code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_SCREAMING_SNAKE_CASE ) , """Tatoeba directory does not exist.""" ) class _UpperCAmelCase ( unittest.TestCase ): @cached_property def _snake_case ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ :Optional[Any] = tempfile.mkdtemp() return TatoebaConverter(save_dir=_lowercase) @slow def _snake_case ( self : List[Any]): self.resolver.convert_models(["heb-eng"]) @slow def _snake_case ( self : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Dict = self.resolver.write_model_card("opus-mt-he-en" , dry_run=_lowercase) assert mmeta["long_pair"] == "heb-eng"
631
'''simple docstring''' from itertools import product def A (__lowerCamelCase :int , __lowerCamelCase :int ): _lowerCAmelCase = sides_number _lowerCAmelCase = max_face_number * dice_number _lowerCAmelCase = [0] * (max_total + 1) _lowerCAmelCase = 1 _lowerCAmelCase = range(__lowerCamelCase , max_face_number + 1 ) for dice_numbers in product(__lowerCamelCase , repeat=__lowerCamelCase ): _lowerCAmelCase = sum(__lowerCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def A (): _lowerCAmelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) _lowerCAmelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) _lowerCAmelCase = 0 _lowerCAmelCase = 9 _lowerCAmelCase = 4 * 9 _lowerCAmelCase = 6 for peter_total in range(__lowerCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _lowerCAmelCase = (4**9) * (6**6) _lowerCAmelCase = peter_wins_count / total_games_number _lowerCAmelCase = round(__lowerCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
5
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase__ : Tuple =logging.getLogger(__name__) def a__ ( A__, A__ ): return (preds == labels).mean() @dataclass class __lowercase : """simple docstring""" _UpperCAmelCase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _UpperCAmelCase = field( default=_SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _UpperCAmelCase = field( default=_SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _UpperCAmelCase = field( default=_SCREAMING_SNAKE_CASE , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowercase : """simple docstring""" _UpperCAmelCase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) _UpperCAmelCase = field(metadata={"""help""": """Should contain the data files for the task."""} ) _UpperCAmelCase = field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _UpperCAmelCase = field( default=_SCREAMING_SNAKE_CASE , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def a__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s', training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1 ), training_args.fpaa, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s', __lowerCamelCase ) # Set seed set_seed(training_args.seed ) try: SCREAMING_SNAKE_CASE_ : int = processors[data_args.task_name]() SCREAMING_SNAKE_CASE_ : Tuple = processor.get_labels() SCREAMING_SNAKE_CASE_ : Tuple = len(__lowerCamelCase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE_ : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=__lowerCamelCase, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, ) SCREAMING_SNAKE_CASE_ : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) SCREAMING_SNAKE_CASE_ : Dict = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=__lowerCamelCase, cache_dir=model_args.cache_dir, ) # Get datasets SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=__lowerCamelCase, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, ) if training_args.do_train else None ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=__lowerCamelCase, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, ) if training_args.do_eval else None ) def compute_metrics(A__ ) -> Dict: SCREAMING_SNAKE_CASE_ : Dict = np.argmax(p.predictions, axis=1 ) return {"acc": simple_accuracy(__lowerCamelCase, p.label_ids )} # Data collator SCREAMING_SNAKE_CASE_ : int = DataCollatorWithPadding(__lowerCamelCase, pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer SCREAMING_SNAKE_CASE_ : Dict = Trainer( model=__lowerCamelCase, args=__lowerCamelCase, train_dataset=__lowerCamelCase, eval_dataset=__lowerCamelCase, compute_metrics=__lowerCamelCase, data_collator=__lowerCamelCase, ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation SCREAMING_SNAKE_CASE_ : Optional[int] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) SCREAMING_SNAKE_CASE_ : str = trainer.evaluate() SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(training_args.output_dir, 'eval_results.txt' ) if trainer.is_world_master(): with open(__lowerCamelCase, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s', __lowerCamelCase, __lowerCamelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(__lowerCamelCase ) return results def a__ ( A__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
101
'''simple docstring''' from manim import * class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""CPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(1 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""GPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.align_to(_lowercase , _lowercase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""Model""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , ) _lowerCAmelCase = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) _lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) ) self.add(_lowercase ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for i, rect in enumerate(_lowercase ): _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 ) cpu_target.move_to(_lowercase ) cpu_target.generate_target() _lowerCAmelCase = 0.46 / 4 _lowerCAmelCase = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 ) cpu_targs.append(_lowercase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) ) second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) ) self.play(*_lowercase ) self.play(*_lowercase ) self.wait()
5
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
333
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowercase = False try: _lowercase = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase = None , _lowercase = [] ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = choices _lowerCAmelCase = prompt if sys.platform == "win32": _lowerCAmelCase = """*""" else: _lowerCAmelCase = """➔ """ def _lowercase ( self , _lowercase , _lowercase = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , _lowercase ) else: forceWrite(self.choices[index] , _lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(_lowercase ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def _lowercase ( self , _lowercase , _lowercase = 1 ): """simple docstring""" _lowerCAmelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowercase ) move_cursor(_lowercase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = int(chr(self.current_selection ) ) _lowerCAmelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowercase ) else: return else: return def _lowercase ( self , _lowercase = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) _lowerCAmelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowercase ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase = int(builtins.input() ) except ValueError: _lowerCAmelCase = default_choice else: _lowerCAmelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(_lowercase , """\n""" ) return choice
5
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE): lowerCamelCase__ = '''swin2sr''' lowerCamelCase__ = { '''hidden_size''': '''embed_dim''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self, __a=64, __a=1, __a=3, __a=180, __a=[6, 6, 6, 6, 6, 6], __a=[6, 6, 6, 6, 6, 6], __a=8, __a=2.0, __a=True, __a=0.0, __a=0.0, __a=0.1, __a="gelu", __a=False, __a=0.02, __a=1E-5, __a=2, __a=1.0, __a="1conv", __a="pixelshuffle", **__a, ): '''simple docstring''' super().__init__(**_lowercase) _lowerCAmelCase : Dict = image_size _lowerCAmelCase : Dict = patch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : Any = embed_dim _lowerCAmelCase : str = depths _lowerCAmelCase : Any = len(_lowercase) _lowerCAmelCase : Optional[int] = num_heads _lowerCAmelCase : Any = window_size _lowerCAmelCase : Tuple = mlp_ratio _lowerCAmelCase : Dict = qkv_bias _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : Any = drop_path_rate _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : Union[str, Any] = use_absolute_embeddings _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Optional[Any] = upscale _lowerCAmelCase : str = img_range _lowerCAmelCase : Any = resi_connection _lowerCAmelCase : Union[str, Any] = upsampler
500
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } _lowercase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def A (__lowerCamelCase :Optional[int] ): _lowerCAmelCase = {} with open(__lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(__lowerCamelCase ): _lowerCAmelCase = line.strip() if line: _lowerCAmelCase = line.split() _lowerCAmelCase = line_number _lowerCAmelCase = words[0] _lowerCAmelCase = value return result def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any] , __lowerCamelCase :List[str] ): for attribute in key.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": _lowerCAmelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = shape_pointer.shape # let's reduce dimension _lowerCAmelCase = value[0] else: _lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCAmelCase = value elif weight_type == "weight_g": _lowerCAmelCase = value elif weight_type == "weight_v": _lowerCAmelCase = value elif weight_type == "bias": _lowerCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = value else: _lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] , __lowerCamelCase :int ): _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _lowerCAmelCase = """.""".join([key, hf_param_name] ) else: _lowerCAmelCase = key _lowerCAmelCase = value if """lm_head""" in full_key else value[0] _lowercase = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :List[str]=None , __lowerCamelCase :List[Any]=None ): _lowerCAmelCase = False for key, mapped_key in MAPPING.items(): _lowerCAmelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCAmelCase = True if "*" in mapped_key: _lowerCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase = """weight_g""" elif "weight_v" in name: _lowerCAmelCase = """weight_v""" elif "bias" in name: _lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase = """weight""" else: _lowerCAmelCase = None if hf_dict is not None: rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return is_used return is_used def A (__lowerCamelCase :Any , __lowerCamelCase :Dict , __lowerCamelCase :Dict ): _lowerCAmelCase = [] _lowerCAmelCase = fairseq_model.state_dict() _lowerCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) _lowerCAmelCase = True else: _lowerCAmelCase = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any , __lowerCamelCase :List[Any] , __lowerCamelCase :List[Any] ): _lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase = name.split(""".""" ) _lowerCAmelCase = int(items[0] ) _lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def A (__lowerCamelCase :List[str] , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any]=None , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :str=True , __lowerCamelCase :str=False ): if config_path is not None: _lowerCAmelCase = WavaVecaConfig.from_pretrained(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaConfig() if is_seq_class: _lowerCAmelCase = read_txt_into_dict(__lowerCamelCase ) _lowerCAmelCase = idalabel _lowerCAmelCase = WavaVecaForSequenceClassification(__lowerCamelCase ) _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) feature_extractor.save_pretrained(__lowerCamelCase ) elif is_finetuned: if dict_path: _lowerCAmelCase = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCAmelCase = target_dict.pad_index _lowerCAmelCase = target_dict.bos_index _lowerCAmelCase = target_dict.eos_index _lowerCAmelCase = len(target_dict.symbols ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """vocab.json""" ) if not os.path.isdir(__lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCAmelCase = 0 _lowerCAmelCase = 1 with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , ) _lowerCAmelCase = True if config.feat_extract_norm == """layer""" else False _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) _lowerCAmelCase = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) _lowerCAmelCase = WavaVecaForCTC(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaForPreTraining(__lowerCamelCase ) if is_finetuned or is_seq_class: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _lowerCAmelCase = argparse.Namespace(task="""audio_pretraining""" ) _lowerCAmelCase = fairseq.tasks.setup_task(__lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase ) _lowerCAmelCase = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) _lowercase = parser.parse_args() _lowercase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
5
0
'''simple docstring''' import argparse SCREAMING_SNAKE_CASE_ = "docs/source/_static/js/custom.js" def lowerCamelCase__ ( a__) -> List[Any]: """simple docstring""" with open(__lowerCamelCase , encoding='utf-8' , newline='\n') as f: _snake_case : Dict = f.readlines() _snake_case : str = 0 # First let's put the right version while not lines[index].startswith('const stableVersion ='): index += 1 _snake_case : int = F"""const stableVersion = \"v{version}\"\n""" # Then update the dictionary while not lines[index].startswith('const versionMapping = {'): index += 1 # We go until the end while not lines[index].startswith('}'): index += 1 # We add the new version at the end lines[index - 1] += F""" \"v{version}\": \"v{version}\",\n""" with open(__lowerCamelCase , 'w' , encoding='utf-8' , newline='\n') as f: f.writelines(__lowerCamelCase) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") SCREAMING_SNAKE_CASE_ = parser.parse_args() update_custom_js(args.version)
517
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = '''decision_transformer''' _lowercase : Optional[Any] = ['''past_key_values'''] _lowercase : str = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowercase=17 , _lowercase=4 , _lowercase=128 , _lowercase=4_096 , _lowercase=True , _lowercase=1 , _lowercase=1_024 , _lowercase=3 , _lowercase=1 , _lowercase=None , _lowercase="relu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=False , _lowercase=False , **_lowercase , ): """simple docstring""" _lowerCAmelCase = state_dim _lowerCAmelCase = act_dim _lowerCAmelCase = hidden_size _lowerCAmelCase = max_ep_len _lowerCAmelCase = action_tanh _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = scale_attn_by_inverse_layer_idx _lowerCAmelCase = reorder_and_upcast_attn _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
5
0
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class _a : '''simple docstring''' def __init__( self , A__ , A__=13 , A__=7 , A__=False , A__=True , A__=False , A__=True , A__=33 , A__=32 , A__=5 , A__=4 , A__=37 , A__="gelu" , A__=0.1 , A__=0.1 , A__=512 , A__=16 , A__=2 , A__=0.0_2 , A__=3 , A__=4 , A__=None , ): A__ : List[str] = parent A__ : Tuple = batch_size A__ : Union[str, Any] = seq_length A__ : int = is_training A__ : Optional[Any] = use_input_mask A__ : List[str] = use_token_type_ids A__ : List[Any] = use_labels A__ : List[str] = vocab_size A__ : List[str] = hidden_size A__ : Optional[Any] = num_hidden_layers A__ : Optional[Any] = num_attention_heads A__ : Optional[Any] = intermediate_size A__ : Tuple = hidden_act A__ : Tuple = hidden_dropout_prob A__ : Optional[int] = attention_probs_dropout_prob A__ : List[Any] = max_position_embeddings A__ : Optional[int] = type_vocab_size A__ : int = type_sequence_label_size A__ : Union[str, Any] = initializer_range A__ : Optional[int] = num_labels A__ : str = num_choices A__ : Optional[Any] = scope def __A ( self ): A__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : str = None if self.use_input_mask: A__ : str = random_attention_mask([self.batch_size, self.seq_length] ) A__ : str = None A__ : Union[str, Any] = None A__ : Tuple = None if self.use_labels: A__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) A__ : List[str] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ): return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : int = EsmModel(config=_lowercase ) model.to(_lowercase ) model.eval() A__ : Optional[int] = model(_lowercase , attention_mask=_lowercase ) A__ : Optional[Any] = model(_lowercase ) A__ : List[str] = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : str = EsmForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() A__ : List[str] = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : Any = self.num_labels A__ : Any = EsmForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() A__ : str = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self ): A__ : int = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : List[str] = config_and_inputs A__ : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _a (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: List[str] = False UpperCAmelCase__: Tuple = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase__: Tuple = () UpperCAmelCase__: Optional[int] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__: int = True def __A ( self ): A__ : Optional[int] = EsmModelTester(self ) A__ : Union[str, Any] = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def __A ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ : Any = type self.model_tester.create_and_check_model(*_lowercase ) def __A ( self ): A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def __A ( self ): A__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowercase ) @slow def __A ( self ): for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : List[str] = EsmModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def __A ( self ): A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()[0] A__ : int = EsmEmbeddings(config=_lowercase ) A__ : Optional[Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) A__ : Optional[Any] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) A__ : Optional[int] = create_position_ids_from_input_ids(_lowercase , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(_lowercase , _lowercase ) ) ) def __A ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs()[0] A__ : List[str] = EsmEmbeddings(config=_lowercase ) A__ : Union[str, Any] = torch.empty(2 , 4 , 30 ) A__ : Any = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] A__ : Optional[int] = torch.as_tensor([expected_single_positions, expected_single_positions] ) A__ : str = embeddings.create_position_ids_from_inputs_embeds(_lowercase ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(_lowercase , _lowercase ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def __A ( self ): pass @unittest.skip("""Esm does not support embedding resizing""" ) def __A ( self ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __A ( self ): pass @require_torch class _a (_SCREAMING_SNAKE_CASE ): '''simple docstring''' @slow def __A ( self ): with torch.no_grad(): A__ : List[str] = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() A__ : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) A__ : Dict = model(_lowercase )[0] A__ : Dict = 33 A__ : Optional[Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , _lowercase ) A__ : str = torch.tensor( [[[8.9_2_1_5, -1_0.5_8_9_8, -6.4_6_7_1], [-6.3_9_6_7, -1_3.9_1_1_4, -1.1_2_1_2], [-7.7_8_1_2, -1_3.9_5_1_6, -3.7_4_0_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowercase , atol=1e-4 ) ) @slow def __A ( self ): with torch.no_grad(): A__ : Tuple = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() A__ : Union[str, Any] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A__ : int = model(_lowercase )[0] # compare the actual values for a slice. A__ : Optional[int] = torch.tensor( [[[0.1_4_4_4, 0.5_4_1_3, 0.3_2_4_8], [0.3_0_3_4, 0.0_0_5_3, 0.3_1_0_8], [0.3_2_2_8, -0.2_4_9_9, 0.3_4_1_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowercase , atol=1e-4 ) )
456
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) _lowercase = None _lowercase = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } _lowercase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def A (__lowerCamelCase :int , __lowerCamelCase :Optional[Any]=1 , __lowerCamelCase :List[Any]=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def A (__lowerCamelCase :Any ): with open(__lowerCamelCase , """r""" ) as f: return json.load(__lowerCamelCase ) def A (__lowerCamelCase :List[Any] , __lowerCamelCase :int ): with open(__lowerCamelCase , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple=True ): os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """tmp""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = read_json(os.path.join(__lowerCamelCase , """params.json""" ) ) _lowerCAmelCase = NUM_SHARDS[model_size] _lowerCAmelCase = params["""n_layers"""] _lowerCAmelCase = params["""n_heads"""] _lowerCAmelCase = n_heads // num_shards _lowerCAmelCase = params["""dim"""] _lowerCAmelCase = dim // n_heads _lowerCAmelCase = 10_000.0 _lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , __lowerCamelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase = params["""n_kv_heads"""] # for GQA / MQA _lowerCAmelCase = n_heads_per_shard // num_key_value_heads _lowerCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase = n_heads _lowerCAmelCase = n_heads_per_shard _lowerCAmelCase = dim # permute for sliced rotary def permute(__lowerCamelCase :Optional[int] , __lowerCamelCase :str=n_heads , __lowerCamelCase :str=dim , __lowerCamelCase :List[Any]=dim ): return w.view(__lowerCamelCase , dima // n_heads // 2 , 2 , __lowerCamelCase ).transpose(1 , 2 ).reshape(__lowerCamelCase , __lowerCamelCase ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase = torch.load(os.path.join(__lowerCamelCase , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded _lowerCAmelCase = [ torch.load(os.path.join(__lowerCamelCase , f'consolidated.{i:02d}.pth' ) , map_location="""cpu""" ) for i in range(__lowerCamelCase ) ] _lowerCAmelCase = 0 _lowerCAmelCase = {"""weight_map""": {}} for layer_i in range(__lowerCamelCase ): _lowerCAmelCase = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _lowerCAmelCase = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = inv_freq for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: _lowerCAmelCase = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(__lowerCamelCase )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__lowerCamelCase )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) # Write configs _lowerCAmelCase = {"""total_size""": param_count * 2} write_json(__lowerCamelCase , os.path.join(__lowerCamelCase , """pytorch_model.bin.index.json""" ) ) _lowerCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 _lowerCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256 _lowerCAmelCase = LlamaConfig( hidden_size=__lowerCamelCase , intermediate_size=compute_intermediate_size(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=__lowerCamelCase , ) config.save_pretrained(__lowerCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) _lowerCAmelCase = LlamaForCausalLM.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=__lowerCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(__lowerCamelCase , safe_serialization=__lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any] ): # Initialize the tokenizer based on the `spm` model _lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase = tokenizer_class(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) def A (): _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=__lowerCamelCase , help="""Whether or not to save using `safetensors`.""" ) _lowerCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , __lowerCamelCase ) if __name__ == "__main__": main()
5
0
"""simple docstring""" import numpy as np def a ( __snake_case : np.array ): '''simple docstring''' return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
608
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = (DDPMScheduler,) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_lowercase ) return config def _lowercase ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def _lowercase ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def _lowercase ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def _lowercase ( self ): """simple docstring""" self.check_over_configs(thresholding=_lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def _lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowercase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowercase ): if i == len(_lowercase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowercase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowercase , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowercase ) with self.assertRaises(_lowercase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowercase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_lowercase )
5
0
'''simple docstring''' import math lowercase = 10 lowercase = 7 lowercase = BALLS_PER_COLOUR * NUM_COLOURS def __A ( _SCREAMING_SNAKE_CASE : int = 2_0 ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = math.comb(__lowerCamelCase , __lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = math.comb(NUM_BALLS - BALLS_PER_COLOUR , __lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = NUM_COLOURS * (1 - missing_colour / total) return f'{result:.9f}' if __name__ == "__main__": print(solution(20))
211
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowercase = logging.get_logger(__name__) _lowercase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : '''simple docstring''' _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_SCREAMING_SNAKE_CASE )} ) _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) _lowercase : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase : int = field( default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) _lowercase : int = field( default=6_4 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) _lowercase : int = field( default=3_0 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) _lowercase : float = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) _lowercase : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''train''' _lowercase : Union[str, Any] = '''dev''' class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : SquadDataTrainingArguments _lowercase : List[SquadFeatures] _lowercase : Split _lowercase : bool def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = False , _lowercase = None , _lowercase = "pt" , ): """simple docstring""" _lowerCAmelCase = args _lowerCAmelCase = is_language_sensitive _lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowercase , _lowercase ): try: _lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _lowerCAmelCase = mode # Load data features from cache or dataset file _lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" _lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + """.lock""" with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: _lowerCAmelCase = time.time() _lowerCAmelCase = torch.load(_lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase = self.old_features["""features"""] _lowerCAmelCase = self.old_features.get("""dataset""" , _lowercase ) _lowerCAmelCase = self.old_features.get("""examples""" , _lowercase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: _lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: _lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) _lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , ) _lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.features[i] _lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) _lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
5
0
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __snake_case ( unittest.TestCase ): def __init__( self : List[Any] , A_ : Optional[Any] , A_ : Union[str, Any]=1_3 , A_ : List[Any]=7 , A_ : Tuple=True , A_ : Union[str, Any]=True , A_ : List[str]=True , A_ : Optional[Any]=True , A_ : Optional[int]=9_9 , A_ : List[str]=3_2 , A_ : Optional[Any]=5 , A_ : str=4 , A_ : List[Any]=3_7 , A_ : Union[str, Any]="gelu" , A_ : Optional[int]=0.1 , A_ : List[str]=0.1 , A_ : int=5_1_2 , A_ : Dict=1_6 , A_ : Optional[Any]=2 , A_ : Optional[int]=0.02 , A_ : Any=4 , ): lowerCAmelCase_ : List[str] = parent lowerCAmelCase_ : Union[str, Any] = batch_size lowerCAmelCase_ : Optional[int] = seq_length lowerCAmelCase_ : List[Any] = is_training lowerCAmelCase_ : Union[str, Any] = use_attention_mask lowerCAmelCase_ : int = use_token_type_ids lowerCAmelCase_ : List[Any] = use_labels lowerCAmelCase_ : Optional[int] = vocab_size lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Dict = num_hidden_layers lowerCAmelCase_ : Optional[int] = num_attention_heads lowerCAmelCase_ : Dict = intermediate_size lowerCAmelCase_ : List[str] = hidden_act lowerCAmelCase_ : str = hidden_dropout_prob lowerCAmelCase_ : List[str] = attention_probs_dropout_prob lowerCAmelCase_ : Union[str, Any] = max_position_embeddings lowerCAmelCase_ : str = type_vocab_size lowerCAmelCase_ : List[Any] = type_sequence_label_size lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : Any = num_choices def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowerCAmelCase_ : Union[str, Any] = None if self.use_attention_mask: lowerCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length]) lowerCAmelCase_ : List[Any] = None if self.use_token_type_ids: lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowerCAmelCase_ : Optional[Any] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self : Dict): lowerCAmelCase_ : int = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = config_and_inputs lowerCAmelCase_ : List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __snake_case ( _SCREAMING_SNAKE_CASE ,unittest.TestCase ): _a = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self : Dict): lowerCAmelCase_ : int = FlaxAlbertModelTester(self) @slow def UpperCAmelCase__ ( self : Optional[int]): for model_class_name in self.all_model_classes: lowerCAmelCase_ : Dict = model_class_name.from_pretrained('''albert-base-v2''') lowerCAmelCase_ : Tuple = model(np.ones((1, 1))) self.assertIsNotNone(_lowercase) @require_flax class __snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self : Dict): lowerCAmelCase_ : Any = FlaxAlbertModel.from_pretrained('''albert-base-v2''') lowerCAmelCase_ : List[str] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) lowerCAmelCase_ : Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) lowerCAmelCase_ : str = model(_lowercase , attention_mask=_lowercase)[0] lowerCAmelCase_ : Any = (1, 1_1, 7_6_8) self.assertEqual(output.shape , _lowercase) lowerCAmelCase_ : List[str] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1e-4))
171
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''dpr''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase="absolute" , _lowercase = 0 , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = projection_dim _lowerCAmelCase = position_embedding_type
5
0
"""simple docstring""" from itertools import product def _lowerCamelCase ( UpperCAmelCase_ : int, UpperCAmelCase_ : int ) -> str: """simple docstring""" A__ = sides_number A__ = max_face_number * dice_number A__ = [0] * (max_total + 1) A__ = 1 A__ = range(__lowerCamelCase, max_face_number + 1 ) for dice_numbers in product(__lowerCamelCase, repeat=__lowerCamelCase ): A__ = sum(__lowerCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def _lowerCamelCase ( ) -> List[str]: """simple docstring""" A__ = total_frequency_distribution( sides_number=4, dice_number=9 ) A__ = total_frequency_distribution( sides_number=6, dice_number=6 ) A__ = 0 A__ = 9 A__ = 4 * 9 A__ = 6 for peter_total in range(__lowerCamelCase, max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) A__ = (4**9) * (6**6) A__ = peter_wins_count / total_games_number A__ = round(__lowerCamelCase, ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'{solution() = }')
104
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _lowercase = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ _lowercase = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ _lowercase = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase ( self ): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase ( self , _lowercase , _lowercase , _lowercase=None , _lowercase="uniform_average" , _lowercase=True ): """simple docstring""" _lowerCAmelCase = mean_squared_error( _lowercase , _lowercase , sample_weight=_lowercase , multioutput=_lowercase , squared=_lowercase ) return {"mse": mse}
5
0
import argparse import json import subprocess def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = [] A_ = ( f"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) A_ = subprocess.run(__lowerCamelCase , shell=__lowerCamelCase , stdout=subprocess.PIPE ) A_ = output.stdout.decode('''utf-8''' ) A_ = json.loads(__lowerCamelCase ) A_ = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__lowerCamelCase ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(__lowerCamelCase ) ) if len(__lowerCamelCase ) > 0: A_ = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(f"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return values.split(''',''' ) __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) __lowercase = parser.parse_args() get_runner_status(args.target_runners, args.token)
203
'''simple docstring''' def A (): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: _lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def A (): return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
5
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html SCREAMING_SNAKE_CASE__ = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowercase ( a , a , a=None , a=None , a=None , a=None , a=None , a=None , ): '''simple docstring''' if attention_mask is None: SCREAMING_SNAKE_CASE_ :Union[str, Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE_ :List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: SCREAMING_SNAKE_CASE_ :int = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE_ :Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE_ :Any = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _UpperCAmelCase : def __init__( self : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int]=13 , UpperCAmelCase : Any=7 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Tuple=False , UpperCAmelCase : Optional[int]=99 , UpperCAmelCase : Optional[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : int=0.1 , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : Optional[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : Tuple=1 , UpperCAmelCase : int=0 , UpperCAmelCase : Union[str, Any]=0.02 , ): SCREAMING_SNAKE_CASE_ :List[Any] = parent SCREAMING_SNAKE_CASE_ :Dict = batch_size SCREAMING_SNAKE_CASE_ :Union[str, Any] = seq_length SCREAMING_SNAKE_CASE_ :Dict = is_training SCREAMING_SNAKE_CASE_ :Union[str, Any] = use_labels SCREAMING_SNAKE_CASE_ :Dict = vocab_size SCREAMING_SNAKE_CASE_ :str = hidden_size SCREAMING_SNAKE_CASE_ :int = num_hidden_layers SCREAMING_SNAKE_CASE_ :Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_ :int = intermediate_size SCREAMING_SNAKE_CASE_ :Any = hidden_act SCREAMING_SNAKE_CASE_ :Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ :Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ :Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE_ :int = eos_token_id SCREAMING_SNAKE_CASE_ :Optional[int] = pad_token_id SCREAMING_SNAKE_CASE_ :Dict = bos_token_id SCREAMING_SNAKE_CASE_ :str = initializer_range def _snake_case ( self : Tuple): SCREAMING_SNAKE_CASE_ :int = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) SCREAMING_SNAKE_CASE_ :int = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) SCREAMING_SNAKE_CASE_ :Optional[int] = shift_tokens_right(_lowercase , 1 , 2) SCREAMING_SNAKE_CASE_ :Any = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowercase , ) SCREAMING_SNAKE_CASE_ :Dict = prepare_blenderbot_inputs_dict(_lowercase , _lowercase , _lowercase) return config, inputs_dict def _snake_case ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Dict = self.prepare_config_and_inputs() return config, inputs_dict def _snake_case ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple): SCREAMING_SNAKE_CASE_ :List[str] = 20 SCREAMING_SNAKE_CASE_ :List[str] = model_class_name(_lowercase) SCREAMING_SNAKE_CASE_ :Union[str, Any] = model.encode(inputs_dict["input_ids"]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Optional[int] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) SCREAMING_SNAKE_CASE_ :int = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase) SCREAMING_SNAKE_CASE_ :Optional[int] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4") SCREAMING_SNAKE_CASE_ :str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE_ :int = model.decode( decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , ) SCREAMING_SNAKE_CASE_ :Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") SCREAMING_SNAKE_CASE_ :int = model.decode( decoder_input_ids[:, -1:] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowercase , ) SCREAMING_SNAKE_CASE_ :str = model.decode(_lowercase , _lowercase) SCREAMING_SNAKE_CASE_ :Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}") def _snake_case ( self : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]): SCREAMING_SNAKE_CASE_ :Any = 20 SCREAMING_SNAKE_CASE_ :List[str] = model_class_name(_lowercase) SCREAMING_SNAKE_CASE_ :int = model.encode(inputs_dict["input_ids"]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Dict = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) SCREAMING_SNAKE_CASE_ :Tuple = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase) SCREAMING_SNAKE_CASE_ :List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE_ :Optional[Any] = model.decode( decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , ) SCREAMING_SNAKE_CASE_ :Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") SCREAMING_SNAKE_CASE_ :Tuple = model.decode( decoder_input_ids[:, -1:] , _lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowercase , decoder_position_ids=_lowercase , ) SCREAMING_SNAKE_CASE_ :Optional[int] = model.decode(_lowercase , _lowercase , decoder_attention_mask=_lowercase) SCREAMING_SNAKE_CASE_ :List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}") @require_flax class _UpperCAmelCase ( unittest.TestCase ): lowerCamelCase_ : str = 9_9 def _snake_case ( self : Optional[int]): SCREAMING_SNAKE_CASE_ :str = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) SCREAMING_SNAKE_CASE_ :Any = input_ids.shape[0] SCREAMING_SNAKE_CASE_ :Tuple = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _snake_case ( self : Tuple): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :str = self._get_config_and_data() SCREAMING_SNAKE_CASE_ :List[Any] = FlaxBlenderbotForConditionalGeneration(_lowercase) SCREAMING_SNAKE_CASE_ :Optional[int] = lm_model(input_ids=_lowercase) SCREAMING_SNAKE_CASE_ :Tuple = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , _lowercase) def _snake_case ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ :Dict = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) SCREAMING_SNAKE_CASE_ :str = FlaxBlenderbotForConditionalGeneration(_lowercase) SCREAMING_SNAKE_CASE_ :List[str] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) SCREAMING_SNAKE_CASE_ :List[str] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) SCREAMING_SNAKE_CASE_ :Any = lm_model(input_ids=_lowercase , decoder_input_ids=_lowercase) SCREAMING_SNAKE_CASE_ :Union[str, Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , _lowercase) def _snake_case ( self : Any): SCREAMING_SNAKE_CASE_ :Optional[int] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) SCREAMING_SNAKE_CASE_ :List[str] = shift_tokens_right(_lowercase , 1 , 2) SCREAMING_SNAKE_CASE_ :int = np.equal(_lowercase , 1).astype(np.floataa).sum() SCREAMING_SNAKE_CASE_ :Tuple = np.equal(_lowercase , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(_lowercase , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class _UpperCAmelCase ( _SCREAMING_SNAKE_CASE , unittest.TestCase , _SCREAMING_SNAKE_CASE ): lowerCamelCase_ : List[str] = True lowerCamelCase_ : Tuple = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowerCamelCase_ : Tuple = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _snake_case ( self : Tuple): SCREAMING_SNAKE_CASE_ :Optional[Any] = FlaxBlenderbotModelTester(self) def _snake_case ( self : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Any = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowercase , _lowercase , _lowercase) def _snake_case ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowercase , _lowercase , _lowercase) def _snake_case ( self : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): SCREAMING_SNAKE_CASE_ :List[str] = self._prepare_for_class(_lowercase , _lowercase) SCREAMING_SNAKE_CASE_ :int = model_class(_lowercase) @jax.jit def encode_jitted(UpperCAmelCase : str , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Dict): return model.encode(input_ids=_lowercase , attention_mask=_lowercase) with self.subTest("JIT Enabled"): SCREAMING_SNAKE_CASE_ :Union[str, Any] = encode_jitted(**_lowercase).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ :List[Any] = encode_jitted(**_lowercase).to_tuple() self.assertEqual(len(_lowercase) , len(_lowercase)) for jitted_output, output in zip(_lowercase , _lowercase): self.assertEqual(jitted_output.shape , output.shape) def _snake_case ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): SCREAMING_SNAKE_CASE_ :List[Any] = model_class(_lowercase) SCREAMING_SNAKE_CASE_ :List[Any] = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"]) SCREAMING_SNAKE_CASE_ :Optional[Any] = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any): return model.decode( decoder_input_ids=_lowercase , decoder_attention_mask=_lowercase , encoder_outputs=_lowercase , ) with self.subTest("JIT Enabled"): SCREAMING_SNAKE_CASE_ :Optional[int] = decode_jitted(**_lowercase).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ :str = decode_jitted(**_lowercase).to_tuple() self.assertEqual(len(_lowercase) , len(_lowercase)) for jitted_output, output in zip(_lowercase , _lowercase): self.assertEqual(jitted_output.shape , output.shape) @slow def _snake_case ( self : Optional[Any]): for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ :Union[str, Any] = model_class_name.from_pretrained("facebook/blenderbot-400M-distill") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids SCREAMING_SNAKE_CASE_ :List[str] = np.ones((1, 1)) * model.config.eos_token_id SCREAMING_SNAKE_CASE_ :List[Any] = model(_lowercase) self.assertIsNotNone(_lowercase) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.") @slow def _snake_case ( self : Optional[int]): SCREAMING_SNAKE_CASE_ :Optional[Any] = {"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} SCREAMING_SNAKE_CASE_ :List[Any] = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True} SCREAMING_SNAKE_CASE_ :int = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=_lowercase) SCREAMING_SNAKE_CASE_ :str = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B") SCREAMING_SNAKE_CASE_ :Union[str, Any] = ["Sam"] SCREAMING_SNAKE_CASE_ :str = tokenizer(_lowercase , return_tensors="jax") SCREAMING_SNAKE_CASE_ :Tuple = model.generate(**_lowercase , **_lowercase) SCREAMING_SNAKE_CASE_ :List[str] = "Sam is a great name. It means \"sun\" in Gaelic." SCREAMING_SNAKE_CASE_ :Union[str, Any] = tokenizer.batch_decode(_lowercase , **_lowercase) assert generated_txt[0].strip() == tgt_text
631
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
5
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __lowercase : """simple docstring""" _UpperCAmelCase = 42 _UpperCAmelCase = None _UpperCAmelCase = None def a__ ( ): SCREAMING_SNAKE_CASE_ : List[str] = Node(1 ) SCREAMING_SNAKE_CASE_ : int = Node(2 ) SCREAMING_SNAKE_CASE_ : Tuple = Node(3 ) SCREAMING_SNAKE_CASE_ : List[Any] = Node(4 ) SCREAMING_SNAKE_CASE_ : int = Node(5 ) return tree def a__ ( A__ ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a__ ( A__ ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a__ ( A__ ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a__ ( A__ ): return (max(height(root.left ), height(root.right ) ) + 1) if root else 0 def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Dict = [] if root is None: return output SCREAMING_SNAKE_CASE_ : str = deque([root] ) while process_queue: SCREAMING_SNAKE_CASE_ : Union[str, Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : int = [] def populate_output(A__, A__ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left, level - 1 ) populate_output(root.right, level - 1 ) populate_output(__lowerCamelCase, __lowerCamelCase ) return output def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : str = [] def populate_output(A__, A__ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right, level - 1 ) populate_output(root.left, level - 1 ) populate_output(__lowerCamelCase, __lowerCamelCase ) return output def a__ ( A__ ): if root is None: return [] SCREAMING_SNAKE_CASE_ : Tuple = [] SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = height(__lowerCamelCase ) for h in range(1, height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__lowerCamelCase, __lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ : List[str] = 1 else: output.append(get_nodes_from_right_to_left(__lowerCamelCase, __lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ : List[Any] = 0 return output def a__ ( ): # Main function for testing. SCREAMING_SNAKE_CASE_ : List[str] = make_tree() print(F'''In-order Traversal: {inorder(__lowerCamelCase )}''' ) print(F'''Pre-order Traversal: {preorder(__lowerCamelCase )}''' ) print(F'''Post-order Traversal: {postorder(__lowerCamelCase )}''', '\n' ) print(F'''Height of Tree: {height(__lowerCamelCase )}''', '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(__lowerCamelCase ), '\n' ) print('Level-wise order Traversal: ' ) for level in range(1, height(__lowerCamelCase ) + 1 ): print(F'''Level {level}:''', get_nodes_from_left_to_right(__lowerCamelCase, level=__lowerCamelCase ) ) print('\nZigZag order Traversal: ' ) print(zigzag(__lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
101
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
5
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase ={ "configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"], "feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"], "processing_wav2vec2": ["Wav2Vec2Processor"], "tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Wav2Vec2ForAudioFrameClassification", "Wav2Vec2ForCTC", "Wav2Vec2ForMaskedLM", "Wav2Vec2ForPreTraining", "Wav2Vec2ForSequenceClassification", "Wav2Vec2ForXVector", "Wav2Vec2Model", "Wav2Vec2PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWav2Vec2ForCTC", "TFWav2Vec2Model", "TFWav2Vec2PreTrainedModel", "TFWav2Vec2ForSequenceClassification", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys __lowerCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
333
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") _lowercase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) _lowercase = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) _lowercase = BeautifulSoup(res.text, """html.parser""") _lowercase = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
5
0
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase): lowerCamelCase__ = FunnelTokenizer lowerCamelCase__ = FunnelTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : Tuple = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _lowerCAmelCase : Dict = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def snake_case__ ( self, **__a): '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname, **_lowercase) def snake_case__ ( self, **__a): '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname, **_lowercase) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = "UNwant\u00E9d,running" _lowerCAmelCase : str = "unwanted, running" return input_text, output_text def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.tokenizer_class(self.vocab_file) _lowerCAmelCase : Optional[Any] = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(_lowercase, ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase), [7, 4, 5, 10, 8, 9]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_tokenizers(do_lower_case=_lowercase) for tokenizer in tokenizers: _lowerCAmelCase : Union[str, Any] = tokenizer("UNwant\u00E9d,running") _lowerCAmelCase : Optional[int] = len(inputs["input_ids"]) - 1 self.assertListEqual(inputs["token_type_ids"], [2] + [0] * sentence_len) _lowerCAmelCase : Dict = tokenizer("UNwant\u00E9d,running", "UNwant\u00E9d,running") self.assertListEqual(inputs["token_type_ids"], [2] + [0] * sentence_len + [1] * sentence_len)
500
'''simple docstring''' import os from datetime import datetime as dt from github import Github _lowercase = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def A (): _lowerCAmelCase = Github(os.environ["""GITHUB_TOKEN"""] ) _lowerCAmelCase = g.get_repo("""huggingface/diffusers""" ) _lowerCAmelCase = repo.get_issues(state="""open""" ) for issue in open_issues: _lowerCAmelCase = sorted(issue.get_comments() , key=lambda __lowerCamelCase : i.created_at , reverse=__lowerCamelCase ) _lowerCAmelCase = comments[0] if len(__lowerCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
5
0
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = '''vision-encoder-decoder''' SCREAMING_SNAKE_CASE__ : Optional[Any] = True def __init__( self : int , **snake_case : Union[str, Any] ): """simple docstring""" super().__init__(**_lowercase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"""A configuraton of type {self.model_type} cannot be instantiated because """ F"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) _snake_case : str = kwargs.pop('encoder' ) _snake_case : str = encoder_config.pop('model_type' ) _snake_case : int = kwargs.pop('decoder' ) _snake_case : int = decoder_config.pop('model_type' ) _snake_case : Union[str, Any] = AutoConfig.for_model(_lowercase , **_lowercase ) _snake_case : List[str] = AutoConfig.for_model(_lowercase , **_lowercase ) _snake_case : List[str] = True @classmethod def __UpperCAmelCase ( cls : Any , snake_case : Tuple , snake_case : Tuple , **snake_case : List[str] ): """simple docstring""" logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _snake_case : int = True _snake_case : Optional[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowercase ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case : Tuple = copy.deepcopy(self.__dict__ ) _snake_case : str = self.encoder.to_dict() _snake_case : Optional[Any] = self.decoder.to_dict() _snake_case : Dict = self.__class__.model_type return output class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = version.parse('''1.11''' ) @property def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __UpperCAmelCase ( self : List[str] ): """simple docstring""" return 1e-4 @property def __UpperCAmelCase ( self : Tuple ): """simple docstring""" return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case : List[str] = OrderedDict() _snake_case : Dict = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _snake_case : int = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _snake_case : str = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def __UpperCAmelCase ( self : Dict , snake_case : List[Any] , snake_case : Optional[Any] = -1 , snake_case : Dict = -1 , snake_case : Dict = False , snake_case : List[str] = None , ): """simple docstring""" import torch _snake_case : Dict = OrderedDict() _snake_case : List[str] = super().generate_dummy_inputs( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) _snake_case , _snake_case : List[Any] = dummy_input['input_ids'].shape _snake_case : int = (batch, encoder_sequence, self._config.encoder_hidden_size) _snake_case : str = dummy_input.pop('input_ids' ) _snake_case : Dict = dummy_input.pop('attention_mask' ) _snake_case : Optional[int] = torch.zeros(_lowercase ) return common_inputs class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" pass def __UpperCAmelCase ( self : str , snake_case : str ): """simple docstring""" return VisionEncoderDecoderEncoderOnnxConfig(_lowercase ) def __UpperCAmelCase ( self : int , snake_case : Tuple , snake_case : int , snake_case : Tuple = "default" ): """simple docstring""" _snake_case : Tuple = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_lowercase , _lowercase )
517
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
5
0
import os from collections.abc import Iterator def UpperCamelCase (lowercase_: str = "." ) -> Union[str, Any]: for dir_path, dir_names, filenames in os.walk(__lowerCamelCase ): A__ : Dict = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__lowerCamelCase )[1] in (".py", ".ipynb"): yield os.path.join(__lowerCamelCase , __lowerCamelCase ).lstrip("""./""" ) def UpperCamelCase (lowercase_: List[Any] ) -> Optional[int]: return f"""{i * ' '}*""" if i else "\n##" def UpperCamelCase (lowercase_: str , lowercase_: str ) -> Tuple: A__ : Any = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__lowerCamelCase ) or old_parts[i] != new_part) and new_part: print(f"""{md_prefix(__lowerCamelCase )} {new_part.replace('_' , ' ' ).title()}""" ) return new_path def UpperCamelCase (lowercase_: str = "." ) -> int: A__ : Dict = """""" for filepath in sorted(good_file_paths(__lowerCamelCase ) ): A__ , A__ : Any = os.path.split(__lowerCamelCase ) if filepath != old_path: A__ : str = print_path(__lowerCamelCase , __lowerCamelCase ) A__ : Dict = (filepath.count(os.sep ) + 1) if filepath else 0 A__ : Dict = f"""{filepath}/{filename}""".replace(""" """ , """%20""" ) A__ : Dict = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(f"""{md_prefix(__lowerCamelCase )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('.')
