep_aspect_ratio=_lowercase , multiple=_lowercase , ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def a_ ( self , a__ , a__ , a__ = None , **a__ , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def a_ ( self , a__ , a__ , a__ , a__ = None , **a__ , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def a_ ( self , a__ , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = ChannelDimension.FIRST , **a__ , ): __SCREAMING_SNAKE_CASE : Any = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE : Tuple = size if size is not None else self.size __SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(_lowercase ) __SCREAMING_SNAKE_CASE : int = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio __SCREAMING_SNAKE_CASE : Union[str, Any] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of __SCREAMING_SNAKE_CASE : Optional[Any] = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE : List[str] = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE : int = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE : List[Any] = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE : List[str] = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE : int = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE : Dict = [to_numpy_array(_lowercase ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE : Union[str, Any] = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE : Tuple = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE : Optional[int] = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] __SCREAMING_SNAKE_CASE : str = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] __SCREAMING_SNAKE_CASE : List[Any] = {"pixel_values": images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def a_ ( self , a__ , a__ = None ): __SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(_lowercase ): __SCREAMING_SNAKE_CASE : Tuple = target_sizes.numpy() __SCREAMING_SNAKE_CASE : Optional[Any] = [] for idx in range(len(_lowercase ) ): __SCREAMING_SNAKE_CASE : Optional[int] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=_lowercase ) __SCREAMING_SNAKE_CASE : List[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: __SCREAMING_SNAKE_CASE : List[Any] = logits.argmax(dim=1 ) __SCREAMING_SNAKE_CASE : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
211
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = ['''input_values''', '''padding_mask'''] def __init__( self , _lowercase = 1 , _lowercase = 24_000 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , **_lowercase , ): """simple docstring""" super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) _lowerCAmelCase = chunk_length_s _lowerCAmelCase = overlap @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , _lowercase , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs _lowerCAmelCase = True _lowerCAmelCase = bool( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_lowercase , np.ndarray ): _lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _lowerCAmelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [np.asarray(_lowercase ).T] # verify inputs are valid for idx, example in enumerate(_lowercase ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) _lowerCAmelCase = None _lowerCAmelCase = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _lowerCAmelCase = min(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.floor(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _lowerCAmelCase = max(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.ceil(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length _lowerCAmelCase = """max_length""" else: _lowerCAmelCase = input_values # normal padding on batch if padded_inputs is None: _lowerCAmelCase = self.pad( _lowercase , max_length=_lowercase , truncation=_lowercase , padding=_lowercase , return_attention_mask=_lowercase , ) if padding: _lowerCAmelCase = padded_inputs.pop("""attention_mask""" ) _lowerCAmelCase = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: _lowerCAmelCase = example[..., None] input_values.append(example.T ) _lowerCAmelCase = input_values if return_tensors is not None: _lowerCAmelCase = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
5
0
from __future__ import annotations from math import ceil, floor, sqrt def UpperCamelCase( __UpperCamelCase : int = 2000000 ): lowerCAmelCase_ : int = [0] lowerCAmelCase_ : List[str] = 42 for idx in range(1 ,ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target lowerCAmelCase_ : Tuple = 0 # the area corresponding to the grid that gives the product closest to target lowerCAmelCase_ : Union[str, Any] = 0 # an estimate of b, using the quadratic formula lowerCAmelCase_ : Optional[int] = 42 # the largest integer less than b_estimate lowerCAmelCase_ : List[str] = 42 # the largest integer less than b_estimate lowerCAmelCase_ : List[str] = 42 # the triangle number corresponding to b_floor lowerCAmelCase_ : int = 42 # the triangle number corresponding to b_ceil lowerCAmelCase_ : Optional[int] = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] ,1 ): lowerCAmelCase_ : Optional[int] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 lowerCAmelCase_ : Tuple = floor(__lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = ceil(__lowerCamelCase ) lowerCAmelCase_ : int = triangle_numbers[b_floor] lowerCAmelCase_ : str = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): lowerCAmelCase_ : Union[str, Any] = triangle_b_first_guess * triangle_a lowerCAmelCase_ : Any = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): lowerCAmelCase_ : int = triangle_b_second_guess * triangle_a lowerCAmelCase_ : List[Any] = idx_a * b_ceil return area if __name__ == "__main__": print(F'''{solution() = }''')
171
'''simple docstring''' _lowercase = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
5
0