456
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
0
"""simple docstring""" def a ( __snake_case : str ): '''simple docstring''' UpperCAmelCase_ :str = [0 for i in range(len(__lowerCamelCase ) )] # initialize interval's left pointer and right pointer UpperCAmelCase_ ,UpperCAmelCase_ :Optional[int] = 0, 0 for i in range(1, len(__lowerCamelCase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCAmelCase_ :List[str] = min(right_pointer - i + 1, z_result[i - left_pointer] ) UpperCAmelCase_ :Dict = min_edge while go_next(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCAmelCase_ ,UpperCAmelCase_ :Optional[Any] = i, i + z_result[i] - 1 return z_result def a ( __snake_case : int, __snake_case : list[int], __snake_case : str ): '''simple docstring''' return i + z_result[i] < len(__lowerCamelCase ) and s[z_result[i]] == s[i + z_result[i]] def a ( __snake_case : str, __snake_case : str ): '''simple docstring''' UpperCAmelCase_ :Union[str, Any] = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCAmelCase_ :Optional[Any] = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(__lowerCamelCase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
608
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _lowercase = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_lowercase ): """simple docstring""" super().__init__(**_lowercase ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self , _lowercase , **_lowercase ): """simple docstring""" return super().__call__(_lowercase , **_lowercase ) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a sound of {}." ): """simple docstring""" if isinstance(_lowercase , _lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _lowerCAmelCase = requests.get(_lowercase ).content else: with open(_lowercase , """rb""" ) as f: _lowerCAmelCase = f.read() if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate ) if not isinstance(_lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) _lowerCAmelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) _lowerCAmelCase = [text_inputs] return inputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_inputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _lowercase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**_lowercase , **_lowercase ) _lowerCAmelCase = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_outputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_outputs["""logits"""][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=0 ) _lowerCAmelCase = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) _lowerCAmelCase = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] ) ] return result
5
0
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __A ( _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = [] embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', f'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', f'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', f'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', f'stage{idx}.patch_embed.norm.bias', ) ) return embed def __A ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = [] attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', f'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', f'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', f'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', f'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', f'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', f'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', f'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', f'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', f'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', f'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', f'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', f'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __A ( _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [] token.append((f'cvt.encoder.stages.{idx}.cls_token', "stage2.cls_token") ) return token def __A ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = [] head.append(("layernorm.weight", "norm.weight") ) head.append(("layernorm.bias", "norm.bias") ) head.append(("classifier.weight", "head.weight") ) head.append(("classifier.bias", "head.bias") ) return head def __A ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = "imagenet-1k-id2label.json" __SCREAMING_SNAKE_CASE : Dict = 1_0_0_0 __SCREAMING_SNAKE_CASE : List[Any] = "huggingface/label-files" __SCREAMING_SNAKE_CASE : Optional[Any] = num_labels __SCREAMING_SNAKE_CASE : int = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type="dataset" ) ) , "r" ) ) __SCREAMING_SNAKE_CASE : Dict = {int(__lowerCamelCase ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : List[Any] = idalabel __SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Union[str, Any] = CvtConfig(num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/" , 1 )[-1][4:6] == "13": __SCREAMING_SNAKE_CASE : Any = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/" , 1 )[-1][4:6] == "21": __SCREAMING_SNAKE_CASE : str = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __SCREAMING_SNAKE_CASE : Optional[int] = [2, 2, 2_0] __SCREAMING_SNAKE_CASE : str = [3, 1_2, 1_6] __SCREAMING_SNAKE_CASE : List[str] = [1_9_2, 7_6_8, 1_0_2_4] __SCREAMING_SNAKE_CASE : Dict = CvtForImageClassification(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) __SCREAMING_SNAKE_CASE : int = image_size __SCREAMING_SNAKE_CASE : List[Any] = torch.load(__lowerCamelCase , map_location=torch.device("cpu" ) ) __SCREAMING_SNAKE_CASE : Dict = OrderedDict() __SCREAMING_SNAKE_CASE : Any = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __SCREAMING_SNAKE_CASE : List[Any] = list_of_state_dict + cls_token(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = list_of_state_dict + embeddings(__lowerCamelCase ) for cnt in range(config.depth[idx] ): __SCREAMING_SNAKE_CASE : Dict = list_of_state_dict + attention(__lowerCamelCase , __lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): __SCREAMING_SNAKE_CASE : Union[str, Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowercase = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
211
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = ['''input_values''', '''padding_mask'''] def __init__( self , _lowercase = 1 , _lowercase = 24_000 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , **_lowercase , ): """simple docstring""" super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) _lowerCAmelCase = chunk_length_s _lowerCAmelCase = overlap @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , _lowercase , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs _lowerCAmelCase = True _lowerCAmelCase = bool( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_lowercase , np.ndarray ): _lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _lowerCAmelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [np.asarray(_lowercase ).T] # verify inputs are valid for idx, example in enumerate(_lowercase ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) _lowerCAmelCase = None _lowerCAmelCase = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _lowerCAmelCase = min(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.floor(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _lowerCAmelCase = max(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.ceil(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length _lowerCAmelCase = """max_length""" else: _lowerCAmelCase = input_values # normal padding on batch if padded_inputs is None: _lowerCAmelCase = self.pad( _lowercase , max_length=_lowercase , truncation=_lowercase , padding=_lowercase , return_attention_mask=_lowercase , ) if padding: _lowerCAmelCase = padded_inputs.pop("""attention_mask""" ) _lowerCAmelCase = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: _lowerCAmelCase = example[..., None] input_values.append(example.T ) _lowerCAmelCase = input_values if return_tensors is not None: _lowerCAmelCase = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
5
0
from __future__ import annotations import time import numpy as np A__ : Union[str, Any] = [8, 5, 9, 7] A__ : Union[str, Any] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] A__ : Dict = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __snake_case : def __init__( self : Union[str, Any] , A_ : int , A_ : Dict , A_ : Optional[int] , ): lowerCAmelCase_ : List[str] = claim_vector lowerCAmelCase_ : Tuple = allocated_resources_table lowerCAmelCase_ : int = maximum_claim_table def UpperCAmelCase__ ( self : str): return [ sum(p_item[i] for p_item in self.__allocated_resources_table) for i in range(len(self.__allocated_resources_table[0])) ] def UpperCAmelCase__ ( self : Tuple): return np.array(self.__claim_vector) - np.array( self.__processes_resource_summation()) def UpperCAmelCase__ ( self : str): return [ list(np.array(self.__maximum_claim_table[i]) - np.array(_lowercase)) for i, allocated_resource in enumerate(self.__allocated_resources_table) ] def UpperCAmelCase__ ( self : List[Any]): return {self.__need().index(_lowercase): i for i in self.__need()} def UpperCAmelCase__ ( self : Any , **A_ : Tuple): lowerCAmelCase_ : List[Any] = self.__need() lowerCAmelCase_ : str = self.__allocated_resources_table lowerCAmelCase_ : List[Any] = self.__available_resources() lowerCAmelCase_ : str = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 5_0 + '''\n''') while need_list: lowerCAmelCase_ : Tuple = False for each_need in need_list: lowerCAmelCase_ : List[str] = True for index, need in enumerate(_lowercase): if need > available_resources[index]: lowerCAmelCase_ : List[Any] = False break if execution: lowerCAmelCase_ : Dict = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowerCAmelCase_ : str = original_need_index print(F"""Process {process_number + 1} is executing.""") # remove the process run from stack need_list.remove(_lowercase) # update available/freed resources stack lowerCAmelCase_ : Optional[int] = np.array(_lowercase) + np.array( alloc_resources_table[process_number]) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(_lowercase) for x in available_resources])) break if safe: print('''The process is in a safe state.\n''') else: print('''System in unsafe state. Aborting...\n''') break def UpperCAmelCase__ ( self : List[str]): print(''' ''' * 9 + '''Allocated Resource Table''') for item in self.__allocated_resources_table: print( F"""P{self.__allocated_resources_table.index(_lowercase) + 1}""" + ''' '''.join(F"""{it:>8}""" for it in item) + '''\n''') print(''' ''' * 9 + '''System Resource Table''') for item in self.__maximum_claim_table: print( F"""P{self.__maximum_claim_table.index(_lowercase) + 1}""" + ''' '''.join(F"""{it:>8}""" for it in item) + '''\n''') print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(_lowercase) for x in self.__claim_vector)) print( '''Initial Available Resources: ''' + ''' '''.join(str(_lowercase) for x in self.__available_resources())) time.sleep(1) if __name__ == "__main__": import doctest doctest.testmod()
171
'''simple docstring''' _lowercase = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
5
0
"""simple docstring""" from __future__ import annotations def _lowerCamelCase ( UpperCAmelCase_ : list[int] ) -> Optional[Any]: """simple docstring""" if not nums: return 0 A__ = nums[0] A__ = 0 for num in nums[1:]: A__ , A__ = ( max_excluding + num, max(__lowerCamelCase, __lowerCamelCase ), ) return max(__lowerCamelCase, __lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
104
'''simple docstring''' import functools def A (__lowerCamelCase :list[int] , __lowerCamelCase :list[int] ): # Validation if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(__lowerCamelCase ) >= 366: raise ValueError("""All days elements should be less than 366""" ) _lowerCAmelCase = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase :int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer __lowercase = logging.get_logger(__name__) __lowercase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowercase = [ """small""", """small-base""", """medium""", """medium-base""", """intermediate""", """intermediate-base""", """large""", """large-base""", """xlarge""", """xlarge-base""", ] __lowercase = { """vocab_file""": { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt""", """funnel-transformer/medium-base""": ( """https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt""" ), """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt""", """funnel-transformer/xlarge-base""": ( """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json""", """funnel-transformer/small-base""": ( """https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json""" ), """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json""", """funnel-transformer/medium-base""": ( """https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json""" ), """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json""", """funnel-transformer/large-base""": ( """https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json""" ), """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json""", """funnel-transformer/xlarge-base""": ( """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json""" ), }, } __lowercase = {f'funnel-transformer/{name}': 512 for name in _model_names} __lowercase = {f'funnel-transformer/{name}': {"""do_lower_case""": True} for name in _model_names} class _lowercase ( _SCREAMING_SNAKE_CASE ): _lowercase : str = VOCAB_FILES_NAMES _lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP _lowercase : Any = PRETRAINED_INIT_CONFIGURATION _lowercase : List[str] = FunnelTokenizer _lowercase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : int = 2 def __init__( self : List[str] , lowerCamelCase__ : Dict=None , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]="<unk>" , lowerCamelCase__ : Dict="<sep>" , lowerCamelCase__ : str="<pad>" , lowerCamelCase__ : Optional[int]="<cls>" , lowerCamelCase__ : Dict="<mask>" , lowerCamelCase__ : Any="<s>" , lowerCamelCase__ : Union[str, Any]="</s>" , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Dict=True , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Optional[Any]="##" , **lowerCamelCase__ : Optional[Any] , ) -> Any: """simple docstring""" super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , bos_token=_lowercase , eos_token=_lowercase , clean_text=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , wordpieces_prefix=_lowercase , **_lowercase , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowercase ) != tokenize_chinese_chars ): A_ = getattr(_lowercase , normalizer_state.pop('''type''' ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**_lowercase ) A_ = do_lower_case def UpperCamelCase ( self : Union[str, Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str=None ) -> Any: """simple docstring""" A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self : Union[str, Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Tuple = None ) -> Union[str, Any]: """simple docstring""" A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : List[str] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[Any] = None ) -> Optional[Any]: """simple docstring""" A_ = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
203
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 384 if "tiny" in model_name: _lowerCAmelCase = [3, 3, 9, 3] _lowerCAmelCase = [96, 192, 384, 768] if "small" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [96, 192, 384, 768] if "base" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [128, 256, 512, 1024] _lowerCAmelCase = 512 if "large" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [192, 384, 768, 1536] _lowerCAmelCase = 768 if "xlarge" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [256, 512, 1024, 2048] _lowerCAmelCase = 1024 # set label information _lowerCAmelCase = 150 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """ade20k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = ConvNextConfig( depths=__lowerCamelCase , hidden_sizes=__lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) _lowerCAmelCase = UperNetConfig( backbone_config=__lowerCamelCase , auxiliary_in_channels=__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , ) return config def A (__lowerCamelCase :Optional[Any] ): _lowerCAmelCase = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict , __lowerCamelCase :Tuple ): _lowerCAmelCase = dct.pop(__lowerCamelCase ) _lowerCAmelCase = val def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ): _lowerCAmelCase = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } _lowerCAmelCase = model_name_to_url[model_name] _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""state_dict"""] _lowerCAmelCase = get_upernet_config(__lowerCamelCase ) _lowerCAmelCase = UperNetForSemanticSegmentation(__lowerCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase = state_dict.pop(__lowerCamelCase ) if "bn" in key: _lowerCAmelCase = key.replace("""bn""" , """batch_norm""" ) _lowerCAmelCase = val # rename keys _lowerCAmelCase = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # verify on image _lowerCAmelCase = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _lowerCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" ) _lowerCAmelCase = SegformerImageProcessor() _lowerCAmelCase = processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values with torch.no_grad(): _lowerCAmelCase = model(__lowerCamelCase ) if model_name == "upernet-convnext-tiny": _lowerCAmelCase = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _lowerCAmelCase = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _lowerCAmelCase = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _lowerCAmelCase = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _lowerCAmelCase = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
5
0
def lowercase ( a = 100 ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :int = 0 SCREAMING_SNAKE_CASE_ :Optional[Any] = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F'''{solution() = }''')
631
'''simple docstring''' from itertools import product def A (__lowerCamelCase :int , __lowerCamelCase :int ): _lowerCAmelCase = sides_number _lowerCAmelCase = max_face_number * dice_number _lowerCAmelCase = [0] * (max_total + 1) _lowerCAmelCase = 1 _lowerCAmelCase = range(__lowerCamelCase , max_face_number + 1 ) for dice_numbers in product(__lowerCamelCase , repeat=__lowerCamelCase ): _lowerCAmelCase = sum(__lowerCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def A (): _lowerCAmelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) _lowerCAmelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) _lowerCAmelCase = 0 _lowerCAmelCase = 9 _lowerCAmelCase = 4 * 9 _lowerCAmelCase = 6 for peter_total in range(__lowerCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _lowerCAmelCase = (4**9) * (6**6) _lowerCAmelCase = peter_wins_count / total_games_number _lowerCAmelCase = round(__lowerCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
5
0
import os def a__ ( ): SCREAMING_SNAKE_CASE_ : int = os.path.join(os.path.dirname(__lowerCamelCase ), 'num.txt' ) with open(__lowerCamelCase ) as file_hand: return str(sum(int(__lowerCamelCase ) for line in file_hand ) )[:1_0] if __name__ == "__main__": print(solution())
101
'''simple docstring''' from manim import * class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""CPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(1 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""GPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.align_to(_lowercase , _lowercase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""Model""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , ) _lowerCAmelCase = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) _lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) ) self.add(_lowercase ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for i, rect in enumerate(_lowercase ): _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 ) cpu_target.move_to(_lowercase ) cpu_target.generate_target() _lowerCAmelCase = 0.46 / 4 _lowerCAmelCase = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 ) cpu_targs.append(_lowercase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) ) second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) ) self.play(*_lowercase ) self.play(*_lowercase ) self.wait()
5
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase =logging.get_logger(__name__) class __magic_name__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): _UpperCAmelCase : Optional[Any] = '''maskformer-swin''' _UpperCAmelCase : Union[str, Any] = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Tuple ,__SCREAMING_SNAKE_CASE : str=2_2_4 ,__SCREAMING_SNAKE_CASE : Optional[Any]=4 ,__SCREAMING_SNAKE_CASE : int=3 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=9_6 ,__SCREAMING_SNAKE_CASE : Any=[2, 2, 6, 2] ,__SCREAMING_SNAKE_CASE : Union[str, Any]=[3, 6, 1_2, 2_4] ,__SCREAMING_SNAKE_CASE : Tuple=7 ,__SCREAMING_SNAKE_CASE : str=4.0 ,__SCREAMING_SNAKE_CASE : List[Any]=True ,__SCREAMING_SNAKE_CASE : str=0.0 ,__SCREAMING_SNAKE_CASE : List[str]=0.0 ,__SCREAMING_SNAKE_CASE : Dict=0.1 ,__SCREAMING_SNAKE_CASE : List[Any]="gelu" ,__SCREAMING_SNAKE_CASE : Dict=False ,__SCREAMING_SNAKE_CASE : Optional[int]=0.02 ,__SCREAMING_SNAKE_CASE : Optional[Any]=1e-5 ,__SCREAMING_SNAKE_CASE : Optional[Any]=None ,__SCREAMING_SNAKE_CASE : Union[str, Any]=None ,**__SCREAMING_SNAKE_CASE : int ,): super().__init__(**_lowercase ) UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = embed_dim UpperCAmelCase = depths UpperCAmelCase = len(_lowercase ) UpperCAmelCase = num_heads UpperCAmelCase = window_size UpperCAmelCase = mlp_ratio UpperCAmelCase = qkv_bias UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = drop_path_rate UpperCAmelCase = hidden_act UpperCAmelCase = use_absolute_embeddings UpperCAmelCase = layer_norm_eps UpperCAmelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) UpperCAmelCase = ["stem"] + [f'''stage{idx}''' for idx in range(1 ,len(_lowercase ) + 1 )] UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices( out_features=_lowercase ,out_indices=_lowercase ,stage_names=self.stage_names )
333
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowercase = False try: _lowercase = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase = None , _lowercase = [] ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = choices _lowerCAmelCase = prompt if sys.platform == "win32": _lowerCAmelCase = """*""" else: _lowerCAmelCase = """➔ """ def _lowercase ( self , _lowercase , _lowercase = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , _lowercase ) else: forceWrite(self.choices[index] , _lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(_lowercase ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def _lowercase ( self , _lowercase , _lowercase = 1 ): """simple docstring""" _lowerCAmelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowercase ) move_cursor(_lowercase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = int(chr(self.current_selection ) ) _lowerCAmelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowercase ) else: return else: return def _lowercase ( self , _lowercase = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) _lowerCAmelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowercase ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase = int(builtins.input() ) except ValueError: _lowerCAmelCase = default_choice else: _lowerCAmelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(_lowercase , """\n""" ) return choice
5
0
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if principal <= 0: raise Exception("Principal borrowed must be > 0" ) if rate_per_annum < 0: raise Exception("Rate of interest must be >= 0" ) if years_to_repay <= 0 or not isinstance(__lowerCamelCase , __lowerCamelCase ): raise Exception("Years to repay must be an integer > 0" ) # Yearly rate is divided by 12 to get monthly rate _lowerCAmelCase : Dict = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly _lowerCAmelCase : str = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
500
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } _lowercase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def A (__lowerCamelCase :Optional[int] ): _lowerCAmelCase = {} with open(__lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(__lowerCamelCase ): _lowerCAmelCase = line.strip() if line: _lowerCAmelCase = line.split() _lowerCAmelCase = line_number _lowerCAmelCase = words[0] _lowerCAmelCase = value return result def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any] , __lowerCamelCase :List[str] ): for attribute in key.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": _lowerCAmelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = shape_pointer.shape # let's reduce dimension _lowerCAmelCase = value[0] else: _lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCAmelCase = value elif weight_type == "weight_g": _lowerCAmelCase = value elif weight_type == "weight_v": _lowerCAmelCase = value elif weight_type == "bias": _lowerCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = value else: _lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] , __lowerCamelCase :int ): _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _lowerCAmelCase = """.""".join([key, hf_param_name] ) else: _lowerCAmelCase = key _lowerCAmelCase = value if """lm_head""" in full_key else value[0] _lowercase = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :List[str]=None , __lowerCamelCase :List[Any]=None ): _lowerCAmelCase = False for key, mapped_key in MAPPING.items(): _lowerCAmelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCAmelCase = True if "*" in mapped_key: _lowerCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase = """weight_g""" elif "weight_v" in name: _lowerCAmelCase = """weight_v""" elif "bias" in name: _lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase = """weight""" else: _lowerCAmelCase = None if hf_dict is not None: rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return is_used return is_used def A (__lowerCamelCase :Any , __lowerCamelCase :Dict , __lowerCamelCase :Dict ): _lowerCAmelCase = [] _lowerCAmelCase = fairseq_model.state_dict() _lowerCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) _lowerCAmelCase = True else: _lowerCAmelCase = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any , __lowerCamelCase :List[Any] , __lowerCamelCase :List[Any] ): _lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase = name.split(""".""" ) _lowerCAmelCase = int(items[0] ) _lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def A (__lowerCamelCase :List[str] , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any]=None , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :str=True , __lowerCamelCase :str=False ): if config_path is not None: _lowerCAmelCase = WavaVecaConfig.from_pretrained(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaConfig() if is_seq_class: _lowerCAmelCase = read_txt_into_dict(__lowerCamelCase ) _lowerCAmelCase = idalabel _lowerCAmelCase = WavaVecaForSequenceClassification(__lowerCamelCase ) _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) feature_extractor.save_pretrained(__lowerCamelCase ) elif is_finetuned: if dict_path: _lowerCAmelCase = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCAmelCase = target_dict.pad_index _lowerCAmelCase = target_dict.bos_index _lowerCAmelCase = target_dict.eos_index _lowerCAmelCase = len(target_dict.symbols ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """vocab.json""" ) if not os.path.isdir(__lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCAmelCase = 0 _lowerCAmelCase = 1 with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , ) _lowerCAmelCase = True if config.feat_extract_norm == """layer""" else False _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) _lowerCAmelCase = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) _lowerCAmelCase = WavaVecaForCTC(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaForPreTraining(__lowerCamelCase ) if is_finetuned or is_seq_class: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _lowerCAmelCase = argparse.Namespace(task="""audio_pretraining""" ) _lowerCAmelCase = fairseq.tasks.setup_task(__lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase ) _lowerCAmelCase = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) _lowercase = parser.parse_args() _lowercase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
5
0
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = '''Speech2TextFeatureExtractor''' SCREAMING_SNAKE_CASE__ : Any = '''Speech2TextTokenizer''' def __init__( self : int , snake_case : List[Any] , snake_case : int ): """simple docstring""" super().__init__(_lowercase , _lowercase ) _snake_case : Tuple = self.feature_extractor _snake_case : int = False def __call__( self : List[Any] , *snake_case : List[Any] , **snake_case : List[Any] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) _snake_case : int = kwargs.pop('raw_speech' ) else: _snake_case : Union[str, Any] = kwargs.pop('audio' , _lowercase ) _snake_case : int = kwargs.pop('sampling_rate' , _lowercase ) _snake_case : Dict = kwargs.pop('text' , _lowercase ) if len(_lowercase ) > 0: _snake_case : Tuple = args[0] _snake_case : Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: _snake_case : str = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) if text is not None: _snake_case : List[str] = self.tokenizer(_lowercase , **_lowercase ) if text is None: return inputs elif audio is None: return encodings else: _snake_case : List[str] = encodings['input_ids'] return inputs def __UpperCAmelCase ( self : Any , *snake_case : Union[str, Any] , **snake_case : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def __UpperCAmelCase ( self : List[Any] , *snake_case : Dict , **snake_case : List[str] ): """simple docstring""" return self.tokenizer.decode(*_lowercase , **_lowercase ) @contextmanager def __UpperCAmelCase ( self : int ): """simple docstring""" warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) _snake_case : int = True _snake_case : Tuple = self.tokenizer yield _snake_case : Optional[Any] = self.feature_extractor _snake_case : Optional[int] = False
517
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = '''decision_transformer''' _lowercase : Optional[Any] = ['''past_key_values'''] _lowercase : str = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowercase=17 , _lowercase=4 , _lowercase=128 , _lowercase=4_096 , _lowercase=True , _lowercase=1 , _lowercase=1_024 , _lowercase=3 , _lowercase=1 , _lowercase=None , _lowercase="relu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=False , _lowercase=False , **_lowercase , ): """simple docstring""" _lowerCAmelCase = state_dim _lowerCAmelCase = act_dim _lowerCAmelCase = hidden_size _lowerCAmelCase = max_ep_len _lowerCAmelCase = action_tanh _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = scale_attn_by_inverse_layer_idx _lowerCAmelCase = reorder_and_upcast_attn _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
5
0
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : int = { 'nielsr/canine-s': 2048, } # Unicode defines 1,114,112 total “codepoints” A_ : Optional[Any] = 111_4112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py A_ : str = 0 A_ : Union[str, Any] = 0XE000 A_ : Union[str, Any] = 0XE001 A_ : int = 0XE002 A_ : List[Any] = 0XE003 A_ : List[Any] = 0XE004 # Maps special codepoints to human-readable names. A_ : str = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: '[CLS]', SEP: '[SEP]', BOS: '[BOS]', MASK: '[MASK]', PAD: '[PAD]', RESERVED: '[RESERVED]', } # Maps special codepoint human-readable names to their codepoint values. A_ : Dict = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class _a (_SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__: Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , A__=chr(_lowercase ) , A__=chr(_lowercase ) , A__=chr(_lowercase ) , A__=chr(_lowercase ) , A__=chr(_lowercase ) , A__=chr(_lowercase ) , A__=False , A__=2048 , **A__ , ): A__ : Tuple = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else bos_token A__ : int = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else eos_token A__ : Optional[int] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else sep_token A__ : int = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else cls_token A__ : Optional[Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A__ : int = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( bos_token=_lowercase , eos_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , add_prefix_space=_lowercase , model_max_length=_lowercase , **_lowercase , ) # Creates a mapping for looking up the IDs of special symbols. A__ : Dict = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): A__ : Optional[Any] = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. A__ : List[Any] = { codepoint: name for name, codepoint in self._special_codepoints.items() } A__ : Optional[Any] = UNICODE_VOCAB_SIZE A__ : List[Any] = len(self._special_codepoints ) @property def __A ( self ): return self._unicode_vocab_size def __A ( self , A__ ): return list(_lowercase ) def __A ( self , A__ ): try: return ord(_lowercase ) except TypeError: raise ValueError(F"""invalid token: \'{token}\'""" ) def __A ( self , A__ ): try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(_lowercase ) except TypeError: raise ValueError(F"""invalid id: {index}""" ) def __A ( self , A__ ): return "".join(_lowercase ) def __A ( self , A__ , A__ = None ): A__ : int = [self.sep_token_id] A__ : str = [self.cls_token_id] A__ : List[Any] = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def __A ( self , A__ , A__ = None , A__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) A__ : Union[str, Any] = [1] + ([0] * len(_lowercase )) + [1] if token_ids_a is not None: result += ([0] * len(_lowercase )) + [1] return result def __A ( self , A__ , A__ = None ): A__ : List[str] = [self.sep_token_id] A__ : List[Any] = [self.cls_token_id] A__ : int = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def __A ( self , A__ , A__ = None ): return ()
456
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) _lowercase = None _lowercase = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } _lowercase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def A (__lowerCamelCase :int , __lowerCamelCase :Optional[Any]=1 , __lowerCamelCase :List[Any]=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def A (__lowerCamelCase :Any ): with open(__lowerCamelCase , """r""" ) as f: return json.load(__lowerCamelCase ) def A (__lowerCamelCase :List[Any] , __lowerCamelCase :int ): with open(__lowerCamelCase , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple=True ): os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """tmp""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = read_json(os.path.join(__lowerCamelCase , """params.json""" ) ) _lowerCAmelCase = NUM_SHARDS[model_size] _lowerCAmelCase = params["""n_layers"""] _lowerCAmelCase = params["""n_heads"""] _lowerCAmelCase = n_heads // num_shards _lowerCAmelCase = params["""dim"""] _lowerCAmelCase = dim // n_heads _lowerCAmelCase = 10_000.0 _lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , __lowerCamelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase = params["""n_kv_heads"""] # for GQA / MQA _lowerCAmelCase = n_heads_per_shard // num_key_value_heads _lowerCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase = n_heads _lowerCAmelCase = n_heads_per_shard _lowerCAmelCase = dim # permute for sliced rotary def permute(__lowerCamelCase :Optional[int] , __lowerCamelCase :str=n_heads , __lowerCamelCase :str=dim , __lowerCamelCase :List[Any]=dim ): return w.view(__lowerCamelCase , dima // n_heads // 2 , 2 , __lowerCamelCase ).transpose(1 , 2 ).reshape(__lowerCamelCase , __lowerCamelCase ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase = torch.load(os.path.join(__lowerCamelCase , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded _lowerCAmelCase = [ torch.load(os.path.join(__lowerCamelCase , f'consolidated.{i:02d}.pth' ) , map_location="""cpu""" ) for i in range(__lowerCamelCase ) ] _lowerCAmelCase = 0 _lowerCAmelCase = {"""weight_map""": {}} for layer_i in range(__lowerCamelCase ): _lowerCAmelCase = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _lowerCAmelCase = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = inv_freq for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: _lowerCAmelCase = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(__lowerCamelCase )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__lowerCamelCase )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) # Write configs _lowerCAmelCase = {"""total_size""": param_count * 2} write_json(__lowerCamelCase , os.path.join(__lowerCamelCase , """pytorch_model.bin.index.json""" ) ) _lowerCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 _lowerCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256 _lowerCAmelCase = LlamaConfig( hidden_size=__lowerCamelCase , intermediate_size=compute_intermediate_size(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=__lowerCamelCase , ) config.save_pretrained(__lowerCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) _lowerCAmelCase = LlamaForCausalLM.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=__lowerCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(__lowerCamelCase , safe_serialization=__lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any] ): # Initialize the tokenizer based on the `spm` model _lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase = tokenizer_class(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) def A (): _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=__lowerCamelCase , help="""Whether or not to save using `safetensors`.""" ) _lowerCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , __lowerCamelCase ) if __name__ == "__main__": main()
5
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor __lowerCamelCase = logging.get_logger(__name__) class _snake_case ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , *snake_case : str , **snake_case : Any ): warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
608
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = (DDPMScheduler,) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_lowercase ) return config def _lowercase ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def _lowercase ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def _lowercase ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def _lowercase ( self ): """simple docstring""" self.check_over_configs(thresholding=_lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def _lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowercase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowercase ): if i == len(_lowercase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowercase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowercase , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowercase ) with self.assertRaises(_lowercase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowercase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_lowercase )
5
0
'''simple docstring''' def __A ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = (1 + 2_4 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def __A ( _SCREAMING_SNAKE_CASE : int = 5_0_0_0 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = [(i * (3 * i - 1)) // 2 for i in range(1 , __lowerCamelCase )] for i, pentagonal_i in enumerate(__lowerCamelCase ): for j in range(__lowerCamelCase , len(__lowerCamelCase ) ): __SCREAMING_SNAKE_CASE : Optional[Any] = pentagonal_nums[j] __SCREAMING_SNAKE_CASE : int = pentagonal_i + pentagonal_j __SCREAMING_SNAKE_CASE : List[Any] = pentagonal_j - pentagonal_i if is_pentagonal(__lowerCamelCase ) and is_pentagonal(__lowerCamelCase ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
211
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowercase = logging.get_logger(__name__) _lowercase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : '''simple docstring''' _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_SCREAMING_SNAKE_CASE )} ) _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) _lowercase : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase : int = field( default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) _lowercase : int = field( default=6_4 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) _lowercase : int = field( default=3_0 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) _lowercase : float = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) _lowercase : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''train''' _lowercase : Union[str, Any] = '''dev''' class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : SquadDataTrainingArguments _lowercase : List[SquadFeatures] _lowercase : Split _lowercase : bool def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = False , _lowercase = None , _lowercase = "pt" , ): """simple docstring""" _lowerCAmelCase = args _lowerCAmelCase = is_language_sensitive _lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowercase , _lowercase ): try: _lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _lowerCAmelCase = mode # Load data features from cache or dataset file _lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" _lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + """.lock""" with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: _lowerCAmelCase = time.time() _lowerCAmelCase = torch.load(_lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase = self.old_features["""features"""] _lowerCAmelCase = self.old_features.get("""dataset""" , _lowercase ) _lowerCAmelCase = self.old_features.get("""examples""" , _lowercase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: _lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: _lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) _lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , ) _lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.features[i] _lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) _lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
5
0
from manim import * class __snake_case ( _SCREAMING_SNAKE_CASE ): def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : List[Any] = Rectangle(height=0.5 , width=0.5) lowerCAmelCase_ : Optional[int] = Rectangle(height=0.46 , width=0.46).set_stroke(width=0) lowerCAmelCase_ : List[Any] = [mem.copy() for i in range(6)] lowerCAmelCase_ : Dict = [mem.copy() for i in range(6)] lowerCAmelCase_ : int = VGroup(*_lowercase).arrange(_lowercase , buff=0) lowerCAmelCase_ : Optional[int] = VGroup(*_lowercase).arrange(_lowercase , buff=0) lowerCAmelCase_ : Optional[int] = VGroup(_lowercase , _lowercase).arrange(_lowercase , buff=0) lowerCAmelCase_ : Tuple = Text('''CPU''' , font_size=2_4) lowerCAmelCase_ : Any = Group(_lowercase , _lowercase).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase) cpu.move_to([-2.5, -0.5, 0]) self.add(_lowercase) lowerCAmelCase_ : Optional[int] = [mem.copy() for i in range(4)] lowerCAmelCase_ : Any = VGroup(*_lowercase).arrange(_lowercase , buff=0) lowerCAmelCase_ : str = Text('''GPU''' , font_size=2_4) lowerCAmelCase_ : Tuple = Group(_lowercase , _lowercase).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase) gpu.move_to([-1, -1, 0]) self.add(_lowercase) lowerCAmelCase_ : List[Any] = [mem.copy() for i in range(6)] lowerCAmelCase_ : str = VGroup(*_lowercase).arrange(_lowercase , buff=0) lowerCAmelCase_ : Dict = Text('''Model''' , font_size=2_4) lowerCAmelCase_ : Dict = Group(_lowercase , _lowercase).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase) model.move_to([3, -1.0, 0]) self.add(_lowercase) lowerCAmelCase_ : Dict = [] for i, rect in enumerate(_lowercase): rect.set_stroke(_lowercase) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) lowerCAmelCase_ : Tuple = Rectangle(height=0.46 / 4 , width=0.46 / 3).set_stroke(width=0.0).set_fill(_lowercase , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=_lowercase) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=_lowercase , buff=0.0) else: cpu_target.next_to(cpu_targs[i - 1] , direction=_lowercase , buff=0.0) self.add(_lowercase) cpu_targs.append(_lowercase) lowerCAmelCase_ : Optional[Any] = [mem.copy() for i in range(6)] lowerCAmelCase_ : Optional[int] = VGroup(*_lowercase).arrange(_lowercase , buff=0) lowerCAmelCase_ : List[Any] = Text('''Loaded Checkpoint''' , font_size=2_4) lowerCAmelCase_ : Dict = Group(_lowercase , _lowercase).arrange(_lowercase , aligned_edge=_lowercase , buff=0.4) checkpoint.move_to([3, 0.5, 0]) lowerCAmelCase_ : Tuple = Square(side_length=2.2) key.move_to([-5, 2, 0]) lowerCAmelCase_ : str = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model""" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0]) self.add(_lowercase , _lowercase) lowerCAmelCase_ : Union[str, Any] = MarkupText( F"""<span fgcolor=\'{BLUE}\'>●</span> Checkpoint""" , font_size=1_8 , ) blue_text.next_to(_lowercase , DOWN * 2.4 , aligned_edge=key_text.get_left()) lowerCAmelCase_ : Any = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=2_4 , ) step_a.move_to([2, 2, 0]) self.play(Write(_lowercase) , Write(_lowercase)) self.play(Write(_lowercase , run_time=1) , Create(_lowercase , run_time=1)) lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : List[Any] = [] for i, rect in enumerate(_lowercase): lowerCAmelCase_ : Tuple = fill.copy().set_fill(_lowercase , opacity=0.7) target.move_to(_lowercase) first_animations.append(GrowFromCenter(_lowercase , run_time=1)) lowerCAmelCase_ : Dict = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.target.move_to(cpu_right_col_base[i - 5]) second_animations.append(MoveToTarget(_lowercase , run_time=1.5)) self.play(*_lowercase) self.play(*_lowercase) self.wait()
171
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''dpr''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase="absolute" , _lowercase = 0 , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = projection_dim _lowerCAmelCase = position_embedding_type
5
0
"""simple docstring""" import cva import numpy as np class UpperCamelCase__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: if k in (0.0_4, 0.0_6): A__ = k A__ = window_size else: raise ValueError("invalid k value" ) def __str__( self ) -> Tuple: return str(self.k ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> str: A__ = cva.imread(_lowercase , 0 ) A__ , A__ = img.shape A__ = [] A__ = img.copy() A__ = cva.cvtColor(_lowercase , cva.COLOR_GRAY2RGB ) A__ , A__ = np.gradient(_lowercase ) A__ = dx**2 A__ = dy**2 A__ = dx * dy A__ = 0.0_4 A__ = self.window_size // 2 for y in range(_lowercase , h - offset ): for x in range(_lowercase , w - offset ): A__ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A__ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A__ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A__ = (wxx * wyy) - (wxy**2) A__ = wxx + wyy A__ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": UpperCamelCase = HarrisCorner(0.04, 3) UpperCamelCase , UpperCamelCase = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
104
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _lowercase = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ _lowercase = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ _lowercase = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase ( self ): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase ( self , _lowercase , _lowercase , _lowercase=None , _lowercase="uniform_average" , _lowercase=True ): """simple docstring""" _lowerCAmelCase = mean_squared_error( _lowercase , _lowercase , sample_weight=_lowercase , multioutput=_lowercase , squared=_lowercase ) return {"mse": mse}
5
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_SCREAMING_SNAKE_CASE ) class _lowercase ( _SCREAMING_SNAKE_CASE ): _lowercase : str = field(default='summarization',metadata={'include_in_asdict_even_if_is_default': True} ) _lowercase : ClassVar[Features] = Features({'text': Value('string' )} ) _lowercase : ClassVar[Features] = Features({'summary': Value('string' )} ) _lowercase : str = "text" _lowercase : str = "summary" @property def UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return {self.text_column: "text", self.summary_column: "summary"}
203
'''simple docstring''' def A (): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: _lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def A (): return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
5
0
def lowercase ( a , a , a , a , a , a ): '''simple docstring''' if index == r: for j in range(__lowerCamelCase ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location SCREAMING_SNAKE_CASE_ :Optional[Any] = arr[i] combination_util(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , index + 1 , __lowerCamelCase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowercase ( a , a , a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :List[Any] = [0] * r # Print all combination using temporary array 'data[]' combination_util(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , 0 , __lowerCamelCase , 0 ) if __name__ == "__main__": # Driver code to check the function above SCREAMING_SNAKE_CASE__ = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
631
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
5
0
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowerCAmelCase__ : Union[str, Any] =logging.getLogger() def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : str = {} SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(__lowerCamelCase, 'all_results.json' ) if os.path.exists(__lowerCamelCase ): with open(__lowerCamelCase, 'r' ) as f: SCREAMING_SNAKE_CASE_ : Dict = json.load(__lowerCamelCase ) else: raise ValueError(F'''can\'t find {path}''' ) return results lowerCAmelCase__ : Any =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class __lowercase (_SCREAMING_SNAKE_CASE ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" import xla_spawn SCREAMING_SNAKE_CASE_ : Dict = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE_ : int = F'''\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '''.split() with patch.object(_lowercase , 'argv' , _lowercase ): SCREAMING_SNAKE_CASE_ : Dict = time() xla_spawn.main() SCREAMING_SNAKE_CASE_ : Any = time() SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_results(_lowercase ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_0_0 ) def UpperCamelCase__ ( self ): """simple docstring""" import xla_spawn SCREAMING_SNAKE_CASE_ : List[Any] = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(_lowercase , 'argv' , _lowercase ): xla_spawn.main()
101
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
5
0
from manim import * class __magic_name__ ( _SCREAMING_SNAKE_CASE): def _UpperCAmelCase ( self : Any ): UpperCAmelCase = Rectangle(height=0.5 ,width=0.5 ) UpperCAmelCase = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) UpperCAmelCase = [mem.copy() for i in range(6 )] UpperCAmelCase = [mem.copy() for i in range(6 )] UpperCAmelCase = VGroup(*_lowercase ).arrange(_lowercase ,buff=0 ) UpperCAmelCase = VGroup(*_lowercase ).arrange(_lowercase ,buff=0 ) UpperCAmelCase = VGroup(_lowercase ,_lowercase ).arrange(_lowercase ,buff=0 ) UpperCAmelCase = Text("CPU" ,font_size=2_4 ) UpperCAmelCase = Group(_lowercase ,_lowercase ).arrange(_lowercase ,buff=0.5 ,aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) UpperCAmelCase = [mem.copy() for i in range(1 )] UpperCAmelCase = VGroup(*_lowercase ).arrange(_lowercase ,buff=0 ) UpperCAmelCase = Text("GPU" ,font_size=2_4 ) UpperCAmelCase = Group(_lowercase ,_lowercase ).arrange(_lowercase ,buff=0.5 ,aligned_edge=_lowercase ) gpu.align_to(_lowercase ,_lowercase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowercase ) UpperCAmelCase = [mem.copy() for i in range(6 )] UpperCAmelCase = VGroup(*_lowercase ).arrange(_lowercase ,buff=0 ) UpperCAmelCase = Text("Model" ,font_size=2_4 ) UpperCAmelCase = Group(_lowercase ,_lowercase ).arrange(_lowercase ,buff=0.5 ,aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowercase ,run_time=1 ) ,Create(_lowercase ,run_time=1 ) ,Create(_lowercase ,run_time=1 ) ,) UpperCAmelCase = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=2_4 ,) UpperCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=1_8 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase ,run_time=2.5 ) ,Write(_lowercase ) ,Write(_lowercase ) ) self.add(_lowercase ) UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = [] for i, rect in enumerate(_lowercase ): UpperCAmelCase = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase ,opacity=0.7 ) cpu_target.move_to(_lowercase ) cpu_target.generate_target() UpperCAmelCase = 0.46 / 4 UpperCAmelCase = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=_lowercase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=_lowercase ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=_lowercase ,buff=0.0 ) cpu_targs.append(_lowercase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) ) second_animations.append(MoveToTarget(_lowercase ,run_time=1.5 ) ) self.play(*_lowercase ) self.play(*_lowercase ) self.wait()
333
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") _lowercase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) _lowercase = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) _lowercase = BeautifulSoup(res.text, """html.parser""") _lowercase = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
5
0
from typing import TYPE_CHECKING from ...utils import _LazyModule _snake_case = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
500
'''simple docstring''' import os from datetime import datetime as dt from github import Github _lowercase = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def A (): _lowerCAmelCase = Github(os.environ["""GITHUB_TOKEN"""] ) _lowerCAmelCase = g.get_repo("""huggingface/diffusers""" ) _lowerCAmelCase = repo.get_issues(state="""open""" ) for issue in open_issues: _lowerCAmelCase = sorted(issue.get_comments() , key=lambda __lowerCamelCase : i.created_at , reverse=__lowerCamelCase ) _lowerCAmelCase = comments[0] if len(__lowerCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
5
0
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self : List[Any] , snake_case : Optional[Any]=None , snake_case : str=None , snake_case : Dict=None , **snake_case : Optional[int] ): """simple docstring""" if tokenize_kwargs is None: _snake_case : List[Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) _snake_case : Dict = truncation _snake_case : Dict = tokenize_kwargs _snake_case : Tuple = {} if return_tensors is not None: _snake_case : Optional[Any] = return_tensors return preprocess_params, {}, postprocess_params def __UpperCAmelCase ( self : Any , snake_case : Optional[Any] , **snake_case : Tuple ): """simple docstring""" _snake_case : Optional[Any] = self.framework _snake_case : Union[str, Any] = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase ) return model_inputs def __UpperCAmelCase ( self : List[str] , snake_case : str ): """simple docstring""" _snake_case : str = self.model(**_lowercase ) return model_outputs def __UpperCAmelCase ( self : Optional[int] , snake_case : Dict , snake_case : Optional[Any]=False ): """simple docstring""" if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : Dict , *snake_case : Union[str, Any] , **snake_case : int ): """simple docstring""" return super().__call__(*_lowercase , **_lowercase )
517
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
5
0
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A_ : Union[str, Any] = logging.get_logger(__name__) class _a (_SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__: Any = ['''pixel_values'''] def __init__( self , A__ = True , A__ = 32 , A__=PILImageResampling.BILINEAR , A__ = True , **A__ , ): A__ : Union[str, Any] = do_resize A__ : Tuple = do_rescale A__ : Tuple = size_divisor A__ : Any = resample super().__init__(**_lowercase ) def __A ( self , A__ , A__ , A__ , A__ = None , **A__ ): A__ , A__ : List[str] = get_image_size(_lowercase ) # Rounds the height and width down to the closest multiple of size_divisor A__ : Dict = height // size_divisor * size_divisor A__ : Union[str, Any] = width // size_divisor * size_divisor A__ : Any = resize(_lowercase , (new_h, new_w) , resample=_lowercase , data_format=_lowercase , **_lowercase ) return image def __A ( self , A__ , A__ , A__ = None , **A__ ): return rescale(image=_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __A ( self , A__ , A__ = None , A__ = None , A__=None , A__ = None , A__ = None , A__ = ChannelDimension.FIRST , **A__ , ): A__ : Tuple = do_resize if do_resize is not None else self.do_resize A__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale A__ : Tuple = size_divisor if size_divisor is not None else self.size_divisor A__ : Union[str, Any] = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) A__ : Optional[int] = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. A__ : List[Any] = [to_numpy_array(_lowercase ) for img in images] if do_resize: A__ : str = [self.resize(_lowercase , size_divisor=_lowercase , resample=_lowercase ) for image in images] if do_rescale: A__ : List[str] = [self.rescale(_lowercase , scale=1 / 255 ) for image in images] A__ : Optional[int] = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A__ : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
456
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
0
"""simple docstring""" def a ( __snake_case : int, __snake_case : int ): '''simple docstring''' while second != 0: UpperCAmelCase_ :Tuple = first & second first ^= second UpperCAmelCase_ :Optional[Any] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase = int(input("Enter the first number: ").strip()) __lowerCamelCase = int(input("Enter the second number: ").strip()) print(f'''{add(first, second) = }''')
608
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _lowercase = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_lowercase ): """simple docstring""" super().__init__(**_lowercase ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self , _lowercase , **_lowercase ): """simple docstring""" return super().__call__(_lowercase , **_lowercase ) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a sound of {}." ): """simple docstring""" if isinstance(_lowercase , _lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _lowerCAmelCase = requests.get(_lowercase ).content else: with open(_lowercase , """rb""" ) as f: _lowerCAmelCase = f.read() if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate ) if not isinstance(_lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) _lowerCAmelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) _lowerCAmelCase = [text_inputs] return inputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_inputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _lowercase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**_lowercase , **_lowercase ) _lowerCAmelCase = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_outputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_outputs["""logits"""][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=0 ) _lowerCAmelCase = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) _lowerCAmelCase = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] ) ] return result
5
0
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = WavaVecaForSequenceClassification.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = downstream_dict["""projector.weight"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""projector.bias"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""model.post_net.linear.weight"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""model.post_net.linear.bias"""] return model def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: Dict , UpperCamelCase__: Any ): SCREAMING_SNAKE_CASE__ = WavaVecaForAudioFrameClassification.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = downstream_dict["""model.linear.weight"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""model.linear.bias"""] return model def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: List[str] , UpperCamelCase__: Any ): SCREAMING_SNAKE_CASE__ = WavaVecaForXVector.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = downstream_dict["""connector.weight"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): SCREAMING_SNAKE_CASE__ = downstream_dict[ f'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] SCREAMING_SNAKE_CASE__ = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] SCREAMING_SNAKE_CASE__ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""objective.W"""] return model @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Tuple , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = torch.load(UpperCamelCase__ , map_location="""cpu""" ) SCREAMING_SNAKE_CASE__ = checkpoint["""Downstream"""] SCREAMING_SNAKE_CASE__ = WavaVecaConfig.from_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained( UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , do_normalize=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): SCREAMING_SNAKE_CASE__ = convert_classification(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) elif arch.endswith("""ForAudioFrameClassification""" ): SCREAMING_SNAKE_CASE__ = convert_diarization(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) elif arch.endswith("""ForXVector""" ): SCREAMING_SNAKE_CASE__ = convert_xvector(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: SCREAMING_SNAKE_CASE__ = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(UpperCamelCase__ ) hf_model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') _lowerCamelCase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
6
import argparse import datetime def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } SCREAMING_SNAKE_CASE__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(UpperCamelCase__ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month SCREAMING_SNAKE_CASE__ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) SCREAMING_SNAKE_CASE__ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day SCREAMING_SNAKE_CASE__ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator SCREAMING_SNAKE_CASE__ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year SCREAMING_SNAKE_CASE__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8_500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation SCREAMING_SNAKE_CASE__ = datetime.date(int(UpperCamelCase__ ) , int(UpperCamelCase__ ) , int(UpperCamelCase__ ) ) # Start math if m <= 2: SCREAMING_SNAKE_CASE__ = y - 1 SCREAMING_SNAKE_CASE__ = m + 12 # maths var SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[:2] ) SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[2:] ) SCREAMING_SNAKE_CASE__ = int(2.6 * m - 5.3_9 ) SCREAMING_SNAKE_CASE__ = int(c / 4 ) SCREAMING_SNAKE_CASE__ = int(k / 4 ) SCREAMING_SNAKE_CASE__ = int(d + k ) SCREAMING_SNAKE_CASE__ = int(t + u + v + x ) SCREAMING_SNAKE_CASE__ = int(z - (2 * c) ) SCREAMING_SNAKE_CASE__ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response SCREAMING_SNAKE_CASE__ = f'''Your date {date_input}, is a {days[str(UpperCamelCase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) _lowerCamelCase = parser.parse_args() zeller(args.date_input)
6
1
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[int] ): SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ ) for i in range(UpperCamelCase__ ): for j in range(i + 1 , UpperCamelCase__ ): if numbers[j] < numbers[i]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": _lowerCamelCase = input('Enter numbers separated by a comma:\n').strip() _lowerCamelCase = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
6
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _lowerCamelCase = logging.getLogger(__name__) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=30522, type=int) _lowerCamelCase = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, 'rb') as fp: _lowerCamelCase = pickle.load(fp) logger.info('Counting occurrences for MLM.') _lowerCamelCase = Counter() for tk_ids in data: counter.update(tk_ids) _lowerCamelCase = [0] * args.vocab_size for k, v in counter.items(): _lowerCamelCase = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
6
1
from __future__ import annotations class UpperCamelCase_ : def __init__( self :Optional[Any] , __A :int = 0 ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = key def _snake_case ( self :Optional[int] , __A :str , __A :int ) -> list[str]: """simple docstring""" assert isinstance(__A , __A ) and isinstance(__A , __A ) SCREAMING_SNAKE_CASE__ = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__A ) ^ key ) for ch in content] def _snake_case ( self :Tuple , __A :str , __A :int ) -> list[str]: """simple docstring""" assert isinstance(__A , __A ) and isinstance(__A , __A ) SCREAMING_SNAKE_CASE__ = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__A ) ^ key ) for ch in content] def _snake_case ( self :int , __A :str , __A :int = 0 ) -> str: """simple docstring""" assert isinstance(__A , __A ) and isinstance(__A , __A ) SCREAMING_SNAKE_CASE__ = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned SCREAMING_SNAKE_CASE__ = """""" for ch in content: ans += chr(ord(__A ) ^ key ) return ans def _snake_case ( self :Optional[int] , __A :str , __A :int = 0 ) -> str: """simple docstring""" assert isinstance(__A , __A ) and isinstance(__A , __A ) SCREAMING_SNAKE_CASE__ = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned SCREAMING_SNAKE_CASE__ = """""" for ch in content: ans += chr(ord(__A ) ^ key ) return ans def _snake_case ( self :Optional[int] , __A :str , __A :int = 0 ) -> bool: """simple docstring""" assert isinstance(__A , __A ) and isinstance(__A , __A ) try: with open(__A ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(__A , __A ) ) except OSError: return False return True def _snake_case ( self :Any , __A :str , __A :int ) -> bool: """simple docstring""" assert isinstance(__A , __A ) and isinstance(__A , __A ) try: with open(__A ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(__A , __A ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
6
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowerCamelCase = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
1
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() SCREAMING_SNAKE_CASE__ = dict(zip(__A , range(len(__A ) ) ) ) SCREAMING_SNAKE_CASE__ = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } SCREAMING_SNAKE_CASE__ = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_6000, """return_attention_mask""": False, """do_normalize""": True, } SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , __A ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__A ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__A ) + """\n""" ) # load decoder from hub SCREAMING_SNAKE_CASE__ = """hf-internal-testing/ngram-beam-search-decoder""" def _snake_case ( self :List[Any] , **__A :Optional[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.add_kwargs_tokens_map.copy() kwargs.update(__A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__A ) def _snake_case ( self :int , **__A :Union[str, Any] ) -> Tuple: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__A ) def _snake_case ( self :List[str] , **__A :Union[str, Any] ) -> List[str]: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__A ) def _snake_case ( self :List[Any] ) -> Dict: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _snake_case ( self :List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_feature_extractor() SCREAMING_SNAKE_CASE__ = self.get_decoder() SCREAMING_SNAKE_CASE__ = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __A ) def _snake_case ( self :Any ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match SCREAMING_SNAKE_CASE__ = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def _snake_case ( self :Any ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__A , """include""" ): WavaVecaProcessorWithLM( tokenizer=__A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def _snake_case ( self :List[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_feature_extractor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_decoder() SCREAMING_SNAKE_CASE__ = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) SCREAMING_SNAKE_CASE__ = floats_list((3, 1000) ) SCREAMING_SNAKE_CASE__ = feature_extractor(__A , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ = processor(__A , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _snake_case ( self :Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_feature_extractor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_decoder() SCREAMING_SNAKE_CASE__ = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) SCREAMING_SNAKE_CASE__ = """This is a test string""" SCREAMING_SNAKE_CASE__ = processor(text=__A ) SCREAMING_SNAKE_CASE__ = tokenizer(__A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self :Optional[Any] , __A :List[Any]=(2, 10, 16) , __A :Any=77 ) -> str: """simple docstring""" np.random.seed(__A ) return np.random.rand(*__A ) def _snake_case ( self :List[str] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_feature_extractor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_decoder() SCREAMING_SNAKE_CASE__ = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) SCREAMING_SNAKE_CASE__ = self._get_dummy_logits(shape=(10, 16) , seed=13 ) SCREAMING_SNAKE_CASE__ = processor.decode(__A ) SCREAMING_SNAKE_CASE__ = decoder.decode_beams(__A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def _snake_case ( self :List[Any] , __A :str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_feature_extractor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_decoder() SCREAMING_SNAKE_CASE__ = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) SCREAMING_SNAKE_CASE__ = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: SCREAMING_SNAKE_CASE__ = processor.batch_decode(__A ) else: with get_context(__A ).Pool() as pool: SCREAMING_SNAKE_CASE__ = processor.batch_decode(__A , __A ) SCREAMING_SNAKE_CASE__ = list(__A ) with get_context("""fork""" ).Pool() as p: SCREAMING_SNAKE_CASE__ = decoder.decode_beams_batch(__A , __A ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__A , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__A , decoded_processor.logit_score ) self.assertListEqual(__A , decoded_processor.lm_score ) def _snake_case ( self :List[str] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_feature_extractor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_decoder() SCREAMING_SNAKE_CASE__ = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) SCREAMING_SNAKE_CASE__ = self._get_dummy_logits() SCREAMING_SNAKE_CASE__ = 15 SCREAMING_SNAKE_CASE__ = -2_0.0 SCREAMING_SNAKE_CASE__ = -4.0 SCREAMING_SNAKE_CASE__ = processor.batch_decode( __A , beam_width=__A , beam_prune_logp=__A , token_min_logp=__A , ) SCREAMING_SNAKE_CASE__ = decoded_processor_out.text SCREAMING_SNAKE_CASE__ = list(__A ) with get_context("""fork""" ).Pool() as pool: SCREAMING_SNAKE_CASE__ = decoder.decode_beams_batch( __A , __A , beam_width=__A , beam_prune_logp=__A , token_min_logp=__A , ) SCREAMING_SNAKE_CASE__ = [d[0][0] for d in decoded_decoder_out] SCREAMING_SNAKE_CASE__ = [d[0][2] for d in decoded_decoder_out] SCREAMING_SNAKE_CASE__ = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__A , __A ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __A ) self.assertTrue(np.array_equal(__A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , __A , atol=1E-3 ) ) self.assertTrue(np.array_equal(__A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , __A , atol=1E-3 ) ) def _snake_case ( self :Any ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_feature_extractor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_decoder() SCREAMING_SNAKE_CASE__ = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) SCREAMING_SNAKE_CASE__ = self._get_dummy_logits() SCREAMING_SNAKE_CASE__ = 2.0 SCREAMING_SNAKE_CASE__ = 5.0 SCREAMING_SNAKE_CASE__ = -2_0.0 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = processor.batch_decode( __A , alpha=__A , beta=__A , unk_score_offset=__A , lm_score_boundary=__A , ) SCREAMING_SNAKE_CASE__ = decoded_processor_out.text SCREAMING_SNAKE_CASE__ = list(__A ) decoder.reset_params( alpha=__A , beta=__A , unk_score_offset=__A , lm_score_boundary=__A , ) with get_context("""fork""" ).Pool() as pool: SCREAMING_SNAKE_CASE__ = decoder.decode_beams_batch( __A , __A , ) SCREAMING_SNAKE_CASE__ = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__A , __A ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __A ) SCREAMING_SNAKE_CASE__ = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , __A ) def _snake_case ( self :Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) SCREAMING_SNAKE_CASE__ = processor.decoder.model_container[processor.decoder._model_key] SCREAMING_SNAKE_CASE__ = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() SCREAMING_SNAKE_CASE__ = os.listdir(__A ) SCREAMING_SNAKE_CASE__ = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__A , __A ) def _snake_case ( self :Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = snapshot_download("""hf-internal-testing/processor_with_lm""" ) SCREAMING_SNAKE_CASE__ = WavaVecaProcessorWithLM.from_pretrained(__A ) SCREAMING_SNAKE_CASE__ = processor.decoder.model_container[processor.decoder._model_key] SCREAMING_SNAKE_CASE__ = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() SCREAMING_SNAKE_CASE__ = os.listdir(__A ) SCREAMING_SNAKE_CASE__ = os.listdir(__A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__A , __A ) def _snake_case ( self :int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) SCREAMING_SNAKE_CASE__ = floats_list((3, 1000) ) SCREAMING_SNAKE_CASE__ = processor_wavaveca(__A , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ = processor_auto(__A , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) SCREAMING_SNAKE_CASE__ = self._get_dummy_logits() SCREAMING_SNAKE_CASE__ = processor_wavaveca.batch_decode(__A ) SCREAMING_SNAKE_CASE__ = processor_auto.batch_decode(__A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def _snake_case ( self :Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_feature_extractor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_decoder() SCREAMING_SNAKE_CASE__ = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def _snake_case ( __A :Any , __A :Dict ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [d[key] for d in offsets] return retrieved_list def _snake_case ( self :List[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) SCREAMING_SNAKE_CASE__ = self._get_dummy_logits()[0] SCREAMING_SNAKE_CASE__ = processor.decode(__A , output_word_offsets=__A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__A , __A ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def _snake_case ( self :str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) SCREAMING_SNAKE_CASE__ = self._get_dummy_logits() SCREAMING_SNAKE_CASE__ = processor.batch_decode(__A , output_word_offsets=__A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__A , __A ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__A , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def _snake_case ( self :int ) -> int: """simple docstring""" import torch SCREAMING_SNAKE_CASE__ = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__A ) SCREAMING_SNAKE_CASE__ = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_6000 ) ) SCREAMING_SNAKE_CASE__ = iter(__A ) SCREAMING_SNAKE_CASE__ = next(__A ) SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) SCREAMING_SNAKE_CASE__ = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train SCREAMING_SNAKE_CASE__ = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(__A ).logits.cpu().numpy() SCREAMING_SNAKE_CASE__ = processor.decode(logits[0] , output_word_offsets=__A ) SCREAMING_SNAKE_CASE__ = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate SCREAMING_SNAKE_CASE__ = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] SCREAMING_SNAKE_CASE__ = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__A , """word""" ) ) , __A ) self.assertEqual(""" """.join(self.get_from_offsets(__A , """word""" ) ) , output.text ) # output times SCREAMING_SNAKE_CASE__ = torch.tensor(self.get_from_offsets(__A , """start_time""" ) ) SCREAMING_SNAKE_CASE__ = torch.tensor(self.get_from_offsets(__A , """end_time""" ) ) # fmt: off SCREAMING_SNAKE_CASE__ = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) SCREAMING_SNAKE_CASE__ = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(__A , __A , atol=0.0_1 ) ) self.assertTrue(torch.allclose(__A , __A , atol=0.0_1 ) )
6
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "OwlViTImageProcessor" lowerCamelCase_ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self :Optional[Any] , __A :int=None , __A :Optional[int]=None , **__A :str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __A , ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""feature_extractor""" ) SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__A , __A ) def __call__( self :str , __A :Dict=None , __A :List[str]=None , __A :str=None , __A :Optional[int]="max_length" , __A :Tuple="np" , **__A :int ) -> Tuple: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(__A , __A ) or (isinstance(__A , __A ) and not isinstance(text[0] , __A )): SCREAMING_SNAKE_CASE__ = [self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )] elif isinstance(__A , __A ) and isinstance(text[0] , __A ): SCREAMING_SNAKE_CASE__ = [] # Maximum number of queries across batch SCREAMING_SNAKE_CASE__ = max([len(__A ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__A ) != max_num_queries: SCREAMING_SNAKE_CASE__ = t + [""" """] * (max_num_queries - len(__A )) SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , padding=__A , return_tensors=__A , **__A ) encodings.append(__A ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) SCREAMING_SNAKE_CASE__ = BatchEncoding() SCREAMING_SNAKE_CASE__ = input_ids SCREAMING_SNAKE_CASE__ = attention_mask if query_images is not None: SCREAMING_SNAKE_CASE__ = BatchEncoding() SCREAMING_SNAKE_CASE__ = self.image_processor( __A , return_tensors=__A , **__A ).pixel_values SCREAMING_SNAKE_CASE__ = query_pixel_values if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif query_images is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self :List[Any] , *__A :Dict , **__A :Dict ) -> Optional[int]: """simple docstring""" return self.image_processor.post_process(*__A , **__A ) def _snake_case ( self :Optional[int] , *__A :Dict , **__A :List[str] ) -> Optional[Any]: """simple docstring""" return self.image_processor.post_process_object_detection(*__A , **__A ) def _snake_case ( self :str , *__A :List[str] , **__A :Union[str, Any] ) -> Any: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*__A , **__A ) def _snake_case ( self :Dict , *__A :List[str] , **__A :List[str] ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :Dict , *__A :Dict , **__A :List[str] ) -> str: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :List[Any] ) -> Optional[int]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , ) return self.image_processor_class @property def _snake_case ( self :Any ) -> Optional[Any]: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , ) return self.image_processor
6
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self :Union[str, Any] , __A :int = 3 , __A :int = 3 , __A :Tuple[str] = ("DownEncoderBlock2D",) , __A :Tuple[str] = ("UpDecoderBlock2D",) , __A :Tuple[int] = (64,) , __A :int = 1 , __A :str = "silu" , __A :int = 3 , __A :int = 32 , __A :int = 256 , __A :int = 32 , __A :Optional[int] = None , __A :float = 0.1_8_2_1_5 , __A :str = "group" , ) -> Any: """simple docstring""" super().__init__() # pass init params to Encoder SCREAMING_SNAKE_CASE__ = Encoder( in_channels=__A , out_channels=__A , down_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , double_z=__A , ) SCREAMING_SNAKE_CASE__ = vq_embed_dim if vq_embed_dim is not None else latent_channels SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = VectorQuantizer(__A , __A , beta=0.2_5 , remap=__A , sane_index_shape=__A ) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) # pass init params to Decoder SCREAMING_SNAKE_CASE__ = Decoder( in_channels=__A , out_channels=__A , up_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , norm_type=__A , ) @apply_forward_hook def _snake_case ( self :Union[str, Any] , __A :torch.FloatTensor , __A :bool = True ) -> VQEncoderOutput: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.encoder(__A ) SCREAMING_SNAKE_CASE__ = self.quant_conv(__A ) if not return_dict: return (h,) return VQEncoderOutput(latents=__A ) @apply_forward_hook def _snake_case ( self :Tuple , __A :torch.FloatTensor , __A :bool = False , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if not force_not_quantize: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.quantize(__A ) else: SCREAMING_SNAKE_CASE__ = h SCREAMING_SNAKE_CASE__ = self.post_quant_conv(__A ) SCREAMING_SNAKE_CASE__ = self.decoder(__A , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__A ) def _snake_case ( self :int , __A :torch.FloatTensor , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" SCREAMING_SNAKE_CASE__ = sample SCREAMING_SNAKE_CASE__ = self.encode(__A ).latents SCREAMING_SNAKE_CASE__ = self.decode(__A ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__A )
6
1
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[float] , UpperCamelCase__: list[float] ): SCREAMING_SNAKE_CASE__ = sorted(numsa + numsa ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = divmod(len(UpperCamelCase__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase = [float(x) for x in input('Enter the elements of first array: ').split()] _lowerCamelCase = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
6
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 lowerCamelCase_ = jnp.floataa lowerCamelCase_ = True def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" super().setup() SCREAMING_SNAKE_CASE__ = nn.Dense(5 , dtype=self.dtype ) def __call__( self :List[Any] , *__A :int , **__A :Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = super().__call__(*__A , **__A ) SCREAMING_SNAKE_CASE__ = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = FlaxBigBirdForNaturalQuestionsModule def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Tuple , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple ): def cross_entropy(UpperCamelCase__: List[str] , UpperCamelCase__: List[str] , UpperCamelCase__: List[str]=None ): SCREAMING_SNAKE_CASE__ = logits.shape[-1] SCREAMING_SNAKE_CASE__ = (labels[..., None] == jnp.arange(UpperCamelCase__ )[None]).astype("""f4""" ) SCREAMING_SNAKE_CASE__ = jax.nn.log_softmax(UpperCamelCase__ , axis=-1 ) SCREAMING_SNAKE_CASE__ = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: SCREAMING_SNAKE_CASE__ = reduction(UpperCamelCase__ ) return loss SCREAMING_SNAKE_CASE__ = partial(UpperCamelCase__ , reduction=jnp.mean ) SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class UpperCamelCase_ : lowerCamelCase_ = "google/bigbird-roberta-base" lowerCamelCase_ = 30_00 lowerCamelCase_ = 1_05_00 lowerCamelCase_ = 1_28 lowerCamelCase_ = 3 lowerCamelCase_ = 1 lowerCamelCase_ = 5 # tx_args lowerCamelCase_ = 3e-5 lowerCamelCase_ = 0.0 lowerCamelCase_ = 2_00_00 lowerCamelCase_ = 0.0095 lowerCamelCase_ = "bigbird-roberta-natural-questions" lowerCamelCase_ = "training-expt" lowerCamelCase_ = "data/nq-training.jsonl" lowerCamelCase_ = "data/nq-validation.jsonl" def _snake_case ( self :str ) -> Optional[int]: """simple docstring""" os.makedirs(self.base_dir , exist_ok=__A ) SCREAMING_SNAKE_CASE__ = os.path.join(self.base_dir , self.save_dir ) SCREAMING_SNAKE_CASE__ = self.batch_size_per_device * jax.device_count() @dataclass class UpperCamelCase_ : lowerCamelCase_ = 42 lowerCamelCase_ = 40_96 # no dynamic padding on TPUs def __call__( self :Optional[Any] , __A :Optional[int] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.collate_fn(__A ) SCREAMING_SNAKE_CASE__ = jax.tree_util.tree_map(__A , __A ) return batch def _snake_case ( self :List[Any] , __A :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.fetch_inputs(features["""input_ids"""] ) SCREAMING_SNAKE_CASE__ = { """input_ids""": jnp.array(__A , dtype=jnp.intaa ), """attention_mask""": jnp.array(__A , dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ), } return batch def _snake_case ( self :Tuple , __A :list ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self._fetch_inputs(__A ) for ids in input_ids] return zip(*__A ) def _snake_case ( self :List[str] , __A :list ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [1 for _ in range(len(__A ) )] while len(__A ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: List[str] , UpperCamelCase__: Optional[Any]=None ): if seed is not None: SCREAMING_SNAKE_CASE__ = dataset.shuffle(seed=UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) // batch_size ): SCREAMING_SNAKE_CASE__ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCamelCase__ ) @partial(jax.pmap , axis_name="""batch""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: Optional[int] , **UpperCamelCase__: Optional[int] ): def loss_fn(UpperCamelCase__: List[Any] ): SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" ) SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=UpperCamelCase__ , dropout_rng=UpperCamelCase__ , train=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs return state.loss_fn( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = jax.random.split(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = jax.value_and_grad(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = grad_fn(state.params ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean(UpperCamelCase__ , """batch""" ) SCREAMING_SNAKE_CASE__ = state.apply_gradients(grads=UpperCamelCase__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , **UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" ) SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=state.params , train=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs SCREAMING_SNAKE_CASE__ = state.loss_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class UpperCamelCase_ ( train_state.TrainState ): lowerCamelCase_ = struct.field(pytree_node=UpperCamelCase__ ) @dataclass class UpperCamelCase_ : lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = None def _snake_case ( self :List[Any] , __A :str , __A :str , __A :str , __A :Tuple=None ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = model.params SCREAMING_SNAKE_CASE__ = TrainState.create( apply_fn=model.__call__ , params=__A , tx=__A , loss_fn=__A , ) if ckpt_dir is not None: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = restore_checkpoint(__A , __A ) SCREAMING_SNAKE_CASE__ = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = build_tx(**__A ) SCREAMING_SNAKE_CASE__ = train_state.TrainState( step=__A , apply_fn=model.__call__ , params=__A , tx=__A , opt_state=__A , ) SCREAMING_SNAKE_CASE__ = args SCREAMING_SNAKE_CASE__ = data_collator SCREAMING_SNAKE_CASE__ = lr SCREAMING_SNAKE_CASE__ = params SCREAMING_SNAKE_CASE__ = jax_utils.replicate(__A ) return state def _snake_case ( self :Optional[Any] , __A :Optional[int] , __A :int , __A :int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.args SCREAMING_SNAKE_CASE__ = len(__A ) // args.batch_size SCREAMING_SNAKE_CASE__ = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE__ = jax.random.split(__A , jax.device_count() ) for epoch in range(args.max_epochs ): SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , args.batch_size , seed=__A ) SCREAMING_SNAKE_CASE__ = 0 for batch in tqdm(__A , total=__A , desc=f'''Running EPOCH-{epoch}''' ): SCREAMING_SNAKE_CASE__ = self.data_collator(__A ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.train_step_fn(__A , __A , **__A ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(state.step ) SCREAMING_SNAKE_CASE__ = running_loss.item() / i SCREAMING_SNAKE_CASE__ = self.scheduler_fn(state_step - 1 ) SCREAMING_SNAKE_CASE__ = self.evaluate(__A , __A ) SCREAMING_SNAKE_CASE__ = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(__A ) ) self.logger.log(__A , commit=__A ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=__A ) def _snake_case ( self :List[str] , __A :Dict , __A :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , self.args.batch_size ) SCREAMING_SNAKE_CASE__ = len(__A ) // self.args.batch_size SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = 0 for batch in tqdm(__A , total=__A , desc="""Evaluating ... """ ): SCREAMING_SNAKE_CASE__ = self.data_collator(__A ) SCREAMING_SNAKE_CASE__ = self.val_step_fn(__A , **__A ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def _snake_case ( self :List[Any] , __A :Any , __A :Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(__A ) print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=""" ... """ ) self.model_save_fn(__A , params=state.params ) with open(os.path.join(__A , """opt_state.msgpack""" ) , """wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(__A , """args.joblib""" ) ) joblib.dump(self.data_collator , os.path.join(__A , """data_collator.joblib""" ) ) with open(os.path.join(__A , """training_state.json""" ) , """w""" ) as f: json.dump({"""step""": state.step.item()} , __A ) print("""DONE""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ): print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=""" ... """ ) with open(os.path.join(UpperCamelCase__ , """flax_model.msgpack""" ) , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = from_bytes(state.params , f.read() ) with open(os.path.join(UpperCamelCase__ , """opt_state.msgpack""" ) , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = from_bytes(state.opt_state , f.read() ) SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """args.joblib""" ) ) SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """data_collator.joblib""" ) ) with open(os.path.join(UpperCamelCase__ , """training_state.json""" ) , """r""" ) as f: SCREAMING_SNAKE_CASE__ = json.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = num_train_steps - warmup_steps SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=UpperCamelCase__ , transition_steps=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=1e-7 , transition_steps=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple ): def weight_decay_mask(UpperCamelCase__: Any ): SCREAMING_SNAKE_CASE__ = traverse_util.flatten_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = scheduler_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = optax.adamw(learning_rate=UpperCamelCase__ , weight_decay=UpperCamelCase__ , mask=UpperCamelCase__ ) return tx, lr
6
1
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset _lowerCamelCase = pd.read_csv( 'https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/' 'position_salaries.csv' ) _lowerCamelCase = dataset.iloc[:, 1:2].values _lowerCamelCase = dataset.iloc[:, 2].values _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = train_test_split(X, y, test_size=0.2, random_state=0) _lowerCamelCase = PolynomialFeatures(degree=4) _lowerCamelCase = poly_reg.fit_transform(X) _lowerCamelCase = LinearRegression() pol_reg.fit(X_poly, y) def SCREAMING_SNAKE_CASE__ ( ): plt.scatter(UpperCamelCase__ , UpperCamelCase__ , color="""red""" ) plt.plot(UpperCamelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCamelCase__ ) ) , color="""blue""" ) plt.title("""Truth or Bluff (Linear Regression)""" ) plt.xlabel("""Position level""" ) plt.ylabel("""Salary""" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
6
from torch import nn def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
6
1
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowerCamelCase = ['text', 'image', 'audio'] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): SCREAMING_SNAKE_CASE__ = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3_000 ) ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): inputs.append(create_inputs(UpperCamelCase__ ) ) else: raise ValueError(f'''Invalid type requested: {input_type}''' ) return inputs def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List ): SCREAMING_SNAKE_CASE__ = [] for output in outputs: if isinstance(UpperCamelCase__ , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(UpperCamelCase__ , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(UpperCamelCase__ , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(f'''Invalid output: {output}''' ) return output_types @is_tool_test class UpperCamelCase_ : def _snake_case ( self :Optional[Any] ) -> Optional[int]: """simple docstring""" self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) SCREAMING_SNAKE_CASE__ = self.tool.inputs for _input in inputs: if isinstance(_input , __A ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) SCREAMING_SNAKE_CASE__ = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE__ = self.tool(*__A ) # There is a single output if len(self.tool.outputs ) == 1: SCREAMING_SNAKE_CASE__ = [outputs] self.assertListEqual(output_types(__A ) , self.tool.outputs ) def _snake_case ( self :Optional[Any] ) -> Optional[Any]: """simple docstring""" self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def _snake_case ( self :Tuple ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE__ = self.tool(*__A ) if not isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = [outputs] self.assertEqual(len(__A ) , len(self.tool.outputs ) ) for output, output_type in zip(__A , self.tool.outputs ): SCREAMING_SNAKE_CASE__ = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(__A , __A ) ) def _snake_case ( self :Any ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE__ = [] for _input, input_type in zip(__A , self.tool.inputs ): if isinstance(__A , __A ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error SCREAMING_SNAKE_CASE__ = self.tool(*__A ) if not isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = [outputs] self.assertEqual(len(__A ) , len(self.tool.outputs ) )