"""simple docstring""" import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase = logging.get_logger(__name__) def _lowerCamelCase ( UpperCAmelCase_ : List[str] ) -> Tuple: """simple docstring""" A__ = r"\w+[.]\d+" A__ = re.findall(__lowerCamelCase, __lowerCamelCase ) for pat in pats: A__ = key.replace(__lowerCamelCase, "_".join(pat.split("." ) ) ) return key def _lowerCamelCase ( UpperCAmelCase_ : Union[str, Any], UpperCAmelCase_ : Any, UpperCAmelCase_ : int ) -> Any: """simple docstring""" A__ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): A__ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: A__ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: A__ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer A__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: A__ = pt_tensor.transpose(2, 3, 1, 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": A__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A__ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A__ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _lowerCamelCase ( UpperCAmelCase_ : Any, UpperCAmelCase_ : int, UpperCAmelCase_ : Dict=42 ) -> Any: """simple docstring""" A__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params A__ = flax_model.init_weights(PRNGKey(__lowerCamelCase ) ) A__ = flatten_dict(__lowerCamelCase ) A__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A__ = rename_key(__lowerCamelCase ) A__ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters A__ , A__ = rename_key_and_reshape_tensor(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown A__ = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase )
104
'''simple docstring''' import functools def A (__lowerCamelCase :list[int] , __lowerCamelCase :list[int] ): # Validation if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(__lowerCamelCase ) >= 366: raise ValueError("""All days elements should be less than 366""" ) _lowerCAmelCase = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase :int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
0
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging __lowercase = logging.get_logger(__name__) class _lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self : str , lowerCamelCase__ : Union[str, Any] ) -> List[Any]: """simple docstring""" super().__init__() A_ = nn.ModuleList(_lowercase ) def UpperCamelCase ( self : Union[str, Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any = None , lowerCamelCase__ : Optional[Any] = None , lowerCamelCase__ : Optional[Any] = None , lowerCamelCase__ : int = None , lowerCamelCase__ : str = False , lowerCamelCase__ : Tuple = True , ) -> List[Any]: """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(_lowercase , _lowercase , self.nets ) ): A_ ,A_ = controlnet( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) # merge samples if i == 0: A_ ,A_ = down_samples, mid_sample else: A_ = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(_lowercase , _lowercase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def UpperCamelCase ( self : List[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : int = True , lowerCamelCase__ : int = None , lowerCamelCase__ : List[str] = False , lowerCamelCase__ : Optional[int] = None , ) -> List[Any]: """simple docstring""" A_ = 0 A_ = save_directory for controlnet in self.nets: controlnet.save_pretrained( _lowercase , is_main_process=_lowercase , save_function=_lowercase , safe_serialization=_lowercase , variant=_lowercase , ) idx += 1 A_ = model_path_to_save + F"_{idx}" @classmethod def UpperCamelCase ( cls : Optional[int] , lowerCamelCase__ : Dict , **lowerCamelCase__ : int ) -> List[str]: """simple docstring""" A_ = 0 A_ = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... A_ = pretrained_model_path while os.path.isdir(_lowercase ): A_ = ControlNetModel.from_pretrained(_lowercase , **_lowercase ) controlnets.append(_lowercase ) idx += 1 A_ = pretrained_model_path + F"_{idx}" logger.info(F"{len(_lowercase )} controlnets loaded from {pretrained_model_path}." ) if len(_lowercase ) == 0: raise ValueError( F"No ControlNets found under {os.path.dirname(_lowercase )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(_lowercase )
203
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 384 if "tiny" in model_name: _lowerCAmelCase = [3, 3, 9, 3] _lowerCAmelCase = [96, 192, 384, 768] if "small" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [96, 192, 384, 768] if "base" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [128, 256, 512, 1024] _lowerCAmelCase = 512 if "large" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [192, 384, 768, 1536] _lowerCAmelCase = 768 if "xlarge" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [256, 512, 1024, 2048] _lowerCAmelCase = 1024 # set label information _lowerCAmelCase = 150 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """ade20k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = ConvNextConfig( depths=__lowerCamelCase , hidden_sizes=__lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) _lowerCAmelCase = UperNetConfig( backbone_config=__lowerCamelCase , auxiliary_in_channels=__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , ) return config def A (__lowerCamelCase :Optional[Any] ): _lowerCAmelCase = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict , __lowerCamelCase :Tuple ): _lowerCAmelCase = dct.pop(__lowerCamelCase ) _lowerCAmelCase = val def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ): _lowerCAmelCase = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } _lowerCAmelCase = model_name_to_url[model_name] _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""state_dict"""] _lowerCAmelCase = get_upernet_config(__lowerCamelCase ) _lowerCAmelCase = UperNetForSemanticSegmentation(__lowerCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase = state_dict.pop(__lowerCamelCase ) if "bn" in key: _lowerCAmelCase = key.replace("""bn""" , """batch_norm""" ) _lowerCAmelCase = val # rename keys _lowerCAmelCase = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # verify on image _lowerCAmelCase = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _lowerCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" ) _lowerCAmelCase = SegformerImageProcessor() _lowerCAmelCase = processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values with torch.no_grad(): _lowerCAmelCase = model(__lowerCamelCase ) if model_name == "upernet-convnext-tiny": _lowerCAmelCase = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _lowerCAmelCase = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _lowerCAmelCase = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _lowerCAmelCase = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _lowerCAmelCase = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
5
0