6
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) SCREAMING_SNAKE_CASE__ = MaskFormerConfig(backbone_config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 847 SCREAMING_SNAKE_CASE__ = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 150 SCREAMING_SNAKE_CASE__ = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 171 SCREAMING_SNAKE_CASE__ = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO SCREAMING_SNAKE_CASE__ = 133 SCREAMING_SNAKE_CASE__ = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 19 SCREAMING_SNAKE_CASE__ = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 65 SCREAMING_SNAKE_CASE__ = """mapillary-vistas-id2label.json""" SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE__ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.layers.{i}.downsample.reduction.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f'''sem_seg_head.adapter_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', f'''mask_embedder.{i}.0.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', f'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[int] ): SCREAMING_SNAKE_CASE__ = dct.pop(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = val def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): SCREAMING_SNAKE_CASE__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[: dim] SCREAMING_SNAKE_CASE__ = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE__ = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ): # fmt: off SCREAMING_SNAKE_CASE__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :] # fmt: on def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE__ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: bool = False ): SCREAMING_SNAKE_CASE__ = get_maskformer_config(UpperCamelCase__ ) # load original state_dict with open(UpperCamelCase__ , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = pickle.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys SCREAMING_SNAKE_CASE__ = create_rename_keys(UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_swin_q_k_v(UpperCamelCase__ , config.backbone_config ) read_in_decoder_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # update to torch tensors for key, value in state_dict.items(): SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase__ ) # load 🤗 model SCREAMING_SNAKE_CASE__ = MaskFormerForInstanceSegmentation(UpperCamelCase__ ) model.eval() for name, param in model.named_parameters(): print(UpperCamelCase__ , param.shape ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(UpperCamelCase__ ) == 0, f'''Unexpected keys: {unexpected_keys}''' # verify results SCREAMING_SNAKE_CASE__ = prepare_img() if "vistas" in model_name: SCREAMING_SNAKE_CASE__ = 65 elif "cityscapes" in model_name: SCREAMING_SNAKE_CASE__ = 65_535 else: SCREAMING_SNAKE_CASE__ = 255 SCREAMING_SNAKE_CASE__ = True if """ade""" in model_name else False SCREAMING_SNAKE_CASE__ = MaskFormerImageProcessor(ignore_index=UpperCamelCase__ , reduce_labels=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = image_processor(UpperCamelCase__ , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase__ ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": SCREAMING_SNAKE_CASE__ = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) image_processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(f'''nielsr/{model_name}''' ) image_processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _lowerCamelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
6
1
from __future__ import annotations class UpperCamelCase_ : def __init__( self :List[str] , __A :str , __A :str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = text, pattern SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = len(__A ), len(__A ) def _snake_case ( self :Optional[int] , __A :str ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _snake_case ( self :Optional[Any] , __A :int ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _snake_case ( self :List[str] ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [] for i in range(self.textLen - self.patLen + 1 ): SCREAMING_SNAKE_CASE__ = self.mismatch_in_text(__A ) if mismatch_index == -1: positions.append(__A ) else: SCREAMING_SNAKE_CASE__ = self.match_in_pattern(self.text[mismatch_index] ) SCREAMING_SNAKE_CASE__ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _lowerCamelCase = 'ABAABA' _lowerCamelCase = 'AB' _lowerCamelCase = BoyerMooreSearch(text, pattern) _lowerCamelCase = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
6
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'nielsr/canine-s': 2048, } # Unicode defines 1,114,112 total “codepoints” _lowerCamelCase = 1114112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _lowerCamelCase = 0 _lowerCamelCase = 0XE0_00 _lowerCamelCase = 0XE0_01 _lowerCamelCase = 0XE0_02 _lowerCamelCase = 0XE0_03 _lowerCamelCase = 0XE0_04 # Maps special codepoints to human-readable names. _lowerCamelCase = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _lowerCamelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self :str , __A :str=chr(__A ) , __A :str=chr(__A ) , __A :Dict=chr(__A ) , __A :str=chr(__A ) , __A :Union[str, Any]=chr(__A ) , __A :str=chr(__A ) , __A :int=False , __A :int=2048 , **__A :Dict , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , model_max_length=__A , **__A , ) # Creates a mapping for looking up the IDs of special symbols. SCREAMING_SNAKE_CASE__ = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): SCREAMING_SNAKE_CASE__ = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. SCREAMING_SNAKE_CASE__ = { codepoint: name for name, codepoint in self._special_codepoints.items() } SCREAMING_SNAKE_CASE__ = UNICODE_VOCAB_SIZE SCREAMING_SNAKE_CASE__ = len(self._special_codepoints ) @property def _snake_case ( self :Optional[Any] ) -> int: """simple docstring""" return self._unicode_vocab_size def _snake_case ( self :Tuple , __A :str ) -> List[str]: """simple docstring""" return list(__A ) def _snake_case ( self :Optional[Any] , __A :str ) -> int: """simple docstring""" try: return ord(__A ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def _snake_case ( self :str , __A :int ) -> str: """simple docstring""" try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__A ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Any: """simple docstring""" return "".join(__A ) def _snake_case ( self :Optional[Any] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def _snake_case ( self :List[Any] , __A :List[int] , __A :Optional[List[int]] = None , __A :bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) SCREAMING_SNAKE_CASE__ = [1] + ([0] * len(__A )) + [1] if token_ids_a is not None: result += ([0] * len(__A )) + [1] return result def _snake_case ( self :List[str] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def _snake_case ( self :int , __A :str , __A :Optional[str] = None ) -> Any: """simple docstring""" return ()
6
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase__ ) class UpperCamelCase_ ( UpperCamelCase__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCamelCase_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCamelCase_ = Features({"text": Value("string" )} ) lowerCamelCase_ = Features({"labels": ClassLabel} ) lowerCamelCase_ = "text" lowerCamelCase_ = "labels" def _snake_case ( self :Any , __A :Dict ) -> Optional[Any]: """simple docstring""" if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) SCREAMING_SNAKE_CASE__ = copy.deepcopy(self ) SCREAMING_SNAKE_CASE__ = self.label_schema.copy() SCREAMING_SNAKE_CASE__ = features[self.label_column] SCREAMING_SNAKE_CASE__ = label_schema return task_template @property def _snake_case ( self :str ) -> Dict[str, str]: """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
6
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) _lowerCamelCase = 'bert-base-cased' _lowerCamelCase = 'fp16' _lowerCamelCase = 'bf16' _lowerCamelCase = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Optional[Any] ) -> Optional[Any]: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = dict( ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , ) def _snake_case ( self :List[Any] ) -> Tuple: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = f'''{i + 1}''' SCREAMING_SNAKE_CASE__ = strategy with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def _snake_case ( self :int ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = prefetch_policy with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def _snake_case ( self :List[str] ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = state_dict_type with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _snake_case ( self :str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoModel.from_pretrained(__A ) for policy in FSDP_AUTO_WRAP_POLICY: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = policy if policy == "TRANSFORMER_BASED_WRAP": SCREAMING_SNAKE_CASE__ = """BertLayer""" elif policy == "SIZE_BASED_WRAP": SCREAMING_SNAKE_CASE__ = """2000""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = """TRANSFORMER_BASED_WRAP""" SCREAMING_SNAKE_CASE__ = """T5Layer""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() with self.assertRaises(__A ) as cm: fsdp_plugin.set_auto_wrap_policy(__A ) self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) ) SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = """SIZE_BASED_WRAP""" SCREAMING_SNAKE_CASE__ = """0""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _snake_case ( self :Optional[Any] ) -> Optional[int]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = mp_dtype with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = Accelerator() if mp_dtype == "fp16": SCREAMING_SNAKE_CASE__ = torch.floataa elif mp_dtype == "bf16": SCREAMING_SNAKE_CASE__ = torch.bfloataa SCREAMING_SNAKE_CASE__ = MixedPrecision(param_dtype=__A , reduce_dtype=__A , buffer_dtype=__A ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __A ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __A ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__A ) def _snake_case ( self :str ) -> str: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = str(__A ).lower() with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__A ) ) @require_fsdp @require_multi_gpu @slow class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Any ) -> Any: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = 0.8_2 SCREAMING_SNAKE_CASE__ = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] SCREAMING_SNAKE_CASE__ = { """multi_gpu_fp16""": 3200, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000, """fsdp_full_shard_transformer_based_wrap_fp16""": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } SCREAMING_SNAKE_CASE__ = 160 SCREAMING_SNAKE_CASE__ = 160 SCREAMING_SNAKE_CASE__ = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] ) def _snake_case ( self :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_performance.py""" ) SCREAMING_SNAKE_CASE__ = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: SCREAMING_SNAKE_CASE__ = cmd.copy() for i, strategy in enumerate(__A ): if strategy.lower() in config: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append("""--mixed_precision=no""" ) else: cmd_config.append("""--mixed_precision=fp16""" ) if "cpu_offload" in config: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self :Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" ) SCREAMING_SNAKE_CASE__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = cmd.copy() cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue SCREAMING_SNAKE_CASE__ = len(__A ) for state_dict_type in FSDP_STATE_DICT_TYPE: SCREAMING_SNAKE_CASE__ = cmd_config[:state_dict_config_index] cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', """--partial_train_epoch=1""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) SCREAMING_SNAKE_CASE__ = cmd_config[:-1] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdir , """epoch_0""" ) cmd_config.extend( [ f'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self :Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" ) SCREAMING_SNAKE_CASE__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): SCREAMING_SNAKE_CASE__ = cmd.copy() if "fp16" in spec: cmd_config.extend(["""--mixed_precision=fp16"""] ) else: cmd_config.extend(["""--mixed_precision=no"""] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["""--use_fsdp"""] ) for i, strategy in enumerate(__A ): if strategy.lower() in spec: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--peak_memory_upper_bound={peak_mem_upper_bound}''', f'''--n_train={self.n_train}''', f'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() )
6
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class UpperCamelCase_ ( unittest.TestCase ): def __init__( self :str , __A :List[Any] , __A :Optional[Any]=7 , __A :int=3 , __A :int=10 , __A :Dict=18 , __A :str=30 , __A :Any=400 , __A :Dict=True , __A :Any=None , __A :List[str]=True , __A :Dict=[0.5, 0.5, 0.5] , __A :List[str]=[0.5, 0.5, 0.5] , __A :List[str]=None , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = size if size is not None else {"""shortest_edge""": 18} SCREAMING_SNAKE_CASE__ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = num_frames SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean SCREAMING_SNAKE_CASE__ = image_std SCREAMING_SNAKE_CASE__ = crop_size def _snake_case ( self :Tuple ) -> str: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCamelCase_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase_ = VivitImageProcessor if is_vision_available() else None def _snake_case ( self :int ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = VivitImageProcessingTester(self ) @property def _snake_case ( self :Optional[Any] ) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self :int ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """image_mean""" ) ) self.assertTrue(hasattr(__A , """image_std""" ) ) self.assertTrue(hasattr(__A , """do_normalize""" ) ) self.assertTrue(hasattr(__A , """do_resize""" ) ) self.assertTrue(hasattr(__A , """do_center_crop""" ) ) self.assertTrue(hasattr(__A , """size""" ) ) def _snake_case ( self :Optional[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _snake_case ( self :List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos SCREAMING_SNAKE_CASE__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=__A ) for video in video_inputs: self.assertIsInstance(__A , __A ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _snake_case ( self :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for video in video_inputs: self.assertIsInstance(__A , __A ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _snake_case ( self :int ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for video in video_inputs: self.assertIsInstance(__A , __A ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
6
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _lowerCamelCase = logging.get_logger(__name__) # General docstring _lowerCamelCase = 'PoolFormerConfig' # Base docstring _lowerCamelCase = 'sail/poolformer_s12' _lowerCamelCase = [1, 512, 7, 7] # Image classification docstring _lowerCamelCase = 'sail/poolformer_s12' _lowerCamelCase = 'tabby, tabby cat' _lowerCamelCase = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: float = 0.0 , UpperCamelCase__: bool = False ): if drop_prob == 0.0 or not training: return input SCREAMING_SNAKE_CASE__ = 1 - drop_prob SCREAMING_SNAKE_CASE__ = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets SCREAMING_SNAKE_CASE__ = keep_prob + torch.rand(UpperCamelCase__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize SCREAMING_SNAKE_CASE__ = input.div(UpperCamelCase__ ) * random_tensor return output class UpperCamelCase_ ( nn.Module ): def __init__( self :Optional[Any] , __A :Optional[float] = None ) -> None: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = drop_prob def _snake_case ( self :Any , __A :torch.Tensor ) -> torch.Tensor: """simple docstring""" return drop_path(__A , self.drop_prob , self.training ) def _snake_case ( self :Dict ) -> str: """simple docstring""" return "p={}".format(self.drop_prob ) class UpperCamelCase_ ( nn.Module ): def __init__( self :Dict , __A :Optional[Any] , __A :Dict , __A :List[str] , __A :Optional[Any] , __A :Tuple , __A :Optional[Any]=None ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = patch_size if isinstance(__A , collections.abc.Iterable ) else (patch_size, patch_size) SCREAMING_SNAKE_CASE__ = stride if isinstance(__A , collections.abc.Iterable ) else (stride, stride) SCREAMING_SNAKE_CASE__ = padding if isinstance(__A , collections.abc.Iterable ) else (padding, padding) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , kernel_size=__A , stride=__A , padding=__A ) SCREAMING_SNAKE_CASE__ = norm_layer(__A ) if norm_layer else nn.Identity() def _snake_case ( self :Dict , __A :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.projection(__A ) SCREAMING_SNAKE_CASE__ = self.norm(__A ) return embeddings class UpperCamelCase_ ( nn.GroupNorm ): def __init__( self :Dict , __A :Tuple , **__A :Union[str, Any] ) -> Dict: """simple docstring""" super().__init__(1 , __A , **__A ) class UpperCamelCase_ ( nn.Module ): def __init__( self :List[str] , __A :Optional[int] ) -> Any: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.AvgPoolad(__A , stride=1 , padding=pool_size // 2 , count_include_pad=__A ) def _snake_case ( self :Any , __A :Optional[Any] ) -> Optional[Any]: """simple docstring""" return self.pool(__A ) - hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self :Optional[Any] , __A :Tuple , __A :Dict , __A :int , __A :Any ) -> str: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A ) if isinstance(config.hidden_act , __A ): SCREAMING_SNAKE_CASE__ = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE__ = config.hidden_act def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.conva(__A ) SCREAMING_SNAKE_CASE__ = self.act_fn(__A ) SCREAMING_SNAKE_CASE__ = self.drop(__A ) SCREAMING_SNAKE_CASE__ = self.conva(__A ) SCREAMING_SNAKE_CASE__ = self.drop(__A ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self :Any , __A :str , __A :List[str] , __A :Tuple , __A :Dict , __A :Union[str, Any] , __A :int ) -> Optional[int]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = PoolFormerPooling(__A ) SCREAMING_SNAKE_CASE__ = PoolFormerOutput(__A , __A , __A , __A ) SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A ) SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A ) # Useful for training neural nets SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A ) if drop_path > 0.0 else nn.Identity() SCREAMING_SNAKE_CASE__ = config.use_layer_scale if config.use_layer_scale: SCREAMING_SNAKE_CASE__ = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) SCREAMING_SNAKE_CASE__ = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) def _snake_case ( self :Optional[Any] , __A :Optional[int] ) -> str: """simple docstring""" if self.use_layer_scale: SCREAMING_SNAKE_CASE__ = self.pooling(self.before_norm(__A ) ) SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A ) SCREAMING_SNAKE_CASE__ = () SCREAMING_SNAKE_CASE__ = self.output(self.after_norm(__A ) ) SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A ) SCREAMING_SNAKE_CASE__ = (output,) + outputs return outputs else: SCREAMING_SNAKE_CASE__ = self.drop_path(self.pooling(self.before_norm(__A ) ) ) # First residual connection SCREAMING_SNAKE_CASE__ = pooling_output + hidden_states SCREAMING_SNAKE_CASE__ = () # Second residual connection inside the PoolFormerOutput block SCREAMING_SNAKE_CASE__ = self.drop_path(self.output(self.after_norm(__A ) ) ) SCREAMING_SNAKE_CASE__ = hidden_states + layer_output SCREAMING_SNAKE_CASE__ = (output,) + outputs return outputs class UpperCamelCase_ ( nn.Module ): def __init__( self :Union[str, Any] , __A :List[Any] ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = config # stochastic depth decay rule SCREAMING_SNAKE_CASE__ = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings SCREAMING_SNAKE_CASE__ = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A ) # Transformer blocks SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers SCREAMING_SNAKE_CASE__ = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __A , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__A ) ) SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A ) def _snake_case ( self :str , __A :Tuple , __A :Dict=False , __A :Tuple=True ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = () if output_hidden_states else None SCREAMING_SNAKE_CASE__ = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = layers # Get patch embeddings from hidden_states SCREAMING_SNAKE_CASE__ = embedding_layer(__A ) # Send the embeddings through the blocks for _, blk in enumerate(__A ): SCREAMING_SNAKE_CASE__ = blk(__A ) SCREAMING_SNAKE_CASE__ = layer_outputs[0] if output_hidden_states: SCREAMING_SNAKE_CASE__ = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__A , hidden_states=__A ) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = PoolFormerConfig lowerCamelCase_ = "poolformer" lowerCamelCase_ = "pixel_values" lowerCamelCase_ = True def _snake_case ( self :Optional[Any] , __A :Tuple ) -> Dict: """simple docstring""" if isinstance(__A , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__A , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _snake_case ( self :str , __A :Optional[Any] , __A :Union[str, Any]=False ) -> Any: """simple docstring""" if isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = value _lowerCamelCase = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _lowerCamelCase = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , UpperCamelCase__ , ) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , __A :Any ) -> int: """simple docstring""" super().__init__(__A ) SCREAMING_SNAKE_CASE__ = config SCREAMING_SNAKE_CASE__ = PoolFormerEncoder(__A ) # Initialize weights and apply final processing self.post_init() def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__A , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _snake_case ( self :Dict , __A :Optional[torch.FloatTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) SCREAMING_SNAKE_CASE__ = self.encoder( __A , output_hidden_states=__A , return_dict=__A , ) SCREAMING_SNAKE_CASE__ = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__A , hidden_states=encoder_outputs.hidden_states , ) class UpperCamelCase_ ( nn.Module ): def __init__( self :int , __A :Optional[int] ) -> Tuple: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(config.hidden_size , config.hidden_size ) def _snake_case ( self :List[Any] , __A :Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.dense(__A ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , UpperCamelCase__ , ) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :str , __A :Union[str, Any] ) -> int: """simple docstring""" super().__init__(__A ) SCREAMING_SNAKE_CASE__ = config.num_labels SCREAMING_SNAKE_CASE__ = PoolFormerModel(__A ) # Final norm SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head SCREAMING_SNAKE_CASE__ = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _snake_case ( self :int , __A :Optional[torch.FloatTensor] = None , __A :Optional[torch.LongTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE__ = self.poolformer( __A , output_hidden_states=__A , return_dict=__A , ) SCREAMING_SNAKE_CASE__ = outputs[0] SCREAMING_SNAKE_CASE__ = self.classifier(self.norm(__A ).mean([-2, -1] ) ) SCREAMING_SNAKE_CASE__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE__ = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE__ = """single_label_classification""" else: SCREAMING_SNAKE_CASE__ = """multi_label_classification""" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE__ = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE__ = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE__ = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A ) if not return_dict: SCREAMING_SNAKE_CASE__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__A , logits=__A , hidden_states=outputs.hidden_states )
6
1
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _lowerCamelCase = data_utils.TransfoXLTokenizer _lowerCamelCase = data_utils.TransfoXLCorpus _lowerCamelCase = data_utils _lowerCamelCase = data_utils def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: int , UpperCamelCase__: List[str] , UpperCamelCase__: List[Any] ): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(UpperCamelCase__ , """rb""" ) as fp: SCREAMING_SNAKE_CASE__ = pickle.load(UpperCamelCase__ , encoding="""latin1""" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) SCREAMING_SNAKE_CASE__ = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""pretrained_vocab_file"""] print(f'''Save vocabulary to {pytorch_vocab_dump_path}''' ) SCREAMING_SNAKE_CASE__ = corpus.vocab.__dict__ torch.save(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = corpus.__dict__ corpus_dict_no_vocab.pop("""vocab""" , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = pytorch_dump_folder_path + """/""" + CORPUS_NAME print(f'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model SCREAMING_SNAKE_CASE__ = os.path.abspath(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = os.path.abspath(UpperCamelCase__ ) print(f'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": SCREAMING_SNAKE_CASE__ = TransfoXLConfig() else: SCREAMING_SNAKE_CASE__ = TransfoXLConfig.from_json_file(UpperCamelCase__ ) print(f'''Building PyTorch model from configuration: {config}''' ) SCREAMING_SNAKE_CASE__ = TransfoXLLMHeadModel(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = load_tf_weights_in_transfo_xl(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) print(f'''Save PyTorch model to {os.path.abspath(UpperCamelCase__ )}''' ) torch.save(model.state_dict() , UpperCamelCase__ ) print(f'''Save configuration file to {os.path.abspath(UpperCamelCase__ )}''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) _lowerCamelCase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
6
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , __A :Optional[int] , __A :Tuple=13 , __A :Dict=7 , __A :Dict=True , __A :str=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Any=False , __A :Dict=False , __A :Any=False , __A :Tuple=2 , __A :Dict=99 , __A :Optional[Any]=0 , __A :List[str]=32 , __A :Optional[int]=5 , __A :Dict=4 , __A :List[str]=0.1 , __A :Union[str, Any]=0.1 , __A :Tuple=512 , __A :Any=12 , __A :Optional[int]=2 , __A :Union[str, Any]=0.0_2 , __A :Dict=3 , __A :Optional[int]=4 , __A :Any="last" , __A :List[Any]=None , __A :Any=None , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_lengths SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = gelu_activation SCREAMING_SNAKE_CASE__ = sinusoidal_embeddings SCREAMING_SNAKE_CASE__ = causal SCREAMING_SNAKE_CASE__ = asm SCREAMING_SNAKE_CASE__ = n_langs SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = n_special SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = summary_type SCREAMING_SNAKE_CASE__ = use_proj SCREAMING_SNAKE_CASE__ = scope def _snake_case ( self :Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_input_lengths: SCREAMING_SNAKE_CASE__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , 2 ).float() SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self :List[str] ) -> Optional[int]: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _snake_case ( self :Tuple , __A :str , __A :int , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[int] , __A :Union[str, Any] , __A :Union[str, Any] , __A :str , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModel(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , lengths=__A , langs=__A ) SCREAMING_SNAKE_CASE__ = model(__A , langs=__A ) SCREAMING_SNAKE_CASE__ = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self :str , __A :Any , __A :str , __A :Union[str, Any] , __A :Optional[Any] , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[Any] , __A :Union[str, Any] , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertWithLMHeadModel(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self :Tuple , __A :Union[str, Any] , __A :Optional[Any] , __A :Dict , __A :Dict , __A :Union[str, Any] , __A :List[str] , __A :Optional[int] , __A :int , __A :str , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnsweringSimple(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self :List[str] , __A :Any , __A :int , __A :Tuple , __A :Optional[Any] , __A :Tuple , __A :Optional[int] , __A :str , __A :int , __A :str , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnswering(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model( __A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , p_mask=__A , ) SCREAMING_SNAKE_CASE__ = model( __A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , ) ((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple() SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A ) ((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _snake_case ( self :Optional[int] , __A :str , __A :Optional[int] , __A :Tuple , __A :Dict , __A :List[str] , __A :Tuple , __A :List[str] , __A :Dict , __A :List[str] , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForSequenceClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model(__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self :Optional[Any] , __A :Optional[Any] , __A :Optional[Any] , __A :List[str] , __A :Optional[Any] , __A :int , __A :Tuple , __A :Optional[int] , __A :Union[str, Any] , __A :Dict , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = FlaubertForTokenClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self :str , __A :Any , __A :Tuple , __A :List[str] , __A :Tuple , __A :Any , __A :int , __A :Dict , __A :List[str] , __A :Tuple , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_choices SCREAMING_SNAKE_CASE__ = FlaubertForMultipleChoice(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self :Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): lowerCamelCase_ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase_ = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self :Any , __A :Optional[int] , __A :Optional[int] , __A :Dict , __A :List[Any] , __A :Tuple ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self :Tuple , __A :List[str] , __A :Optional[int] , __A :Dict=False ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__A , emb_dim=37 ) def _snake_case ( self :int ) -> int: """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self :Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__A ) def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__A ) def _snake_case ( self :str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__A ) def _snake_case ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__A ) def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__A ) def _snake_case ( self :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__A ) def _snake_case ( self :Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__A ) @slow def _snake_case ( self :Union[str, Any] ) -> List[str]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @slow @require_torch_gpu def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = model_class(config=__A ) SCREAMING_SNAKE_CASE__ = self._prepare_for_class(__A , __A ) SCREAMING_SNAKE_CASE__ = torch.jit.trace( __A , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__A , os.path.join(__A , """traced_model.pt""" ) ) SCREAMING_SNAKE_CASE__ = torch.jit.load(os.path.join(__A , """traced_model.pt""" ) , map_location=__A ) loaded(inputs_dict["""input_ids"""].to(__A ) , inputs_dict["""attention_mask"""].to(__A ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _snake_case ( self :Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(__A )[0] SCREAMING_SNAKE_CASE__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __A ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1E-4 ) )
6
1
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "" lowerCamelCase_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowerCamelCase_ = None # compression type in fsspec. ex: "gzip" lowerCamelCase_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self :Optional[int] , __A :str = "" , __A :Optional[str] = None , __A :Optional[dict] = None , **__A :List[str] ) -> Any: """simple docstring""" super().__init__(self , **__A ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode SCREAMING_SNAKE_CASE__ = fsspec.open( __A , mode="""rb""" , protocol=__A , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) SCREAMING_SNAKE_CASE__ = os.path.basename(self.file.path.split("""::""" )[0] ) SCREAMING_SNAKE_CASE__ = ( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) SCREAMING_SNAKE_CASE__ = None @classmethod def _snake_case ( cls :Any , __A :Tuple ) -> List[str]: """simple docstring""" return super()._strip_protocol(__A ).lstrip("""/""" ) def _snake_case ( self :Union[str, Any] ) -> Tuple: """simple docstring""" if self.dir_cache is None: SCREAMING_SNAKE_CASE__ = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} SCREAMING_SNAKE_CASE__ = {f["""name"""]: f} def _snake_case ( self :Optional[int] , __A :str ) -> str: """simple docstring""" return self.file.open().read() def _snake_case ( self :List[str] , __A :str , __A :str = "rb" , __A :int=None , __A :List[str]=True , __A :Optional[Any]=None , **__A :Union[str, Any] , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self._strip_protocol(__A ) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "bz2" lowerCamelCase_ = "bz2" lowerCamelCase_ = ".bz2" class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "gzip" lowerCamelCase_ = "gzip" lowerCamelCase_ = ".gz" class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "lz4" lowerCamelCase_ = "lz4" lowerCamelCase_ = ".lz4" class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "xz" lowerCamelCase_ = "xz" lowerCamelCase_ = ".xz" class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "zstd" lowerCamelCase_ = "zstd" lowerCamelCase_ = ".zst" def __init__( self :List[Any] , __A :str , __A :str = "rb" , __A :Optional[str] = None , __A :Optional[dict] = None , __A :int = DEFAULT_BLOCK_SIZE , **__A :Optional[int] , ) -> Union[str, Any]: """simple docstring""" super().__init__( fo=__A , mode=__A , target_protocol=__A , target_options=__A , block_size=__A , **__A , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 SCREAMING_SNAKE_CASE__ = self.file.__enter__ class UpperCamelCase_ : def __init__( self :int , __A :Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = file_ def __enter__( self :Optional[Any] ) -> Optional[int]: """simple docstring""" self._file.__enter__() return self def __exit__( self :Optional[Any] , *__A :List[Any] , **__A :int ) -> Tuple: """simple docstring""" self._file.__exit__(*__A , **__A ) def __iter__( self :Any ) -> Optional[int]: """simple docstring""" return iter(self._file ) def _snake_case ( self :Dict ) -> Dict: """simple docstring""" return next(self._file ) def __getattr__( self :Union[str, Any] , __A :List[str] ) -> Optional[Any]: """simple docstring""" return getattr(self._file , __A ) def fixed_enter(*__A :List[Any] , **__A :Optional[int] ): return WrappedFile(_enter(*__A , **__A ) ) SCREAMING_SNAKE_CASE__ = fixed_enter
6
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: str , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Union[str, Any] ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any , UpperCamelCase__: List[str] , UpperCamelCase__: Tuple=True ): model.train() SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = F.mse_loss(UpperCamelCase__ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: List[Any]=False ): set_seed(42 ) SCREAMING_SNAKE_CASE__ = RegressionModel() SCREAMING_SNAKE_CASE__ = deepcopy(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 ) model.to(accelerator.device ) if sched: SCREAMING_SNAKE_CASE__ = AdamW(params=model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE__ = AdamW(params=ddp_model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 ) SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 ) # Make a copy of `model` if sched: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ): # Test when on a single CPU or GPU that the context manager does nothing SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ ) # Use a single batch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: # Sync grads step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ): # Test on distributed setup that context manager behaves properly SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ ) # Use a single batch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: # Sync grads step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int=False , UpperCamelCase__: Union[str, Any]=False ): SCREAMING_SNAKE_CASE__ = Accelerator( split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ ) for iteration, batch in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCamelCase__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] GradientState._reset_state() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple=False , UpperCamelCase__: List[str]=False ): SCREAMING_SNAKE_CASE__ = Accelerator( split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ , UpperCamelCase__ ) for iteration, batch in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCamelCase__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' SCREAMING_SNAKE_CASE__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCamelCase__ )) if accelerator.num_processes > 1: check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) GradientState._reset_state() def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = Accelerator() SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 ) SCREAMING_SNAKE_CASE__ = RegressionDataset(length=96 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(UpperCamelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ ) if iteration < len(UpperCamelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(UpperCamelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ ) if batch_num < len(UpperCamelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = Accelerator() SCREAMING_SNAKE_CASE__ = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(UpperCamelCase__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(UpperCamelCase__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(UpperCamelCase__ , UpperCamelCase__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
6
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "LayoutLMv3ImageProcessor" lowerCamelCase_ = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self :Dict , __A :Union[str, Any]=None , __A :Union[str, Any]=None , **__A :Any ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __A , ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""feature_extractor""" ) SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__A , __A ) def __call__( self :Dict , __A :List[str] , __A :Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __A :Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __A :Union[List[List[int]], List[List[List[int]]]] = None , __A :Optional[Union[List[int], List[List[int]]]] = None , __A :bool = True , __A :Union[bool, str, PaddingStrategy] = False , __A :Union[bool, str, TruncationStrategy] = None , __A :Optional[int] = None , __A :int = 0 , __A :Optional[int] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , __A :bool = False , __A :bool = False , __A :bool = False , __A :bool = False , __A :bool = True , __A :Optional[Union[str, TensorType]] = None , **__A :Optional[Any] , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) # first, apply the image processor SCREAMING_SNAKE_CASE__ = self.image_processor(images=__A , return_tensors=__A ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = [text] # add batch dimension (as the image processor always adds a batch dimension) SCREAMING_SNAKE_CASE__ = features["""words"""] SCREAMING_SNAKE_CASE__ = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_token_type_ids=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) # add pixel values SCREAMING_SNAKE_CASE__ = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: SCREAMING_SNAKE_CASE__ = self.get_overflowing_images(__A , encoded_inputs["""overflow_to_sample_mapping"""] ) SCREAMING_SNAKE_CASE__ = images return encoded_inputs def _snake_case ( self :str , __A :Optional[int] , __A :int ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__A ) != len(__A ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f''' {len(__A )} and {len(__A )}''' ) return images_with_overflow def _snake_case ( self :List[Any] , *__A :int , **__A :Optional[int] ) -> Any: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :Tuple , *__A :int , **__A :str ) -> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :str ) -> Tuple: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def _snake_case ( self :List[Any] ) -> Optional[Any]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , ) return self.image_processor_class @property def _snake_case ( self :Dict ) -> Any: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , ) return self.image_processor
6
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "AutoImageProcessor" lowerCamelCase_ = "AutoTokenizer" def __init__( self :Optional[int] , __A :Optional[Any] , __A :Dict ) -> Dict: """simple docstring""" super().__init__(__A , __A ) SCREAMING_SNAKE_CASE__ = self.image_processor def __call__( self :int , __A :str=None , __A :int=None , __A :Union[str, Any]=None , **__A :str ) -> Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self :str , *__A :List[str] , **__A :List[str] ) -> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :List[str] , *__A :Any , **__A :Any ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :Dict ) -> List[Any]: """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
6
1
import argparse import copy def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = {} with open(UpperCamelCase__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: SCREAMING_SNAKE_CASE__ = [] _list.append([line.split()[1], line.split()[2]] ) SCREAMING_SNAKE_CASE__ = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: SCREAMING_SNAKE_CASE__ = [] _list.append([line.split()[0], line.split()[2]] ) SCREAMING_SNAKE_CASE__ = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: int ): with open(UpperCamelCase__ ) as f: SCREAMING_SNAKE_CASE__ = f.read(1 ) SCREAMING_SNAKE_CASE__ = start_node SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = start_node SCREAMING_SNAKE_CASE__ = 0 while visiting not in first_solution: SCREAMING_SNAKE_CASE__ = 10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(UpperCamelCase__ ) and k[0] not in first_solution: SCREAMING_SNAKE_CASE__ = k[1] SCREAMING_SNAKE_CASE__ = k[0] first_solution.append(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = distance_of_first_solution + int(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = best_node first_solution.append(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 SCREAMING_SNAKE_CASE__ = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: Optional[int] ): SCREAMING_SNAKE_CASE__ = [] for n in solution[1:-1]: SCREAMING_SNAKE_CASE__ = solution.index(UpperCamelCase__ ) for kn in solution[1:-1]: SCREAMING_SNAKE_CASE__ = solution.index(UpperCamelCase__ ) if n == kn: continue SCREAMING_SNAKE_CASE__ = copy.deepcopy(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = kn SCREAMING_SNAKE_CASE__ = n SCREAMING_SNAKE_CASE__ = 0 for k in _tmp[:-1]: SCREAMING_SNAKE_CASE__ = _tmp[_tmp.index(UpperCamelCase__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: SCREAMING_SNAKE_CASE__ = distance + int(i[1] ) _tmp.append(UpperCamelCase__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) SCREAMING_SNAKE_CASE__ = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda UpperCamelCase__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: int , UpperCamelCase__: List[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[Any] ): SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = first_solution SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = distance_of_first_solution SCREAMING_SNAKE_CASE__ = solution while count <= iters: SCREAMING_SNAKE_CASE__ = find_neighborhood(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = neighborhood[index_of_best_solution] SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ ) - 1 SCREAMING_SNAKE_CASE__ = False while not found: SCREAMING_SNAKE_CASE__ = 0 while i < len(UpperCamelCase__ ): if best_solution[i] != solution[i]: SCREAMING_SNAKE_CASE__ = best_solution[i] SCREAMING_SNAKE_CASE__ = solution[i] break SCREAMING_SNAKE_CASE__ = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = best_solution[:-1] SCREAMING_SNAKE_CASE__ = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: SCREAMING_SNAKE_CASE__ = cost SCREAMING_SNAKE_CASE__ = solution else: SCREAMING_SNAKE_CASE__ = index_of_best_solution + 1 SCREAMING_SNAKE_CASE__ = neighborhood[index_of_best_solution] if len(UpperCamelCase__ ) >= size: tabu_list.pop(0 ) SCREAMING_SNAKE_CASE__ = count + 1 return best_solution_ever, best_cost def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[int]=None ): SCREAMING_SNAKE_CASE__ = generate_neighbours(args.File ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = generate_first_solution( args.File , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = tabu_search( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , args.Iterations , args.Size , ) print(f'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
6
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = sum(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): SCREAMING_SNAKE_CASE__ = True for i in range(1 , s + 1 ): SCREAMING_SNAKE_CASE__ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): SCREAMING_SNAKE_CASE__ = dp[i][j - 1] if arr[i - 1] <= j: SCREAMING_SNAKE_CASE__ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: SCREAMING_SNAKE_CASE__ = s - 2 * j break return diff
6
1
from __future__ import annotations from random import random from typing import Generic, TypeVar _lowerCamelCase = TypeVar('KT') _lowerCamelCase = TypeVar('VT') class UpperCamelCase_ ( Generic[KT, VT] ): def __init__( self :List[str] , __A :KT | str = "root" , __A :VT | None = None ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = key SCREAMING_SNAKE_CASE__ = value SCREAMING_SNAKE_CASE__ = [] def __repr__( self :Optional[Any] ) -> str: """simple docstring""" return f'''Node({self.key}: {self.value})''' @property def _snake_case ( self :str ) -> int: """simple docstring""" return len(self.forward ) class UpperCamelCase_ ( Generic[KT, VT] ): def __init__( self :Union[str, Any] , __A :float = 0.5 , __A :int = 16 ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = Node[KT, VT]() SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = p SCREAMING_SNAKE_CASE__ = max_level def __str__( self :Optional[int] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = list(self ) if len(__A ) == 0: return f'''SkipList(level={self.level})''' SCREAMING_SNAKE_CASE__ = max((len(str(__A ) ) for item in items) , default=4 ) SCREAMING_SNAKE_CASE__ = max(__A , 4 ) + 4 SCREAMING_SNAKE_CASE__ = self.head SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = node.forward.copy() lines.append(f'''[{node.key}]'''.ljust(__A , """-""" ) + """* """ * len(__A ) ) lines.append(""" """ * label_size + """| """ * len(__A ) ) while len(node.forward ) != 0: SCREAMING_SNAKE_CASE__ = node.forward[0] lines.append( f'''[{node.key}]'''.ljust(__A , """-""" ) + """ """.join(str(n.key ) if n.key == node.key else """|""" for n in forwards ) ) lines.append(""" """ * label_size + """| """ * len(__A ) ) SCREAMING_SNAKE_CASE__ = node.forward lines.append("""None""".ljust(__A ) + """* """ * len(__A ) ) return f'''SkipList(level={self.level})\n''' + "\n".join(__A ) def __iter__( self :Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.head while len(node.forward ) != 0: yield node.forward[0].key SCREAMING_SNAKE_CASE__ = node.forward[0] def _snake_case ( self :str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = 1 while random() < self.p and level < self.max_level: level += 1 return level def _snake_case ( self :Dict , __A :Optional[int] ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: SCREAMING_SNAKE_CASE__ = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(__A ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def _snake_case ( self :Optional[int] , __A :KT ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._locate_node(__A ) if node is not None: for i, update_node in enumerate(__A ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: SCREAMING_SNAKE_CASE__ = node.forward[i] else: SCREAMING_SNAKE_CASE__ = update_node.forward[:i] def _snake_case ( self :List[Any] , __A :KT , __A :VT ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._locate_node(__A ) if node is not None: SCREAMING_SNAKE_CASE__ = value else: SCREAMING_SNAKE_CASE__ = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , __A ): update_vector.append(self.head ) SCREAMING_SNAKE_CASE__ = level SCREAMING_SNAKE_CASE__ = Node(__A , __A ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(__A ) else: SCREAMING_SNAKE_CASE__ = new_node def _snake_case ( self :Optional[Any] , __A :VT ) -> VT | None: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._locate_node(__A ) if node is not None: return node.value return None def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = SkipList() skip_list.insert("""Key1""" , 3 ) skip_list.insert("""Key2""" , 12 ) skip_list.insert("""Key3""" , 41 ) skip_list.insert("""Key4""" , -19 ) SCREAMING_SNAKE_CASE__ = skip_list.head SCREAMING_SNAKE_CASE__ = {} while node.level != 0: SCREAMING_SNAKE_CASE__ = node.forward[0] SCREAMING_SNAKE_CASE__ = node.value assert len(UpperCamelCase__ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = SkipList() skip_list.insert("""Key1""" , 10 ) skip_list.insert("""Key1""" , 12 ) skip_list.insert("""Key5""" , 7 ) skip_list.insert("""Key7""" , 10 ) skip_list.insert("""Key10""" , 5 ) skip_list.insert("""Key7""" , 7 ) skip_list.insert("""Key5""" , 5 ) skip_list.insert("""Key10""" , 10 ) SCREAMING_SNAKE_CASE__ = skip_list.head SCREAMING_SNAKE_CASE__ = {} while node.level != 0: SCREAMING_SNAKE_CASE__ = node.forward[0] SCREAMING_SNAKE_CASE__ = node.value if len(UpperCamelCase__ ) != 4: print() assert len(UpperCamelCase__ ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = SkipList() assert skip_list.find("""Some key""" ) is None def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = SkipList() skip_list.insert("""Key2""" , 20 ) assert skip_list.find("""Key2""" ) == 20 skip_list.insert("""Some Key""" , 10 ) skip_list.insert("""Key2""" , 8 ) skip_list.insert("""V""" , 13 ) assert skip_list.find("""Y""" ) is None assert skip_list.find("""Key2""" ) == 8 assert skip_list.find("""Some Key""" ) == 10 assert skip_list.find("""V""" ) == 13 def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = SkipList() skip_list.delete("""Some key""" ) assert len(skip_list.head.forward ) == 0 def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 14 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""V""" ) skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""Key2""" ) is None def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 14 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""V""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) == 14 assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""X""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key1""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) is None def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 142 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""X""" ) def traverse_keys(UpperCamelCase__: List[Any] ): yield node.key for forward_node in node.forward: yield from traverse_keys(UpperCamelCase__ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def SCREAMING_SNAKE_CASE__ ( ): def is_sorted(UpperCamelCase__: str ): return all(next_item >= item for item, next_item in zip(UpperCamelCase__ , lst[1:] ) ) SCREAMING_SNAKE_CASE__ = SkipList() for i in range(10 ): skip_list.insert(UpperCamelCase__ , UpperCamelCase__ ) assert is_sorted(list(UpperCamelCase__ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(UpperCamelCase__ ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(UpperCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( ): for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = SkipList() skip_list.insert(2 , """2""" ) skip_list.insert(4 , """4""" ) skip_list.insert(6 , """4""" ) skip_list.insert(4 , """5""" ) skip_list.insert(8 , """4""" ) skip_list.insert(9 , """4""" ) skip_list.delete(4 ) print(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
6
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float ): if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(UpperCamelCase__ ) * abs(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
6
1
import operator def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list , UpperCamelCase__: bool = False , UpperCamelCase__: list | None = None ): SCREAMING_SNAKE_CASE__ = operator.lt if reverse else operator.gt SCREAMING_SNAKE_CASE__ = solution or [] if not arr: return solution SCREAMING_SNAKE_CASE__ = [arr.pop(0 )] for i, item in enumerate(UpperCamelCase__ ): if _operator(UpperCamelCase__ , sublist[-1] ): sublist.append(UpperCamelCase__ ) arr.pop(UpperCamelCase__ ) # merging sublist into solution list if not solution: solution.extend(UpperCamelCase__ ) else: while sublist: SCREAMING_SNAKE_CASE__ = sublist.pop(0 ) for i, xx in enumerate(UpperCamelCase__ ): if not _operator(UpperCamelCase__ , UpperCamelCase__ ): solution.insert(UpperCamelCase__ , UpperCamelCase__ ) break else: solution.append(UpperCamelCase__ ) strand_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
6
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "encoder-decoder" lowerCamelCase_ = True def __init__( self :Optional[int] , **__A :str ) -> int: """simple docstring""" super().__init__(**__A ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" SCREAMING_SNAKE_CASE__ = kwargs.pop("""encoder""" ) SCREAMING_SNAKE_CASE__ = encoder_config.pop("""model_type""" ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""decoder""" ) SCREAMING_SNAKE_CASE__ = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A ) SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A ) SCREAMING_SNAKE_CASE__ = True @classmethod def _snake_case ( cls :str , __A :PretrainedConfig , __A :PretrainedConfig , **__A :List[str] ) -> PretrainedConfig: """simple docstring""" logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__A ) def _snake_case ( self :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ = self.encoder.to_dict() SCREAMING_SNAKE_CASE__ = self.decoder.to_dict() SCREAMING_SNAKE_CASE__ = self.__class__.model_type return output
6
1
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: ndarray ): return np.dot(UpperCamelCase__ , UpperCamelCase__ ) class UpperCamelCase_ : def __init__( self :int , *, __A :float = np.inf , __A :str = "linear" , __A :float = 0.0 , ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = regularization SCREAMING_SNAKE_CASE__ = gamma if kernel == "linear": SCREAMING_SNAKE_CASE__ = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("""rbf kernel requires gamma""" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("""gamma must be float or int""" ) if not self.gamma > 0: raise ValueError("""gamma must be > 0""" ) SCREAMING_SNAKE_CASE__ = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: SCREAMING_SNAKE_CASE__ = f'''Unknown kernel: {kernel}''' raise ValueError(__A ) def _snake_case ( self :Optional[Any] , __A :ndarray , __A :ndarray ) -> float: """simple docstring""" return np.dot(__A , __A ) def _snake_case ( self :Union[str, Any] , __A :ndarray , __A :ndarray ) -> float: """simple docstring""" return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def _snake_case ( self :Union[str, Any] , __A :list[ndarray] , __A :ndarray ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = observations SCREAMING_SNAKE_CASE__ = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((SCREAMING_SNAKE_CASE__) , ) = np.shape(__A ) def to_minimize(__A :ndarray ) -> float: SCREAMING_SNAKE_CASE__ = 0 ((SCREAMING_SNAKE_CASE__) , ) = np.shape(__A ) for i in range(__A ): for j in range(__A ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(__A ) SCREAMING_SNAKE_CASE__ = LinearConstraint(__A , 0 , 0 ) SCREAMING_SNAKE_CASE__ = Bounds(0 , self.regularization ) SCREAMING_SNAKE_CASE__ = minimize( __A , np.ones(__A ) , bounds=__A , constraints=[ly_contraint] ).x SCREAMING_SNAKE_CASE__ = l_star # calculating mean offset of separation plane to points SCREAMING_SNAKE_CASE__ = 0 for i in range(__A ): for j in range(__A ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) SCREAMING_SNAKE_CASE__ = s / n def _snake_case ( self :Optional[int] , __A :ndarray ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , __A ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
6
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase__ ) class UpperCamelCase_ ( UpperCamelCase__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCamelCase_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCamelCase_ = Features({"text": Value("string" )} ) lowerCamelCase_ = Features({"labels": ClassLabel} ) lowerCamelCase_ = "text" lowerCamelCase_ = "labels" def _snake_case ( self :Any , __A :Dict ) -> Optional[Any]: """simple docstring""" if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) SCREAMING_SNAKE_CASE__ = copy.deepcopy(self ) SCREAMING_SNAKE_CASE__ = self.label_schema.copy() SCREAMING_SNAKE_CASE__ = features[self.label_column] SCREAMING_SNAKE_CASE__ = label_schema return task_template @property def _snake_case ( self :str ) -> Dict[str, str]: """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
6
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "microsoft/speecht5_tts" lowerCamelCase_ = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) lowerCamelCase_ = "text_reader" lowerCamelCase_ = SpeechTaProcessor lowerCamelCase_ = SpeechTaForTextToSpeech lowerCamelCase_ = SpeechTaHifiGan lowerCamelCase_ = ["text"] lowerCamelCase_ = ["audio"] def _snake_case ( self :Dict ) -> List[str]: """simple docstring""" if self.post_processor is None: SCREAMING_SNAKE_CASE__ = """microsoft/speecht5_hifigan""" super().setup() def _snake_case ( self :List[Any] , __A :Union[str, Any] , __A :Optional[Any]=None ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.pre_processor(text=__A , return_tensors="""pt""" , truncation=__A ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) SCREAMING_SNAKE_CASE__ = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) SCREAMING_SNAKE_CASE__ = torch.tensor(embeddings_dataset[7305]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _snake_case ( self :Any , __A :Tuple ) -> Optional[Any]: """simple docstring""" with torch.no_grad(): return self.model.generate_speech(**__A ) def _snake_case ( self :int , __A :int ) -> List[Any]: """simple docstring""" with torch.no_grad(): return self.post_processor(__A ).cpu().detach()
6
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = model.config SCREAMING_SNAKE_CASE__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) SCREAMING_SNAKE_CASE__ = MBartConfig( is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , add_cross_attention=UpperCamelCase__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=UpperCamelCase__ , add_final_layer_norm=UpperCamelCase__ , ) return encoder_config, decoder_config def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): if "encoder.model" in name: SCREAMING_SNAKE_CASE__ = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: SCREAMING_SNAKE_CASE__ = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: SCREAMING_SNAKE_CASE__ = """encoder.""" + name if "attn.proj" in name: SCREAMING_SNAKE_CASE__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: SCREAMING_SNAKE_CASE__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": SCREAMING_SNAKE_CASE__ = """encoder.layernorm.weight""" if name == "encoder.norm.bias": SCREAMING_SNAKE_CASE__ = """encoder.layernorm.bias""" return name def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Optional[int] ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE__ = orig_state_dict.pop(UpperCamelCase__ ) if "qkv" in key: SCREAMING_SNAKE_CASE__ = key.split(""".""" ) SCREAMING_SNAKE_CASE__ = int(key_split[3] ) SCREAMING_SNAKE_CASE__ = int(key_split[5] ) SCREAMING_SNAKE_CASE__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE__ = val[:dim, :] SCREAMING_SNAKE_CASE__ = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE__ = val[-dim:, :] else: SCREAMING_SNAKE_CASE__ = val[:dim] SCREAMING_SNAKE_CASE__ = val[dim : dim * 2] SCREAMING_SNAKE_CASE__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: SCREAMING_SNAKE_CASE__ = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: int=None , UpperCamelCase__: str=False ): # load original model SCREAMING_SNAKE_CASE__ = DonutModel.from_pretrained(UpperCamelCase__ ).eval() # load HuggingFace model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_configs(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = DonutSwinModel(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = MBartForCausalLM(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE__ = original_model.state_dict() SCREAMING_SNAKE_CASE__ = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) # verify results on scanned document SCREAMING_SNAKE_CASE__ = load_dataset("""hf-internal-testing/example-documents""" ) SCREAMING_SNAKE_CASE__ = dataset["""test"""][0]["""image"""].convert("""RGB""" ) SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizerFast.from_pretrained(UpperCamelCase__ , from_slow=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) SCREAMING_SNAKE_CASE__ = DonutProcessor(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = processor(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": SCREAMING_SNAKE_CASE__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" SCREAMING_SNAKE_CASE__ = """When is the coffee break?""" SCREAMING_SNAKE_CASE__ = task_prompt.replace("""{user_input}""" , UpperCamelCase__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": SCREAMING_SNAKE_CASE__ = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: SCREAMING_SNAKE_CASE__ = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": SCREAMING_SNAKE_CASE__ = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": SCREAMING_SNAKE_CASE__ = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt SCREAMING_SNAKE_CASE__ = """hello world""" else: raise ValueError("""Model name not supported""" ) SCREAMING_SNAKE_CASE__ = original_model.decoder.tokenizer(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors="""pt""" )[ """input_ids""" ] SCREAMING_SNAKE_CASE__ = original_model.encoder.model.patch_embed(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.encoder.embeddings(UpperCamelCase__ ) assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) # verify encoder hidden states SCREAMING_SNAKE_CASE__ = original_model.encoder(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = model.encoder(UpperCamelCase__ ).last_hidden_state assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-2 ) # verify decoder hidden states SCREAMING_SNAKE_CASE__ = original_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).logits SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) _lowerCamelCase = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
6
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCamelCase_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase_ = ShapEPipeline lowerCamelCase_ = ["prompt"] lowerCamelCase_ = ["prompt"] lowerCamelCase_ = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] lowerCamelCase_ = False @property def _snake_case ( self :Union[str, Any] ) -> Any: """simple docstring""" return 32 @property def _snake_case ( self :str ) -> List[Any]: """simple docstring""" return 32 @property def _snake_case ( self :Tuple ) -> Dict: """simple docstring""" return self.time_input_dim * 4 @property def _snake_case ( self :Optional[Any] ) -> List[str]: """simple docstring""" return 8 @property def _snake_case ( self :Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def _snake_case ( self :Union[str, Any] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__A ) @property def _snake_case ( self :Tuple ) -> Any: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } SCREAMING_SNAKE_CASE__ = PriorTransformer(**__A ) return model @property def _snake_case ( self :str ) -> int: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE__ = ShapERenderer(**__A ) return model def _snake_case ( self :int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.dummy_prior SCREAMING_SNAKE_CASE__ = self.dummy_text_encoder SCREAMING_SNAKE_CASE__ = self.dummy_tokenizer SCREAMING_SNAKE_CASE__ = self.dummy_renderer SCREAMING_SNAKE_CASE__ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=__A , clip_sample=__A , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE__ = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def _snake_case ( self :List[str] , __A :List[Any] , __A :List[Any]=0 ) -> str: """simple docstring""" if str(__A ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(__A ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=__A ).manual_seed(__A ) SCREAMING_SNAKE_CASE__ = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def _snake_case ( self :Dict ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = """cpu""" SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**__A ) SCREAMING_SNAKE_CASE__ = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE__ = pipe(**self.get_dummy_inputs(__A ) ) SCREAMING_SNAKE_CASE__ = output.images[0] SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE__ = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self :Any ) -> Dict: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self :List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = torch_device == """cpu""" SCREAMING_SNAKE_CASE__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__A , relax_max_difference=__A , ) def _snake_case ( self :Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**__A ) SCREAMING_SNAKE_CASE__ = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__A ) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE__ = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE__ = pipe(**__A , num_images_per_prompt=__A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :Tuple ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self :str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) SCREAMING_SNAKE_CASE__ = ShapEPipeline.from_pretrained("""openai/shap-e""" ) SCREAMING_SNAKE_CASE__ = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE__ = torch.Generator(device=__A ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe( """a shark""" , generator=__A , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__A , __A )
6
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :Union[str, Any] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler("""sample_euler""" ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler("""sample_euler""" ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler("""sample_dpmpp_2m""" ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe( [prompt] , generator=__A , guidance_scale=7.5 , num_inference_steps=15 , output_type="""np""" , use_karras_sigmas=__A , ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
6
1
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) SCREAMING_SNAKE_CASE__ = MaskFormerConfig(backbone_config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 847 SCREAMING_SNAKE_CASE__ = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 150 SCREAMING_SNAKE_CASE__ = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 171 SCREAMING_SNAKE_CASE__ = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO SCREAMING_SNAKE_CASE__ = 133 SCREAMING_SNAKE_CASE__ = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 19 SCREAMING_SNAKE_CASE__ = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 65 SCREAMING_SNAKE_CASE__ = """mapillary-vistas-id2label.json""" SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE__ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.layers.{i}.downsample.reduction.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f'''sem_seg_head.adapter_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', f'''mask_embedder.{i}.0.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', f'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[int] ): SCREAMING_SNAKE_CASE__ = dct.pop(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = val def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): SCREAMING_SNAKE_CASE__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[: dim] SCREAMING_SNAKE_CASE__ = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE__ = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ): # fmt: off SCREAMING_SNAKE_CASE__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :] # fmt: on def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE__ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: bool = False ): SCREAMING_SNAKE_CASE__ = get_maskformer_config(UpperCamelCase__ ) # load original state_dict with open(UpperCamelCase__ , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = pickle.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys SCREAMING_SNAKE_CASE__ = create_rename_keys(UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_swin_q_k_v(UpperCamelCase__ , config.backbone_config ) read_in_decoder_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # update to torch tensors for key, value in state_dict.items(): SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase__ ) # load 🤗 model SCREAMING_SNAKE_CASE__ = MaskFormerForInstanceSegmentation(UpperCamelCase__ ) model.eval() for name, param in model.named_parameters(): print(UpperCamelCase__ , param.shape ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(UpperCamelCase__ ) == 0, f'''Unexpected keys: {unexpected_keys}''' # verify results SCREAMING_SNAKE_CASE__ = prepare_img() if "vistas" in model_name: SCREAMING_SNAKE_CASE__ = 65 elif "cityscapes" in model_name: SCREAMING_SNAKE_CASE__ = 65_535 else: SCREAMING_SNAKE_CASE__ = 255 SCREAMING_SNAKE_CASE__ = True if """ade""" in model_name else False SCREAMING_SNAKE_CASE__ = MaskFormerImageProcessor(ignore_index=UpperCamelCase__ , reduce_labels=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = image_processor(UpperCamelCase__ , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase__ ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": SCREAMING_SNAKE_CASE__ = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) image_processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(f'''nielsr/{model_name}''' ) image_processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _lowerCamelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
6
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int = 600_851_475_143 ): try: SCREAMING_SNAKE_CASE__ = int(UpperCamelCase__ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 while i * i <= n: while n % i == 0: SCREAMING_SNAKE_CASE__ = i n //= i i += 1 if n > 1: SCREAMING_SNAKE_CASE__ = n return int(UpperCamelCase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
6
1
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor _lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Optional[int] , *__A :Optional[Any] , **__A :Optional[Any] ) -> None: """simple docstring""" warnings.warn( """The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DPTImageProcessor instead.""" , __A , ) super().__init__(*__A , **__A )
6
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__A ) ) def _snake_case ( self :List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__A ) ) def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__A ) ) def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__A ) ) def _snake_case ( self :Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", # Removed: 'text_encoder/model.safetensors', """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertFalse(is_safetensors_compatible(__A ) ) def _snake_case ( self :Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertFalse(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", # 'text_encoder/model.fp16.safetensors', """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertFalse(is_safetensors_compatible(__A , variant=__A ) )
6
1
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :int , *__A :int , **__A :Any ) -> None: """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , __A , ) super().__init__(*__A , **__A )
6
import argparse import datetime def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } SCREAMING_SNAKE_CASE__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(UpperCamelCase__ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month SCREAMING_SNAKE_CASE__ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) SCREAMING_SNAKE_CASE__ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day SCREAMING_SNAKE_CASE__ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator SCREAMING_SNAKE_CASE__ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year SCREAMING_SNAKE_CASE__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8_500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation SCREAMING_SNAKE_CASE__ = datetime.date(int(UpperCamelCase__ ) , int(UpperCamelCase__ ) , int(UpperCamelCase__ ) ) # Start math if m <= 2: SCREAMING_SNAKE_CASE__ = y - 1 SCREAMING_SNAKE_CASE__ = m + 12 # maths var SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[:2] ) SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[2:] ) SCREAMING_SNAKE_CASE__ = int(2.6 * m - 5.3_9 ) SCREAMING_SNAKE_CASE__ = int(c / 4 ) SCREAMING_SNAKE_CASE__ = int(k / 4 ) SCREAMING_SNAKE_CASE__ = int(d + k ) SCREAMING_SNAKE_CASE__ = int(t + u + v + x ) SCREAMING_SNAKE_CASE__ = int(z - (2 * c) ) SCREAMING_SNAKE_CASE__ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response SCREAMING_SNAKE_CASE__ = f'''Your date {date_input}, is a {days[str(UpperCamelCase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) _lowerCamelCase = parser.parse_args() zeller(args.date_input)
6
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :Optional[Any] , __A :int ) -> Union[str, Any]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): SCREAMING_SNAKE_CASE__ = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(__A ) def _snake_case ( self :Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__A , multi_process=__A , ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmark(__A ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _snake_case ( self :List[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = """sgugger/tiny-distilbert-classification""" SCREAMING_SNAKE_CASE__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , only_pretrain_model=__A , ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmark(__A ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmark(__A ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _snake_case ( self :int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__A ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__A , multi_process=__A , ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmark(__A , [config] ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _snake_case ( self :List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__A ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmark(__A , [config] ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _snake_case ( self :Dict ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmark(__A ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _snake_case ( self :Any ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__A ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmark(__A , [config] ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _snake_case ( self :int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = """patrickvonplaten/t5-tiny-random""" SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__A ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmark(__A , configs=[config] ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , """Cannot do xla on CPU.""" ) def _snake_case ( self :List[str] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__A , multi_process=__A , ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmark(__A ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _snake_case ( self :Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__A , save_to_csv=__A , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__A , """inf_time.csv""" ) , inference_memory_csv_file=os.path.join(__A , """inf_mem.csv""" ) , env_info_csv_file=os.path.join(__A , """env.csv""" ) , multi_process=__A , ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmark(__A ) benchmark.run() self.assertTrue(Path(os.path.join(__A , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(__A , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(__A , """env.csv""" ) ).exists() ) def _snake_case ( self :Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(__A :Optional[Any] ): self.assertTrue(hasattr(__A , """sequential""" ) ) self.assertTrue(hasattr(__A , """cumulative""" ) ) self.assertTrue(hasattr(__A , """current""" ) ) self.assertTrue(hasattr(__A , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__A , """log.txt""" ) , log_print=__A , trace_memory_line_by_line=__A , eager_mode=__A , multi_process=__A , ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmark(__A ) SCREAMING_SNAKE_CASE__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__A , """log.txt""" ) ).exists() )
6
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _lowerCamelCase = logging.getLogger(__name__) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=30522, type=int) _lowerCamelCase = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, 'rb') as fp: _lowerCamelCase = pickle.load(fp) logger.info('Counting occurrences for MLM.') _lowerCamelCase = Counter() for tk_ids in data: counter.update(tk_ids) _lowerCamelCase = [0] * args.vocab_size for k, v in counter.items(): _lowerCamelCase = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
6
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class UpperCamelCase_ : lowerCamelCase_ = 42 lowerCamelCase_ = None lowerCamelCase_ = None _lowerCamelCase = namedtuple('CoinsDistribResult', 'moves excess') def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: TreeNode | None ): if root is None: return 0 # Validation def count_nodes(UpperCamelCase__: TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(UpperCamelCase__: TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(UpperCamelCase__ ) != count_coins(UpperCamelCase__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(UpperCamelCase__: TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_distrib(node.left ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_distrib(node.right ) SCREAMING_SNAKE_CASE__ = 1 - left_distrib_excess SCREAMING_SNAKE_CASE__ = 1 - right_distrib_excess SCREAMING_SNAKE_CASE__ = ( left_distrib_moves + right_distrib_moves + abs(UpperCamelCase__ ) + abs(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE__ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(UpperCamelCase__ , UpperCamelCase__ ) return get_distrib(UpperCamelCase__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
6
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowerCamelCase = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _snake_case ( self :str ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house SCREAMING_SNAKE_CASE__ = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim SCREAMING_SNAKE_CASE__ = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(__A )["""last_hidden_state"""].detach() self.assertEqual(output.shape , __A ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __A , atol=1E-3 ) ) @slow def _snake_case ( self :Any ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house SCREAMING_SNAKE_CASE__ = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim SCREAMING_SNAKE_CASE__ = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(__A )["""last_hidden_state"""].detach() self.assertEqual(output.shape , __A ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __A , atol=1E-3 ) )
6
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "OwlViTImageProcessor" lowerCamelCase_ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self :Optional[Any] , __A :int=None , __A :Optional[int]=None , **__A :str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __A , ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""feature_extractor""" ) SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__A , __A ) def __call__( self :str , __A :Dict=None , __A :List[str]=None , __A :str=None , __A :Optional[int]="max_length" , __A :Tuple="np" , **__A :int ) -> Tuple: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(__A , __A ) or (isinstance(__A , __A ) and not isinstance(text[0] , __A )): SCREAMING_SNAKE_CASE__ = [self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )] elif isinstance(__A , __A ) and isinstance(text[0] , __A ): SCREAMING_SNAKE_CASE__ = [] # Maximum number of queries across batch SCREAMING_SNAKE_CASE__ = max([len(__A ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__A ) != max_num_queries: SCREAMING_SNAKE_CASE__ = t + [""" """] * (max_num_queries - len(__A )) SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , padding=__A , return_tensors=__A , **__A ) encodings.append(__A ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) SCREAMING_SNAKE_CASE__ = BatchEncoding() SCREAMING_SNAKE_CASE__ = input_ids SCREAMING_SNAKE_CASE__ = attention_mask if query_images is not None: SCREAMING_SNAKE_CASE__ = BatchEncoding() SCREAMING_SNAKE_CASE__ = self.image_processor( __A , return_tensors=__A , **__A ).pixel_values SCREAMING_SNAKE_CASE__ = query_pixel_values if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif query_images is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self :List[Any] , *__A :Dict , **__A :Dict ) -> Optional[int]: """simple docstring""" return self.image_processor.post_process(*__A , **__A ) def _snake_case ( self :Optional[int] , *__A :Dict , **__A :List[str] ) -> Optional[Any]: """simple docstring""" return self.image_processor.post_process_object_detection(*__A , **__A ) def _snake_case ( self :str , *__A :List[str] , **__A :Union[str, Any] ) -> Any: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*__A , **__A ) def _snake_case ( self :Dict , *__A :List[str] , **__A :List[str] ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :Dict , *__A :Dict , **__A :List[str] ) -> str: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :List[Any] ) -> Optional[int]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , ) return self.image_processor_class @property def _snake_case ( self :Any ) -> Optional[Any]: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , ) return self.image_processor
6
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
6
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self :Union[str, Any] , __A :int = 3 , __A :int = 3 , __A :Tuple[str] = ("DownEncoderBlock2D",) , __A :Tuple[str] = ("UpDecoderBlock2D",) , __A :Tuple[int] = (64,) , __A :int = 1 , __A :str = "silu" , __A :int = 3 , __A :int = 32 , __A :int = 256 , __A :int = 32 , __A :Optional[int] = None , __A :float = 0.1_8_2_1_5 , __A :str = "group" , ) -> Any: """simple docstring""" super().__init__() # pass init params to Encoder SCREAMING_SNAKE_CASE__ = Encoder( in_channels=__A , out_channels=__A , down_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , double_z=__A , ) SCREAMING_SNAKE_CASE__ = vq_embed_dim if vq_embed_dim is not None else latent_channels SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = VectorQuantizer(__A , __A , beta=0.2_5 , remap=__A , sane_index_shape=__A ) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) # pass init params to Decoder SCREAMING_SNAKE_CASE__ = Decoder( in_channels=__A , out_channels=__A , up_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , norm_type=__A , ) @apply_forward_hook def _snake_case ( self :Union[str, Any] , __A :torch.FloatTensor , __A :bool = True ) -> VQEncoderOutput: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.encoder(__A ) SCREAMING_SNAKE_CASE__ = self.quant_conv(__A ) if not return_dict: return (h,) return VQEncoderOutput(latents=__A ) @apply_forward_hook def _snake_case ( self :Tuple , __A :torch.FloatTensor , __A :bool = False , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if not force_not_quantize: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.quantize(__A ) else: SCREAMING_SNAKE_CASE__ = h SCREAMING_SNAKE_CASE__ = self.post_quant_conv(__A ) SCREAMING_SNAKE_CASE__ = self.decoder(__A , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__A ) def _snake_case ( self :int , __A :torch.FloatTensor , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" SCREAMING_SNAKE_CASE__ = sample SCREAMING_SNAKE_CASE__ = self.encode(__A ).latents SCREAMING_SNAKE_CASE__ = self.decode(__A ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__A )
6
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _lowerCamelCase = logging.get_logger(__name__) @dataclass class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self :Optional[int] , **__A :Tuple ) -> Union[str, Any]: """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: SCREAMING_SNAKE_CASE__ = deprecated_arg[3:] SCREAMING_SNAKE_CASE__ = not kwargs.pop(__A ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""tpu_name""" , self.tpu_name ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""device_idx""" , self.device_idx ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""eager_mode""" , self.eager_mode ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**__A ) lowerCamelCase_ = field( default=UpperCamelCase__ , metadata={"help": "Name of TPU"} , ) lowerCamelCase_ = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) lowerCamelCase_ = field(default=UpperCamelCase__ , metadata={"help": "Benchmark models in eager model."} ) lowerCamelCase_ = field( default=UpperCamelCase__ , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def _snake_case ( self :Any ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: """simple docstring""" requires_backends(self , ["""tf"""] ) SCREAMING_SNAKE_CASE__ = None if self.tpu: try: if self.tpu_name: SCREAMING_SNAKE_CASE__ = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: SCREAMING_SNAKE_CASE__ = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: SCREAMING_SNAKE_CASE__ = None return tpu @cached_property def _snake_case ( self :Dict ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: """simple docstring""" requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) SCREAMING_SNAKE_CASE__ = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) SCREAMING_SNAKE_CASE__ = tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU SCREAMING_SNAKE_CASE__ = tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' ) return strategy @property def _snake_case ( self :int ) -> bool: """simple docstring""" requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def _snake_case ( self :List[Any] ) -> "tf.distribute.Strategy": """simple docstring""" requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def _snake_case ( self :Union[str, Any] ) -> Dict: """simple docstring""" requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def _snake_case ( self :int ) -> int: """simple docstring""" requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _snake_case ( self :Optional[int] ) -> bool: """simple docstring""" return self.n_gpu > 0
6
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 lowerCamelCase_ = jnp.floataa lowerCamelCase_ = True def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" super().setup() SCREAMING_SNAKE_CASE__ = nn.Dense(5 , dtype=self.dtype ) def __call__( self :List[Any] , *__A :int , **__A :Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = super().__call__(*__A , **__A ) SCREAMING_SNAKE_CASE__ = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = FlaxBigBirdForNaturalQuestionsModule def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Tuple , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple ): def cross_entropy(UpperCamelCase__: List[str] , UpperCamelCase__: List[str] , UpperCamelCase__: List[str]=None ): SCREAMING_SNAKE_CASE__ = logits.shape[-1] SCREAMING_SNAKE_CASE__ = (labels[..., None] == jnp.arange(UpperCamelCase__ )[None]).astype("""f4""" ) SCREAMING_SNAKE_CASE__ = jax.nn.log_softmax(UpperCamelCase__ , axis=-1 ) SCREAMING_SNAKE_CASE__ = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: SCREAMING_SNAKE_CASE__ = reduction(UpperCamelCase__ ) return loss SCREAMING_SNAKE_CASE__ = partial(UpperCamelCase__ , reduction=jnp.mean ) SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class UpperCamelCase_ : lowerCamelCase_ = "google/bigbird-roberta-base" lowerCamelCase_ = 30_00 lowerCamelCase_ = 1_05_00 lowerCamelCase_ = 1_28 lowerCamelCase_ = 3 lowerCamelCase_ = 1 lowerCamelCase_ = 5 # tx_args lowerCamelCase_ = 3e-5 lowerCamelCase_ = 0.0 lowerCamelCase_ = 2_00_00 lowerCamelCase_ = 0.0095 lowerCamelCase_ = "bigbird-roberta-natural-questions" lowerCamelCase_ = "training-expt" lowerCamelCase_ = "data/nq-training.jsonl" lowerCamelCase_ = "data/nq-validation.jsonl" def _snake_case ( self :str ) -> Optional[int]: """simple docstring""" os.makedirs(self.base_dir , exist_ok=__A ) SCREAMING_SNAKE_CASE__ = os.path.join(self.base_dir , self.save_dir ) SCREAMING_SNAKE_CASE__ = self.batch_size_per_device * jax.device_count() @dataclass class UpperCamelCase_ : lowerCamelCase_ = 42 lowerCamelCase_ = 40_96 # no dynamic padding on TPUs def __call__( self :Optional[Any] , __A :Optional[int] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.collate_fn(__A ) SCREAMING_SNAKE_CASE__ = jax.tree_util.tree_map(__A , __A ) return batch def _snake_case ( self :List[Any] , __A :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.fetch_inputs(features["""input_ids"""] ) SCREAMING_SNAKE_CASE__ = { """input_ids""": jnp.array(__A , dtype=jnp.intaa ), """attention_mask""": jnp.array(__A , dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ), } return batch def _snake_case ( self :Tuple , __A :list ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self._fetch_inputs(__A ) for ids in input_ids] return zip(*__A ) def _snake_case ( self :List[str] , __A :list ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [1 for _ in range(len(__A ) )] while len(__A ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: List[str] , UpperCamelCase__: Optional[Any]=None ): if seed is not None: SCREAMING_SNAKE_CASE__ = dataset.shuffle(seed=UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) // batch_size ): SCREAMING_SNAKE_CASE__ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCamelCase__ ) @partial(jax.pmap , axis_name="""batch""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: Optional[int] , **UpperCamelCase__: Optional[int] ): def loss_fn(UpperCamelCase__: List[Any] ): SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" ) SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=UpperCamelCase__ , dropout_rng=UpperCamelCase__ , train=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs return state.loss_fn( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = jax.random.split(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = jax.value_and_grad(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = grad_fn(state.params ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean(UpperCamelCase__ , """batch""" ) SCREAMING_SNAKE_CASE__ = state.apply_gradients(grads=UpperCamelCase__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , **UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" ) SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=state.params , train=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs SCREAMING_SNAKE_CASE__ = state.loss_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class UpperCamelCase_ ( train_state.TrainState ): lowerCamelCase_ = struct.field(pytree_node=UpperCamelCase__ ) @dataclass class UpperCamelCase_ : lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = None def _snake_case ( self :List[Any] , __A :str , __A :str , __A :str , __A :Tuple=None ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = model.params SCREAMING_SNAKE_CASE__ = TrainState.create( apply_fn=model.__call__ , params=__A , tx=__A , loss_fn=__A , ) if ckpt_dir is not None: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = restore_checkpoint(__A , __A ) SCREAMING_SNAKE_CASE__ = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = build_tx(**__A ) SCREAMING_SNAKE_CASE__ = train_state.TrainState( step=__A , apply_fn=model.__call__ , params=__A , tx=__A , opt_state=__A , ) SCREAMING_SNAKE_CASE__ = args SCREAMING_SNAKE_CASE__ = data_collator SCREAMING_SNAKE_CASE__ = lr SCREAMING_SNAKE_CASE__ = params SCREAMING_SNAKE_CASE__ = jax_utils.replicate(__A ) return state def _snake_case ( self :Optional[Any] , __A :Optional[int] , __A :int , __A :int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.args SCREAMING_SNAKE_CASE__ = len(__A ) // args.batch_size SCREAMING_SNAKE_CASE__ = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE__ = jax.random.split(__A , jax.device_count() ) for epoch in range(args.max_epochs ): SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , args.batch_size , seed=__A ) SCREAMING_SNAKE_CASE__ = 0 for batch in tqdm(__A , total=__A , desc=f'''Running EPOCH-{epoch}''' ): SCREAMING_SNAKE_CASE__ = self.data_collator(__A ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.train_step_fn(__A , __A , **__A ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(state.step ) SCREAMING_SNAKE_CASE__ = running_loss.item() / i SCREAMING_SNAKE_CASE__ = self.scheduler_fn(state_step - 1 ) SCREAMING_SNAKE_CASE__ = self.evaluate(__A , __A ) SCREAMING_SNAKE_CASE__ = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(__A ) ) self.logger.log(__A , commit=__A ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=__A ) def _snake_case ( self :List[str] , __A :Dict , __A :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , self.args.batch_size ) SCREAMING_SNAKE_CASE__ = len(__A ) // self.args.batch_size SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = 0 for batch in tqdm(__A , total=__A , desc="""Evaluating ... """ ): SCREAMING_SNAKE_CASE__ = self.data_collator(__A ) SCREAMING_SNAKE_CASE__ = self.val_step_fn(__A , **__A ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def _snake_case ( self :List[Any] , __A :Any , __A :Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(__A ) print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=""" ... """ ) self.model_save_fn(__A , params=state.params ) with open(os.path.join(__A , """opt_state.msgpack""" ) , """wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(__A , """args.joblib""" ) ) joblib.dump(self.data_collator , os.path.join(__A , """data_collator.joblib""" ) ) with open(os.path.join(__A , """training_state.json""" ) , """w""" ) as f: json.dump({"""step""": state.step.item()} , __A ) print("""DONE""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ): print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=""" ... """ ) with open(os.path.join(UpperCamelCase__ , """flax_model.msgpack""" ) , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = from_bytes(state.params , f.read() ) with open(os.path.join(UpperCamelCase__ , """opt_state.msgpack""" ) , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = from_bytes(state.opt_state , f.read() ) SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """args.joblib""" ) ) SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """data_collator.joblib""" ) ) with open(os.path.join(UpperCamelCase__ , """training_state.json""" ) , """r""" ) as f: SCREAMING_SNAKE_CASE__ = json.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = num_train_steps - warmup_steps SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=UpperCamelCase__ , transition_steps=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=1e-7 , transition_steps=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple ): def weight_decay_mask(UpperCamelCase__: Any ): SCREAMING_SNAKE_CASE__ = traverse_util.flatten_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = scheduler_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = optax.adamw(learning_rate=UpperCamelCase__ , weight_decay=UpperCamelCase__ , mask=UpperCamelCase__ ) return tx, lr
6
1
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _lowerCamelCase = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _lowerCamelCase = 'https://storage.googleapis.com/cvdf-datasets/mnist/' def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = numpy.dtype(numpy.uintaa ).newbyteorder(""">""" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=UpperCamelCase__ )[0] @deprecated(UpperCamelCase__ , """Please use tf.data to implement this functionality.""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] ): print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=UpperCamelCase__ ) as bytestream: SCREAMING_SNAKE_CASE__ = _readaa(UpperCamelCase__ ) if magic != 2_051: raise ValueError( """Invalid magic number %d in MNIST image file: %s""" % (magic, f.name) ) SCREAMING_SNAKE_CASE__ = _readaa(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = _readaa(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = _readaa(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = bytestream.read(rows * cols * num_images ) SCREAMING_SNAKE_CASE__ = numpy.frombuffer(UpperCamelCase__ , dtype=numpy.uinta ) SCREAMING_SNAKE_CASE__ = data.reshape(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , 1 ) return data @deprecated(UpperCamelCase__ , """Please use tf.one_hot on tensors.""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = labels_dense.shape[0] SCREAMING_SNAKE_CASE__ = numpy.arange(UpperCamelCase__ ) * num_classes SCREAMING_SNAKE_CASE__ = numpy.zeros((num_labels, num_classes) ) SCREAMING_SNAKE_CASE__ = 1 return labels_one_hot @deprecated(UpperCamelCase__ , """Please use tf.data to implement this functionality.""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: Union[str, Any]=False , UpperCamelCase__: List[Any]=10 ): print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=UpperCamelCase__ ) as bytestream: SCREAMING_SNAKE_CASE__ = _readaa(UpperCamelCase__ ) if magic != 2_049: raise ValueError( """Invalid magic number %d in MNIST label file: %s""" % (magic, f.name) ) SCREAMING_SNAKE_CASE__ = _readaa(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = bytestream.read(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = numpy.frombuffer(UpperCamelCase__ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(UpperCamelCase__ , UpperCamelCase__ ) return labels class UpperCamelCase_ : @deprecated( __A , """Please use alternatives such as official/mnist/_DataSet.py""" """ from tensorflow/models.""" , ) def __init__( self :Optional[Any] , __A :List[Any] , __A :Tuple , __A :Union[str, Any]=False , __A :int=False , __A :Optional[Any]=dtypes.floataa , __A :Any=True , __A :Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = random_seed.get_seed(__A ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) SCREAMING_SNAKE_CASE__ = dtypes.as_dtype(__A ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("""Invalid image dtype %r, expected uint8 or float32""" % dtype ) if fake_data: SCREAMING_SNAKE_CASE__ = 1_0000 SCREAMING_SNAKE_CASE__ = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' SCREAMING_SNAKE_CASE__ = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 SCREAMING_SNAKE_CASE__ = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. SCREAMING_SNAKE_CASE__ = images.astype(numpy.floataa ) SCREAMING_SNAKE_CASE__ = numpy.multiply(__A , 1.0 / 2_5_5.0 ) SCREAMING_SNAKE_CASE__ = images SCREAMING_SNAKE_CASE__ = labels SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 @property def _snake_case ( self :str ) -> List[str]: """simple docstring""" return self._images @property def _snake_case ( self :str ) -> List[str]: """simple docstring""" return self._labels @property def _snake_case ( self :List[str] ) -> str: """simple docstring""" return self._num_examples @property def _snake_case ( self :List[Any] ) -> Optional[Any]: """simple docstring""" return self._epochs_completed def _snake_case ( self :Union[str, Any] , __A :Union[str, Any] , __A :str=False , __A :str=True ) -> List[str]: """simple docstring""" if fake_data: SCREAMING_SNAKE_CASE__ = [1] * 784 SCREAMING_SNAKE_CASE__ = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__A )], [fake_label for _ in range(__A )], ) SCREAMING_SNAKE_CASE__ = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: SCREAMING_SNAKE_CASE__ = numpy.arange(self._num_examples ) numpy.random.shuffle(__A ) SCREAMING_SNAKE_CASE__ = self.images[perma] SCREAMING_SNAKE_CASE__ = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch SCREAMING_SNAKE_CASE__ = self._num_examples - start SCREAMING_SNAKE_CASE__ = self._images[start : self._num_examples] SCREAMING_SNAKE_CASE__ = self._labels[start : self._num_examples] # Shuffle the data if shuffle: SCREAMING_SNAKE_CASE__ = numpy.arange(self._num_examples ) numpy.random.shuffle(__A ) SCREAMING_SNAKE_CASE__ = self.images[perm] SCREAMING_SNAKE_CASE__ = self.labels[perm] # Start next epoch SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = batch_size - rest_num_examples SCREAMING_SNAKE_CASE__ = self._index_in_epoch SCREAMING_SNAKE_CASE__ = self._images[start:end] SCREAMING_SNAKE_CASE__ = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size SCREAMING_SNAKE_CASE__ = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(UpperCamelCase__ , """Please write your own downloading logic.""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any] ): if not gfile.Exists(UpperCamelCase__ ): gfile.MakeDirs(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) if not gfile.Exists(UpperCamelCase__ ): urllib.request.urlretrieve(UpperCamelCase__ , UpperCamelCase__ ) # noqa: S310 with gfile.GFile(UpperCamelCase__ ) as f: SCREAMING_SNAKE_CASE__ = f.size() print("""Successfully downloaded""" , UpperCamelCase__ , UpperCamelCase__ , """bytes.""" ) return filepath @deprecated( UpperCamelCase__ , """Please use alternatives such as:""" """ tensorflow_datasets.load('mnist')""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: Optional[Any]=False , UpperCamelCase__: Dict=False , UpperCamelCase__: Union[str, Any]=dtypes.floataa , UpperCamelCase__: Any=True , UpperCamelCase__: List[Any]=5_000 , UpperCamelCase__: List[Any]=None , UpperCamelCase__: List[Any]=DEFAULT_SOURCE_URL , ): if fake_data: def fake(): return _DataSet( [] , [] , fake_data=UpperCamelCase__ , one_hot=UpperCamelCase__ , dtype=UpperCamelCase__ , seed=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = fake() SCREAMING_SNAKE_CASE__ = fake() SCREAMING_SNAKE_CASE__ = fake() return _Datasets(train=UpperCamelCase__ , validation=UpperCamelCase__ , test=UpperCamelCase__ ) if not source_url: # empty string check SCREAMING_SNAKE_CASE__ = DEFAULT_SOURCE_URL SCREAMING_SNAKE_CASE__ = """train-images-idx3-ubyte.gz""" SCREAMING_SNAKE_CASE__ = """train-labels-idx1-ubyte.gz""" SCREAMING_SNAKE_CASE__ = """t10k-images-idx3-ubyte.gz""" SCREAMING_SNAKE_CASE__ = """t10k-labels-idx1-ubyte.gz""" SCREAMING_SNAKE_CASE__ = _maybe_download( UpperCamelCase__ , UpperCamelCase__ , source_url + train_images_file ) with gfile.Open(UpperCamelCase__ , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = _extract_images(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = _maybe_download( UpperCamelCase__ , UpperCamelCase__ , source_url + train_labels_file ) with gfile.Open(UpperCamelCase__ , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = _extract_labels(UpperCamelCase__ , one_hot=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = _maybe_download( UpperCamelCase__ , UpperCamelCase__ , source_url + test_images_file ) with gfile.Open(UpperCamelCase__ , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = _extract_images(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = _maybe_download( UpperCamelCase__ , UpperCamelCase__ , source_url + test_labels_file ) with gfile.Open(UpperCamelCase__ , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = _extract_labels(UpperCamelCase__ , one_hot=UpperCamelCase__ ) if not 0 <= validation_size <= len(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = ( """Validation size should be between 0 and """ f'''{len(UpperCamelCase__ )}. Received: {validation_size}.''' ) raise ValueError(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = train_images[:validation_size] SCREAMING_SNAKE_CASE__ = train_labels[:validation_size] SCREAMING_SNAKE_CASE__ = train_images[validation_size:] SCREAMING_SNAKE_CASE__ = train_labels[validation_size:] SCREAMING_SNAKE_CASE__ = {"""dtype""": dtype, """reshape""": reshape, """seed""": seed} SCREAMING_SNAKE_CASE__ = _DataSet(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = _DataSet(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = _DataSet(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) return _Datasets(train=UpperCamelCase__ , validation=UpperCamelCase__ , test=UpperCamelCase__ )
6
from torch import nn def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
6
1
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class UpperCamelCase_ : def __init__( self :str , __A :str , __A :List[Any] , __A :bool = True , __A :bool = False ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = scheduler SCREAMING_SNAKE_CASE__ = optimizers if isinstance(__A , (list, tuple) ) else [optimizers] SCREAMING_SNAKE_CASE__ = split_batches SCREAMING_SNAKE_CASE__ = step_with_optimizer SCREAMING_SNAKE_CASE__ = GradientState() def _snake_case ( self :List[Any] , *__A :Dict , **__A :Any ) -> Optional[int]: """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*__A , **__A ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*__A , **__A ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step SCREAMING_SNAKE_CASE__ = AcceleratorState().num_processes for _ in range(__A ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , """total_steps""" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*__A , **__A ) else: self.scheduler.step(*__A , **__A ) def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" return self.scheduler.get_last_lr() def _snake_case ( self :Union[str, Any] ) -> str: """simple docstring""" return self.scheduler.state_dict() def _snake_case ( self :Tuple , __A :Any ) -> Optional[int]: """simple docstring""" self.scheduler.load_state_dict(__A ) def _snake_case ( self :Optional[int] ) -> Optional[Any]: """simple docstring""" return self.scheduler.get_lr() def _snake_case ( self :Any , *__A :Optional[int] , **__A :Optional[int] ) -> List[str]: """simple docstring""" return self.scheduler.print_lr(*__A , **__A )
6
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) SCREAMING_SNAKE_CASE__ = MaskFormerConfig(backbone_config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 847 SCREAMING_SNAKE_CASE__ = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 150 SCREAMING_SNAKE_CASE__ = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 171 SCREAMING_SNAKE_CASE__ = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO SCREAMING_SNAKE_CASE__ = 133 SCREAMING_SNAKE_CASE__ = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 19 SCREAMING_SNAKE_CASE__ = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 65 SCREAMING_SNAKE_CASE__ = """mapillary-vistas-id2label.json""" SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE__ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.layers.{i}.downsample.reduction.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f'''sem_seg_head.adapter_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', f'''mask_embedder.{i}.0.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', f'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[int] ): SCREAMING_SNAKE_CASE__ = dct.pop(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = val def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): SCREAMING_SNAKE_CASE__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[: dim] SCREAMING_SNAKE_CASE__ = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE__ = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ): # fmt: off SCREAMING_SNAKE_CASE__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :] # fmt: on def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE__ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: bool = False ): SCREAMING_SNAKE_CASE__ = get_maskformer_config(UpperCamelCase__ ) # load original state_dict with open(UpperCamelCase__ , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = pickle.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys SCREAMING_SNAKE_CASE__ = create_rename_keys(UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_swin_q_k_v(UpperCamelCase__ , config.backbone_config ) read_in_decoder_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # update to torch tensors for key, value in state_dict.items(): SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase__ ) # load 🤗 model SCREAMING_SNAKE_CASE__ = MaskFormerForInstanceSegmentation(UpperCamelCase__ ) model.eval() for name, param in model.named_parameters(): print(UpperCamelCase__ , param.shape ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(UpperCamelCase__ ) == 0, f'''Unexpected keys: {unexpected_keys}''' # verify results SCREAMING_SNAKE_CASE__ = prepare_img() if "vistas" in model_name: SCREAMING_SNAKE_CASE__ = 65 elif "cityscapes" in model_name: SCREAMING_SNAKE_CASE__ = 65_535 else: SCREAMING_SNAKE_CASE__ = 255 SCREAMING_SNAKE_CASE__ = True if """ade""" in model_name else False SCREAMING_SNAKE_CASE__ = MaskFormerImageProcessor(ignore_index=UpperCamelCase__ , reduce_labels=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = image_processor(UpperCamelCase__ , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase__ ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": SCREAMING_SNAKE_CASE__ = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) image_processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(f'''nielsr/{model_name}''' ) image_processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _lowerCamelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
6
1
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list ): SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ ) for i in range(1 , UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = collection[i] SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = i - 1 while low <= high: SCREAMING_SNAKE_CASE__ = (low + high) // 2 if val < collection[mid]: SCREAMING_SNAKE_CASE__ = mid - 1 else: SCREAMING_SNAKE_CASE__ = mid + 1 for j in range(UpperCamelCase__ , UpperCamelCase__ , -1 ): SCREAMING_SNAKE_CASE__ = collection[j - 1] SCREAMING_SNAKE_CASE__ = val return collection if __name__ == "__main__": _lowerCamelCase = input('Enter numbers separated by a comma:\n').strip() _lowerCamelCase = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
6
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'nielsr/canine-s': 2048, } # Unicode defines 1,114,112 total “codepoints” _lowerCamelCase = 1114112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _lowerCamelCase = 0 _lowerCamelCase = 0XE0_00 _lowerCamelCase = 0XE0_01 _lowerCamelCase = 0XE0_02 _lowerCamelCase = 0XE0_03 _lowerCamelCase = 0XE0_04 # Maps special codepoints to human-readable names. _lowerCamelCase = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _lowerCamelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self :str , __A :str=chr(__A ) , __A :str=chr(__A ) , __A :Dict=chr(__A ) , __A :str=chr(__A ) , __A :Union[str, Any]=chr(__A ) , __A :str=chr(__A ) , __A :int=False , __A :int=2048 , **__A :Dict , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , model_max_length=__A , **__A , ) # Creates a mapping for looking up the IDs of special symbols. SCREAMING_SNAKE_CASE__ = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): SCREAMING_SNAKE_CASE__ = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. SCREAMING_SNAKE_CASE__ = { codepoint: name for name, codepoint in self._special_codepoints.items() } SCREAMING_SNAKE_CASE__ = UNICODE_VOCAB_SIZE SCREAMING_SNAKE_CASE__ = len(self._special_codepoints ) @property def _snake_case ( self :Optional[Any] ) -> int: """simple docstring""" return self._unicode_vocab_size def _snake_case ( self :Tuple , __A :str ) -> List[str]: """simple docstring""" return list(__A ) def _snake_case ( self :Optional[Any] , __A :str ) -> int: """simple docstring""" try: return ord(__A ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def _snake_case ( self :str , __A :int ) -> str: """simple docstring""" try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__A ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Any: """simple docstring""" return "".join(__A ) def _snake_case ( self :Optional[Any] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def _snake_case ( self :List[Any] , __A :List[int] , __A :Optional[List[int]] = None , __A :bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) SCREAMING_SNAKE_CASE__ = [1] + ([0] * len(__A )) + [1] if token_ids_a is not None: result += ([0] * len(__A )) + [1] return result def _snake_case ( self :List[str] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def _snake_case ( self :int , __A :str , __A :Optional[str] = None ) -> Any: """simple docstring""" return ()
6
1
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class UpperCamelCase_ : def __init__( self :List[Any] , __A :Dict , __A :Tuple=14 , __A :Optional[int]=7 , __A :Any=True , __A :Tuple=True , __A :List[str]=False , __A :int=True , __A :Optional[Any]=99 , __A :Any=32 , __A :Optional[int]=4 , __A :Optional[Any]=4 , __A :Union[str, Any]=4 , __A :Tuple=37 , __A :Tuple="gelu" , __A :Union[str, Any]=0.1 , __A :List[str]=0.1 , __A :Optional[int]=512 , __A :str=0.0_2 , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = rotary_dim SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = vocab_size - 1 SCREAMING_SNAKE_CASE__ = vocab_size - 1 SCREAMING_SNAKE_CASE__ = vocab_size - 1 def _snake_case ( self :str ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__A , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def _snake_case ( self :int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = config_and_inputs SCREAMING_SNAKE_CASE__ = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def _snake_case ( self :int , __A :List[Any] , __A :int , __A :Optional[Any] , __A :int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = 20 SCREAMING_SNAKE_CASE__ = model_class_name(__A ) SCREAMING_SNAKE_CASE__ = model.init_cache(input_ids.shape[0] , __A ) SCREAMING_SNAKE_CASE__ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) SCREAMING_SNAKE_CASE__ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE__ = model( input_ids[:, :-1] , attention_mask=__A , past_key_values=__A , position_ids=__A , ) SCREAMING_SNAKE_CASE__ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) SCREAMING_SNAKE_CASE__ = model( input_ids[:, -1:] , attention_mask=__A , past_key_values=outputs_cache.past_key_values , position_ids=__A , ) SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def _snake_case ( self :Any , __A :str , __A :int , __A :Any , __A :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = 20 SCREAMING_SNAKE_CASE__ = model_class_name(__A ) SCREAMING_SNAKE_CASE__ = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) SCREAMING_SNAKE_CASE__ = model.init_cache(input_ids.shape[0] , __A ) SCREAMING_SNAKE_CASE__ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE__ = model( input_ids[:, :-1] , attention_mask=__A , past_key_values=__A , position_ids=__A , ) SCREAMING_SNAKE_CASE__ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) SCREAMING_SNAKE_CASE__ = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__A , position_ids=__A , ) SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A ) SCREAMING_SNAKE_CASE__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) @require_flax class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): lowerCamelCase_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowerCamelCase_ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def _snake_case ( self :str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaxGPTJModelTester(self ) def _snake_case ( self :int ) -> Optional[Any]: """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(__A , __A , __A , __A ) def _snake_case ( self :int ) -> Optional[int]: """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( __A , __A , __A , __A ) @tooslow def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) SCREAMING_SNAKE_CASE__ = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=__A , truncation=__A ) SCREAMING_SNAKE_CASE__ = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = model.config.eos_token_id SCREAMING_SNAKE_CASE__ = jax.jit(model.generate ) SCREAMING_SNAKE_CASE__ = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(__A , skip_special_tokens=__A ) SCREAMING_SNAKE_CASE__ = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(__A , __A ) @is_pt_flax_cross_test def _snake_case ( self :Optional[int] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE__ = self._prepare_for_class(__A , __A ) SCREAMING_SNAKE_CASE__ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE__ = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE__ = getattr(__A , __A ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = pt_inputs["""input_ids"""].shape SCREAMING_SNAKE_CASE__ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__A ): SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = pt_model_class(__A ).eval() SCREAMING_SNAKE_CASE__ = model_class(__A , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __A ) SCREAMING_SNAKE_CASE__ = fx_state with torch.no_grad(): SCREAMING_SNAKE_CASE__ = pt_model(**__A ).to_tuple() SCREAMING_SNAKE_CASE__ = fx_model(**__A ).to_tuple() self.assertEqual(len(__A ) , len(__A ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(__A , __A ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__A ) SCREAMING_SNAKE_CASE__ = model_class.from_pretrained(__A , from_pt=__A ) SCREAMING_SNAKE_CASE__ = fx_model_loaded(**__A ).to_tuple() self.assertEqual( len(__A ) , len(__A ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(__A , __A ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def _snake_case ( self :Tuple ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE__ = self._prepare_for_class(__A , __A ) SCREAMING_SNAKE_CASE__ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE__ = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE__ = getattr(__A , __A ) SCREAMING_SNAKE_CASE__ = pt_model_class(__A ).eval() SCREAMING_SNAKE_CASE__ = model_class(__A , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = load_flax_weights_in_pytorch_model(__A , fx_model.params ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = pt_inputs["""input_ids"""].shape SCREAMING_SNAKE_CASE__ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__A ): SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): SCREAMING_SNAKE_CASE__ = pt_model(**__A ).to_tuple() SCREAMING_SNAKE_CASE__ = fx_model(**__A ).to_tuple() self.assertEqual(len(__A ) , len(__A ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(__A , __A ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__A ) SCREAMING_SNAKE_CASE__ = pt_model_class.from_pretrained(__A , from_flax=__A ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = pt_model_loaded(**__A ).to_tuple() self.assertEqual( len(__A ) , len(__A ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(__A , __A ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def _snake_case ( self :Optional[Any] ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) SCREAMING_SNAKE_CASE__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
6
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) _lowerCamelCase = 'bert-base-cased' _lowerCamelCase = 'fp16' _lowerCamelCase = 'bf16' _lowerCamelCase = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Optional[Any] ) -> Optional[Any]: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = dict( ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , ) def _snake_case ( self :List[Any] ) -> Tuple: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = f'''{i + 1}''' SCREAMING_SNAKE_CASE__ = strategy with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def _snake_case ( self :int ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = prefetch_policy with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def _snake_case ( self :List[str] ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = state_dict_type with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _snake_case ( self :str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoModel.from_pretrained(__A ) for policy in FSDP_AUTO_WRAP_POLICY: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = policy if policy == "TRANSFORMER_BASED_WRAP": SCREAMING_SNAKE_CASE__ = """BertLayer""" elif policy == "SIZE_BASED_WRAP": SCREAMING_SNAKE_CASE__ = """2000""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = """TRANSFORMER_BASED_WRAP""" SCREAMING_SNAKE_CASE__ = """T5Layer""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() with self.assertRaises(__A ) as cm: fsdp_plugin.set_auto_wrap_policy(__A ) self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) ) SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = """SIZE_BASED_WRAP""" SCREAMING_SNAKE_CASE__ = """0""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _snake_case ( self :Optional[Any] ) -> Optional[int]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = mp_dtype with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = Accelerator() if mp_dtype == "fp16": SCREAMING_SNAKE_CASE__ = torch.floataa elif mp_dtype == "bf16": SCREAMING_SNAKE_CASE__ = torch.bfloataa SCREAMING_SNAKE_CASE__ = MixedPrecision(param_dtype=__A , reduce_dtype=__A , buffer_dtype=__A ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __A ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __A ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__A ) def _snake_case ( self :str ) -> str: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = str(__A ).lower() with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__A ) ) @require_fsdp @require_multi_gpu @slow class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Any ) -> Any: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = 0.8_2 SCREAMING_SNAKE_CASE__ = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] SCREAMING_SNAKE_CASE__ = { """multi_gpu_fp16""": 3200, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000, """fsdp_full_shard_transformer_based_wrap_fp16""": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } SCREAMING_SNAKE_CASE__ = 160 SCREAMING_SNAKE_CASE__ = 160 SCREAMING_SNAKE_CASE__ = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] ) def _snake_case ( self :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_performance.py""" ) SCREAMING_SNAKE_CASE__ = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: SCREAMING_SNAKE_CASE__ = cmd.copy() for i, strategy in enumerate(__A ): if strategy.lower() in config: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append("""--mixed_precision=no""" ) else: cmd_config.append("""--mixed_precision=fp16""" ) if "cpu_offload" in config: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self :Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" ) SCREAMING_SNAKE_CASE__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = cmd.copy() cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue SCREAMING_SNAKE_CASE__ = len(__A ) for state_dict_type in FSDP_STATE_DICT_TYPE: SCREAMING_SNAKE_CASE__ = cmd_config[:state_dict_config_index] cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', """--partial_train_epoch=1""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) SCREAMING_SNAKE_CASE__ = cmd_config[:-1] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdir , """epoch_0""" ) cmd_config.extend( [ f'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self :Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" ) SCREAMING_SNAKE_CASE__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): SCREAMING_SNAKE_CASE__ = cmd.copy() if "fp16" in spec: cmd_config.extend(["""--mixed_precision=fp16"""] ) else: cmd_config.extend(["""--mixed_precision=no"""] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["""--use_fsdp"""] ) for i, strategy in enumerate(__A ): if strategy.lower() in spec: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--peak_memory_upper_bound={peak_mem_upper_bound}''', f'''--n_train={self.n_train}''', f'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() )
6
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "swinv2" lowerCamelCase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self :int , __A :Tuple=224 , __A :Any=4 , __A :int=3 , __A :Optional[int]=96 , __A :Tuple=[2, 2, 6, 2] , __A :Dict=[3, 6, 12, 24] , __A :Dict=7 , __A :List[Any]=4.0 , __A :Tuple=True , __A :Dict=0.0 , __A :Optional[Any]=0.0 , __A :List[Any]=0.1 , __A :int="gelu" , __A :List[str]=False , __A :Optional[int]=0.0_2 , __A :Optional[Any]=1E-5 , __A :str=32 , **__A :Union[str, Any] , ) -> Dict: """simple docstring""" super().__init__(**__A ) SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = embed_dim SCREAMING_SNAKE_CASE__ = depths SCREAMING_SNAKE_CASE__ = len(__A ) SCREAMING_SNAKE_CASE__ = num_heads SCREAMING_SNAKE_CASE__ = window_size SCREAMING_SNAKE_CASE__ = mlp_ratio SCREAMING_SNAKE_CASE__ = qkv_bias SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = drop_path_rate SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = use_absolute_embeddings SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE__ = int(embed_dim * 2 ** (len(__A ) - 1) ) SCREAMING_SNAKE_CASE__ = (0, 0, 0, 0)
6
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _lowerCamelCase = logging.get_logger(__name__) # General docstring _lowerCamelCase = 'PoolFormerConfig' # Base docstring _lowerCamelCase = 'sail/poolformer_s12' _lowerCamelCase = [1, 512, 7, 7] # Image classification docstring _lowerCamelCase = 'sail/poolformer_s12' _lowerCamelCase = 'tabby, tabby cat' _lowerCamelCase = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: float = 0.0 , UpperCamelCase__: bool = False ): if drop_prob == 0.0 or not training: return input SCREAMING_SNAKE_CASE__ = 1 - drop_prob SCREAMING_SNAKE_CASE__ = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets SCREAMING_SNAKE_CASE__ = keep_prob + torch.rand(UpperCamelCase__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize SCREAMING_SNAKE_CASE__ = input.div(UpperCamelCase__ ) * random_tensor return output class UpperCamelCase_ ( nn.Module ): def __init__( self :Optional[Any] , __A :Optional[float] = None ) -> None: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = drop_prob def _snake_case ( self :Any , __A :torch.Tensor ) -> torch.Tensor: """simple docstring""" return drop_path(__A , self.drop_prob , self.training ) def _snake_case ( self :Dict ) -> str: """simple docstring""" return "p={}".format(self.drop_prob ) class UpperCamelCase_ ( nn.Module ): def __init__( self :Dict , __A :Optional[Any] , __A :Dict , __A :List[str] , __A :Optional[Any] , __A :Tuple , __A :Optional[Any]=None ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = patch_size if isinstance(__A , collections.abc.Iterable ) else (patch_size, patch_size) SCREAMING_SNAKE_CASE__ = stride if isinstance(__A , collections.abc.Iterable ) else (stride, stride) SCREAMING_SNAKE_CASE__ = padding if isinstance(__A , collections.abc.Iterable ) else (padding, padding) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , kernel_size=__A , stride=__A , padding=__A ) SCREAMING_SNAKE_CASE__ = norm_layer(__A ) if norm_layer else nn.Identity() def _snake_case ( self :Dict , __A :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.projection(__A ) SCREAMING_SNAKE_CASE__ = self.norm(__A ) return embeddings class UpperCamelCase_ ( nn.GroupNorm ): def __init__( self :Dict , __A :Tuple , **__A :Union[str, Any] ) -> Dict: """simple docstring""" super().__init__(1 , __A , **__A ) class UpperCamelCase_ ( nn.Module ): def __init__( self :List[str] , __A :Optional[int] ) -> Any: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.AvgPoolad(__A , stride=1 , padding=pool_size // 2 , count_include_pad=__A ) def _snake_case ( self :Any , __A :Optional[Any] ) -> Optional[Any]: """simple docstring""" return self.pool(__A ) - hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self :Optional[Any] , __A :Tuple , __A :Dict , __A :int , __A :Any ) -> str: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A ) if isinstance(config.hidden_act , __A ): SCREAMING_SNAKE_CASE__ = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE__ = config.hidden_act def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.conva(__A ) SCREAMING_SNAKE_CASE__ = self.act_fn(__A ) SCREAMING_SNAKE_CASE__ = self.drop(__A ) SCREAMING_SNAKE_CASE__ = self.conva(__A ) SCREAMING_SNAKE_CASE__ = self.drop(__A ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self :Any , __A :str , __A :List[str] , __A :Tuple , __A :Dict , __A :Union[str, Any] , __A :int ) -> Optional[int]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = PoolFormerPooling(__A ) SCREAMING_SNAKE_CASE__ = PoolFormerOutput(__A , __A , __A , __A ) SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A ) SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A ) # Useful for training neural nets SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A ) if drop_path > 0.0 else nn.Identity() SCREAMING_SNAKE_CASE__ = config.use_layer_scale if config.use_layer_scale: SCREAMING_SNAKE_CASE__ = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) SCREAMING_SNAKE_CASE__ = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) def _snake_case ( self :Optional[Any] , __A :Optional[int] ) -> str: """simple docstring""" if self.use_layer_scale: SCREAMING_SNAKE_CASE__ = self.pooling(self.before_norm(__A ) ) SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A ) SCREAMING_SNAKE_CASE__ = () SCREAMING_SNAKE_CASE__ = self.output(self.after_norm(__A ) ) SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A ) SCREAMING_SNAKE_CASE__ = (output,) + outputs return outputs else: SCREAMING_SNAKE_CASE__ = self.drop_path(self.pooling(self.before_norm(__A ) ) ) # First residual connection SCREAMING_SNAKE_CASE__ = pooling_output + hidden_states SCREAMING_SNAKE_CASE__ = () # Second residual connection inside the PoolFormerOutput block SCREAMING_SNAKE_CASE__ = self.drop_path(self.output(self.after_norm(__A ) ) ) SCREAMING_SNAKE_CASE__ = hidden_states + layer_output SCREAMING_SNAKE_CASE__ = (output,) + outputs return outputs class UpperCamelCase_ ( nn.Module ): def __init__( self :Union[str, Any] , __A :List[Any] ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = config # stochastic depth decay rule SCREAMING_SNAKE_CASE__ = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings SCREAMING_SNAKE_CASE__ = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A ) # Transformer blocks SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers SCREAMING_SNAKE_CASE__ = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __A , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__A ) ) SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A ) def _snake_case ( self :str , __A :Tuple , __A :Dict=False , __A :Tuple=True ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = () if output_hidden_states else None SCREAMING_SNAKE_CASE__ = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = layers # Get patch embeddings from hidden_states SCREAMING_SNAKE_CASE__ = embedding_layer(__A ) # Send the embeddings through the blocks for _, blk in enumerate(__A ): SCREAMING_SNAKE_CASE__ = blk(__A ) SCREAMING_SNAKE_CASE__ = layer_outputs[0] if output_hidden_states: SCREAMING_SNAKE_CASE__ = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__A , hidden_states=__A ) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = PoolFormerConfig lowerCamelCase_ = "poolformer" lowerCamelCase_ = "pixel_values" lowerCamelCase_ = True def _snake_case ( self :Optional[Any] , __A :Tuple ) -> Dict: """simple docstring""" if isinstance(__A , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__A , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _snake_case ( self :str , __A :Optional[Any] , __A :Union[str, Any]=False ) -> Any: """simple docstring""" if isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = value _lowerCamelCase = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _lowerCamelCase = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , UpperCamelCase__ , ) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , __A :Any ) -> int: """simple docstring""" super().__init__(__A ) SCREAMING_SNAKE_CASE__ = config SCREAMING_SNAKE_CASE__ = PoolFormerEncoder(__A ) # Initialize weights and apply final processing self.post_init() def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__A , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _snake_case ( self :Dict , __A :Optional[torch.FloatTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) SCREAMING_SNAKE_CASE__ = self.encoder( __A , output_hidden_states=__A , return_dict=__A , ) SCREAMING_SNAKE_CASE__ = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__A , hidden_states=encoder_outputs.hidden_states , ) class UpperCamelCase_ ( nn.Module ): def __init__( self :int , __A :Optional[int] ) -> Tuple: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(config.hidden_size , config.hidden_size ) def _snake_case ( self :List[Any] , __A :Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.dense(__A ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , UpperCamelCase__ , ) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :str , __A :Union[str, Any] ) -> int: """simple docstring""" super().__init__(__A ) SCREAMING_SNAKE_CASE__ = config.num_labels SCREAMING_SNAKE_CASE__ = PoolFormerModel(__A ) # Final norm SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head SCREAMING_SNAKE_CASE__ = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _snake_case ( self :int , __A :Optional[torch.FloatTensor] = None , __A :Optional[torch.LongTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE__ = self.poolformer( __A , output_hidden_states=__A , return_dict=__A , ) SCREAMING_SNAKE_CASE__ = outputs[0] SCREAMING_SNAKE_CASE__ = self.classifier(self.norm(__A ).mean([-2, -1] ) ) SCREAMING_SNAKE_CASE__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE__ = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE__ = """single_label_classification""" else: SCREAMING_SNAKE_CASE__ = """multi_label_classification""" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE__ = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE__ = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE__ = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A ) if not return_dict: SCREAMING_SNAKE_CASE__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__A , logits=__A , hidden_states=outputs.hidden_states )
6
1
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCamelCase = { 'facebook/mask2former-swin-small-coco-instance': ( 'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } _lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "mask2former" lowerCamelCase_ = ["swin"] lowerCamelCase_ = {"hidden_size": "hidden_dim"} def __init__( self :List[str] , __A :Optional[Dict] = None , __A :int = 256 , __A :int = 256 , __A :int = 256 , __A :int = 1024 , __A :str = "relu" , __A :int = 6 , __A :int = 10 , __A :int = 8 , __A :float = 0.0 , __A :int = 2048 , __A :bool = False , __A :bool = False , __A :int = 4 , __A :int = 255 , __A :int = 100 , __A :float = 0.1 , __A :float = 2.0 , __A :float = 5.0 , __A :float = 5.0 , __A :int = 1_2544 , __A :float = 3.0 , __A :float = 0.7_5 , __A :float = 0.0_2 , __A :float = 1.0 , __A :bool = True , __A :List[int] = [4, 8, 16, 32] , __A :bool = None , **__A :Tuple , ) -> Optional[Any]: """simple docstring""" if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) SCREAMING_SNAKE_CASE__ = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__A , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = backbone_config.pop("""model_type""" ) SCREAMING_SNAKE_CASE__ = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE__ = config_class.from_dict(__A ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) SCREAMING_SNAKE_CASE__ = backbone_config SCREAMING_SNAKE_CASE__ = feature_size SCREAMING_SNAKE_CASE__ = mask_feature_size SCREAMING_SNAKE_CASE__ = hidden_dim SCREAMING_SNAKE_CASE__ = encoder_feedforward_dim SCREAMING_SNAKE_CASE__ = activation_function SCREAMING_SNAKE_CASE__ = encoder_layers SCREAMING_SNAKE_CASE__ = decoder_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = dropout SCREAMING_SNAKE_CASE__ = dim_feedforward SCREAMING_SNAKE_CASE__ = pre_norm SCREAMING_SNAKE_CASE__ = enforce_input_projection SCREAMING_SNAKE_CASE__ = common_stride SCREAMING_SNAKE_CASE__ = ignore_value SCREAMING_SNAKE_CASE__ = num_queries SCREAMING_SNAKE_CASE__ = no_object_weight SCREAMING_SNAKE_CASE__ = class_weight SCREAMING_SNAKE_CASE__ = mask_weight SCREAMING_SNAKE_CASE__ = dice_weight SCREAMING_SNAKE_CASE__ = train_num_points SCREAMING_SNAKE_CASE__ = oversample_ratio SCREAMING_SNAKE_CASE__ = importance_sample_ratio SCREAMING_SNAKE_CASE__ = init_std SCREAMING_SNAKE_CASE__ = init_xavier_std SCREAMING_SNAKE_CASE__ = use_auxiliary_loss SCREAMING_SNAKE_CASE__ = feature_strides SCREAMING_SNAKE_CASE__ = output_auxiliary_logits SCREAMING_SNAKE_CASE__ = decoder_layers super().__init__(**__A ) @classmethod def _snake_case ( cls :str , __A :PretrainedConfig , **__A :int ) -> Tuple: """simple docstring""" return cls( backbone_config=__A , **__A , ) def _snake_case ( self :Tuple ) -> Dict[str, any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE__ = self.__class__.model_type return output
6
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , __A :Optional[int] , __A :Tuple=13 , __A :Dict=7 , __A :Dict=True , __A :str=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Any=False , __A :Dict=False , __A :Any=False , __A :Tuple=2 , __A :Dict=99 , __A :Optional[Any]=0 , __A :List[str]=32 , __A :Optional[int]=5 , __A :Dict=4 , __A :List[str]=0.1 , __A :Union[str, Any]=0.1 , __A :Tuple=512 , __A :Any=12 , __A :Optional[int]=2 , __A :Union[str, Any]=0.0_2 , __A :Dict=3 , __A :Optional[int]=4 , __A :Any="last" , __A :List[Any]=None , __A :Any=None , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_lengths SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = gelu_activation SCREAMING_SNAKE_CASE__ = sinusoidal_embeddings SCREAMING_SNAKE_CASE__ = causal SCREAMING_SNAKE_CASE__ = asm SCREAMING_SNAKE_CASE__ = n_langs SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = n_special SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = summary_type SCREAMING_SNAKE_CASE__ = use_proj SCREAMING_SNAKE_CASE__ = scope def _snake_case ( self :Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_input_lengths: SCREAMING_SNAKE_CASE__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , 2 ).float() SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self :List[str] ) -> Optional[int]: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _snake_case ( self :Tuple , __A :str , __A :int , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[int] , __A :Union[str, Any] , __A :Union[str, Any] , __A :str , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModel(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , lengths=__A , langs=__A ) SCREAMING_SNAKE_CASE__ = model(__A , langs=__A ) SCREAMING_SNAKE_CASE__ = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self :str , __A :Any , __A :str , __A :Union[str, Any] , __A :Optional[Any] , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[Any] , __A :Union[str, Any] , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertWithLMHeadModel(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self :Tuple , __A :Union[str, Any] , __A :Optional[Any] , __A :Dict , __A :Dict , __A :Union[str, Any] , __A :List[str] , __A :Optional[int] , __A :int , __A :str , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnsweringSimple(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self :List[str] , __A :Any , __A :int , __A :Tuple , __A :Optional[Any] , __A :Tuple , __A :Optional[int] , __A :str , __A :int , __A :str , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnswering(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model( __A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , p_mask=__A , ) SCREAMING_SNAKE_CASE__ = model( __A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , ) ((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple() SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A ) ((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _snake_case ( self :Optional[int] , __A :str , __A :Optional[int] , __A :Tuple , __A :Dict , __A :List[str] , __A :Tuple , __A :List[str] , __A :Dict , __A :List[str] , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForSequenceClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model(__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self :Optional[Any] , __A :Optional[Any] , __A :Optional[Any] , __A :List[str] , __A :Optional[Any] , __A :int , __A :Tuple , __A :Optional[int] , __A :Union[str, Any] , __A :Dict , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = FlaubertForTokenClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self :str , __A :Any , __A :Tuple , __A :List[str] , __A :Tuple , __A :Any , __A :int , __A :Dict , __A :List[str] , __A :Tuple , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_choices SCREAMING_SNAKE_CASE__ = FlaubertForMultipleChoice(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self :Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): lowerCamelCase_ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase_ = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self :Any , __A :Optional[int] , __A :Optional[int] , __A :Dict , __A :List[Any] , __A :Tuple ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self :Tuple , __A :List[str] , __A :Optional[int] , __A :Dict=False ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__A , emb_dim=37 ) def _snake_case ( self :int ) -> int: """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self :Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__A ) def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__A ) def _snake_case ( self :str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__A ) def _snake_case ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__A ) def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__A ) def _snake_case ( self :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__A ) def _snake_case ( self :Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__A ) @slow def _snake_case ( self :Union[str, Any] ) -> List[str]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @slow @require_torch_gpu def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = model_class(config=__A ) SCREAMING_SNAKE_CASE__ = self._prepare_for_class(__A , __A ) SCREAMING_SNAKE_CASE__ = torch.jit.trace( __A , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__A , os.path.join(__A , """traced_model.pt""" ) ) SCREAMING_SNAKE_CASE__ = torch.jit.load(os.path.join(__A , """traced_model.pt""" ) , map_location=__A ) loaded(inputs_dict["""input_ids"""].to(__A ) , inputs_dict["""attention_mask"""].to(__A ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _snake_case ( self :Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(__A )[0] SCREAMING_SNAKE_CASE__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __A ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1E-4 ) )
6
1
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float ): if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(UpperCamelCase__ ) * abs(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
6
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: str , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Union[str, Any] ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any , UpperCamelCase__: List[str] , UpperCamelCase__: Tuple=True ): model.train() SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = F.mse_loss(UpperCamelCase__ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: List[Any]=False ): set_seed(42 ) SCREAMING_SNAKE_CASE__ = RegressionModel() SCREAMING_SNAKE_CASE__ = deepcopy(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 ) model.to(accelerator.device ) if sched: SCREAMING_SNAKE_CASE__ = AdamW(params=model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE__ = AdamW(params=ddp_model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 ) SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 ) # Make a copy of `model` if sched: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ): # Test when on a single CPU or GPU that the context manager does nothing SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ ) # Use a single batch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: # Sync grads step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ): # Test on distributed setup that context manager behaves properly SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ ) # Use a single batch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: # Sync grads step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int=False , UpperCamelCase__: Union[str, Any]=False ): SCREAMING_SNAKE_CASE__ = Accelerator( split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ ) for iteration, batch in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCamelCase__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] GradientState._reset_state() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple=False , UpperCamelCase__: List[str]=False ): SCREAMING_SNAKE_CASE__ = Accelerator( split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ , UpperCamelCase__ ) for iteration, batch in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCamelCase__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' SCREAMING_SNAKE_CASE__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCamelCase__ )) if accelerator.num_processes > 1: check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) GradientState._reset_state() def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = Accelerator() SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 ) SCREAMING_SNAKE_CASE__ = RegressionDataset(length=96 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(UpperCamelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ ) if iteration < len(UpperCamelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(UpperCamelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ ) if batch_num < len(UpperCamelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = Accelerator() SCREAMING_SNAKE_CASE__ = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(UpperCamelCase__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(UpperCamelCase__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(UpperCamelCase__ , UpperCamelCase__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
6
1
from typing import Union import fire import torch from tqdm import tqdm def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: str = "cpu" , UpperCamelCase__: Union[str, None] = None ): SCREAMING_SNAKE_CASE__ = torch.load(UpperCamelCase__ , map_location=UpperCamelCase__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(UpperCamelCase__ , torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) SCREAMING_SNAKE_CASE__ = v.half() if save_path is None: # overwrite src_path SCREAMING_SNAKE_CASE__ = src_path torch.save(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": fire.Fire(convert)
6
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "AutoImageProcessor" lowerCamelCase_ = "AutoTokenizer" def __init__( self :Optional[int] , __A :Optional[Any] , __A :Dict ) -> Dict: """simple docstring""" super().__init__(__A , __A ) SCREAMING_SNAKE_CASE__ = self.image_processor def __call__( self :int , __A :str=None , __A :int=None , __A :Union[str, Any]=None , **__A :str ) -> Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self :str , *__A :List[str] , **__A :List[str] ) -> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :List[str] , *__A :Any , **__A :Any ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :Dict ) -> List[Any]: """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
6
1
from __future__ import annotations from typing import Any class UpperCamelCase_ : def __init__( self :List[str] , __A :int , __A :int , __A :float = 0 ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = row, column SCREAMING_SNAKE_CASE__ = [[default_value for c in range(__A )] for r in range(__A )] def __str__( self :Optional[int] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier SCREAMING_SNAKE_CASE__ = 0 for row_vector in self.array: for obj in row_vector: SCREAMING_SNAKE_CASE__ = max(__A , len(str(__A ) ) ) SCREAMING_SNAKE_CASE__ = f'''%{max_element_length}s''' # Make string and return def single_line(__A :list[float] ) -> str: nonlocal string_format_identifier SCREAMING_SNAKE_CASE__ = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__A ) for row_vector in self.array ) return s def __repr__( self :Optional[Any] ) -> str: """simple docstring""" return str(self ) def _snake_case ( self :Tuple , __A :tuple[int, int] ) -> bool: """simple docstring""" if not (isinstance(__A , (list, tuple) ) and len(__A ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self :List[Any] , __A :tuple[int, int] ) -> Any: """simple docstring""" assert self.validate_indicies(__A ) return self.array[loc[0]][loc[1]] def __setitem__( self :int , __A :tuple[int, int] , __A :float ) -> None: """simple docstring""" assert self.validate_indicies(__A ) SCREAMING_SNAKE_CASE__ = value def __add__( self :Any , __A :Matrix ) -> Matrix: """simple docstring""" assert isinstance(__A , __A ) assert self.row == another.row and self.column == another.column # Add SCREAMING_SNAKE_CASE__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE__ = self[r, c] + another[r, c] return result def __neg__( self :Dict ) -> Matrix: """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE__ = -self[r, c] return result def __sub__( self :Union[str, Any] , __A :Matrix ) -> Matrix: """simple docstring""" return self + (-another) def __mul__( self :Tuple , __A :int | float | Matrix ) -> Matrix: """simple docstring""" if isinstance(__A , (int, float) ): # Scalar multiplication SCREAMING_SNAKE_CASE__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE__ = self[r, c] * another return result elif isinstance(__A , __A ): # Matrix multiplication assert self.column == another.row SCREAMING_SNAKE_CASE__ = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: SCREAMING_SNAKE_CASE__ = f'''Unsupported type given for another ({type(__A )})''' raise TypeError(__A ) def _snake_case ( self :int ) -> Matrix: """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE__ = self[r, c] return result def _snake_case ( self :List[str] , __A :Matrix , __A :Matrix ) -> Any: """simple docstring""" assert isinstance(__A , __A ) and isinstance(__A , __A ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate SCREAMING_SNAKE_CASE__ = v.transpose() SCREAMING_SNAKE_CASE__ = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def SCREAMING_SNAKE_CASE__ ( ): # a^(-1) SCREAMING_SNAKE_CASE__ = Matrix(3 , 3 , 0 ) for i in range(3 ): SCREAMING_SNAKE_CASE__ = 1 print(f'''a^(-1) is {ainv}''' ) # u, v SCREAMING_SNAKE_CASE__ = Matrix(3 , 1 , 0 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1, 2, -3 SCREAMING_SNAKE_CASE__ = Matrix(3 , 1 , 0 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(UpperCamelCase__ , UpperCamelCase__ )}''' ) def SCREAMING_SNAKE_CASE__ ( ): import doctest doctest.testmod() testa()
6
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = sum(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): SCREAMING_SNAKE_CASE__ = True for i in range(1 , s + 1 ): SCREAMING_SNAKE_CASE__ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): SCREAMING_SNAKE_CASE__ = dp[i][j - 1] if arr[i - 1] <= j: SCREAMING_SNAKE_CASE__ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: SCREAMING_SNAKE_CASE__ = s - 2 * j break return diff
6
1
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict ): # Initialise PyTorch model SCREAMING_SNAKE_CASE__ = BertConfig.from_json_file(UpperCamelCase__ ) print(f'''Building PyTorch model from configuration: {config}''' ) SCREAMING_SNAKE_CASE__ = BertForPreTraining(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _lowerCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
6
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float ): if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(UpperCamelCase__ ) * abs(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
6
1
class UpperCamelCase_ : def __init__( self :int , __A :list ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = set_counts SCREAMING_SNAKE_CASE__ = max(__A ) SCREAMING_SNAKE_CASE__ = len(__A ) SCREAMING_SNAKE_CASE__ = [1] * num_sets SCREAMING_SNAKE_CASE__ = list(range(__A ) ) def _snake_case ( self :Union[str, Any] , __A :int , __A :int ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_parent(__A ) SCREAMING_SNAKE_CASE__ = self.get_parent(__A ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 SCREAMING_SNAKE_CASE__ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = src_parent SCREAMING_SNAKE_CASE__ = self.set_counts[src_parent] SCREAMING_SNAKE_CASE__ = max(self.max_set , __A ) return True def _snake_case ( self :Union[str, Any] , __A :int ) -> int: """simple docstring""" if self.parents[disj_set] == disj_set: return disj_set SCREAMING_SNAKE_CASE__ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
6
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "encoder-decoder" lowerCamelCase_ = True def __init__( self :Optional[int] , **__A :str ) -> int: """simple docstring""" super().__init__(**__A ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" SCREAMING_SNAKE_CASE__ = kwargs.pop("""encoder""" ) SCREAMING_SNAKE_CASE__ = encoder_config.pop("""model_type""" ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""decoder""" ) SCREAMING_SNAKE_CASE__ = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A ) SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A ) SCREAMING_SNAKE_CASE__ = True @classmethod def _snake_case ( cls :str , __A :PretrainedConfig , __A :PretrainedConfig , **__A :List[str] ) -> PretrainedConfig: """simple docstring""" logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__A ) def _snake_case ( self :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ = self.encoder.to_dict() SCREAMING_SNAKE_CASE__ = self.decoder.to_dict() SCREAMING_SNAKE_CASE__ = self.__class__.model_type return output
6
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration _lowerCamelCase = 'facebook/wmt19-en-de' _lowerCamelCase = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model _lowerCamelCase = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) _lowerCamelCase = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test _lowerCamelCase = tokenizer(['Making tiny model'], return_tensors='pt') _lowerCamelCase = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save _lowerCamelCase = 'tiny-wmt19-en-de' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
6
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase__ ) class UpperCamelCase_ ( UpperCamelCase__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCamelCase_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCamelCase_ = Features({"text": Value("string" )} ) lowerCamelCase_ = Features({"labels": ClassLabel} ) lowerCamelCase_ = "text" lowerCamelCase_ = "labels" def _snake_case ( self :Any , __A :Dict ) -> Optional[Any]: """simple docstring""" if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) SCREAMING_SNAKE_CASE__ = copy.deepcopy(self ) SCREAMING_SNAKE_CASE__ = self.label_schema.copy() SCREAMING_SNAKE_CASE__ = features[self.label_column] SCREAMING_SNAKE_CASE__ = label_schema return task_template @property def _snake_case ( self :str ) -> Dict[str, str]: """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
6
1
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = image.size SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 SCREAMING_SNAKE_CASE__ = image.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) SCREAMING_SNAKE_CASE__ = np.array(UpperCamelCase__ ).astype(np.floataa ) / 2_5_5.0 SCREAMING_SNAKE_CASE__ = image[None].transpose(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase__ ) return 2.0 * image - 1.0 class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Any , __A :VQModel , __A :UNetaDModel , __A :Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(vqvae=__A , unet=__A , scheduler=__A ) @torch.no_grad() def __call__( self :List[Any] , __A :Union[torch.Tensor, PIL.Image.Image] = None , __A :Optional[int] = 1 , __A :Optional[int] = 100 , __A :Optional[float] = 0.0 , __A :Optional[Union[torch.Generator, List[torch.Generator]]] = None , __A :Optional[str] = "pil" , __A :bool = True , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" if isinstance(__A , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ = 1 elif isinstance(__A , torch.Tensor ): SCREAMING_SNAKE_CASE__ = image.shape[0] else: raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(__A )}''' ) if isinstance(__A , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ = preprocess(__A ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image SCREAMING_SNAKE_CASE__ = (batch_size, self.unet.config.in_channels // 2, height, width) SCREAMING_SNAKE_CASE__ = next(self.unet.parameters() ).dtype SCREAMING_SNAKE_CASE__ = randn_tensor(__A , generator=__A , device=self.device , dtype=__A ) SCREAMING_SNAKE_CASE__ = image.to(device=self.device , dtype=__A ) # set timesteps and move to the correct device self.scheduler.set_timesteps(__A , device=self.device ) SCREAMING_SNAKE_CASE__ = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler SCREAMING_SNAKE_CASE__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] SCREAMING_SNAKE_CASE__ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) SCREAMING_SNAKE_CASE__ = {} if accepts_eta: SCREAMING_SNAKE_CASE__ = eta for t in self.progress_bar(__A ): # concat latents and low resolution image in the channel dimension. SCREAMING_SNAKE_CASE__ = torch.cat([latents, image] , dim=1 ) SCREAMING_SNAKE_CASE__ = self.scheduler.scale_model_input(__A , __A ) # predict the noise residual SCREAMING_SNAKE_CASE__ = self.unet(__A , __A ).sample # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE__ = self.scheduler.step(__A , __A , __A , **__A ).prev_sample # decode the image latents with the VQVAE SCREAMING_SNAKE_CASE__ = self.vqvae.decode(__A ).sample SCREAMING_SNAKE_CASE__ = torch.clamp(__A , -1.0 , 1.0 ) SCREAMING_SNAKE_CASE__ = image / 2 + 0.5 SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(__A ) if not return_dict: return (image,) return ImagePipelineOutput(images=__A )
6
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = model.config SCREAMING_SNAKE_CASE__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) SCREAMING_SNAKE_CASE__ = MBartConfig( is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , add_cross_attention=UpperCamelCase__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=UpperCamelCase__ , add_final_layer_norm=UpperCamelCase__ , ) return encoder_config, decoder_config def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): if "encoder.model" in name: SCREAMING_SNAKE_CASE__ = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: SCREAMING_SNAKE_CASE__ = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: SCREAMING_SNAKE_CASE__ = """encoder.""" + name if "attn.proj" in name: SCREAMING_SNAKE_CASE__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: SCREAMING_SNAKE_CASE__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": SCREAMING_SNAKE_CASE__ = """encoder.layernorm.weight""" if name == "encoder.norm.bias": SCREAMING_SNAKE_CASE__ = """encoder.layernorm.bias""" return name def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Optional[int] ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE__ = orig_state_dict.pop(UpperCamelCase__ ) if "qkv" in key: SCREAMING_SNAKE_CASE__ = key.split(""".""" ) SCREAMING_SNAKE_CASE__ = int(key_split[3] ) SCREAMING_SNAKE_CASE__ = int(key_split[5] ) SCREAMING_SNAKE_CASE__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE__ = val[:dim, :] SCREAMING_SNAKE_CASE__ = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE__ = val[-dim:, :] else: SCREAMING_SNAKE_CASE__ = val[:dim] SCREAMING_SNAKE_CASE__ = val[dim : dim * 2] SCREAMING_SNAKE_CASE__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: SCREAMING_SNAKE_CASE__ = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: int=None , UpperCamelCase__: str=False ): # load original model SCREAMING_SNAKE_CASE__ = DonutModel.from_pretrained(UpperCamelCase__ ).eval() # load HuggingFace model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_configs(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = DonutSwinModel(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = MBartForCausalLM(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE__ = original_model.state_dict() SCREAMING_SNAKE_CASE__ = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) # verify results on scanned document SCREAMING_SNAKE_CASE__ = load_dataset("""hf-internal-testing/example-documents""" ) SCREAMING_SNAKE_CASE__ = dataset["""test"""][0]["""image"""].convert("""RGB""" ) SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizerFast.from_pretrained(UpperCamelCase__ , from_slow=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) SCREAMING_SNAKE_CASE__ = DonutProcessor(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = processor(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": SCREAMING_SNAKE_CASE__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" SCREAMING_SNAKE_CASE__ = """When is the coffee break?""" SCREAMING_SNAKE_CASE__ = task_prompt.replace("""{user_input}""" , UpperCamelCase__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": SCREAMING_SNAKE_CASE__ = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: SCREAMING_SNAKE_CASE__ = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": SCREAMING_SNAKE_CASE__ = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": SCREAMING_SNAKE_CASE__ = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt SCREAMING_SNAKE_CASE__ = """hello world""" else: raise ValueError("""Model name not supported""" ) SCREAMING_SNAKE_CASE__ = original_model.decoder.tokenizer(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors="""pt""" )[ """input_ids""" ] SCREAMING_SNAKE_CASE__ = original_model.encoder.model.patch_embed(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.encoder.embeddings(UpperCamelCase__ ) assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) # verify encoder hidden states SCREAMING_SNAKE_CASE__ = original_model.encoder(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = model.encoder(UpperCamelCase__ ).last_hidden_state assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-2 ) # verify decoder hidden states SCREAMING_SNAKE_CASE__ = original_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).logits SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) _lowerCamelCase = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
6
1
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int ): SCREAMING_SNAKE_CASE__ = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int = 100 ): SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 for i in range(2 , max_n + 1 ): SCREAMING_SNAKE_CASE__ = pre_numerator SCREAMING_SNAKE_CASE__ = 2 * i // 3 if i % 3 == 0 else 1 SCREAMING_SNAKE_CASE__ = cur_numerator SCREAMING_SNAKE_CASE__ = e_cont * pre_numerator + temp return sum_digits(UpperCamelCase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
6
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :Union[str, Any] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler("""sample_euler""" ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler("""sample_euler""" ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler("""sample_dpmpp_2m""" ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe( [prompt] , generator=__A , guidance_scale=7.5 , num_inference_steps=15 , output_type="""np""" , use_karras_sigmas=__A , ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
6
1
import os def SCREAMING_SNAKE_CASE__ ( ): with open(os.path.dirname(UpperCamelCase__ ) + """/p022_names.txt""" ) as file: SCREAMING_SNAKE_CASE__ = str(file.readlines()[0] ) SCREAMING_SNAKE_CASE__ = names.replace("""\"""" , """""" ).split(""",""" ) names.sort() SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 for i, name in enumerate(UpperCamelCase__ ): for letter in name: name_score += ord(UpperCamelCase__ ) - 64 total_score += (i + 1) * name_score SCREAMING_SNAKE_CASE__ = 0 return total_score if __name__ == "__main__": print(solution())
6
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int = 600_851_475_143 ): try: SCREAMING_SNAKE_CASE__ = int(UpperCamelCase__ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 while i * i <= n: while n % i == 0: SCREAMING_SNAKE_CASE__ = i n //= i i += 1 if n > 1: SCREAMING_SNAKE_CASE__ = n return int(UpperCamelCase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
6
1
from pathlib import Path import fire def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: int ): SCREAMING_SNAKE_CASE__ = Path(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = Path(UpperCamelCase__ ) dest_dir.mkdir(exist_ok=UpperCamelCase__ ) for path in src_dir.iterdir(): SCREAMING_SNAKE_CASE__ = [x.rstrip() for x in list(path.open().readlines() )][:n] SCREAMING_SNAKE_CASE__ = dest_dir.joinpath(path.name ) print(UpperCamelCase__ ) dest_path.open("""w""" ).write("""\n""".join(UpperCamelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
6
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__A ) ) def _snake_case ( self :List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__A ) ) def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__A ) ) def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__A ) ) def _snake_case ( self :Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", # Removed: 'text_encoder/model.safetensors', """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertFalse(is_safetensors_compatible(__A ) ) def _snake_case ( self :Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertFalse(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", # 'text_encoder/model.fp16.safetensors', """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertFalse(is_safetensors_compatible(__A , variant=__A ) )
6
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCamelCase = { 'configuration_vision_text_dual_encoder': ['VisionTextDualEncoderConfig'], 'processing_vision_text_dual_encoder': ['VisionTextDualEncoderProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['VisionTextDualEncoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['FlaxVisionTextDualEncoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['TFVisionTextDualEncoderModel'] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
6
import argparse import datetime def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } SCREAMING_SNAKE_CASE__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(UpperCamelCase__ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month SCREAMING_SNAKE_CASE__ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) SCREAMING_SNAKE_CASE__ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day SCREAMING_SNAKE_CASE__ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator SCREAMING_SNAKE_CASE__ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year SCREAMING_SNAKE_CASE__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8_500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation SCREAMING_SNAKE_CASE__ = datetime.date(int(UpperCamelCase__ ) , int(UpperCamelCase__ ) , int(UpperCamelCase__ ) ) # Start math if m <= 2: SCREAMING_SNAKE_CASE__ = y - 1 SCREAMING_SNAKE_CASE__ = m + 12 # maths var SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[:2] ) SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[2:] ) SCREAMING_SNAKE_CASE__ = int(2.6 * m - 5.3_9 ) SCREAMING_SNAKE_CASE__ = int(c / 4 ) SCREAMING_SNAKE_CASE__ = int(k / 4 ) SCREAMING_SNAKE_CASE__ = int(d + k ) SCREAMING_SNAKE_CASE__ = int(t + u + v + x ) SCREAMING_SNAKE_CASE__ = int(z - (2 * c) ) SCREAMING_SNAKE_CASE__ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response SCREAMING_SNAKE_CASE__ = f'''Your date {date_input}, is a {days[str(UpperCamelCase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) _lowerCamelCase = parser.parse_args() zeller(args.date_input)
6
1
_lowerCamelCase = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _lowerCamelCase = [{'type': 'code', 'content': INSTALL_CONTENT}] _lowerCamelCase = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
6
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _lowerCamelCase = logging.getLogger(__name__) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=30522, type=int) _lowerCamelCase = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, 'rb') as fp: _lowerCamelCase = pickle.load(fp) logger.info('Counting occurrences for MLM.') _lowerCamelCase = Counter() for tk_ids in data: counter.update(tk_ids) _lowerCamelCase = [0] * args.vocab_size for k, v in counter.items(): _lowerCamelCase = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
6
1
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list ): if any(not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(UpperCamelCase__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(UpperCamelCase__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
6
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowerCamelCase = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
1
import math def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Any ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(UpperCamelCase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. _lowerCamelCase = 'Enter the base and the power separated by a comma: ' _lowerCamelCase , _lowerCamelCase = map(int, input(prompt).split(',')) _lowerCamelCase , _lowerCamelCase = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. _lowerCamelCase = res(xa, ya) _lowerCamelCase = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
6
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "OwlViTImageProcessor" lowerCamelCase_ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self :Optional[Any] , __A :int=None , __A :Optional[int]=None , **__A :str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __A , ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""feature_extractor""" ) SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__A , __A ) def __call__( self :str , __A :Dict=None , __A :List[str]=None , __A :str=None , __A :Optional[int]="max_length" , __A :Tuple="np" , **__A :int ) -> Tuple: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(__A , __A ) or (isinstance(__A , __A ) and not isinstance(text[0] , __A )): SCREAMING_SNAKE_CASE__ = [self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )] elif isinstance(__A , __A ) and isinstance(text[0] , __A ): SCREAMING_SNAKE_CASE__ = [] # Maximum number of queries across batch SCREAMING_SNAKE_CASE__ = max([len(__A ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__A ) != max_num_queries: SCREAMING_SNAKE_CASE__ = t + [""" """] * (max_num_queries - len(__A )) SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , padding=__A , return_tensors=__A , **__A ) encodings.append(__A ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) SCREAMING_SNAKE_CASE__ = BatchEncoding() SCREAMING_SNAKE_CASE__ = input_ids SCREAMING_SNAKE_CASE__ = attention_mask if query_images is not None: SCREAMING_SNAKE_CASE__ = BatchEncoding() SCREAMING_SNAKE_CASE__ = self.image_processor( __A , return_tensors=__A , **__A ).pixel_values SCREAMING_SNAKE_CASE__ = query_pixel_values if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif query_images is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self :List[Any] , *__A :Dict , **__A :Dict ) -> Optional[int]: """simple docstring""" return self.image_processor.post_process(*__A , **__A ) def _snake_case ( self :Optional[int] , *__A :Dict , **__A :List[str] ) -> Optional[Any]: """simple docstring""" return self.image_processor.post_process_object_detection(*__A , **__A ) def _snake_case ( self :str , *__A :List[str] , **__A :Union[str, Any] ) -> Any: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*__A , **__A ) def _snake_case ( self :Dict , *__A :List[str] , **__A :List[str] ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :Dict , *__A :Dict , **__A :List[str] ) -> str: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :List[Any] ) -> Optional[int]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , ) return self.image_processor_class @property def _snake_case ( self :Any ) -> Optional[Any]: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , ) return self.image_processor
6
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = filter(lambda UpperCamelCase__ : p.requires_grad , model.parameters() ) SCREAMING_SNAKE_CASE__ = sum([np.prod(p.size() ) for p in model_parameters] ) return params _lowerCamelCase = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Dict ): if metric == "rouge2": SCREAMING_SNAKE_CASE__ = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": SCREAMING_SNAKE_CASE__ = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": SCREAMING_SNAKE_CASE__ = """{val_avg_em:.4f}-{step_count}""" else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' """ function.""" ) SCREAMING_SNAKE_CASE__ = ModelCheckpoint( dirpath=UpperCamelCase__ , filename=UpperCamelCase__ , monitor=f'''val_{metric}''' , mode="""max""" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: List[str] ): return EarlyStopping( monitor=f'''val_{metric}''' , mode="""min""" if """loss""" in metric else """max""" , patience=UpperCamelCase__ , verbose=UpperCamelCase__ , ) class UpperCamelCase_ ( pl.Callback ): def _snake_case ( self :List[Any] , __A :Any , __A :Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = {f'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__A ) @rank_zero_only def _snake_case ( self :Union[str, Any] , __A :pl.Trainer , __A :pl.LightningModule , __A :str , __A :str=True ) -> None: """simple docstring""" logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) SCREAMING_SNAKE_CASE__ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results SCREAMING_SNAKE_CASE__ = Path(pl_module.hparams.output_dir ) if type_path == "test": SCREAMING_SNAKE_CASE__ = od / """test_results.txt""" SCREAMING_SNAKE_CASE__ = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. SCREAMING_SNAKE_CASE__ = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' SCREAMING_SNAKE_CASE__ = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=__A ) generations_file.parent.mkdir(exist_ok=__A ) with open(__A , """a+""" ) as writer: for key in sorted(__A ): if key in ["log", "progress_bar", "preds"]: continue SCREAMING_SNAKE_CASE__ = metrics[key] if isinstance(__A , torch.Tensor ): SCREAMING_SNAKE_CASE__ = val.item() SCREAMING_SNAKE_CASE__ = f'''{key}: {val:.6f}\n''' writer.write(__A ) if not save_generations: return if "preds" in metrics: SCREAMING_SNAKE_CASE__ = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(__A ) @rank_zero_only def _snake_case ( self :List[str] , __A :str , __A :Union[str, Any] ) -> List[str]: """simple docstring""" try: SCREAMING_SNAKE_CASE__ = pl_module.model.model.num_parameters() except AttributeError: SCREAMING_SNAKE_CASE__ = pl_module.model.num_parameters() SCREAMING_SNAKE_CASE__ = count_trainable_parameters(__A ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1E6, """grad_mp""": n_trainable_pars / 1E6} ) @rank_zero_only def _snake_case ( self :List[Any] , __A :pl.Trainer , __A :pl.LightningModule ) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__A , __A , """test""" ) @rank_zero_only def _snake_case ( self :int , __A :pl.Trainer , __A :Dict ) -> int: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
6
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self :Union[str, Any] , __A :int = 3 , __A :int = 3 , __A :Tuple[str] = ("DownEncoderBlock2D",) , __A :Tuple[str] = ("UpDecoderBlock2D",) , __A :Tuple[int] = (64,) , __A :int = 1 , __A :str = "silu" , __A :int = 3 , __A :int = 32 , __A :int = 256 , __A :int = 32 , __A :Optional[int] = None , __A :float = 0.1_8_2_1_5 , __A :str = "group" , ) -> Any: """simple docstring""" super().__init__() # pass init params to Encoder SCREAMING_SNAKE_CASE__ = Encoder( in_channels=__A , out_channels=__A , down_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , double_z=__A , ) SCREAMING_SNAKE_CASE__ = vq_embed_dim if vq_embed_dim is not None else latent_channels SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = VectorQuantizer(__A , __A , beta=0.2_5 , remap=__A , sane_index_shape=__A ) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) # pass init params to Decoder SCREAMING_SNAKE_CASE__ = Decoder( in_channels=__A , out_channels=__A , up_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , norm_type=__A , ) @apply_forward_hook def _snake_case ( self :Union[str, Any] , __A :torch.FloatTensor , __A :bool = True ) -> VQEncoderOutput: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.encoder(__A ) SCREAMING_SNAKE_CASE__ = self.quant_conv(__A ) if not return_dict: return (h,) return VQEncoderOutput(latents=__A ) @apply_forward_hook def _snake_case ( self :Tuple , __A :torch.FloatTensor , __A :bool = False , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if not force_not_quantize: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.quantize(__A ) else: SCREAMING_SNAKE_CASE__ = h SCREAMING_SNAKE_CASE__ = self.post_quant_conv(__A ) SCREAMING_SNAKE_CASE__ = self.decoder(__A , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__A ) def _snake_case ( self :int , __A :torch.FloatTensor , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" SCREAMING_SNAKE_CASE__ = sample SCREAMING_SNAKE_CASE__ = self.encode(__A ).latents SCREAMING_SNAKE_CASE__ = self.decode(__A ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__A )
6
1
_lowerCamelCase = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _lowerCamelCase = [{'type': 'code', 'content': INSTALL_CONTENT}] _lowerCamelCase = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
6
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 lowerCamelCase_ = jnp.floataa lowerCamelCase_ = True def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" super().setup() SCREAMING_SNAKE_CASE__ = nn.Dense(5 , dtype=self.dtype ) def __call__( self :List[Any] , *__A :int , **__A :Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = super().__call__(*__A , **__A ) SCREAMING_SNAKE_CASE__ = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = FlaxBigBirdForNaturalQuestionsModule def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Tuple , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple ): def cross_entropy(UpperCamelCase__: List[str] , UpperCamelCase__: List[str] , UpperCamelCase__: List[str]=None ): SCREAMING_SNAKE_CASE__ = logits.shape[-1] SCREAMING_SNAKE_CASE__ = (labels[..., None] == jnp.arange(UpperCamelCase__ )[None]).astype("""f4""" ) SCREAMING_SNAKE_CASE__ = jax.nn.log_softmax(UpperCamelCase__ , axis=-1 ) SCREAMING_SNAKE_CASE__ = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: SCREAMING_SNAKE_CASE__ = reduction(UpperCamelCase__ ) return loss SCREAMING_SNAKE_CASE__ = partial(UpperCamelCase__ , reduction=jnp.mean ) SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class UpperCamelCase_ : lowerCamelCase_ = "google/bigbird-roberta-base" lowerCamelCase_ = 30_00 lowerCamelCase_ = 1_05_00 lowerCamelCase_ = 1_28 lowerCamelCase_ = 3 lowerCamelCase_ = 1 lowerCamelCase_ = 5 # tx_args lowerCamelCase_ = 3e-5 lowerCamelCase_ = 0.0 lowerCamelCase_ = 2_00_00 lowerCamelCase_ = 0.0095 lowerCamelCase_ = "bigbird-roberta-natural-questions" lowerCamelCase_ = "training-expt" lowerCamelCase_ = "data/nq-training.jsonl" lowerCamelCase_ = "data/nq-validation.jsonl" def _snake_case ( self :str ) -> Optional[int]: """simple docstring""" os.makedirs(self.base_dir , exist_ok=__A ) SCREAMING_SNAKE_CASE__ = os.path.join(self.base_dir , self.save_dir ) SCREAMING_SNAKE_CASE__ = self.batch_size_per_device * jax.device_count() @dataclass class UpperCamelCase_ : lowerCamelCase_ = 42 lowerCamelCase_ = 40_96 # no dynamic padding on TPUs def __call__( self :Optional[Any] , __A :Optional[int] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.collate_fn(__A ) SCREAMING_SNAKE_CASE__ = jax.tree_util.tree_map(__A , __A ) return batch def _snake_case ( self :List[Any] , __A :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.fetch_inputs(features["""input_ids"""] ) SCREAMING_SNAKE_CASE__ = { """input_ids""": jnp.array(__A , dtype=jnp.intaa ), """attention_mask""": jnp.array(__A , dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ), } return batch def _snake_case ( self :Tuple , __A :list ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self._fetch_inputs(__A ) for ids in input_ids] return zip(*__A ) def _snake_case ( self :List[str] , __A :list ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [1 for _ in range(len(__A ) )] while len(__A ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: List[str] , UpperCamelCase__: Optional[Any]=None ): if seed is not None: SCREAMING_SNAKE_CASE__ = dataset.shuffle(seed=UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) // batch_size ): SCREAMING_SNAKE_CASE__ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCamelCase__ ) @partial(jax.pmap , axis_name="""batch""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: Optional[int] , **UpperCamelCase__: Optional[int] ): def loss_fn(UpperCamelCase__: List[Any] ): SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" ) SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=UpperCamelCase__ , dropout_rng=UpperCamelCase__ , train=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs return state.loss_fn( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = jax.random.split(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = jax.value_and_grad(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = grad_fn(state.params ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean(UpperCamelCase__ , """batch""" ) SCREAMING_SNAKE_CASE__ = state.apply_gradients(grads=UpperCamelCase__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , **UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" ) SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=state.params , train=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs SCREAMING_SNAKE_CASE__ = state.loss_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class UpperCamelCase_ ( train_state.TrainState ): lowerCamelCase_ = struct.field(pytree_node=UpperCamelCase__ ) @dataclass class UpperCamelCase_ : lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = None def _snake_case ( self :List[Any] , __A :str , __A :str , __A :str , __A :Tuple=None ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = model.params SCREAMING_SNAKE_CASE__ = TrainState.create( apply_fn=model.__call__ , params=__A , tx=__A , loss_fn=__A , ) if ckpt_dir is not None: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = restore_checkpoint(__A , __A ) SCREAMING_SNAKE_CASE__ = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = build_tx(**__A ) SCREAMING_SNAKE_CASE__ = train_state.TrainState( step=__A , apply_fn=model.__call__ , params=__A , tx=__A , opt_state=__A , ) SCREAMING_SNAKE_CASE__ = args SCREAMING_SNAKE_CASE__ = data_collator SCREAMING_SNAKE_CASE__ = lr SCREAMING_SNAKE_CASE__ = params SCREAMING_SNAKE_CASE__ = jax_utils.replicate(__A ) return state def _snake_case ( self :Optional[Any] , __A :Optional[int] , __A :int , __A :int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.args SCREAMING_SNAKE_CASE__ = len(__A ) // args.batch_size SCREAMING_SNAKE_CASE__ = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE__ = jax.random.split(__A , jax.device_count() ) for epoch in range(args.max_epochs ): SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , args.batch_size , seed=__A ) SCREAMING_SNAKE_CASE__ = 0 for batch in tqdm(__A , total=__A , desc=f'''Running EPOCH-{epoch}''' ): SCREAMING_SNAKE_CASE__ = self.data_collator(__A ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.train_step_fn(__A , __A , **__A ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(state.step ) SCREAMING_SNAKE_CASE__ = running_loss.item() / i SCREAMING_SNAKE_CASE__ = self.scheduler_fn(state_step - 1 ) SCREAMING_SNAKE_CASE__ = self.evaluate(__A , __A ) SCREAMING_SNAKE_CASE__ = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(__A ) ) self.logger.log(__A , commit=__A ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=__A ) def _snake_case ( self :List[str] , __A :Dict , __A :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , self.args.batch_size ) SCREAMING_SNAKE_CASE__ = len(__A ) // self.args.batch_size SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = 0 for batch in tqdm(__A , total=__A , desc="""Evaluating ... """ ): SCREAMING_SNAKE_CASE__ = self.data_collator(__A ) SCREAMING_SNAKE_CASE__ = self.val_step_fn(__A , **__A ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def _snake_case ( self :List[Any] , __A :Any , __A :Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(__A ) print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=""" ... """ ) self.model_save_fn(__A , params=state.params ) with open(os.path.join(__A , """opt_state.msgpack""" ) , """wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(__A , """args.joblib""" ) ) joblib.dump(self.data_collator , os.path.join(__A , """data_collator.joblib""" ) ) with open(os.path.join(__A , """training_state.json""" ) , """w""" ) as f: json.dump({"""step""": state.step.item()} , __A ) print("""DONE""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ): print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=""" ... """ ) with open(os.path.join(UpperCamelCase__ , """flax_model.msgpack""" ) , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = from_bytes(state.params , f.read() ) with open(os.path.join(UpperCamelCase__ , """opt_state.msgpack""" ) , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = from_bytes(state.opt_state , f.read() ) SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """args.joblib""" ) ) SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """data_collator.joblib""" ) ) with open(os.path.join(UpperCamelCase__ , """training_state.json""" ) , """r""" ) as f: SCREAMING_SNAKE_CASE__ = json.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = num_train_steps - warmup_steps SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=UpperCamelCase__ , transition_steps=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=1e-7 , transition_steps=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple ): def weight_decay_mask(UpperCamelCase__: Any ): SCREAMING_SNAKE_CASE__ = traverse_util.flatten_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = scheduler_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = optax.adamw(learning_rate=UpperCamelCase__ , weight_decay=UpperCamelCase__ , mask=UpperCamelCase__ ) return tx, lr
6
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _lowerCamelCase = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any ): inspect_dataset(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = path + """.py""" assert script_name in os.listdir(UpperCamelCase__ ) assert "__pycache__" not in os.listdir(UpperCamelCase__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] ): inspect_metric(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = path + """.py""" assert script_name in os.listdir(UpperCamelCase__ ) assert "__pycache__" not in os.listdir(UpperCamelCase__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[int] , UpperCamelCase__: List[str] , UpperCamelCase__: Any ): SCREAMING_SNAKE_CASE__ = get_dataset_config_info(UpperCamelCase__ , config_name=UpperCamelCase__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: str , UpperCamelCase__: List[str] ): with pytest.raises(UpperCamelCase__ ): get_dataset_config_info(UpperCamelCase__ , config_name=UpperCamelCase__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = get_dataset_config_names(UpperCamelCase__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = get_dataset_infos(UpperCamelCase__ ) assert list(infos.keys() ) == expected_configs SCREAMING_SNAKE_CASE__ = expected_configs[0] assert expected_config in infos SCREAMING_SNAKE_CASE__ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: int , UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = get_dataset_infos(UpperCamelCase__ ) assert expected_config in infos SCREAMING_SNAKE_CASE__ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple , UpperCamelCase__: int ): with pytest.raises(UpperCamelCase__ ): get_dataset_split_names(UpperCamelCase__ , config_name=UpperCamelCase__ )
6
from torch import nn def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
6
1
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "FlavaImageProcessor" lowerCamelCase_ = ("BertTokenizer", "BertTokenizerFast") def __init__( self :Optional[int] , __A :Optional[Any]=None , __A :str=None , **__A :Optional[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __A , ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""feature_extractor""" ) SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__A , __A ) SCREAMING_SNAKE_CASE__ = self.image_processor def __call__( self :Dict , __A :Optional[ImageInput] = None , __A :Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , __A :bool = True , __A :Union[bool, str, PaddingStrategy] = False , __A :Union[bool, str, TruncationStrategy] = False , __A :Optional[int] = None , __A :int = 0 , __A :Optional[int] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , __A :bool = False , __A :bool = False , __A :bool = False , __A :bool = False , __A :bool = True , __A :Optional[Union[str, TensorType]] = None , **__A :List[str] , ) -> Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_token_type_ids=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor( __A , return_image_mask=__A , return_codebook_pixels=__A , return_tensors=__A , **__A , ) if text is not None and images is not None: encoding.update(__A ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self :int , *__A :Dict , **__A :int ) -> Dict: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :Union[str, Any] , *__A :Tuple , **__A :List[str] ) -> Optional[int]: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _snake_case ( self :Optional[int] ) -> Optional[Any]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , ) return self.image_processor_class @property def _snake_case ( self :Optional[int] ) -> Optional[int]: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , ) return self.image_processor
6
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) SCREAMING_SNAKE_CASE__ = MaskFormerConfig(backbone_config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 847 SCREAMING_SNAKE_CASE__ = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 150 SCREAMING_SNAKE_CASE__ = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 171 SCREAMING_SNAKE_CASE__ = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO SCREAMING_SNAKE_CASE__ = 133 SCREAMING_SNAKE_CASE__ = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 19 SCREAMING_SNAKE_CASE__ = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 65 SCREAMING_SNAKE_CASE__ = """mapillary-vistas-id2label.json""" SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE__ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.layers.{i}.downsample.reduction.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f'''sem_seg_head.adapter_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', f'''mask_embedder.{i}.0.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', f'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[int] ): SCREAMING_SNAKE_CASE__ = dct.pop(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = val def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): SCREAMING_SNAKE_CASE__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[: dim] SCREAMING_SNAKE_CASE__ = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE__ = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ): # fmt: off SCREAMING_SNAKE_CASE__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :] # fmt: on def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE__ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: bool = False ): SCREAMING_SNAKE_CASE__ = get_maskformer_config(UpperCamelCase__ ) # load original state_dict with open(UpperCamelCase__ , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = pickle.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys SCREAMING_SNAKE_CASE__ = create_rename_keys(UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_swin_q_k_v(UpperCamelCase__ , config.backbone_config ) read_in_decoder_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # update to torch tensors for key, value in state_dict.items(): SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase__ ) # load 🤗 model SCREAMING_SNAKE_CASE__ = MaskFormerForInstanceSegmentation(UpperCamelCase__ ) model.eval() for name, param in model.named_parameters(): print(UpperCamelCase__ , param.shape ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(UpperCamelCase__ ) == 0, f'''Unexpected keys: {unexpected_keys}''' # verify results SCREAMING_SNAKE_CASE__ = prepare_img() if "vistas" in model_name: SCREAMING_SNAKE_CASE__ = 65 elif "cityscapes" in model_name: SCREAMING_SNAKE_CASE__ = 65_535 else: SCREAMING_SNAKE_CASE__ = 255 SCREAMING_SNAKE_CASE__ = True if """ade""" in model_name else False SCREAMING_SNAKE_CASE__ = MaskFormerImageProcessor(ignore_index=UpperCamelCase__ , reduce_labels=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = image_processor(UpperCamelCase__ , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase__ ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": SCREAMING_SNAKE_CASE__ = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) image_processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(f'''nielsr/{model_name}''' ) image_processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _lowerCamelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
6
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _lowerCamelCase = False class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :Dict ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self :Any ) -> Optional[Any]: """simple docstring""" return 12 @property def _snake_case ( self :Tuple ) -> List[Any]: """simple docstring""" return 12 @property def _snake_case ( self :str ) -> Union[str, Any]: """simple docstring""" return 32 @property def _snake_case ( self :List[str] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def _snake_case ( self :Optional[int] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def _snake_case ( self :Any ) -> Any: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__A ) @property def _snake_case ( self :Optional[Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = { """attention_bias""": True, """cross_attention_dim""": 32, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 32, """sample_size""": width, """activation_fn""": """geglu-approximate""", } SCREAMING_SNAKE_CASE__ = TransformeraDModel(**__A ) return model def _snake_case ( self :List[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = """cpu""" SCREAMING_SNAKE_CASE__ = self.dummy_vqvae SCREAMING_SNAKE_CASE__ = self.dummy_text_encoder SCREAMING_SNAKE_CASE__ = self.dummy_tokenizer SCREAMING_SNAKE_CASE__ = self.dummy_transformer SCREAMING_SNAKE_CASE__ = VQDiffusionScheduler(self.num_embed ) SCREAMING_SNAKE_CASE__ = LearnedClassifierFreeSamplingEmbeddings(learnable=__A ) SCREAMING_SNAKE_CASE__ = VQDiffusionPipeline( vqvae=__A , text_encoder=__A , tokenizer=__A , transformer=__A , scheduler=__A , learned_classifier_free_sampling_embeddings=__A , ) SCREAMING_SNAKE_CASE__ = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE__ = """teddy bear playing in the pool""" SCREAMING_SNAKE_CASE__ = torch.Generator(device=__A ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe([prompt] , generator=__A , num_inference_steps=2 , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = torch.Generator(device=__A ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe( [prompt] , generator=__A , output_type="""np""" , return_dict=__A , num_inference_steps=2 )[0] SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) SCREAMING_SNAKE_CASE__ = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self :List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = """cpu""" SCREAMING_SNAKE_CASE__ = self.dummy_vqvae SCREAMING_SNAKE_CASE__ = self.dummy_text_encoder SCREAMING_SNAKE_CASE__ = self.dummy_tokenizer SCREAMING_SNAKE_CASE__ = self.dummy_transformer SCREAMING_SNAKE_CASE__ = VQDiffusionScheduler(self.num_embed ) SCREAMING_SNAKE_CASE__ = LearnedClassifierFreeSamplingEmbeddings( learnable=__A , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) SCREAMING_SNAKE_CASE__ = VQDiffusionPipeline( vqvae=__A , text_encoder=__A , tokenizer=__A , transformer=__A , scheduler=__A , learned_classifier_free_sampling_embeddings=__A , ) SCREAMING_SNAKE_CASE__ = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE__ = """teddy bear playing in the pool""" SCREAMING_SNAKE_CASE__ = torch.Generator(device=__A ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe([prompt] , generator=__A , num_inference_steps=2 , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = torch.Generator(device=__A ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe( [prompt] , generator=__A , output_type="""np""" , return_dict=__A , num_inference_steps=2 )[0] SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) SCREAMING_SNAKE_CASE__ = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :List[Any] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self :List[str] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) SCREAMING_SNAKE_CASE__ = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) SCREAMING_SNAKE_CASE__ = pipeline.to(__A ) pipeline.set_progress_bar_config(disable=__A ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though SCREAMING_SNAKE_CASE__ = torch.Generator(device=__A ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=__A , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
6
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'nielsr/canine-s': 2048, } # Unicode defines 1,114,112 total “codepoints” _lowerCamelCase = 1114112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _lowerCamelCase = 0 _lowerCamelCase = 0XE0_00 _lowerCamelCase = 0XE0_01 _lowerCamelCase = 0XE0_02 _lowerCamelCase = 0XE0_03 _lowerCamelCase = 0XE0_04 # Maps special codepoints to human-readable names. _lowerCamelCase = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _lowerCamelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self :str , __A :str=chr(__A ) , __A :str=chr(__A ) , __A :Dict=chr(__A ) , __A :str=chr(__A ) , __A :Union[str, Any]=chr(__A ) , __A :str=chr(__A ) , __A :int=False , __A :int=2048 , **__A :Dict , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , model_max_length=__A , **__A , ) # Creates a mapping for looking up the IDs of special symbols. SCREAMING_SNAKE_CASE__ = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): SCREAMING_SNAKE_CASE__ = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. SCREAMING_SNAKE_CASE__ = { codepoint: name for name, codepoint in self._special_codepoints.items() } SCREAMING_SNAKE_CASE__ = UNICODE_VOCAB_SIZE SCREAMING_SNAKE_CASE__ = len(self._special_codepoints ) @property def _snake_case ( self :Optional[Any] ) -> int: """simple docstring""" return self._unicode_vocab_size def _snake_case ( self :Tuple , __A :str ) -> List[str]: """simple docstring""" return list(__A ) def _snake_case ( self :Optional[Any] , __A :str ) -> int: """simple docstring""" try: return ord(__A ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def _snake_case ( self :str , __A :int ) -> str: """simple docstring""" try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__A ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Any: """simple docstring""" return "".join(__A ) def _snake_case ( self :Optional[Any] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def _snake_case ( self :List[Any] , __A :List[int] , __A :Optional[List[int]] = None , __A :bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) SCREAMING_SNAKE_CASE__ = [1] + ([0] * len(__A )) + [1] if token_ids_a is not None: result += ([0] * len(__A )) + [1] return result def _snake_case ( self :List[str] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def _snake_case ( self :int , __A :str , __A :Optional[str] = None ) -> Any: """simple docstring""" return ()
6
1
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _lowerCamelCase = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class UpperCamelCase_ ( unittest.TestCase ): def __init__( self :List[str] , __A :List[Any] , __A :Optional[int]=7 , __A :Tuple=3 , __A :Tuple=18 , __A :Tuple=30 , __A :Union[str, Any]=400 , __A :List[Any]=None , __A :List[Any]=True , __A :Any=True , __A :str=None , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = size if size is not None else {"""height""": 20, """width""": 20} SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = do_convert_rgb SCREAMING_SNAKE_CASE__ = [512, 1024, 2048, 4096] SCREAMING_SNAKE_CASE__ = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} def _snake_case ( self :Dict ) -> Optional[Any]: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _snake_case ( self :Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = """https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg""" SCREAMING_SNAKE_CASE__ = Image.open(requests.get(__A , stream=__A ).raw ).convert("""RGB""" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class UpperCamelCase_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase_ = PixaStructImageProcessor if is_vision_available() else None def _snake_case ( self :Optional[int] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = PixaStructImageProcessingTester(self ) @property def _snake_case ( self :Optional[int] ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self :int ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """do_normalize""" ) ) self.assertTrue(hasattr(__A , """do_convert_rgb""" ) ) def _snake_case ( self :str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processor_tester.prepare_dummy_image() SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE__ = 2048 SCREAMING_SNAKE_CASE__ = image_processor(__A , return_tensors="""pt""" , max_patches=__A ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_6_0_6 ) , atol=1E-3 , rtol=1E-3 ) ) def _snake_case ( self :Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input SCREAMING_SNAKE_CASE__ = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processor( __A , return_tensors="""pt""" , max_patches=__A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _snake_case ( self :List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 SCREAMING_SNAKE_CASE__ = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__A ): SCREAMING_SNAKE_CASE__ = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__A ).flattened_patches SCREAMING_SNAKE_CASE__ = """Hello""" SCREAMING_SNAKE_CASE__ = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__A , header_text=__A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processor( __A , return_tensors="""pt""" , max_patches=__A , header_text=__A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _snake_case ( self :int ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) SCREAMING_SNAKE_CASE__ = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input SCREAMING_SNAKE_CASE__ = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processor( __A , return_tensors="""pt""" , max_patches=__A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _snake_case ( self :Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input SCREAMING_SNAKE_CASE__ = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processor( __A , return_tensors="""pt""" , max_patches=__A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class UpperCamelCase_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase_ = PixaStructImageProcessor if is_vision_available() else None def _snake_case ( self :Dict ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = PixaStructImageProcessingTester(self , num_channels=4 ) SCREAMING_SNAKE_CASE__ = 3 @property def _snake_case ( self :Optional[Any] ) -> str: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self :Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """do_normalize""" ) ) self.assertTrue(hasattr(__A , """do_convert_rgb""" ) ) def _snake_case ( self :int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input SCREAMING_SNAKE_CASE__ = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processor( __A , return_tensors="""pt""" , max_patches=__A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
6
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) _lowerCamelCase = 'bert-base-cased' _lowerCamelCase = 'fp16' _lowerCamelCase = 'bf16' _lowerCamelCase = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Optional[Any] ) -> Optional[Any]: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = dict( ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , ) def _snake_case ( self :List[Any] ) -> Tuple: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = f'''{i + 1}''' SCREAMING_SNAKE_CASE__ = strategy with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def _snake_case ( self :int ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = prefetch_policy with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def _snake_case ( self :List[str] ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = state_dict_type with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _snake_case ( self :str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoModel.from_pretrained(__A ) for policy in FSDP_AUTO_WRAP_POLICY: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = policy if policy == "TRANSFORMER_BASED_WRAP": SCREAMING_SNAKE_CASE__ = """BertLayer""" elif policy == "SIZE_BASED_WRAP": SCREAMING_SNAKE_CASE__ = """2000""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = """TRANSFORMER_BASED_WRAP""" SCREAMING_SNAKE_CASE__ = """T5Layer""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() with self.assertRaises(__A ) as cm: fsdp_plugin.set_auto_wrap_policy(__A ) self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) ) SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = """SIZE_BASED_WRAP""" SCREAMING_SNAKE_CASE__ = """0""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _snake_case ( self :Optional[Any] ) -> Optional[int]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = mp_dtype with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = Accelerator() if mp_dtype == "fp16": SCREAMING_SNAKE_CASE__ = torch.floataa elif mp_dtype == "bf16": SCREAMING_SNAKE_CASE__ = torch.bfloataa SCREAMING_SNAKE_CASE__ = MixedPrecision(param_dtype=__A , reduce_dtype=__A , buffer_dtype=__A ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __A ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __A ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__A ) def _snake_case ( self :str ) -> str: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = str(__A ).lower() with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__A ) ) @require_fsdp @require_multi_gpu @slow class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Any ) -> Any: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = 0.8_2 SCREAMING_SNAKE_CASE__ = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] SCREAMING_SNAKE_CASE__ = { """multi_gpu_fp16""": 3200, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000, """fsdp_full_shard_transformer_based_wrap_fp16""": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } SCREAMING_SNAKE_CASE__ = 160 SCREAMING_SNAKE_CASE__ = 160 SCREAMING_SNAKE_CASE__ = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] ) def _snake_case ( self :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_performance.py""" ) SCREAMING_SNAKE_CASE__ = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: SCREAMING_SNAKE_CASE__ = cmd.copy() for i, strategy in enumerate(__A ): if strategy.lower() in config: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append("""--mixed_precision=no""" ) else: cmd_config.append("""--mixed_precision=fp16""" ) if "cpu_offload" in config: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self :Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" ) SCREAMING_SNAKE_CASE__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = cmd.copy() cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue SCREAMING_SNAKE_CASE__ = len(__A ) for state_dict_type in FSDP_STATE_DICT_TYPE: SCREAMING_SNAKE_CASE__ = cmd_config[:state_dict_config_index] cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', """--partial_train_epoch=1""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) SCREAMING_SNAKE_CASE__ = cmd_config[:-1] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdir , """epoch_0""" ) cmd_config.extend( [ f'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self :Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" ) SCREAMING_SNAKE_CASE__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): SCREAMING_SNAKE_CASE__ = cmd.copy() if "fp16" in spec: cmd_config.extend(["""--mixed_precision=fp16"""] ) else: cmd_config.extend(["""--mixed_precision=no"""] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["""--use_fsdp"""] ) for i, strategy in enumerate(__A ): if strategy.lower() in spec: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--peak_memory_upper_bound={peak_mem_upper_bound}''', f'''--n_train={self.n_train}''', f'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() )
6
1
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_337 , num_examples=42 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_337 , num_examples=42 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: SplitDict ): SCREAMING_SNAKE_CASE__ = split_dict._to_yaml_list() assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = SplitDict._from_yaml_list(UpperCamelCase__ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump SCREAMING_SNAKE_CASE__ = None # the split name of split_dict takes over the name of the split info object SCREAMING_SNAKE_CASE__ = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=UpperCamelCase__ ), SplitInfo(dataset_name="""my_dataset""" )] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files SCREAMING_SNAKE_CASE__ = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
6
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _lowerCamelCase = logging.get_logger(__name__) # General docstring _lowerCamelCase = 'PoolFormerConfig' # Base docstring _lowerCamelCase = 'sail/poolformer_s12' _lowerCamelCase = [1, 512, 7, 7] # Image classification docstring _lowerCamelCase = 'sail/poolformer_s12' _lowerCamelCase = 'tabby, tabby cat' _lowerCamelCase = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: float = 0.0 , UpperCamelCase__: bool = False ): if drop_prob == 0.0 or not training: return input SCREAMING_SNAKE_CASE__ = 1 - drop_prob SCREAMING_SNAKE_CASE__ = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets SCREAMING_SNAKE_CASE__ = keep_prob + torch.rand(UpperCamelCase__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize SCREAMING_SNAKE_CASE__ = input.div(UpperCamelCase__ ) * random_tensor return output class UpperCamelCase_ ( nn.Module ): def __init__( self :Optional[Any] , __A :Optional[float] = None ) -> None: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = drop_prob def _snake_case ( self :Any , __A :torch.Tensor ) -> torch.Tensor: """simple docstring""" return drop_path(__A , self.drop_prob , self.training ) def _snake_case ( self :Dict ) -> str: """simple docstring""" return "p={}".format(self.drop_prob ) class UpperCamelCase_ ( nn.Module ): def __init__( self :Dict , __A :Optional[Any] , __A :Dict , __A :List[str] , __A :Optional[Any] , __A :Tuple , __A :Optional[Any]=None ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = patch_size if isinstance(__A , collections.abc.Iterable ) else (patch_size, patch_size) SCREAMING_SNAKE_CASE__ = stride if isinstance(__A , collections.abc.Iterable ) else (stride, stride) SCREAMING_SNAKE_CASE__ = padding if isinstance(__A , collections.abc.Iterable ) else (padding, padding) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , kernel_size=__A , stride=__A , padding=__A ) SCREAMING_SNAKE_CASE__ = norm_layer(__A ) if norm_layer else nn.Identity() def _snake_case ( self :Dict , __A :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.projection(__A ) SCREAMING_SNAKE_CASE__ = self.norm(__A ) return embeddings class UpperCamelCase_ ( nn.GroupNorm ): def __init__( self :Dict , __A :Tuple , **__A :Union[str, Any] ) -> Dict: """simple docstring""" super().__init__(1 , __A , **__A ) class UpperCamelCase_ ( nn.Module ): def __init__( self :List[str] , __A :Optional[int] ) -> Any: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.AvgPoolad(__A , stride=1 , padding=pool_size // 2 , count_include_pad=__A ) def _snake_case ( self :Any , __A :Optional[Any] ) -> Optional[Any]: """simple docstring""" return self.pool(__A ) - hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self :Optional[Any] , __A :Tuple , __A :Dict , __A :int , __A :Any ) -> str: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A ) if isinstance(config.hidden_act , __A ): SCREAMING_SNAKE_CASE__ = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE__ = config.hidden_act def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.conva(__A ) SCREAMING_SNAKE_CASE__ = self.act_fn(__A ) SCREAMING_SNAKE_CASE__ = self.drop(__A ) SCREAMING_SNAKE_CASE__ = self.conva(__A ) SCREAMING_SNAKE_CASE__ = self.drop(__A ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self :Any , __A :str , __A :List[str] , __A :Tuple , __A :Dict , __A :Union[str, Any] , __A :int ) -> Optional[int]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = PoolFormerPooling(__A ) SCREAMING_SNAKE_CASE__ = PoolFormerOutput(__A , __A , __A , __A ) SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A ) SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A ) # Useful for training neural nets SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A ) if drop_path > 0.0 else nn.Identity() SCREAMING_SNAKE_CASE__ = config.use_layer_scale if config.use_layer_scale: SCREAMING_SNAKE_CASE__ = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) SCREAMING_SNAKE_CASE__ = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) def _snake_case ( self :Optional[Any] , __A :Optional[int] ) -> str: """simple docstring""" if self.use_layer_scale: SCREAMING_SNAKE_CASE__ = self.pooling(self.before_norm(__A ) ) SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A ) SCREAMING_SNAKE_CASE__ = () SCREAMING_SNAKE_CASE__ = self.output(self.after_norm(__A ) ) SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A ) SCREAMING_SNAKE_CASE__ = (output,) + outputs return outputs else: SCREAMING_SNAKE_CASE__ = self.drop_path(self.pooling(self.before_norm(__A ) ) ) # First residual connection SCREAMING_SNAKE_CASE__ = pooling_output + hidden_states SCREAMING_SNAKE_CASE__ = () # Second residual connection inside the PoolFormerOutput block SCREAMING_SNAKE_CASE__ = self.drop_path(self.output(self.after_norm(__A ) ) ) SCREAMING_SNAKE_CASE__ = hidden_states + layer_output SCREAMING_SNAKE_CASE__ = (output,) + outputs return outputs class UpperCamelCase_ ( nn.Module ): def __init__( self :Union[str, Any] , __A :List[Any] ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = config # stochastic depth decay rule SCREAMING_SNAKE_CASE__ = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings SCREAMING_SNAKE_CASE__ = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A ) # Transformer blocks SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers SCREAMING_SNAKE_CASE__ = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __A , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__A ) ) SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A ) def _snake_case ( self :str , __A :Tuple , __A :Dict=False , __A :Tuple=True ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = () if output_hidden_states else None SCREAMING_SNAKE_CASE__ = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = layers # Get patch embeddings from hidden_states SCREAMING_SNAKE_CASE__ = embedding_layer(__A ) # Send the embeddings through the blocks for _, blk in enumerate(__A ): SCREAMING_SNAKE_CASE__ = blk(__A ) SCREAMING_SNAKE_CASE__ = layer_outputs[0] if output_hidden_states: SCREAMING_SNAKE_CASE__ = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__A , hidden_states=__A ) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = PoolFormerConfig lowerCamelCase_ = "poolformer" lowerCamelCase_ = "pixel_values" lowerCamelCase_ = True def _snake_case ( self :Optional[Any] , __A :Tuple ) -> Dict: """simple docstring""" if isinstance(__A , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__A , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _snake_case ( self :str , __A :Optional[Any] , __A :Union[str, Any]=False ) -> Any: """simple docstring""" if isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = value _lowerCamelCase = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _lowerCamelCase = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , UpperCamelCase__ , ) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , __A :Any ) -> int: """simple docstring""" super().__init__(__A ) SCREAMING_SNAKE_CASE__ = config SCREAMING_SNAKE_CASE__ = PoolFormerEncoder(__A ) # Initialize weights and apply final processing self.post_init() def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__A , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _snake_case ( self :Dict , __A :Optional[torch.FloatTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) SCREAMING_SNAKE_CASE__ = self.encoder( __A , output_hidden_states=__A , return_dict=__A , ) SCREAMING_SNAKE_CASE__ = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__A , hidden_states=encoder_outputs.hidden_states , ) class UpperCamelCase_ ( nn.Module ): def __init__( self :int , __A :Optional[int] ) -> Tuple: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(config.hidden_size , config.hidden_size ) def _snake_case ( self :List[Any] , __A :Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.dense(__A ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , UpperCamelCase__ , ) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :str , __A :Union[str, Any] ) -> int: """simple docstring""" super().__init__(__A ) SCREAMING_SNAKE_CASE__ = config.num_labels SCREAMING_SNAKE_CASE__ = PoolFormerModel(__A ) # Final norm SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head SCREAMING_SNAKE_CASE__ = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _snake_case ( self :int , __A :Optional[torch.FloatTensor] = None , __A :Optional[torch.LongTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE__ = self.poolformer( __A , output_hidden_states=__A , return_dict=__A , ) SCREAMING_SNAKE_CASE__ = outputs[0] SCREAMING_SNAKE_CASE__ = self.classifier(self.norm(__A ).mean([-2, -1] ) ) SCREAMING_SNAKE_CASE__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE__ = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE__ = """single_label_classification""" else: SCREAMING_SNAKE_CASE__ = """multi_label_classification""" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE__ = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE__ = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE__ = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A ) if not return_dict: SCREAMING_SNAKE_CASE__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__A , logits=__A , hidden_states=outputs.hidden_states )
6
1
from ..utils import DummyObject, requires_backends class UpperCamelCase_ ( metaclass=UpperCamelCase__ ): lowerCamelCase_ = ["torch", "scipy"] def __init__( self :str , *__A :Union[str, Any] , **__A :str ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch""", """scipy"""] ) @classmethod def _snake_case ( cls :List[str] , *__A :Union[str, Any] , **__A :str ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch""", """scipy"""] ) @classmethod def _snake_case ( cls :Any , *__A :Union[str, Any] , **__A :Optional[int] ) -> Any: """simple docstring""" requires_backends(cls , ["""torch""", """scipy"""] )
6
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , __A :Optional[int] , __A :Tuple=13 , __A :Dict=7 , __A :Dict=True , __A :str=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Any=False , __A :Dict=False , __A :Any=False , __A :Tuple=2 , __A :Dict=99 , __A :Optional[Any]=0 , __A :List[str]=32 , __A :Optional[int]=5 , __A :Dict=4 , __A :List[str]=0.1 , __A :Union[str, Any]=0.1 , __A :Tuple=512 , __A :Any=12 , __A :Optional[int]=2 , __A :Union[str, Any]=0.0_2 , __A :Dict=3 , __A :Optional[int]=4 , __A :Any="last" , __A :List[Any]=None , __A :Any=None , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_lengths SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = gelu_activation SCREAMING_SNAKE_CASE__ = sinusoidal_embeddings SCREAMING_SNAKE_CASE__ = causal SCREAMING_SNAKE_CASE__ = asm SCREAMING_SNAKE_CASE__ = n_langs SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = n_special SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = summary_type SCREAMING_SNAKE_CASE__ = use_proj SCREAMING_SNAKE_CASE__ = scope def _snake_case ( self :Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_input_lengths: SCREAMING_SNAKE_CASE__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , 2 ).float() SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self :List[str] ) -> Optional[int]: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _snake_case ( self :Tuple , __A :str , __A :int , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[int] , __A :Union[str, Any] , __A :Union[str, Any] , __A :str , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModel(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , lengths=__A , langs=__A ) SCREAMING_SNAKE_CASE__ = model(__A , langs=__A ) SCREAMING_SNAKE_CASE__ = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self :str , __A :Any , __A :str , __A :Union[str, Any] , __A :Optional[Any] , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[Any] , __A :Union[str, Any] , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertWithLMHeadModel(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self :Tuple , __A :Union[str, Any] , __A :Optional[Any] , __A :Dict , __A :Dict , __A :Union[str, Any] , __A :List[str] , __A :Optional[int] , __A :int , __A :str , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnsweringSimple(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self :List[str] , __A :Any , __A :int , __A :Tuple , __A :Optional[Any] , __A :Tuple , __A :Optional[int] , __A :str , __A :int , __A :str , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnswering(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model( __A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , p_mask=__A , ) SCREAMING_SNAKE_CASE__ = model( __A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , ) ((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple() SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A ) ((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _snake_case ( self :Optional[int] , __A :str , __A :Optional[int] , __A :Tuple , __A :Dict , __A :List[str] , __A :Tuple , __A :List[str] , __A :Dict , __A :List[str] , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForSequenceClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model(__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self :Optional[Any] , __A :Optional[Any] , __A :Optional[Any] , __A :List[str] , __A :Optional[Any] , __A :int , __A :Tuple , __A :Optional[int] , __A :Union[str, Any] , __A :Dict , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = FlaubertForTokenClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self :str , __A :Any , __A :Tuple , __A :List[str] , __A :Tuple , __A :Any , __A :int , __A :Dict , __A :List[str] , __A :Tuple , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_choices SCREAMING_SNAKE_CASE__ = FlaubertForMultipleChoice(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self :Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): lowerCamelCase_ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase_ = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self :Any , __A :Optional[int] , __A :Optional[int] , __A :Dict , __A :List[Any] , __A :Tuple ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self :Tuple , __A :List[str] , __A :Optional[int] , __A :Dict=False ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__A , emb_dim=37 ) def _snake_case ( self :int ) -> int: """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self :Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__A ) def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__A ) def _snake_case ( self :str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__A ) def _snake_case ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__A ) def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__A ) def _snake_case ( self :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__A ) def _snake_case ( self :Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__A ) @slow def _snake_case ( self :Union[str, Any] ) -> List[str]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @slow @require_torch_gpu def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = model_class(config=__A ) SCREAMING_SNAKE_CASE__ = self._prepare_for_class(__A , __A ) SCREAMING_SNAKE_CASE__ = torch.jit.trace( __A , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__A , os.path.join(__A , """traced_model.pt""" ) ) SCREAMING_SNAKE_CASE__ = torch.jit.load(os.path.join(__A , """traced_model.pt""" ) , map_location=__A ) loaded(inputs_dict["""input_ids"""].to(__A ) , inputs_dict["""attention_mask"""].to(__A ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _snake_case ( self :Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(__A )[0] SCREAMING_SNAKE_CASE__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __A ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1E-4 ) )
6
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCamelCase = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: str , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Union[str, Any] ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any , UpperCamelCase__: List[str] , UpperCamelCase__: Tuple=True ): model.train() SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = F.mse_loss(UpperCamelCase__ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: List[Any]=False ): set_seed(42 ) SCREAMING_SNAKE_CASE__ = RegressionModel() SCREAMING_SNAKE_CASE__ = deepcopy(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 ) model.to(accelerator.device ) if sched: SCREAMING_SNAKE_CASE__ = AdamW(params=model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE__ = AdamW(params=ddp_model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 ) SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 ) # Make a copy of `model` if sched: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ): # Test when on a single CPU or GPU that the context manager does nothing SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ ) # Use a single batch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: # Sync grads step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ): # Test on distributed setup that context manager behaves properly SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ ) # Use a single batch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: # Sync grads step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int=False , UpperCamelCase__: Union[str, Any]=False ): SCREAMING_SNAKE_CASE__ = Accelerator( split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ ) for iteration, batch in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCamelCase__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] GradientState._reset_state() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple=False , UpperCamelCase__: List[str]=False ): SCREAMING_SNAKE_CASE__ = Accelerator( split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ , UpperCamelCase__ ) for iteration, batch in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCamelCase__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' SCREAMING_SNAKE_CASE__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCamelCase__ )) if accelerator.num_processes > 1: check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) GradientState._reset_state() def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = Accelerator() SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 ) SCREAMING_SNAKE_CASE__ = RegressionDataset(length=96 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(UpperCamelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ ) if iteration < len(UpperCamelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(UpperCamelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ ) if batch_num < len(UpperCamelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = Accelerator() SCREAMING_SNAKE_CASE__ = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(UpperCamelCase__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(UpperCamelCase__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(UpperCamelCase__ , UpperCamelCase__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
6
1
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowerCamelCase = Lock() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Optional[Any] , UpperCamelCase__: List[str] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[int] , UpperCamelCase__: List[str] ): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() SCREAMING_SNAKE_CASE__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left SCREAMING_SNAKE_CASE__ = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() SCREAMING_SNAKE_CASE__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right SCREAMING_SNAKE_CASE__ = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop SCREAMING_SNAKE_CASE__ = Pipe() SCREAMING_SNAKE_CASE__ = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) SCREAMING_SNAKE_CASE__ = temp_rs SCREAMING_SNAKE_CASE__ = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): SCREAMING_SNAKE_CASE__ = Pipe() SCREAMING_SNAKE_CASE__ = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) SCREAMING_SNAKE_CASE__ = temp_rs SCREAMING_SNAKE_CASE__ = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): SCREAMING_SNAKE_CASE__ = result_pipe[p][0].recv() process_array_[p].join() return arr def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = list(range(10 , 0 , -1 ) ) print("""Initial List""" ) print(*UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = odd_even_transposition(UpperCamelCase__ ) print("""Sorted List\n""" ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
6
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "AutoImageProcessor" lowerCamelCase_ = "AutoTokenizer" def __init__( self :Optional[int] , __A :Optional[Any] , __A :Dict ) -> Dict: """simple docstring""" super().__init__(__A , __A ) SCREAMING_SNAKE_CASE__ = self.image_processor def __call__( self :int , __A :str=None , __A :int=None , __A :Union[str, Any]=None , **__A :str ) -> Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self :str , *__A :List[str] , **__A :List[str] ) -> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :List[str] , *__A :Any , **__A :Any ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :Dict ) -> List[Any]: """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
6
1
import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
6
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = sum(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): SCREAMING_SNAKE_CASE__ = True for i in range(1 , s + 1 ): SCREAMING_SNAKE_CASE__ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): SCREAMING_SNAKE_CASE__ = dp[i][j - 1] if arr[i - 1] <= j: SCREAMING_SNAKE_CASE__ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: SCREAMING_SNAKE_CASE__ = s - 2 * j break return diff
6
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowerCamelCase = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float ): if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(UpperCamelCase__ ) * abs(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
6
1